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Abstract
Transient execution vulnerabilities have affected CPUs for
the better part of the decade, yet, we are still missing meth-
ods to efficiently uncover them at the design stage. Existing
approaches try to find programs that leak explicitly defined
secrets, sometimes including the transmission over a side-
channel, which severely restricts the space of programs that
can trigger detection. As a result, current fuzzers are forced to
constrain the search space using templates of known vulnera-
bilities, which risks overfitting. What is missing is a general
detection mechanism that (1) makes it easy for the fuzzer to
trigger a violation and (2) catches vulnerabilities at their root
cause — similarly to sanitizers in software.

In this paper, we propose Phantom Trails, an efficient yet
generic method for discovering transient execution vulnera-
bilities. Phantom Trails relies on a fuzzer-friendly detection
model that can be applied without the need for templating.
Our detector builds on two key design choices. First, it concen-
trates on finding microarchitectural data leaks independently
of the covert channel, thereby focusing on the core of the at-
tack. Second, it automatically infers all secret locations from
the architectural behavior of a program, making it easier for
the detector to find leaks. We evaluate Phantom Trails by
fuzzing the BOOM RISC-V CPU, where it finds all known
speculative vulnerabilities in 24-hours, starting from an empty
seed and without pre-defined templates, as well as a new Spec-
tre variant specific to BOOM — Spectre-LoopPredictor.

1 Introduction

Transient execution attacks are a critical security threat that
has plagued CPUs for the best part of the last decade. After the
initial discoveries of Spectre [39] and Meltdown [42], recent
years have brought on a variety of new attacks [6, 40, 44, 46,
52,65,66,70]. Once discovered, these issues are unfortunately
not easy to fix: post-silicon mitigations have often proven to
be either incomplete [6, 13, 45, 69, 71], opening the door for
new attacks, or so detrimental to performance as to render

them impractical [28]. Ideally, such vulnerabilities should
be found, and fixed, at the pre-silicon stage, i.e., during the
design phase of the CPU. However, automatically detecting
them in hardware designs is challenging.

Pre-Silicon Fuzzing. While exhaustive approaches such as
formal verification [19, 21, 26, 67] are difficult to scale to
real-world CPUs, a promising approach for finding hardware
bugs in RTL designs is fuzzing, which has been applied to
both architectural [11, 34, 38, 59, 64, 72] and microarchitec-
tural [25, 33] bugs. For CPUs, pre-silicon fuzzing generally
requires to iteratively generate random inputs (i.e., programs)
and verify their behavior on a cycle-accurate simulation of the
Design Under Test (DUT). This approach poses some unique
challenges when compared to traditional software fuzzing
– especially when looking for transient execution vulnera-
bilities. First, the size of the input space – the space of all
possible programs, initial memory states, and CPU configura-
tions – paired with the complexity of the designs and the slow
speeds of cycle-accurate simulations make efficient fuzzing
hard. Second, hardware does not inherently “crash”, which
raises the problem of how to detect violations during fuzzing.
Transient execution vulnerabilities represent a further chal-
lenge: while architectural bugs can be detected through HDL
assertions or golden reference models, modelling transient
vulnerabilities at the RTL level is still an open problem.

Problem Statement. Current state-of-the-art fuzzers for tran-
sient vulnerabilities address the problem of navigating the
huge search space by employing some form of templating,
i.e., by either (1) breaking up known end-to-end attacks into
individual stages that serve as a blueprint for creating new vari-
ants [33], or (2) providing the fuzzer with program snippets
such as “try to access a secret” or “slow down an instruction”
to mimic the behavior of known PoCs [25]. While these re-
strictions help make the search practical, they bias the fuzzer
towards known issues, which risks overfitting. Our main in-
sight is that current fuzzers need restrictions like templates
because their underlying detection models overly constrain
the space of programs that can trigger a violation.



In particular, current detection models rely on explicitly de-
fined secrets, i.e., values that should not be leaked by the
microarchitecture, which are defined as all data residing
in specific memory regions protected by specific hardware
flags [25, 33, 60]. On top of this, state-of-the-art fuzzers [33]
only detect violations after a secret is transmitted through
a covert channel, thereby requiring full end-to-end attacks.
Both choices make life for the fuzzer unnecessarily hard.

Phantom Trails. With Phantom Trails, we present a new
approach to efficiently finding transient vulnerabilities with-
out templates or smart seeds. Phantom Trails builds on a
fuzzer-friendly detector which imposes fewer constraints on
the programs and detects violations at their root cause. In-
stead of end-to-end exploits, Phantom Trails concentrates on
finding transient data leaks — ways in which secrets can
enter the microarchitecture through transient execution — in-
dependently of the side-channel transmission, providing early
detection of vulnerabilities. Unlike previous methods, our
detection model implicitly defines secrets specific to a pro-
gram by deriving which memory locations are never accessed
architecturally. Taking a key insight from software sanitizers
such as ASAN [57] and MSAN [61], whose implicit “tainting”
of most of a program’s memory greatly increases the proba-
bility of detecting memory errors, Phantom Trails’s tainting
of all memory not accessed architecturally maximizes the
likelihood of finding violations. This allows to model a wide
variety of vulnerabilities including Spectre-v1, Spectre-v2,
Spectre-RSB, Spectre-SSB, and Meltdown variants.

Evaluation. To demonstrate the practical benefits of our ap-
proach, we run a fuzzing campaign on BOOM [5], a popu-
lar open-source RISC-V core equipped with an out-of-order
pipeline and speculation. On BOOM, Phantom Trails is able
to reliably detect all Spectre and Meltdown variants known
on this core within 24 hours without the need for templating,
unlike the state of the art [25, 33]. Phantom Trails also uncov-
ers Spectre-LoopPredictor – a new Spectre variant, specific to
BOOM, through which an attacker can cause mispredictions
on an uncontrolled branch by training a nearby control-flow
instruction. We disclosed Spectre-LP to the maintainers of
BOOM, who acknowledged the issue.

Contributions. We make the following contributions:

1. We describe a new, fuzzer-friendly detection model of-
fering sanitizer-like functionality for transient execution
vulnerabilities in CPU designs;

2. We build an extensible, software-only detector based
on LLVM and Verilator to enforce our model on CPU
simulations, with minimal knowledge of the DUT and
no hardware modifications;

3. We integrate the detector into an open-source fuzzer that
can find Spectre and Meltdown samples within 24 hours
on BOOM without templating or smart seeds;

4. We uncover a new speculation primitive on BOOM
(Spectre-LP) that can be used to mispredict an uncon-
trolled branch towards a disclosure gadget.

Open Sourcing. All the source code of our detector, in-
cluding our LLVM instrumentation for Verilator (BFSan)
and a taint-tracking wrapper for BOOM, is available at
https://zenodo.org/records/14726711, along with all
transient leak experiments and fuzzing infrastructure.

2 Background

In this section, we briefly recap the nature of transient execu-
tion attacks and existing detection models.

2.1 Transient Execution Attacks

Phases. End-to-end transient execution attacks consist of
three main phases: 1⃝ a priming step, in which an attacker
massages the microarchitecture to a vulnerable state, 2⃝ a
secret access step, in which the CPU transiently accesses
some secret data as a result of the attacker’s priming, and 3⃝
a transmission step, in which the secret is first encoded into
a non-transient microarchitectural state (e.g., the cache) and
then recovered into an architectural value by the attacker.

Classification. In Meltdown-like attacks, the attacker ac-
cesses data belonging to a different security domain through
a faulting instruction. In particular, in Meltdown a faulty at-
tacker load brings victim data from the L1 cache into the
pipeline, while the faulting load in an MDS attack accesses in-
flight data belonging to the victim. In contrast, in Spectre-like
attacks the access occurs in the same security domain, by a
victim acting as a confused deputy, while the transient window
is generated through speculation. Figure 1 shows the phases
of a typical Spectre attack employing FLUSH+RELOAD [73].

Covert Channels. Step 3⃝ transmits the secret via a timing
covert channel. Many such covert channels have been dis-
covered over the years, including those based on caches [73],
translation structures [29, 62], prefetchers [30], predictors [3,
20], contention on execution units [8], etc.

2.2 Existing Detection Models
Previous work has proposed different models for detecting
transient execution vulnerabilities at the pre-silicon stage.

Templating. IntroSpectre [25] and SpecDoctor [33] are pre-
silicon fuzzers that are aimed at transient execution vulnera-
bilities. Due to the complexity of the DUT, they both employ
strategies to restrict the search space. IntroSpectre defines
a set of “gadgets”, i.e., snippets of code taken from known
vulnerabilities (such as “M5 – Generate store and load in-
structions with overlapping addresses.”) and combines them.

https://zenodo.org/records/14726711
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Figure 1: Phases of a Spectre attack employing Flush+Reload.
The attacker first primes the microarchitecture by flushing the
cache 1⃝, then forces the victim to transiently access a secret
2⃝, the value of which gets encoded in the microarchitectural

state (here the cache) which leaks to the attacker by means of
subsequent timed loads 3⃝.

SpecDoctor uses multi-phased fuzzing starting from a pre-
defined template that mimics the different phases of known
attacks and tries to fill them until an end-to-end leakage is
found, including the transmission and recovery through a
covert channel.

Secret Tracking. Detection mechanisms for transient vulner-
abilities generally involve tracking a secret through the mi-
croarchitecture. In particular, IntroSpectre uses a secret value
generator to populate secret memory with specific values, and
triggers detection if such values are found in a microarchi-
tectural buffer (e.g. the Line-Fill Buffer). SpecDoctor uses
differential testing by changing the values of secret memory
between two different runs of the same program and checking
if the hash of the microarchitectural state differs. STT [74]
and CellIFT [60] propose a different approach for detection
(but not in the context of fuzzing) that uses hardware Infor-
mation Flow Tracking, or taint tracking, to precisely follow
the flow of secret data during its manipulation.

Secret Definition. All existing detection approaches rely on
defining secrets. STT [74] is a microarchitectural defense
that considers all speculatively-accessed data as secret, until
the corresponding instruction is past a Point-of-No-Return in
the RoB, by which time the data is considered architectural.
This approach is not suitable for fuzzing, as any specula-
tive window would trigger a violation, even those where the
speculation turns out to be correct. All other approaches use
explicitly defined secrets. CellIFT and SpecDoctor start from
a predefined secret memory region, which is isolated using
hardware primitives (PMP or page flags). IntroSpectre also
uses page flags to identify secrets, but allows them to evolve
based on the permissions changes operated by the gadgets.

3 Challenges and Observations for Fuzzing

In this section, we highlight some of the obstacles that existing
pre-silicon detectors and fuzzers for transient vulnerabilities
face, as well as key insights to overcome them.

Sources of Entropy. To generate a program that uncovers a
transient vulnerability, fuzzers need to beat a variety of en-
tropy sources. First, the fuzzer needs to generate a set of valid
instructions, and a program that exhibits some non-trivial
control and data flow. Next, the program needs to open a
speculative window. On top of this, the program needs to
access a memory location containing a secret during specu-
lation. Finally, in the case of SpecDoctor, the program also
needs to encode the secret into the microarchitecture, and the
fuzzer needs to generate the receiver code that extracts the
secret. Creating programs that follow all of these steps is a
considerable effort for a fuzzer, and makes efficient fuzzing
impractical. Existing fuzzers tackle this complexity through
templating, which aims at reducing the entropy of program
generation. While this approach speeds up fuzzing, it risks
overfitting on known vulnerabilities. We observe that, by con-
centrating on other sources of entropy, we might be able to
significantly speed up fuzzing without the need for templates.

Observation #1: To generate samples of transient ex-
ecution attacks, fuzzers must beat a variety of entropy
sources. By focusing on sources other than program
generation, we can eliminate the need for templates.

Indirect Flows. Our second observation stems from analyzing
the different steps of transient execution attacks in Figure 1.
We observe that in the priming step (step 1⃝) the attacker
massages the microarchitecture indirectly, i.e., performs ac-
tions that modify the content of prediction structures, without
directly accessing their content (which is not available ar-
chitecturally). Similarly, in step 3⃝, the victim modifies the
microarchitectural state in a secret-dependent way, but there
is no direct flow of information between victim and attacker.
In contrast, in step 2⃝ (secret access) there is a direct data flow
between secret data and some microarchitectural buffer, e.g.,
the Register File or the Line-Fill Buffer. A key observation is
that, while indirect flows are a known issue for taint tracking
frameworks and can often lead to overtainting, direct data
flows can be precisely tracked—making the secret access step
an ideal place to catch speculative attacks. Moreover, as the
secret access happens independently of the transmission and
recovery step, it is orthogonal to the side-channel being used.
Focusing on the secret access step therefore targets the core
of the attack, reducing fuzzer entropy.

Observation #2: We can remove the entropy of the
side-channel by focusing on the secret access phase,
where we have a direct data flow of the secret.



Secret Model. A core challenge of defining transient execu-
tion attacks at the RTL level is modelling secrets. Existing
techniques rely on explicitly defined secrets—for instance,
by marking some pages as secret [33, 60]. Explicit secret
models restrict the number of speculative accesses that trig-
ger detection, making it harder for the fuzzer to find a viola-
tion. Moreover, they require the detector to commit to spe-
cific threat models. For example, attacks can leak data across
hardware-defined boundaries (e.g., user code reading super-
visor memory) or software-only boundaries (e.g., JavaScript
programs breaking website isolation). Similarly, the secret
may be read directly from within the attacker context (Melt-
down), or through the victim (via a gadget in the victim code),
and then exfiltrated by the attacker (Spectre). Approaches
based on explicit secrets protected with PMP/Page Flags must
explicitly pick an attacker model before fuzzing [33], and
cannot account for leakage across software-only boundaries.

Observation #3: By avoiding explicit secrets we can
greatly reduce the entropy of the secret address (and
possibly catch same-domain leaks).

4 Phantom Trails

We now discuss how Phantom Trails addresses these fuzzing
challenges, based on our observations.

4.1 Transient Data Leaks
While detecting end-to-end leaks is a challenging task and
represents a considerable obstacle for fuzzing, detecting se-
cret accesses, which happen before and independently of the
side-channel transmission, can be achieved with precise taint-
tracking, and catches vulnerabilities at their root. In particular,
given a program to test, we track all data flows through the
DUT by accessing the RTL-level design and applying taint
tracking to the cycle-accurate simulation of the CPU. This
includes speculative data flows, e.g., speculative loads, which
are visibile in the microarchitecture for a restricted period of
time (until the speculation is squashed) but not from the archi-
tectural execution. Such data flows can move secret data from
the memory subsystem to an exposed buffer inside the CPU,
i.e., a taint sink, such as the Register File. Once the secret
has entered the RF, it can be leaked in a variety of ways, for
example, by a subsequent load or a variable-time instruction.

We call direct leaks from secret memory to exposed buffers
transient data leaks, and focus our detection method on them.

4.2 Implicit Secrets
Instead of relying on explicit secrets, which make it hard for
the fuzzer to find vulnerabilities and risk missing attacks, we
introduce the concept implicit secrets, depicted in Figure 2.
Given a stream of instructions executed by the CPU, we can
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Figure 2: A visualization of the difference between explicit
secret models a⃝ and implicit secret models b⃝ (red is secret).
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Figure 3: Different phases of our detection model.

derive the set of all memory locations that should be accessed
architecturally. We use this intuition to define our notion of
implicit secrets: all data that is not accessed architecturally by
a program is considered a secret. During fuzzing, we generate
programs that start from the same initial state and can run for
a maximum number of cycles proportional to the size of the
binary (see Section 5.2). We infer secrets by first executing
a generated program on an ISA simulator, such as Spike [2],
which recovers the list of architectural accesses for a single
run, and then taint every other memory location in the simu-
lated DRAM before running the same program from the same
initial state on the microarchitectural simulator.

Example. Figure 3 represents an example of how a Specula-
tive Bounds Check Bypass (Spectre-v1) can be detected by
our model. First, we run a sequence of instructions with an
ISA simulator (Phase a⃝) and infer the set of architecturally-
accessed locations ({A0}). Then, we taint every other location
in the simulated DRAM as “secret” (Phase b⃝). Finally, on the
cycle-accurate simulation of the CPU, we observe taint com-
ing from A1, which was never loaded architecturally, inside
of the Register File (Phase c⃝), which triggers detection.



4.3 Flush-Based Classification

The transient nature of the vulnerabilities we are looking for
implies that the instruction accessing the secret is specula-
tive, and therefore has to be squashed when the speculation
is revealed to be incorrect. Microarchitectures typically have
at least three ways to signal that an instruction has to be
squashed: (1) pipeline exceptions, generated by faulty instruc-
tions (e.g., loads that cause a page fault), (2) mispredictions
that indicate incorrect control-flow speculation, (3) and roll-
backs, which might happen on value speculation, e.g., with
store-to-load forwarding. We can use these signals for classi-
fication: whenever the microarchitecture brings a secret into a
sink, instead of immediately crashing the execution, we wait
until one of such signals is detected (Phase d⃝ in Figure 3)
and perform a preliminary classification of the leak based
on it. If no pipeline flush is detected before the end of the
program, we report an unidentified leak. This might indicate
either the presence of an additional, unidentified flush signal,
or an architectural bug that leaks transiently-accessed data.

4.4 Tainting Software Simulations

The implementation of our detector has two major require-
ments: (1) we need a taint-tracking engine to track secrets in
the microarchitecture (2) we need easy access to the microar-
chitectural state during simulation, in particular the simulated
DRAM, the Physical Register File (i.e., our sink) and any
relevant component for classification (Re-Order Buffer, and
signals indicating a pipeline flush). Additionally, for fuzzing,
we need to instrument the simulation to gather feedback.

To tackle these requirements, we adopt an approach sim-
ilar to Trippel et al. [64] and instrument the software cycle-
accurate simulation of the CPU generated by Verilator [58],
an open-source cycle-accurate simulator. With such approach,
we can benefit from the power and maturity of existing soft-
ware such as LLVM [41] and AFL [22, 23, 75]. More specifi-
cally, a software-only approach has the following advantages:

1. Reusing mature infrastructure widely adopted in
academia and industry (LLVM, AFL) makes this ap-
proach compatible with past and future research/tooling
on software fuzzing and vulnerability discovery

2. Using LLVM instrumentation for both taint tracking and
fuzzing means that the same taint infrastructure can be
used for both detection and fuzzing feedback

3. A software-only infrastructure makes it easier to proto-
type new detection mechanisms and taint policies, and
guarantees easier scalability (does not require FPGAs)
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Figure 4: Structure of Phantom Trails’ detector. Given an
input binary 1⃝, the detector runs an ISA Simulator to obtain
a list of architectural accesses 2⃝. Every address that is
not in this list is tainted in the simulated DRAM 3⃝. Then,
the program is run through the cycle-accurate simulator 4⃝,
where taint is allowed to propagate until it reaches a sink 5⃝.
On the next pipeline flush, the detector will abort the execution
with an error code and produce a detection report 6⃝ that
marks the input as problematic.

5 Detector Design

We now present our implementation of Phantom Trails’ detec-
tion component, and evaluate its ability to correctly identify
and classify PoCs of known vulnerabilities.

5.1 Components

Figure 4 represents an overview of the structure of Phantom
Trails’ detector. Similar to previous work, we use the BOOM
RISC-V core [5] as the design-under-test for our prototype.

ISA simulator. To infer secret locations,we use a modified
version of the RISC-V ISA simulator Spike [2] to architec-
turally simulate an input program. We modified Spike to log
all memory locations (and instructions) accessed during sim-
ulation as well as the number of executed instructions. Addi-
tionally, we added the possibility of discarding test cases that
hinder correct classification, such as self-modifying code (see
Section 6.2). It is worth noting that, while our system is cur-
rently implemented for RISC-V architectures, ISA simulators
exist also for other instruction sets.
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Figure 5: Compilation pipeline that transforms the BOOM de-
sign into an instrumented binary that can be used for fuzzing.

Taint tracking engine. Our prototype uses a custom taint
tracking engine called BFSan, which supports bit-precise
tracking of taint throughout a program. We only propagate
taint through direct data flows. BFSan is built on top of the
MemorySanitizer (MSan) error detector from the LLVM com-
piler infrastructure. Similar to MSan, it divides the memory
space into two parts: normal program memory, and a shadow
map, used to track the taint of each bit. BFSan follows the
flow of taint by instrumenting a program during compilation.
The instrumented code propagates the taint through the pro-
gram by updating the contents of the shadow map on each
executed instruction.

Cycle-accurate simulator. The cycle-accurate simulator used
in our prototype is generated by the Chipyard [1] build system.
The source code of BOOM is first lowered from Chisel [17]
to Verilog, then translated by Verilator into a compilable C++
object that contains all simulation logic and whose members
represent hardware registers and wires. Figure 5 shows an
overview of the compilation process. Once the C++ object
is generated, we identify the relevant components to mon-
itor and execute the simulator through a software wrapper.
The software wrapper applies the initial taint to the DRAM,
advances the simulation clock, and monitors taint sinks for
classification. The resulting C++ program is then compiled
with BFSan, which adds logic for taint tracking.

5.2 Challenges

Termination. Since hardware is reactive, that is, it does not
terminate as long as a clock signal is provided, we face the
problem of deciding when to stop the simulation for a given
program. We employ the following strategy:

1. During architectural simulation (Spike), we terminate on
any faulty instruction, thus ensuring we only execute the
loaded program. In particular, we initialize all DRAM
locations outside the loaded program to 0 – an illegal
instruction in RISC-V – and ensure that our trap handler
also contains an illegal instruction. This means that when

the program reaches its end, the CPU will encounter an
illegal instruction, which we use as a termination signal.
Since our program may contain unbounded loops, we
further put a bound on the total number of execution
steps. If no illegal instruction is found, the simulation
terminates after the maximum number of steps, which is
calculated depending on the size of the input program.

2. During cycle-accurate simulation, we monitor the Re-
Order Buffer (RoB) to count the number of retired in-
structions. Whenever this number matches the number
of instructions reported by Spike, we end the simulation.

Taint sources. Since all the input program’s code and data
are loaded in memory at the start of each execution, we use
DRAM as our initial taint source. In particular, we leverage
BOOM’s option to provide a black-box implementation for
the simulated DRAM. We use the list of memory accesses
generated by the ISA simulator to initialize taint. In particular,
we apply taint to all DRAM locations that have not been
accessed architecturally. This includes locations whose initial
value is overwritten by a subsequent store before being read.

Taint sink(s). The simulation wrapper monitors the presence
of taint in a predefined sink after each clock cycle. For our
prototype, we chose the Physical Register File (PRF) as sink
for two main reasons: (1) non-architectural data reaching
the PRF can be leaked through a variety of side-channels,
e.g., port contention, cache, TLB; (2) if tainted data reaches
a physical register, we can easily infer which instruction is
responsible for it by inspecting entries in the RoB.

Taint washing. If a program speculatively jumps to a tainted
value rather than loading it, taint might end up in the Register
File. While this correctly implies that speculative code is
being executed, we only care about speculative code that
brings new data into the Register File, like Spectre gadgets
for example. To avoid marking speculative code that does
not directly leak values as a vulnerability, we make sure that
taint is washed for instructions passing through the instruction
cache, which prevents taint from spreading to the RF.

Self-modifying code. Differently from x86, RISC-V architec-
tures do not guarantee that the instruction cache is invalidated
if code is modified during execution, and instead require ex-
plicit synchronization from software through FENCE.I. Pro-
grams that modify cached instructions without flushing the
I-Cache are expected to produce a different behavior than the
ISA simulation. For our use-case, this means that any program
that modifies a load (e.g., by turning it into a nop), will still
observe the microarchitectural effects of that load, while the
ISA simulation will not. To avoid reporting such cases, we
detect programs that contain self-modifying code during the
ISA simulation, and immediately discard the program without
wasting time on the slow cycle-accurate simulation.



5.3 Classification
To aid the analysis of the reported leaks, we perform an initial
classification of the bug using the pipeline flush signal. In
particular, instead of aborting the simulation immediately
when taint reaches an exposed sink, the simulation continues
executing the program and records:

1. The Taint Event, i.e., when taint is first observed in the
Register File. We refer to the instruction responsible
for this event as the tainting instruction, which can be
derived by observing the Re-Order Buffer.

2. The Flush Event, i.e., a flush signal that squashes the
taint instruction. We refer to the instruction that triggers
the flush event as the flushing instruction.

The simulator finally crashes whenever it detects that a
pipeline flush is about to “remove” (squash) the tainting in-
struction from the pipeline. If taint is found in a sink but
the corresponding instruction is never squashed, the crash is
generated at the end of the test-case execution, i.e., when all
the architecturally-executed instructions have retired from the
pipeline, and the test case is marked as Unknown Flush.

We use this information to perform a preliminary classi-
fication of the violation found. In particular, by observing
the flush signal we can distinguish between Spectre viola-
tions (mispredictions), Meltdown violations (pipeline excep-
tions), and memory ordering faults (Spectre-v4). For Spec-
tre variants other than Spectre-v4, we observe the flush in-
struction to determine if the misprediction was caused by
a branch (Spectre-v1), indirect jump (Spectre-v2) or return
(Spectre-RSB). For pipeline exceptions, we check if taint was
introduced by the flush instruction itself (Meltdown) or by a
younger instruction in the pipeline (OOO - Out-Of-Order).

Finally, for branch mispredictions, we further report if the
branch was predicted taken or not-taken, and if the taint-
ing instruction was architecturally executed at least once
before the taint detection. This allows us to differentiate be-
tween Spectre-v1-static (predicted not-taken, new instruction),
Spectre-v1-training (predicted taken, previously executed in-
struction), and Spectre-v1-new (predicted taken, new instruc-
tion).

5.4 Extensions

MDS Detection. MDS attacks, such as RIDL [66] and
Fallout [13] and derivative attacks such as LVI [65] and
CrossTalk [53], showed that, on Intel microarchitectures, an
attacker can leak in-flight data from Line-Fill Buffers, Load
Ports, and Store Buffers. Differently from traditional Spec-
tre and Meltdown attacks, these vulnerabilities incorrectly
access values in internal CPU buffers, as opposed to secrets
in memory. These vulnerabilities can be modeled in Phan-
tom Trails by adding such internal buffers as taint sources.

In particular, we extended our prototype with a simple user-
space initialization snippet (a set of loads and stores) that runs
right before the start of the program under test, without any
fence. Once the last instruction of the initialization snippet
retires, Phantom Trails taints the initial values of all internal
buffers, while the user program is ready to start. If the pro-
gram is able to leak such stale values, e.g., through a faulty
load, their taint will be observed in the Register File. Note
that the user program is not allowed to directly access such
values, so, whenever they are leaked, we are sure that there
is a violation. As BOOM is not vulnerable to MDS, to test
this setup we added a simple MDS-StoreBuffer vulnerability,
as described by the Fallout [13] paper, to the BOOM core de-
sign, and verified that the leakage is detected. For the benefit
of future research, we open-source the patch for adding the
vulnerability to BOOM.

Secure Speculation. Phantom Trails can be extended to in-
corporate knowledge of both software and hardware defenses.
For instance, the instruction generator can be constrained to
always emit an LFENCE [37] after each branch, to mimic cases
where this mitigation is deployed. For secure speculation de-
fenses such as STT [74], finer-grained detection policies can
be added for taint sinks, e.g., discarding tainted entries that
are read by instructions deemed "safe" by STT.

Other Taint Sources. Similarly to MDS, other data sampling
attacks such as Gather Data Sampling [46], AEPIC Leak [10]
and ZenBleed [51] have been shown to be possible on x86
cores. In particular, Downfall [46] shows that the gather in-
struction can transiently leak stale data from a temporal buffer
called the SIMD register buffer, confirmed by Intel. AEPIC
Leak and ZenBleed instead can read stale data architecturally
from the superqueue (buffer between L2 and LLC) and XMM
registers, respectively. Similarly to the MDS case, Phantom
Trails can be extended to handle more taint sources by mak-
ing sure such internal buffers are initialized and tainted right
before the start of the program. For initial taint residing in
the Register File, more fine-grained taint sink policies can be
applied to ignore specific initially-tainted locations until they
are overwritten by another operation.

6 Fuzzing

This section describes how we integrated Phantom Trails’
detector into a pre-silicon fuzzer, and highlights the benefits
of our detection model to the fuzzing use-case.

6.1 Overview
Phantom Trails resembles a traditional greybox fuzzer that
exercises a software representation of the hardware as the
DUT [64]. Figure 6 presents a high-level overview of its
components. In particular we used the setup described in Sec-
tion 7.1 as the DUT in our fuzzing campaigns, which includes
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Figure 6: Phantom Trails’s fuzzing cycle. A sequence of
instructions is picked randomly from the fuzzer queue 1⃝
and modified by the mutator 2⃝. The resulting sequence is
then translated into a RISCV program 3⃝ and executed by the
ISA simulator. If the program is not discarded, the metadata
is passed to a cycle-accurate simulator 4⃝ where, in case
of detection, the program will be saved 5⃝. If the program
execution produced new coverage in the simulator, it is also
added to the fuzzer queue 6⃝.

a minimal setup for the BOOM core in its MEDIUMBOOM
configuration and a black-box DRAM module.

Fuzzing infrastructure. We build our fuzzer on top of the
state-of-the-art libafl [23] fuzzing framework and run it
in fork mode—forking after the completion of a hardware
reset to avoid the cost of restarting the simulation on each
input. To adapt the libafl software-based infrastructure to
hardware designs, we developed a set of components suit-
able for generalized hardware fuzzing. Our entire infrastruc-
ture is open-source and available at https://github.com/
vusec/phantom-trails.

DUT warmup. Before any code is run, the hardware simula-
tion is reset through the default Verilator wrapper for BOOM
by asserting the reset signal for 100 cycles.

Boot phase. Upon reset, execution starts from the content of
the boot ROM, which we modify to simply jump to the first
DRAM address. At the beginning of DRAM we place our
initialization code, which is responsible for:

1. Setting up the trap handler, which in our case simply
contains an illegal instruction to terminate simulation;

2. Configuring the Physical Memory Protection (PMP) unit
to permit access to all memory;

3. Setting up page tables and enabling virtual memory man-
agement; in particular, we map a contiguous set of pages
starting from the beginning of DRAM with different
page flags;

4. Optionally, initializing register values (optimization D2);

5. Jumping to U-mode (code with user privileges), where
the input program is located;

Predictors initialization. By default, the BOOM processor
initializes all entries of the Bi-Modal Table (BIM) to 2 on
reset, which corresponds to the “weakly taken” state. While
this does not prevent detection, it can cause the classifier to
mistake cases of static branch prediction for cases where the
branch was trained, and incorrectly label Spectre-v1 samples.
To ensure a correct fine-grained classification, we modify
the BIM initialization procedure to instead set entries to the
“not-taken” state.

Taint initialization. While in supervisor-mode, the initial-
ization code reads from the supervisor data region, which
fills the D-Cache with tainted (supervisor) data. As discussed
in Section 5.4, and optional user-mode initialization can be
performed for MDS to fill internal CPU buffers, such as the
Load Queue or the Store Buffer, with tainted data as well,
right before the start of the generated program.

6.2 Program Generation

As stated in section 3, one of the entropy sources that the
fuzzer has to beat is program generation. While sophisticated
approaches [59] can be added on top of our fuzzer, in this
paper we want to demonstrate that our detector already helps
even with a minimal program generator. In particular, in our
prototype we make sure to generate and mutate syntactically
valid RISC-V instructions, and we adopt a set of minimal
optimizations to increase the chance of generating complex
control and data flow. Such optimizations differ from tem-
plates, as they are aimed at maximizing the odds of generated
well-formed, complex programs rather than following the
blueprint of a specific vulnerability.

6.2.1 Instructions

Mutator. Phantom Trails’ custom program mutator is aware
of what constitutes syntactically valid RISC-V instructions,
but possesses no further (semantic) information about them. In
its basic form, it generates instructions by choosing a random
RISC-V instruction type and applying a random mutation op-
eration. In particular, the current prototype supports inserting
a new instruction, replacing an instruction with a new one,
replacing the argument of an existing instruction, repeating an
existing instruction, deleting an existing instruction, replacing

https://github.com/vusec/phantom-trails
https://github.com/vusec/phantom-trails


an instruction with a nop, and swapping two instructions. Op-
tionally, the mutator can be biased towards emitting jalr and
ret instructions, and towards reusing previous values when
choosing arguments, as we will discuss in Section 6.2.

Program generator backend. Since applying random mu-
tations like bit-flips at the assembly level has a high chance
of generating invalid programs which would waste precious
simulation time, the fuzzer instead uses a structured internal
representation to apply mutations. Programs stored in this
internal representation are then translated into valid RISC-V
programs by the instruction generator, before entering the
detector component.

6.2.2 Optimizations

To avoid wasting simulation cycles on uninteresting inputs
and to maximize the likelihood of finding bugs quickly, we
develop a set of optimizations that bias our program gen-
eration towards valid programs. Unlike templates [33], the
optimizations are general so as to avoid overfitting. We group
our optimizations into: Basic (B), biasing the generator to-
wards reusing arguments, Control-Flow (C), maximizing
the probability of generating well-formed function calls, and
Data-Flow (D) optimizations that increase the likelihood of
using valid pointers (code and data).

B1 - Register reuse. With this optimization, when deciding
on the argument of an instruction, the mutator has a bias to-
wards selecting the registers used by previous instructions
(e.g., a probability of 50% in the current prototype). The idea
is to improve the chance of generating data flow between in-
struction sequences, as well as that of creating race conditions
in the microarchitecture through aliasing.

B2 - Power-of-two constants. When picking immediate val-
ues, this optimization adds a bias towards powers of 2, which
reduces the amount of entropy for constants and helps with
alignment.

C1 - Indirect calls. To help the fuzzer reduce the entropy
for indirect calls, this optimization adds the possibility of in-
serting one of two code snippets shown in Listing 1. Snippet
1 performs a well-formed indirect jump to a nearby address
(i.e., a small offset from the current program counter); Snip-
pet 2 emits a valid ret instruction, which, in RISC-V, is a
pseudonym for an indirect jump to ra. While this does not
guarantee the generation of a valid indirect call, it improves
the chances of executing valid calls and returns. Note that
more sophisticated approaches [59,72] to program generation
can build on top of such a basic optimization—albeit at the
cost of additional overhead.

C2 - Discard invalid jumps. To further reduce the likelihood
of wasting simulation cycles on programs with invalid control-
flow, the ISA simulator terminates the execution immediately
whenever a program jumps outside the range of valid mem-

# Load current PC
auipc x2, 0
# Jump to PC + offset
jalr ra, rand_offset(x2)

(a) Snippet 1: Indirect call

# Return
jalr zero, 0(ra)

(b) Snippet 2: Return

Listing 1: Control-flow snippets inserted by the mutator.

ory locations, and discards the corresponding input program.
This guarantees that, at least for jump and call instructions,
Phantom Trails runs the expensive cycle-accurate simulation
only if the program jumps to valid targets.

D1 - Map address 0. Since most of the memory is filled
with 0s at startup, and it is not uncommon for predictors to
default to address 0 [36] on empty prediction structures, this
optimization makes sure virtual address 0 is mapped to a valid
memory page before the input program starts execution.

D2 - Initialize registers. This optimization ensures that some
registers are filled with valid pointers before jumping to the
input program’s code. We fill half of the logical Register
File with addresses of both code and data pages that have
an associated page table entry. This means that, whenever
an instruction uses a register for the first time there is a 50%
chance that it will use one of the initialized pointers.

6.3 Feedback
Currently, there is no consensus on the best feedback metric
for hardware fuzzing [59], nor is there is a “standard” strat-
egy for transient execution fuzzers. As we want to show the
advantages of our detection model on a simple fuzzer, we use
as baseline feedback the standard coverage metric provided
by the AFL++ software fuzzer, which we call ‘SW Feedback’.
To evaluate additionally Phantom Trails’s sensitivity to feed-
back metrics, we additionally implemented an alternative,
taint-based feedback mechanism which is inserted into the
cycle-accurate simulation via an LLVM pass, to explore the
possibility of using taint as feedback.

SW Feedback. In this case, the metric is an approximation
of the edge coverage of the system-under-test as described in
previous work [64]. We adapted this metric by only counting
whether an edge in the simulator has been executed at all,
and not how often it was executed. Doing so avoids labelling
mutations that merely traverse the same edges as interesting,
while adding little relevance to the program.

Taint Feedback. Instead of tracking the edge coverage of
the simulator during the input program’s execution, this met-
ric tries to measure how much taint has spread through the
design—across all the CPU’s wires. Since most Verilog-
specific information, including the list of wires, is lost during
Verilator’s translation process, we identify the code for each



wire from within the compiler pass indirectly, based on the
observation that Verilator stores the contents of registers that
persist between cycles in memory. We therefore approximate
wires of the simulated CPU by considering every instruction
that writes to non-stack memory. For each store, our compiler
pass assigns a unique slot in the fuzzer’s coverage map. The
coverage map is scaled according to the number of identified
wires and the bit size of each slot is at least as large as the
number of bits in the respective wire. After allocating a slot
in the coverage map, the pass injects code into the compiled
simulation that copies and merges the current taint status of
each wire with the taint data stored in the coverage map.

7 Evaluation

7.1 Detector Evaluation

Instrumentation Overhead. To measure the overhead intro-
duced by our instrumentation, we generated a simulation of
the MEDIUMBOOM core (2-wide, 64 RoB entries, 80 physical
registers) using the CHIPYARD toolchain [1] (version 1.8.1)
and Verilator 5.006. For instrumentation we used clang-15
with our own instrumentation pass (BFSan). We ran the DHRY-
STONE benchmark provided by the chipyard infrastructure
on both the “stock” MediumBoomCore and the same version
compiled with our toolchain. Our experiments show a mean
runtime of 26s ± 0.04s for the uninstrumented core, and a
mean runtime of 34.9s ± 0.09s for the instrumented version,
resulting in a ≈34% slowdown.

Scalability. To measure the impact of our instrumentation
on bigger cores, we also ran the DHRYSTONE benchmark
on the LARGEBOOM configuration (3-wide, 96 RoB entries,
100 physical registers). Our experiments show a runtime of
34.6s ± 0.01s on the uninstrumented simulation and 110.2s
± 0.2s on the instrumented simulation over 10 runs. When
applied to the programs generated by Phantom Trails’ fuzzer,
we observed a fuzzing throughput degradation of around 85%.

ISA Simulation Overhead. For the ISA simulator, we build
a software wrapper around Spike and include it as a library
in the simulation wrapper. We ran our modified version of
the Spike simulator on the DHRYSTONE benchmark. The
observed runtime is 63.1 ms ± 7.5 ms, which constitutes a
≈0.2% overhead on top of the instrumented simulation.

Input Discarding. During architectural simulation, Phantom
Trails’ detector can optionally be configured to discard pro-
grams that hinder correct classification, i.e., programs that
jump to the middle of an instruction, modify the code re-
gion (SMC), jump outside of the code region, or jump to the
next instruction. This is particularly useful during fuzzing,
since early discarding prevents from wasting precious cycle-
accurate simulation cycles. When running Phantom Trails’
program generator without any feedback we observed that
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Figure 7: Cumulative amount of tainted locations for different
test cases: a program with 0 loads (no-load), a program with
1 architectural load (arch-load), and the same program with
an additional speculative load (spec-load).

≈60% of the randomly-generated programs are discarded.

PoC Detection. We created a testsuite of minimal
PoCs, available at https://github.com/vusec/
riscv-transient-attacks, for all known specula-
tive vulnerabilities on the BOOM core (Spectre-v1,
Spectre-v2, Spectre-RSB, Spectre-SSB and Meltdown)
consisting of at most 60 lines of RISC-V Assembly. Our
experiments show that Phantom Trails is able to detect the
secret leakage in all PoCs before the secret is encoded into a
covert channel. Each program accesses only a limited amount
of memory, while the vast majority of locations is never
accessed architecturally. To confirm the effectiveness of taint
propagation, we produced a taint profile similar to the one in
Figure 7 for each PoC and analyzed which components get
tainted during simulation.

False Negatives. While in its basic configuration Phantom
Trails’ detector can already catch all speculative vulnerabil-
ities known on BOOM, it can be extended to catch other
x86-specific variants, such as MDS, where the leaked value is
generated architecturally, by making sure that internal buffers
such as the Store Buffer are also properly initialized and
tainted (see Section 5.4).

False Positives. To verify the leaks reported by Phantom
Trails, we employ the flush-based classification strategy de-
scribed in Section 5.3, which is able to confirm that non-
architectural data is loaded from a speculative instruction.
Phantom Trails also allows further manual inspection by pro-
ducing two reports: a json file representing the microarchi-
tectural state at the moment of detection and a log of which
new components are tainted after each clock cycle. We used
such inspection tools to check for cases of overtainting, which
could be a source of false positives. We note that, after adding
taint washing of the I-Cache, we did not encounter any over-
tainting samples. We attribute this to our bit-precise taint
tracker BFSan, as well as the fact that we only track direct
data flows.

https://github.com/vusec/riscv-transient-attacks
https://github.com/vusec/riscv-transient-attacks


7.2 Fuzzing Evaluation
We evaluate the Phantom Trails fuzzer along several dimen-
sions to answer the following questions:

Q1 Can we find all known transient execution vulnerabilities
in reasonable time, despite the lack of templates?

Q2 What is the impact of replacing the default SW feedback
with more advanced taint-based feedback?

Q3 What are the individual contributions of the various opti-
mizations?

Q4 How does Phantom Trails perform compared to tem-
plated approaches?

In particular, we develop two copies of the same setup with the
two different types of feedback (SW and taint, Section 6.3), to
allow the effects of the feedback mechanism to be measured in
isolation. We run 10 fuzzing campaigns for each feedback on
AMD Ryzen Threadripper PRO 5995WX machine with 128
cores and 500 GiB of RAM and report the time-to-exposure
(TTE) for various vulnerabilities on BOOM in Table 1.

Each campaign is given a single program consisting of one
nop instruction as a starting seed. Our fuzzing campaigns
have variable duration and only stop when the fuzzer has
found each of the selected vulnerabilities. This way, we are
not only able to answer the first question listed above, but also
account for outliers in the data set with respect to TTE.

Additionally, we run a sequence of 24-hour campaigns for
different configurations of the fuzzer, to evaluate the contribu-
tions of the different optimizations described in Section 6.2.

Total Runtime. Figure 8 shows a comparison of the total run-
time of each campaign for the two different types of feedback,
i.e., the time needed to find all of the reported vulnerabilities.
In both cases, the total runtime is on average well below 24
hours, with a geomean of ≈9h for the software feedback and
≈14.5h for the taint feedback, as opposed to weeks [33]. Our
first conclusion, in answer to question Q1, is that the problem
of finding speculative vulnerabilities with fuzzing is tractable,
even without smart seeds or templates. In addition, with re-
spect to Q2, we see that Phantom Trails works well with both
types of feedback, but on average the simple SW feedback
performs slightly better than the more advanced taint-based
feedback.

Time/Iterations-To-Exposure. Table 1 reports the time-to-
exposure measurements for each vulnerability. The table
also provides the number of programs that were executed
by the fuzzer until each vulnerability was found (iterations-
to-exposure). We provide both units of measurement as they
reflect different properties of the feedback mechanisms. Time-
to-exposure accounts for the usefulness of the feedback mech-
anism as well as the overhead required to measure the relevant
metrics. Iterations-to-exposure ignores the overhead and there-
fore provides insight into how useful the feedback is to the
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Figure 8: Total TTE for different types of feedback. Each
point represents the runtime of a separate fuzzing campaign
that found all the relevant vulnerabilities.
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fuzzing process. Figure 9 shows a visual comparison of the
TTEs of each vulnerability for the two different feedbacks.
Regarding question Q2, our experiments show that the two
feedback metrics are mostly comparable. The only statisti-
cally significant difference was observed for Spectre v1, for
which the SW feedback yielded a smaller TTE.

Optimizations Breakdown. In answer to question Q3, con-
cerning the contribution of the optimizations described in
Section 6.2, we run a 24-h campaign 5 times for each set of
optimizations, and measure how many runs found each of the
bugs, which estimates the probability of finding each bug in
a 24-h run of the fuzzer. Table 2 reports the measured prob-
ability of exposure of different bugs for the different sets of
optimizations. The results show that our simple data-flow and
control-flow optimizations play a key role in finding Spectre-
v4 and Spectre-RSB, respectively, and both are needed to find



SW Feedback Taint Feedback
Vulnerability Iterations Time Iterations Time

Mean Stdev Mean Stdev Geomean Mean Stdev Mean Stdev Geomean
Meltdown 410 ±154 12s ±3s 12s 348 ±170 12s ±4s 11s
Spectre v1 15k ±14k 10m 28s ±11m 7s 4m 31s 16k ±13k 11m 27s ±10m 4s 7m 33s
Spectre RSB 56k ±55k 50m 34s ±56m 49s 27m 40s 59k ±60k 46m 54s ±49m 27s 21m 28s
Spectre v2 528k ±637k 7h 22m ±8h 40m 4h 9m 394k ±562k 4h 45m ±6h 22m 2h 28m
Spectre v4 853k ±933k 11h 18m ±12h 1m 6h 47m 1.59M ±1.36M 19h 52m ±17h 25m 12h 7m
All 1.06M ±991k 14h 4m ±12h 56m 9h 3m 1.62M ±1.33M 20h 9m ±17h 6m 14h 32m

Table 1: Statistics for the Time-To-Exposure and Iterations-to-Exposure of different vulnerabilities across 10 runs.

Vulnerability All Data-Flow Control-Flow Basic None

Meltdown 10/10 5/5 5/5 5/5 0/1∗

Spectre v1 10/10 5/5 5/5 5/5 0/1∗

Spectre RSB 10/10 2/5 5/5 0/5 0/1∗

Spectre v2 9/10 1/5 1/5 0/5 0/1∗

Spectre v4 9/10 5/5 1/5 2/5 0/1∗
∗7-day run on Intel Xeon Silver

Table 2: Probability of exposing each bug in a 24h run for
different fuzzer configurations, expressed as number of runs
in which the bug was found / total number of runs.

Spectre-v2 samples in reasonable time. In contrast, we ran
a version of the fuzzer without any optimization on an In-
tel Xeon Silver 4310 machine with 48 cores and 126 GiB
of RAM for 7 days. This version was only able to uncover
Out-Of-Order loads in the allotted amount of time, showing
the importance of simple program generation optimizations
in making the problem tractable.

Comparison with Templating. To answer question Q4, we
provide a TTE comparison between Phantom Trails and Spec-
Doctor [33], a state-of-the-art pre-silicon fuzzer for transient
execution vulnerabilities. SpecDoctor employs a variety of
templating techniques. For example, programs generated by
the fuzzer are divided into a prefix code section and a transient
code section. The prefix contains 3 to 5 basic blocks, and each
block has a 50% chance of containing a predefined snippet
that loads 64 secret bits into the L1 cache. Moreover, when
mutating the prefix code, there is a 20% chance of introduc-
ing a snippet that is meant to slowdown a specific operation.
In the transient section, each load has a 1 in 8 chances of
targeting the predefined secret memory section.

We ported Phantom Trails to the same BOOM configura-
tion as used in the SpecDoctor paper (1-wide, 32 RoB entries,
52 physical registers) and ran a fuzzing campaign on a compa-
rable setup (Intel Xeon Silver 4310, 40 CPUs, 128GB RAM).
Table 3 shows a comparison between the TTEs reported in

Vuln. SpecDoctor∗ no-sidechan† no-templ† PT†

Meltdown 34.7h 2h ± 3.2h > 8h ‡ 9s ± 14s

Spectre v1 26.9h 3m ± 5m 11.3m ± 6m 5.3m ± 5m
∗Total CPU time reported in [33] †TTE geomean across 10 runs

‡All runs timed out

Table 3: TTE comparison between Phantom Trails and Spec-
Doctor.

the SpecDoctor paper (lefmost column) and the ones mea-
sured for Phantom Trails (rightmost column) for the same set
of vulnerabilities. We also ran SpecDoctor in two additional
configurations: no-sidechan and no-templ. In the former,
we disabled side-channel generation and reported the inter-
mediate seeds. While this only reports potential Spectre-v1
and Meltdown candidates, it provides insight on the overhead
of program generation and the impact of templates. In the
latter (no-templ), we also removed part of the templating
primitives employed by the fuzzer, i.e., the secret-preloading
snippet and the slowdown snippet. We observe that Phantom
Trails greatly outperforms SpecDoctor in its default configura-
tion and, when compared to the no-sidechan configuration,
is still able to perform similarly to templated approaches for
Spectre v1 while maintaining a generic instruction generator,
even outperforming SpecDoctor on Meltdown. Moreover, by
just removing the L1-prefetching gadget and the delay gadget
from the generator, we observe that SpecDoctor’s TTEs sig-
nificantly increases for Spectre v1, and saturates the timeout
of 8h for our experiments for Meltdown. We also notice that
seeds have much more impact in the no-templ configuration,
as several runs (which we not included in the TTE computa-
tion) timed out after 24h without finding any vulnerability.

8 Spectre-LoopPredictor

During our fuzzing campaigns, Phantom Trails was able to
uncover a new Spectre-v1 variant on BOOM caused by the
interaction between the PHT and BOOM’s LoopPredictor.



1 li t0, 1
2 loop:
3 auipc ra, 0 # <-- ret lands here
4 # ... slow down t0 ...
5 beqz t0, speculative # always false
6 ret # jump to 3 (always mispredicts)
7

8 speculative: # <-- speculation ends up here!
9 ld t0, 0(spec_data)

Listing 2: Simplified version of the Spectre-LP sample found
by Phantom Trails.

The LoopPredictor. The LoopPredictor is responsible of
identifying loops and predicting how many iterations of a
loop will be executed before exiting. Each predictor entry
holds a confidence value, indicating how “sure” the predictor
is about that entry. When the confidence is low, the LoopPre-
dictor simply forwards the predictions of the PHT. Once the
confidence value reaches a threshold, the LoopPredictor takes
over by flipping the prediction output.

Spectre-LP. Listing 2 shows the simplest example of Spectre-
LP. On line 3, the current PC is saved into ra (return address
register). Then, on line 5, a branch is executed, which is al-
ways architecturally not-taken (the condition is always false).
Finally, the ret on line 6 reads ra and jumps back to line
3, creating a loop. The direct assignment of ra on line 3 by-
passes the Return Address Stack (RAS), which is used by
the CPU to speculate on returns. As a consequence, the CPU
mis-speculates the ret at each loop iteration. An unexpected
side-effect of such repeated misprediction is that, after 7 iter-
ations of the loop, the branch on line 5, which is never taken,
unexpectedly starts to be predicted “taken”, causing the CPU
to speculatively jump to the gadget on line 9.

Root Cause Analysis. Our analysis shows that the root cause
of the reported leak can be traced back to an aliasing of the
two instructions (the mispredicted branch and the ret) in the
LoopPredictor of BOOM. In particular, the repeated ret mis-
predictions cause the LoopPredictor to increase its confidence
until the threshold (7) is reached, indicating that it is sure it
has found a loop. On the next iteration, the correct prediction
for the branch (not taken) coming from the BIM is flipped by
the LoopPredictor, generating the behavior we observed.

Practical Exploitation. We were able to reproduce this behav-
ior on an unmodified BOOM simulation in its MediumBoom
configuration by substituting the misprediction at line 9 with
different types of misspeculations including branch mispre-
dictions, which confirms that this behavior is not specific to
rets. Indeed, causing repeated mispredictions on any control-
flow instruction at the end of a loop causes nearby branches to
be mispredicted. Contrary to traditional Spectre bugs, where
the attacker is in control of the mispredicted branch, here the
attacker controls a nearby branch whose misspeculation af-

fects the target. This means that any scanner that checks for
attacker-controlled branches would not cover this case, and an
attacker would be able to attack branches even in the presence
of software mitigations for typical Spectre v1 gadgets.

9 Related Work

Scope. Our work focuses on finding transient execution vul-
nerabilities in CPU designs. Rather than attempting to de-
tect the ever-growing set of possible covert channels, which
include array-based variations [27, 70], direct [8, 24, 55]
or indirect [55] branches, AVX instructions [56], Rowham-
mer [18, 63], TLB [13, 43], noncanonical translation via Intel
LAM [31], resource contention [7, 8] and many others, we
take a different approach by detecting transient leaks, which
happen before any of the aforementioned covert-channel trans-
missions. We also specifically target transient execution vul-
nerabilities, which do not include other microarchitectural
vulnerabilities not based on transient execution such as PortS-
mash [4] and GoFetch [14].

Hardware verification. Formal verification methods such as
UPEC [21], Iodine [26], Conjunct [19], and LeaVe [67] have
been applied to side-channel leakages in hardware. These
methods prove security properties via inductive invariants.
While such methods can provide strong formal guarantees
for the absence of vulnerabilities, they are difficult to scale
to larger designs like BOOM, or require prohibitive manual
effort [21]. On the other hand, fuzzing techniques such as the
one adopted by Phantom Trails are not able to provide com-
pleteness guarantees, but they can scale to realistic designs.

Black-box fuzzing. Frameworks such as Transynther [47],
Osiris [68], SMoTherSpectre [8] and Revizor [49, 50] aim to
automatically generate side-channel attacks by either observ-
ing the timing or cache behavior of a program or by inspecting
the CPU’s performance counters in a black-box setting, i.e.,
without access to the RTL. While this approach is useful for
fuzzing closed-source commercial products, it is inherently
approximate and cannot leverage deep inspection of the RTL
for fuzzing feedback and root-cause analysis.

Hardware-Software contracts. Revizor [49] proposes an
approach based on hardware-software contracts: given a pro-
gram, Revizor finds pairs of inputs that lead to the same
contract trace but have different hardware traces. By contrast,
our implicit secret generation uses a single ISA run to infer
an invariant that is applicable immediately to the hardware
simulation. Generating proper differential inputs adds yet an-
other dimension of entropy to the problem. To tackle this,
the original Revizor paper generates programs with only four
registers, confines the memory sandbox to one or two 4K
memory pages, and lowers the entropy of the PRNG. Such
additional entropy can be constrained using e.g., symbolic
execution [48], which however does not scale to big inputs, or



contract-based generation [50], which identifies which part of
the input should not change, however it cannot be completely
eliminated due to the differential nature of the approach.

Hardware fuzzers. Prior work explored the concept fuzzing
hardware designs to find architectural bugs. PSOFuzz [15]
gathers data during fuzzing to dynamically adjust the selection
of weights for each mutation. TheHuzz [38] tries to estimate
the optimal mutations for a given processor. HyPFuzz [16]
proposes using static analysis to generate inputs that reach
certain parts of the DUT. MorFuzz [72] uses run-time morph-
ing of instructions to guide the execution and achieve higher
coverage. Cascade [59] uses intricate program generation to
create complex programs with varied control- and data-flow
dependencies. Each of these optimization strategies comes
with different overheads and is complementary to our work,
as they mainly concentrate on finding implementation bugs.

Other prior work proposes various hardware coverage met-
rics that could be used as feedback mechanisms when fuzzing
hardware. Trippel et al. [64] suggested using edge coverage
of the hardware simulation, which is the basis for the ‘SW
feedback’ metric we use in Section 7.2. DiFuzzRTL [35] uses
the value-transitions of finite-state-machine registers as an
alternative coverage metric. ProcessorFuzz [12] proposes us-
ing the value-transitions of manually selected CSR registers
as fuzzing feedback. TaintFuzzer [32] uses a user-provided
cost function and a database of vulnerabilities to find analyst-
defined security violations, and uses taint inference to assess
the impact of inputs on the hardware system. All such met-
rics can be added on top of our system, and are orthogonal
to our work. Finally, Whisperfuzz [9] and SIGFuzz [54] are
hardware fuzzers that search for timing side-channels in RTL
designs, which is orthogonal to finding transient data leaks,
as explained in Section 4.1.

Finding transient execution vulnerabilities. Previous work
has proposed the idea of using taint tracking in relation to
transient execution vulnerabilities. Speculative Taint Track-
ing [74] (STT) proposes a hardware defense mechanism for
speculative execution attacks that taints speculative values
inside the pipeline. In particular, all data coming from spec-
ulative loads is tainted until the instruction passes a point of
no-return, after which it is guaranteed to retire. This model is
ill-suited for fuzzing, since every transient load (regardless of
secret/nonsecret access) would trigger detection. Moreover,
STT is designed to be an invasive solution, which requires
changes to the Front-End, Execution Units, Branch Unit, and
Load-Store Unit. It also requires the architect to identify all
instructions that can potentially leak a secret value. Our tool
instead uses taint tracking on the whole CPU (DRAM to Reg-
ister File), employs a taint policy which is suitable for greybox
fuzzing, and requires minimal knowledge of the DUT (and
no hardware modifications).

CellIFT [60] proposes a new taint tracking mechanism in
hardware that can (among other things) be applied to detecting

transient execution attacks. As there is no fuzzing component,
the user manually specifies where secret data is located in the
design, and manually chooses a program to execute in order to
demonstrate a transient execution attack. Similar to Phantom
Trails, the user chooses a set of taint sinks and the technique
indicates a leak, when such a sink becomes tainted. How-
ever, Phantom Trails can automatically generate the leaking
program and automatically infer the secret memory regions
from the ISA simulator. Moreover, CellIFT instruments the
hardware design at the RTL level, while Phantom Trails uses
software taint tracking.

IntroSpectre [25] and SpecDoctor [33] are RTL fuzzers
that specifically target transient execution vulnerabilities. In-
troSpectre uses a set of predefined code gadgets to generate
inputs, which include snippets such as “Create contention
on execution units with the same write port” to mimic the
PoCs of known vulnerabilities. We take a radically different
(and vulnerability-agnostic) approach by mutating random
(valid) programs starting from an empty seed and letting the
coverage feedback guide the fuzzer. Moreover, IntroSpectre is
limited to Meltdown-type vulnerabilities. Finally, IntroSpec-
tre populates memory with specific values which are then
searched in the execution log, while we use taint tracking
(so even values that are computed from a secret are tracked).
SpecDoctor uses multi-phased fuzzing based on templates to
find snippets that display end-to-end attacks. The fuzzer first
finds speculation windows, then tries to find covert channels
that can leak a secret with differential testing. Secrets are ex-
plicitly defined by marking specific pages as protected. Both
methods rely on predefined program parts that are composed
and modified to generate the attack, which limits generality.
In contrast, Phantom Trails finds transient data leaks starting
from an empty seed without the use of templates or smart
seeds. Moreover, Phantom Trails automatically infers secrets
by computing the set of non-architectural addresses using an
ISA simulator.

10 Conclusions

We presented a new approach to pre-silicon transient execu-
tion vulnerability discovery that concentrates on microarchi-
tectural data leaks and uses an implicit secret model to create
a fuzzer-friendly detector. We apply taint tracking to the soft-
ware simulation of a CPU and monitor the flow of secrets
towards exposed buffers, using pipeline flush signals for clas-
sification. Without templating or smart seeds, our fuzzer finds
samples of speculative vulnerabilities on the BOOM proces-
sor from an empty seed in hours, instead of weeks, and finds
Spectre-LP, a new speculation primitive on the BOOM proces-
sor that can be used to cause mispredictions on uncontrolled
branches. In future work, we plan to explore the possibility
of using multiple taint colors for finer-grained secret model-
ing and work towards finding optimal feedback mechanisms
across different classes of microarchitectural attacks.
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