ARTIFACT
EVALUATED
susenix

»

AVAILABLE

WHEN GOOD KERNEL DEFENSES GO BAD:
Reliable and Stable Kernel Exploits via Defense-Amplified TLB Side-Channel Leaks

Lukas Maar
Graz University of Technology

Lukas Giner
Graz University of Technology

Daniel Gruss
Graz University of Technology

Stefan Mangard
Graz University of Technology

Abstract
Over the past decade, the Linux kernel has seen a significant
number of memory-safety vulnerabilities. However, exploit-
ing these vulnerabilities becomes substantially harder as de-
fenses increase. A fundamental defense of the Linux kernel
is the randomization of memory locations for security-critical
objects, which greatly limits or prevents exploitation.

In this paper, we show that we can exploit side-channel
leakage in defenses to leak the locations of security-critical
kernel objects. These location disclosure attacks enable suc-
cessful exploitations on the latest Linux kernel, facilitating
reliable and stable system compromise both with re-enabled
and new exploit techniques. To identify side-channel leak-
ages of defenses, we systematically analyze 127 defenses.
Based on this analysis, we show that enabling any of 3 de-
fenses — enforcing strict memory permissions or virtualizing
the kernel heap or kernel stack — allows us to obtain fine-
grained TLB contention patterns via an Evict+Reload TLB
side-channel attack. We combine these patterns with kernel
allocator massaging to present location disclosure attacks,
leaking the locations of kernel objects, i.e., heap objects, page
tables, and stacks. To demonstrate the practicality of these
attacks, we evaluate them on recent Intel CPUs and multiple
kernel versions, with a runtime of 0.3 s to 17.8 s and almost no
false positives. Since these attacks work due to side-channel
leakage in defenses, we argue that the virtual stack defense
makes the system less secure.

1 Introduction

The security of modern systems relies on privilege levels.
While user programs have lower privileges, the operating sys-
tem kernel has higher privileges and can typically access all
system memory. Thus, the system’s security depends directly
on the security of the kernel. However, kernels — such as Linux
— are also complex, which often unintentionally introduces
software vulnerabilities, many of which remain unknown for
years. To generically limit the impact of these vulnerabili-
ties, kernels employ several defenses that limit what a bad

actor can do after exploiting a software bug. A fundamental
defense in the Linux kernel is the randomization of memory
locations for security-critical objects. This strategy prevents
exploitation outright or forces the bad actor to locate these
randomized locations before achieving system compromise.

Side-channel attacks offer a promising approach to cir-
cumvent these randomization-based defenses and have been
studied extensively. Numerous works [1, 2, 15, 20, 29, 36]
have exploited a side channel in the Translation Lookaside
Buffer (TLB), a CPU buffer that stores virtual-to-physical
address translations. These TLB side channels have allowed
partial bypasses of Kernel Address Space Layout Random-
ization (KASLR) [11], which randomizes parts of the ker-
nel, e.g., the kernel code, module code, and Direct-Physical
Map (DPM). Specifically, these works break code or physical
KASLR, which refers to leaking the base address of random-
ized code sections or the DPM. Multiple kernel exploits have
used these KASLR breaks [13,38,52], including those from
Google Project Zero and Google’s bug bounty program.

However, existing techniques do not reveal the locations of
security-critical kernel objects, a requirement for many attacks
to compromise the system. At the same time, as defenses be-
come more integrated — particularly in the memory mapping
subsystem — the risk increases that these protections, while
intended to enhance security, may unintentionally expose the
system to more precise leaks. As a result, it is unclear which,
if any, of the defenses actually allow more precise leakage.

In this paper, we show that while kernel defenses are valu-
able in mitigating vulnerability exploitation, enabling any
of 3 defenses allows for side-channel attacks to deduce the
locations of security-critical kernel objects in a way that al-
lows reliable and stable privilege escalation on modern Linux
kernels. We refer to these as location disclosure attacks.

To identify kernel defenses that allow these location disclo-
sure attacks, we perform a systematic side-channel analysis.
We analyze all 127 defenses recommended by the Kernel
Self-Protection Project (KSPP) [60] or used within Google’s
KernelCTF [13] bug bounty program. These defenses include
protection against various exploit techniques, such as cross-

cache reuses [31,41,64,67] — that exploit the memory reuse
by a kernel allocator — and kernel code tampering attacks [12].
We classify these defenses into 5 categories. We then observe
that from one category, 3 defenses — enforcing strict memory
permissions or virtualizing the kernel heap or kernel stack
— modify the memory mapping to create exploitable access
patterns in the TLB. These defenses change the mapping
so that objects are accessed with a fine-grained mapping of
4 kB instead of 2 MB, which is how most kernel memory is
accessed. This results in using 4 kB TLB entries, with con-
tention patterns observable via a side channel.

We then present location disclosure attacks that leak the
locations of kernel objects. Combining strategic kernel alloca-
tor massaging with TLB contention patterns allows the leak
of page-aligned object locations and consequently deduces
all sub-page granular object locations, all attacker-controlled.
To perform these attacks, a bad actor must first load the ob-
ject’s address into the TLB. However, the kernel does not
provide a way to load only one target kernel address into the
TLB, as even the simplest syscall accesses and loads multi-
ple addresses. Instead, we use a so-called access primitive
multiple times with different arguments, which loads numer-
ous addresses — including the target address — into the TLB.
This creates multiple TLB contention patterns, which we leak
via an Evict+Reload TLB side-channel attack using 2 known
and 1 novel distinguishing primitive, i.e., distinguish 2 MB
from 4 kB mappings. Due to strategic prior massaging, we
use these patterns to deduce the locations of most security-
critical kernel objects, i.e., pipe_buffer, msg_msg, cred,
file, seq_file, page table (all levels), and kernel stack.

To demonstrate the practicality of these disclosure attacks,
we leak object locations on recent Intel CPUs ranging from the
8th to the 14th generation and generic kernels ranging from
v5.15 to v6.8. We evaluate on an idle and stressed system. For
an idle system, these attacks require between 0.3s to 17.8s
with almost no false positives. For a stressed system, the false
positives increase to about 7 % despite being close to full
CPU load with significant TLB pressure.

Using our disclosure attacks, we can perform privilege
escalation on modern kernels (e.g., v6.8) without crashes
and nearly 100 % reliability. We show 3 results: First, our
disclosure attacks re-enable exploit techniques that have been
largely prevented. Second, disclosure attacks enable a new
exploit technique that was previously not possible due to the
limited capabilities of most vulnerabilities. Third, we even
argue that the virtual kernel stack defense reduces security.

Finally, we discuss the security implications of our disclo-
sure attacks, e.g., that the exploitation becomes substantially
more reliable and stable with already known security-critical
kernel objects. We also discuss challenges inherent in fully
mitigating location disclosure attacks, e.g., preventing the
kernel from using 4 kB mappings for kernel objects.

Contributions. The main contributions of this work are:

(1) Side-Channel Analysis of Kernel Defenses: We sys-

Modules [vo Mapping
D4kB Mapping
Code DQMB Mapping
vmemmap vmemmap_base
vmalloc
used by virtual allocator vmalloc_base_
DPM
used by
page dnd slab allocator page_offset_base
____________________ ££££888000000000.
/X/

Figure 1: Virtual memory layout of the x86_64 Linux kernel.

tematically analyze all 127 defenses recommended by
the KSPP or used within Google’s bug bounty program
for their side-channel leakage, showing that 3 leave fine-
grained, exploitable TLB contention patterns.

(2) Location Disclosure Attacks: We present disclosure
attacks combing allocator massaging with Evict+Reload-
style TLB attacks to leak these fine-grained patterns and
deduce the locations of security-critical kernel objects,
i.e., heap objects, page tables, and stacks. We evaluate
our attacks on recent Intel CPUs and kernel versions.

(3) Reliable and Stable Kernel Exploitation: We show that
our disclosure attacks allow privilege escalation without
crashes and nearly 100 % reliability on modern systems,
e.g., Linux kernels v6.8. They re-enable a new exploit
technique and previously prevented exploit techniques.

QOutline. Section 2 provides the background. Section 3
presents the workflow. Section 4 discusses our side-channel
analysis of the defenses. Section 5 combines massaging with
exploitation of these side-channel leaks for disclosure attacks.
Section 6 evaluates these attacks. Section 7 shows how the
leakage can be used in kernel exploits. Section 8 provides a
discussion. Section 9 concludes our work.

2 Background

This section provides the necessary background for this work.
Kernel Allocators. The Linux kernel provides 3 alloca-
tors (i.e., page allocator, slab allocator, and virtual memory
allocator), where Figure | shows the memory areas used.
First, the page allocator [28] divides the Direct-Physical
Map (DPM) [44] — a linear virtual mapping of (typically) the
entire physical memory — into page-order memory chunks.
This allocator combines memory allocation with free memory
coalescing. Simply put, it provides global and per-CPU page-
order free lists. Both free lists allow allocation of physically
contiguous page-order memory chunks, where the kernel first
allocates/deallocates chunks from the per-CPU lists. If the per-
CPU lists are exhausted on allocation or exceed a maximum
capacity on deallocation, the kernel resorts to the global lists.

Side-Channel Analysis of

Kernel Defenses
o Massaging Side-Channel Leakage

% 53
2 = Z E(>
g g3
G o, O
%)
- - & A

Analysis (Section 4) Exploiting Defenses (Section 5)

Location Disclosure Attacks

Reliable and Stable Kernel
Exploitation

e Re-enable exploit techniques
o Enable a new exploit technique
o One defense reduces security

Exploits (Section 7)
o Security implications
o Mitigating disclosure attacks
Discussion (Section 8)

m“..oﬂ‘"“‘”
ffffe9132392380
— #18898C 120000

Leakage (Section 6)

Figure 2: The high-level overview of our work.

Second, the slab allocator allocates page-order chunks —
used as slabs — from the page allocator, where the slabs cache
free and available memory slots [7,27]. This allocator pro-
vides two types of caches, both of which use slab pages for
allocating and deallocating objects: dedicated and generic
caches. Dedicated caches are used for frequent object allo-
cation with kmem_cache_alloc. Generic caches are used
for allocating less frequently used objects and have multiple
allocator caches matched to different sizes. When allocating
objects from a generic cache with kmalloc, the kernel first
matches the object size to one of these caches and then returns
a free and available memory slot from that cache.

Third, the virtual memory allocator uses vmalloc to pro-
vide a virtually contiguous memory with a specific mapping.

SLUBStick. Maar et al. [41] introduced a timing side
channel of the slab allocator to detect new slab page alloca-
tions. It works by timing object allocations from user space.
Fast allocations indicate that the currently active slab page
has returned the memory slot. Slow allocations indicate a new
slab page allocation by the page allocator that returns a slot
for the object. By grouping object allocations according to
their timing, SLUBStick determines all objects on a slab page.

Kernel Memory Mapping. Figure | shows the virtual
memory layout of the Linux kernel with 5 relevant areas for
this work, all of which are randomized due to KASLR [11].

Code and Modules contain the instructions of the kernel
binary and inserted modules. The DPM is a virtual mem-
ory area of (typically) the entire physical memory, mostly
mapped with 2 MB pages. Crucially, the kernel heap allo-
cated by the slab allocator accesses the DPM directly. On
x86_64 systems, the kernel places the DPM at a random
1 GB-aligned address — the page_offset_base — between
f£££888000000000 and ££££c88000000000. The vmalloc
area (mapped with 4 kB pages) contains memory slots allo-
cated with the virtual allocator. This area is randomly located
to a 1 GB-aligned address — the vmalloc_base — between
the DPM’s end and vmemmap’s start. The vinemmap area is a
virtual memory mapping that stores metadata for each physi-
cal page. More specifically, this virtual mapping is an array
of 64 B page objects that store this metadata and is indexed
by the physical frame number. It is located at a 1 GB-aligned
address — the vmemmap_base — between vmalloc’s end and
f££££££e0000000000.

Kernel Exploitation. Most kernel exploits that exploit
memory-corruption vulnerabilities work similarly: A bad
actor initially triggers the vulnerability, such as Out-Of-
Bounds (OOB) or Use-After-Free (UAF), to falsely put an
object — often referred to as the victim object — in a free
state. They then reuse the victim’s memory slot for a different
object. There are two variants of reuse attacks: First, they per-
form an in-cache reuse and reuse the victim object as another
object from the same allocator cache, e.g., kmalloc-*. How-
ever, this limits reuse to objects with the same (or similar)
size and allocation properties, as heap separation prevents
direct reuse of the victim as a security-critical object. Sec-
ond, they perform a cross-cache reuse by freeing all memory
slots on the slab page that contains the victim object, caus-
ing page recycling. They then reclaim the page (typically)
used for a security-critical purpose, e.g., DirtyCred [33] as
a credential reference, CVE-2022-27666 [71] as a msg_msg,
DirtyPage [34]/CVE-2020-29660 [23] as a pipe_buffer, or
Dirty PageTable [65]/SLUBStick [41] as a page table.

Translation-Lookaside Buffer. The TLB is a per-core
CPU cache that stores virtual-to-physical address translations.
When an address translation is found in a TLB entry, it elim-
inates the need to perform a page-table walk for memory
access, resulting in a speedup. There are typically two levels
of TLBs, with the first level split between data (DTLB) and
instructions (ITLB), while the second level (STLB) is shared
between data and instructions. Each TLB is a set-associative
cache, i.e., split into sets and ways. For example, an Alder
Lake CPU might feature two STLBs of 128 sets with 8-way
associativity each, one for 4 kB and 2 MB/4 MB pages, and
one for 4kB and 1 GB pages. When a virtual address is not
found in any TLB, a page-table walk is performed, and an ex-
isting entry in the TLB is evicted to store the new translation.

3 High-Level Overview

Our work is based on 3 components, as shown in Figure 2.
First, we show that several kernel defenses leave ex-
ploitable, fine-grained TLB contention patterns (see Sec-
tion 4). Initially, we analyze all 127 defenses recommended
by the KSPP [60] or used by KernelCTF [13], which protects
against techniques, e.g., code manipulation [12] and cross-

cache reuse [31,41,67]. We categorize them into 5 categories
based on how they improve security. We then analyze whether
they change the memory mapping to create fine-grained TLB
patterns, resulting in 3 defenses of a particular category.

Second, we show that combining kernel allocator massag-
ing with these patterns enables the leaking of the location of
target objects (see Section 5). To achieve this, we perform an
Evict+Reload TLB side-channel attack and obtain the leakage
of each exploitable defense. Using these leaks, we show that
due to the prior massaging, we can deduce the location of most
security-critical objects, i.e., heap objects, page tables, and
kernel stacks, which are all popular exploitation targets such
as msg_msg [4,10,24,37,48,71], pipe_buffer [34,49,62],
cred [17,33], seq_file [19,25,58], file [33,56,63, 68],
page table [41,47,64,65], and kernel stack [52,66,69]. We
demonstrate the practicality of these attacks on recent Intel
CPUs and multiple kernel versions (see Section 6).

Third, we show that by using our disclosure attacks, we can
build reliable and stable exploits (see Section 7): First, they
re-enable exploit techniques that have been largely prevented.
Second, they enable a new technique that was not previously
possible due to the limited capabilities of most vulnerabilities
in their initial state. Third, for one defense, we even argue that
the defense provides less security due to disclosure attacks.
We then discuss (see Section 8) the security implications of
the disclosure attacks and the challenges of full mitigation.

Threat Model. We assume an unprivileged user with code
execution, a typical scenario for the last stage of a full-chain
exploit [57]. We also consider the presence of an exploit
primitive, such as kernel UAF or OOB write, due to a kernel
heap bug. We assume that all upstream defenses available in
v6.9 (i.e., the latest version when we started our work) are
enabled and exclude defenses that require paid subscriptions
(e.g., AUTOSLAB [31]), in line with prior work [17,33,41,69].
In line with our evaluation CPUs, while KPTI is included in
the kernel binary, it is disabled by the CPU.

4 Side-Channel Analysis of Kernel Defenses

In this section, we detail our systematic analysis of all 127 ker-
nel defenses recommended by the KSPP [60] or used within
Google’s KernelCTF [13] bug bounty program. We aim to
determine which kernel defenses introduce exploitable fine-
grained TLB contention patterns. We first organize all kernel
defenses into 5 categories. We then show that 3 defenses of
one category introduce exploitable fine-grained leakage.

4.1 Requirements

There are two requirements for defenses to leave exploitable
contention patterns in the TLB. We first discuss these and
then describe how kernel defenses satisfy these requirements.

R1. The identified kernel defenses must produce different
TLB contention patterns when applied than when not applied.

Thus, the first requirement is that applying a defense must
change the memory mapping. We refer to a mapping change in
where or how kernel objects are mapped, potentially creating
exploitable TLB contention patterns on object access.

R2. Since most of the accessed kernel memory is mapped
as 2 MB pages [6], TLB contention patterns mainly occupy
2 MB entries. Even if we leak which 2 MB entries the target
object occupies, the offset within that 2 MB page remains un-
known. Thus, as a second requirement, the defense must alter
the mapping of objects from 2 MB to 4 kB pages, creating
contention patterns in 4 kB TLB entries, so that we can leak
the 4 kB location of the object first and narrow it down to its
sub-page granular locations subsequently. This can be done
either by statically switching from a 2 MB to a 4 kB mapped
region or by dynamically changing the mapping.

Since defenses satisfying R2 are a subset of defenses satis-
fying R1, R1 helps to filter out defenses that do not satisfy R2,
allowing for efficient and accurate kernel defense analysis.

Unexploitability of 2 MB Mappings. As we will show in
Section 5, our disclosure attacks require full control over the
smallest memory granularity leaked by TLBs. With 2 MB
mappings, adversaries must ensure all controlled objects oc-
cupy and map exclusively to an entire 2 MB memory chunk,
which is infeasible because: First, the largest slab size is 32 kB
and, second, slab adjacency to fill exclusively only to a 2 MB
memory chunk is almost impossible, e.g., due to CONFIG_-
SHUFFLE_PAGE_ALLOCATOR.

4.2 Classification of Kernel Defenses

From the 127 defenses, we filter out those that do not apply to
any of our evaluated kernels (i.e., v5.15, v6.5, v6.6, and v6.8),
e.g., CONFIG_RANDOM_TRUST_BOOTLOADER is not available
in these versions. This leaves us with 114 defenses (see Fig-
ure 3), which we divide into the Memory Mapping Change,
Reduce Attack Surface, Add Checks, Poisoning/Cleanup, and
Others categories. We then analyze whether these categories
have the potential to satisfy our requirements and find that
Memory Mapping Change satisfies R1. Finally, we show that
multiple defenses within this category satisfy R2, leaving
exploitable contention patterns in 4 kB TLB entries.
Non-Exploitable Categories. To filter the non-
exploitable categories from the Memory Mapping Change
category that satisfy R1, we automatically identify all files
containing an #ifdef of a kernel defense. We then automati-
cally determine whether the file is directly responsible for
the memory mapping, e.g., vmlinux.1lds.S, or is located
in a directory that handles mappings, e.g., arch/*/mm/. In
these cases, we manually analyze the files and determine
whether they contribute to memory mapping changes. Several
automatically identified defenses turned out as false negatives
on manual analysis, e.g., CONFIG_STRICT_DEVMEM includes
checks in arch/x86/mm/pat/memtype.c but does not
contribute to mapping changes. After the analysis, we are left

R2 '

R1 |
| 4kB mapping: Exploitable
1
1

Memory Mapping Change No 4KB mapping |

Reduce Attack Surface |
Applicable '

Kernel Defenses

Add Checks | :
1

Poisoning/Cleanup ;

Inapplicable} Others*

Figure 3: Our classification of kernel defenses shows the
Memory Mapping Change defenses inducing exploitable TLB
contention patterns that leak the precise location of objects.

with 12 defenses contributing to mapping changes.

For completeness, we briefly describe the other non-
exploitable categories Reduce Attack Surface, Add Checks,
Poisoning/Cleanup, and Others, where we use manual clas-
sification based on the following definitions: Reduce Attack
Surface limits the amount of kernel code accessible to an ap-
plication [22,54], e.g., resetting CONFIG_X86_VSYSCALL_-
EMULATION removes virtual syscalls handling. Add Checks
defenses insert security checks, ensuring the integrity of parts
of the kernel, e.g., CONFIG_SLAB_FREELIST_HARDENED pro-
tects slab metadata. We classify defenses as Poisoning/-
Cleanup if they poison or cleanup registers (e.g., CONFIG_-
ZERO_CALL_USED_REGS) or memory (e.g., CONFIG_PAGE_-
POISONING or CONFIG_INIT_ON_FREE_DEFAULT_ON). Fi-
nally, Others defenses do not fit in the other categories, e.g.,
CONFIG_SCHED_CORE permits core scheduling. To summa-
rize, none of these categories contribute to memory mapping
changes, and, thereby, they do not satisfy R1.

Defenses that Change the Memory Mapping. Memory
Mapping Change defenses can be divided into those that
change the object’s mapping to 4 kB pages (satisfying R2) and
those that do not. For those that do not, several of them change
the object’s location by separating them according to their se-
curity context. Examples include CONFIG_KMALLOC_CG with
coarse-grained separation, CONFIG_KMALLOC_SPLIT_VAR-
SIZE to separate elastic objects [4], and CONFIG_RANDOM_-
KMALLOC_CACHES to randomly assign dedicated caches to
allocation sites. Other defenses that also do not change the
mapping are CONFIG_SHUFFLE_PAGE_ALLOCATOR and CON-
FIG_RANDSTRUCT_FULL, which randomize page allocations
or the members within a struct. Another example is CONFIG_-
STRICT_KERNEL_RWX, which only sets code permissions on
a 2 MB granularity. Since none of these defenses change the
object’s mapping to 4 kB pages, they do not satisfy R2.

This leaves 3 defenses that change the object’s mapping
to 4 kB pages. CONFIG_STRICT_MODULE_RWX satisfies R2 as
follows: It must set the permission of the virtual memory and
the DPM of the module code to non-writable [12, 60]. To
achieve permission settings in the DPM, this defense splits
the 2 MB pages of the DPM into 4 kB, allowing legitimate use

of other pages from the former 2 MB page, e.g., for the heap.
CONFIG_SLAB_VIRTUAL and CONFIG_VMAP_STACK satisfy
R2 as they use virtual memory mapped with 4 kB pages.

Discussion. A false positive is when an identified defense
leaves no exploitable TLB contention patterns. However, all
of our identified defenses leave exploitable patterns that leak
locations of target objects. A false negative is when a defense
allows location leakage, but we missed it. To minimize false
negatives, we strictly defined our requirements R1 and R2
and systematically analyzed the defenses. We also performed
a bottom-up approach and tried to find defenses that include
mapping changing functions such as set_memory_ro.

We reveal 3 exploitable and 124 non-exploitable defenses.
This provides encouraging results for defenders, as only 3
defenses require hardening against our attacks. Researchers
can focus on these instead of all 127 defenses.

Takeaway 1

Our analysis shows that 3 defenses change the memory
mapping of kernel objects to 4 kB pages, which creates
exploitable contention patterns in 4 kB TLB entries.

S Exploitation of Kernel Defenses

To leak the location of a target object, we need to load its
page-aligned address into the TLB. However, even the sim-
plest syscall accesses multiple kernel addresses and loads
them into the TLB. Instead, we call a so-called access prim-
itive multiple times with different arguments. These access
primitives load the addresses of a couple hundred to a thou-
sand accessed objects — including the target address — and,
therefore, create TLB contention patterns. By strategically
massaging the kernel allocators beforehand, we use these pat-
terns to infer the page-aligned location of the target object. We
then deduce all sub-page granular object locations within the
leaked page, all controlled by the attacker. Below, we set the
challenges of exploiting D1-3 and massaging the allocators
for location leakage, while Sections 5.1 to 5.3 solve them.

C1. The first challenge is to ensure that our target object
is located on 4 kB mappings. Therefore, on object access, its
page-aligned address is now loaded into a 4 kB TLB entry,
resulting in 4 kB TLB entries are occupied.

C2. The second challenge is to minimize TLB noise from
uncontrolled accesses within the access primitives. Reducing
the noise is critical, as otherwise, it could lead to the target
TLB entry being misoccupied, resulting in misclassification
or the inability to locate the target 4 kB TLB entry.

C3. The third challenge is to deduce the location of the
target kernel object from the contention patterns in 4 kB TLB
entries. To achieve this, we first need to determine the 4 kB
TLB entry of our target kernel object (C3.1). For reference,
when leaking msg_msg, we need to non-trivially reduce the
976 TLB entries of its access primitive to 1 target entry. Find-
ing this TLB entry gives us the page-aligned kernel address

——— DPM_ ——— DPM__
f£f££8ae0£1400000 fff£8ae0£1400000 _
L’
.
££££8260£1200000 "
‘\
v
v
\
L@
.
££££8ae0£1000000 ££f£8ae0£1000000 \~._
/\/ /\/
[J2MB page [J4kB page [[14xB read-only page Module code

————_DPM__

| ££££82e0£1205000 ££££82e0£1205000

————_DPM__

f£££8ae0£1204000

A/

££f£82ae0£1203000.

££££82e0£1202000

TLB

f£ff£8ae0£1204000

Wil

f£f£82e0£1203000

££££82e0£1202000 /

W

/X/

Target kernel object

/X/

Other kernel object —» TLB load

Figure 4: Exploiting CONFIG_STRICT_MODULE_RWX to create TLB contention patterns via an access primitive. The insertion of a
module @ causes a split of a 2 MB page into 4 kB pages to set the module’s page to read-only. We then allocate the target kernel
object we want to leak @, which will be on a 4 kB page. Finally, we execute the access primitive @, which accesses the target
with other objects, loading their page-aligned addresses into the TLB and creating the contention pattern on the 4 kB entries.

of the object. Next, we must derive the object locations within
this leaked page address (C3.2).

5.1 D1: Strict Kernel Memory Permissions

By massaging the kernel allocators combined with exploiting
the CONFIG_STRICT_MODULE_RWX defense, we can solve C1-
3 and leak the location of heap objects and page tables.

Protection Scheme. Kernel memory containing writable
code is an easy target for control-flow redirection [12,60]. As
a mitigation, the kernel supports CONFIG_STRICT_*_RWX to
guarantee no kernel code is writable [60]. Specifically, the
kernel can protect dynamically loaded module code (i.e., CON-
FIG_STRICT_MODULE_RWX) this way: When loading module
code into a virtual memory range, the kernel restricts this
range to be executable and read-only and the corresponding
range in the DPM to be read-only. However, as the DPM is
mapped mainly as 2 MB pages, the kernel has to split — prior
to changing permissions — this 2 MB page into 4 kB pages.
Hence, physically adjacent pages can remain writable and be
used by the kernel, e.g., for the kernel heap.

TLB Contention Pattern. Figure 4 shows exploiting
TLB contention patterns created by this defense combined
with allocator massaging. In the first stage, we load a module,
forcing a 2 MB to 4kB page split @. The kernel then sets
the page within the DPM that contains the module’s code
(i.e., blue memory range) to read-only. Unprivileged kernel
module loading can be done by opening a socket that does
not have its kernel driver loaded.

In the second stage, we allocate a target object (i.e., green
memory range) to claim a memory location mapped as a 4 kB
page @, using its so-called allocation primitive. To claim a
4 kB mapped slot, we drain the lower page-order free lists of
the page allocator before loading the module by allocating
many dummy objects. Due to the page allocator’s intrinsic
behavior, when the lower page-order free lists are drained,
it partitions higher page-order chunks and uses them for the

———~_DPM_ sys_msgrcv(id, mtext, mtype):
= @TLB msq = ipc_ns.root_rt[id]
ipeons if Imsg:
return
[5) msg = find_msg(msq, mtype)
msq0
copy_to_user (mtext, msg.mtext)
o @TLB mtext = char[]
msql mtype = 0x41
(3] msq32
// access msg0, msq0, ipc_ns
® = sys_msgrcv(0, mtext, mtype)
_— QTLB // access msgl, msql, ipc_ns
o sys_msgrcv(l, mtext, mtype)
msg32
// access msg32, msq32, ipc_ns
/\/

sys_msgrcv(32, mtext, mtype) @)

Figure 5: TLB contention patterns by calling msgrcv @-@.

lower page-order allocations [17, 41, 64]. After these free
lists are drained, the module allocation uses a chunk with an
adjacent free chunk, located on the split 2 MB page. Now, sub-
sequent object allocations likely claim one of these adjacent
chunks, solving C1.

In the third stage, we use an access primitive that accesses
multiple kernel addresses and induces TLB contention. The
TLB contention pattern consists of the page-aligned address
of our target kernel object (i.e., green memory range) and
addresses of other accessed objects (i.e., red memory areas).

Leaking the Object’s Location. While inferring the lo-
cation of our target object from TLB contention is a generic
approach, we explain it using the msg_msg as an example.
For the msg_msg object, the msgsnd and msgrcv functions
act as an allocation and access primitive. Figure 5 depicts the
access primitive that first accesses the Inter-Process Commu-
nication (IPC) root tree ipc_ns.root_rt to obtain msq that
matches id. It then accesses msq to obtain msg_msg matching
the type mtype and copies the data stored within this object to
user space. Executing this primitive with different ids creates

different access patterns in the TLB. This simplified exam-
ple shows a contention pattern with three 4 kB TLB entries,
whereas in reality, the access primitive creates patterns with
976 entries across all TLB levels.

In Figure 5, we aim to leak the address of msg0 residing
on page M. To minimize the noise on the TLB, we exploit the
caching property of the slab allocator, solving C2. Specifically,
we make sure that the slab page of our target object (i.e., msg0)
contains only msg_msgs: First, by allocating multiple msg_-
msgs, and second, by validating via the SLUBStick timing
side channel [41] that only msg_msgs are stored on this slab
page (see Section 2). We refer to the objects on page @ as
msgO to msg31. We repeat this process so that we have a
second slab page @ occupied with msg_msgs.

Next, we separate other objects, such as msg_queue, on
different slabs via dummy allocations between two different
msq_queue (i.e., msq0 and msq1) allocations so that all other
memory slots within the slab page are used for dummy objects.
For example, page ® contains one msg_queue object, and the
other slots of the slab page are dummy objects. Figure 5 shows
the memory layout of the DPM when using both approaches.

With the object layout we crafted, executing msgrcv with
different arguments results in different TLB entries being
occupied. Executing this primitive with an id of 0 @ results
in entries 2, 5, and 6 being occupied, while running it with an
id of 1 @ results in 2, 4, and 6 being occupied. The execution
with an id of 32 @ results in occupancy of entries 1, 3, and
6. Hence, we can distinguish common and differential TLB
access patterns: The patterns of @ and @ are common, as
their accessed objects (i.e., msg0/1) are on the same slab
page. Pattern @ is differential to @ as it does not access the
same target slab page. We determine the common entries of @
and @, resulting in 2 and 6. We remove the common entries
with @, resulting in entry 2, the correct page @. Thus, we
obtained the page-aligned address of msg0, solving C3.1.

To obtain the location of all objects within the leaked and
controlled slab page (solving C3.2), we consider the align-
ment enforced by the page and slab allocators [42]. The page
allocator enforces that the base address of its slab is always
aligned to its page order. Using the kmalloc-cg-128 cache
as an example, since this cache contains 0-order slab pages',
their base addresses are page-aligned”. Objects allocated from
this cache are then located at 128 - n 4+ slab_base where n is
between 0 and 31, and slab_base is the page-aligned address
leaked by C3.1. Since we have occupied the entire slab page
with msg_msgs, we obtain the location of all 32 objects within
the page. While we now have all locations within the slab
page, we do not know which object is at which specific leaked
location but we do not need to as all objects are adversary con-
trolled. We show in Section 7, this is sufficient for escalating
privileges without crashes and nearly 100 % reliability.

In-order slab pages refer to a slab of size 2" - PAGE_SIZE.
2/sys/kernel/slab/kmalloc-* contains these details, which remain
consistent across the same kernel version.

Modules s]
4 |£££££e9132398000 _ _ _ _ _ __
Code / L _
,'I ___________________
- E: 91323940 4
Virtual Kernel Heap preesasa -
RS |£££££e91323892000 _ - ..
vmemmap AN 55 -
N |£££££29132390000 _ _ _ _ ___
\
/\/
vmalloc N
DPM DNo Mapping Do-order virt slab page
D4kB Mapping Dl—order virt slab page
— [CJ2mB Mapping

Figure 6: Memory layout when using CONFIG_SLAB_VIR-
TUAL, which now has a virtual kernel heap. This virtual heap
contains the virtual slabs where the heap objects are located.

Besides msg_msg, we perform a similar approach with al-
locator massaging and common/differential access patterns
for other objects. We leaked the locations of pipe_buffer,
cred, file, seq_file, and page-tables, i.e., Page Upper Di-
rectory (PUD), Page Middle Directory (PMD), and Page Ta-
ble (PT). Table 3 shows their allocation and access primitives.
For heap objects, we achieve the common/differential access
patterns by allocator massaging, while for the page tables, we
place the page-table levels in our favor (see Appendix B).

Takeaway 2

While D1 prevents tampering with module code, it cre-
ates exploitable TLB contention patterns and, thus, allows
location leakage of heap objects and page tables.

5.2 D2: Virtual Memory for Kernel Heap

The Linux kernel has enhanced heap defenses that separate
objects into different sets of allocator caches based on their se-
curity context. This separation prevents in-cache reuse, where
a victim object’s memory slot is directly reused for security-
critical objects. While this separation makes vulnerability
exploitation more difficult, cross-cache reuse [67] has been
proposed to circumvent this separation. It exploits the mem-
ory reuse of the page allocator and has received consider-
able attention from academia [17,33,40,41,67] and indus-
try [31,45,61]. To counter this development, security experts
presented the defense CONFIG_SLAB_VIRTUAL [45] and de-
ployed it in Google’s hardened system for KernelCTF [13].
While this defense provides significant value in mitigating
cross-cache reuse, we show that it creates TLB contention
patterns that enable leaking the location of target heap objects.

Protection Scheme. CONFIG_SLAB_VIRTUAL [45] deter-
ministically prevents the reclaiming of heap memory that has
been returned to the page allocator. They achieve this by using
a virtual mapped area as heap instead of the DPM, which is
mapped with 4 kB pages. We refer to this area as the virtual
kernel heap, as illustrated in Figure 6. Since the slab pages
are now in the virtual heap, we refer to them as virtual slab

pages. A unique feature of this defense is that it continuously
increases the heap and never returns memory used by virtual
slab pages back to the page allocator. This prevents the corre-
sponding memory chunk from being reused in different slab
caches, which deterministically prevents cross-cache attacks.

Leaking the Object’s Location. Since this defense uses
4kB mapped virtual memory areas, applying this defense
causes accesses to heap objects (except for DMA-related
memory [45]) to occupy 4 kB TLB entries, satisfying C1 by
design. However, accessing nearly the entire heap via 4 kB
mappings also introduces TLB noise since the previously
used 2 MB mappings are now all 4kB. To compensate for
the higher TLB noise floor, we use the same approach as in
Section 5.1 to create common and differential patterns in the
TLB, but with more varying arguments. From these patterns,
we deduce the target kernel page, solving C2 and C3.

Takeaway 3

While D2 provides significant value in mitigating cross-
cache attacks, it enables leaking heap object locations.

5.3 D3: Virtual Memory for Kernel Stack

The CONFIG_VMAP_STACK kernel defense [35] uses a virtual
stack with guard pages instead of physically-mapped kernel
stacks, preventing kernel stack overflows. However, we show
that it also allows the location of kernel stacks to be leaked.

Protection Scheme. With this defense disabled, Linux
uses the DPM directly for kernel stacks. Since the DPM is
(mostly) continuous, a stack overflow would corrupt pages
adjacent to the kernel stack, which may cause a difficult-to-
diagnose corruption. To detect these overflows, CONFIG_-
VMAP_STACK allocates the stack with vmalloc and includes
virtual guard pages. Now, the stack is located within the virtual
memory area (see Figure 1), mapped with 4 kB pages.

Leaking the Object’s Location. With this defense en-
abled, the thread’s stack is accessed with memory mapped
via 4 kB pages, solving C1 by design. To exploit this defense,
we need a syscall that accesses the kernel stack with minimal
other objects. We use an invalid syscall (i.e., syscall num-
ber -1) as an access primitive that only accesses the kernel
stack and a few other kernel objects, such as current. To
reduce the TLB noise and solve C2, we consider the stack’s
alignment, including the used guard pages. To solve C3.1,
we repeatedly call the invalid syscall and determine the 4 kB
TLB entry that occupies the page-aligned kernel stack. Lastly,
since even with the kernel defense CONFIG_RANDOMIZE_-
KSTACK_OFFSET_DEFAULT enabled, the invalid syscall only
accesses the top page from the kernel stack, the leaked TLB
entry is the current kernel stack, satisfying C3.2.

Takeaway 4

While D3 comfortably detects kernel stack overflows, it
allows the location of the kernel stack to be leaked.

108 Kaby lake (i7-8650U)
ks i i [Hit @ Miss 0 Unmapped
2 4l
g 2
wn
0
30 40 50 60 70 80
.105 Meteor Lake (Ultra 7 155H)
8 2 | Hit B Miss =1 Unmapped
=
g 2
%
0 T T T
30 40 50 60 70 80

Prefetch time [cycles]

Figure 7: Prefetch timings of 4 kB pages.

6 Location Disclosure Attacks through De-
fense Side-Channel Leakages

In this section, we first describe the side-channel primitives to
leak the TLB contention patterns via an Evict+Reload TLB
side-channel attack (see Section 6.1). We then evaluate the
location disclosure attack using Evict+Reload and leak most
security-critical kernel objects (see Section 6.2).

Evaluation Setup. We evaluate a wide range of Intel
CPUs (i.e., Kaby, Coffee, Alder, Raptor, and Meteor Lake),
which are all vulnerable to our disclosure attack. The used
kernels for the D1/3 exploit are the generic v5.15, v6.5, and
v6.8 ones, while for the D2 exploit, we applied the CONFIG_-
SLAB_VIRTUAL patch to its intended v6.6 kernel (see Table 2).
We extensively evaluate our attack on the Intel i7-1360 and
kernel v6.8 for D1/3 and v6.6 for D2 to leak the location of
heap objects, page tables, and thread stacks (see Table 1).

6.1 Distinguish Different Memory Mappings

The prefetch instruction [15] allows us to measure whether
or not a page is currently in the TLB by measuring its execu-
tion time. As it does not architecturally access the data, this
does not cause an access violation, even if performed on ker-
nel pages from user space. We implement a fast, set-targeted
TLB eviction for both TLB levels to repeatedly sample pages.
We base this on the reverse-engineering of TLB addressing
functions done by prior work [14,59,70]. While the overall
TLB structure on Intel CPUs has changed significantly since
the Coffee Lake architecture evaluated in prior work, we find
that for 4 kB pages, the appropriate indexing functions still
perform well for set eviction on Ice Lake and later genera-
tions. Combining prefetch and TLB set eviction, we get an
equivalent attack to Evict+Reload [16] for pages.

For our attack, we need three distinguishing primitives:
First, we need to distinguish TLB hits from misses on mapped
pages. This allows us to locate specific kernel objects for

which we have an access primitive, e.g., msgrcv for msg_-
msg. Second, distinguishing mapped from unmapped pages
allows us to find coarse-grained memory areas, e.g., DPM
or vmemmap (see Figure 1). Third, our novel primitive allows
us to recognize whether an address is mapped to a 2 MB or
a 4kB page, which enables us to find pages that a kernel
defense has split.

Figure 7 shows the prefetch timings for Kaby and Meteor
Lake. We find that prefetchnta and prefetcht2 combined
in one measurement leads to good results on all tested CPUs.
We see that TLB hits are distinguishable from misses. Thus,
for our hit/miss primitive, we evict the TLB set corresponding
to the page we are testing and then measure the timing of
prefetch on that page. As shown, the distributions are separa-
ble, so few repetitions are sufficient for stable results.

On Kaby Lake, we see that mapped and unmapped pages
are also clearly distinguishable. However, changes in the
newer Meteor Lake microarchitecture cause TLB misses on
mapped pages to no longer show a different timing from un-
mapped pages with our measurement setup. We, therefore, do
not rely on this difference but simply repeatedly measure the
prefetch timing of a page without evicting it from the TLB
to get the mapped/unmapped primitive. If the tested page is
mapped, accesses after the first one will produce a hit timing
because Intel TLBs do not cache unmapped page translations.

For the 2 MB/4 kB primitive, we combine the two prior
approaches. We repeatedly evict the target TLB entry, then
prefetch another address in the same 2 MB-aligned memory
at least 4 kB away, and lastly, measure the prefetch timing of
the target address. If our target is mapped on a 2 MB page,
accessing another address on the same page will load it into
the TLB, causing a hit on the measured target access.

6.2 Evaluation of Disclosure Attacks

In this section, we evaluate our location disclosure attacks by
exploiting D1-3 via the prefetch side channel and allocator
massaging. We first leak the coarse-grain location where the
object resides, and then leak the fine-grain location of that
object, e.g., DPM with subsequent kernel heap object leak.

Leaking Coarse-Grained Kernel Sections. We leak the
base of the DPM, vmalloc, vmemmap, and virtual heap for
D2 as follows: We iterate through kernel memory in 1 GB
steps since the mappings are 1 GB-aligned. At each step, we
use the mapped/unmapped primitive to determine whether the
first page is mapped. If it is, we have found the region’s base.
For the DPM base (i.e., page_offset_base of Figure 1),
we start at f£££888000000000; for vmalloc at the end of
the identified DPM region; and for the virtual heap, we start
at ff£f££fe8000000000, its lowest possible address. For
vmemmap, we search backward from £££££f£fe0000000000.
Leaking these locations requires less than 1 s.

Leaking Fine-Grained Locations. For defenses that ac-
cess all kernel objects with 4 kB page mappings, we iterate in

Table 1: Evaluation results of exploiting defenses D1-3, show-
ing their Success Rate (SR), the Time (T) required, the Cor-
rected Rate (CR), where we consider that we can repeat detect
false negatives, 1 indicating that no stable exploit was possi-
ble, and *k indicating that we can reallocate it in-cache from a
leaked msg_msg with a CR of 100 % instead.

Objects D1 D2 D3

SR T CR SR T CR SR T CR

% S % % S % % S %
msg_msg 78 123 100 66 0.6 100 - - -
cred 1 t 1 77 6.6 98 - - -
file 80 8.1 100 82 04 100 - - -
seq_file 77 6.6 100 93 04 98 - - -
pipe_buffer 54 156 96% 51 10 100 - - -
PT 83 17.8 100 - - - - - -
PMD 93 145 100 - - - - - -
PUD 85 140 100 - - - - - -

Kernel Stack - - - - - - 98 03 100

4 kB steps over the entire possible memory area, i.e., virtual
heap for D2 and vmalloc region for D3. At each step, we call
the access primitive for the corresponding target object and
use the hit/miss primitive to leak the contention of the tested
4kB TLB entry. We repeat this with different arguments for
the access primitive and reconstruct the common and dif-
ferential patterns to deduce the target address. For D1, we
only perform this iteration for areas within the DPM mapped
with 4 kB pages using the 2 MB/4 kB primitive. Since most
of the DPM is mapped with 2 MB pages, we can skip most
addresses. On our test system more than 98 % of the DPM is
typically mapped with 2 MB pages.

For the evaluation, we perform the disclosure attacks 200
times with 5 reboots in between’. Table | shows the evalua-
tion results, where we leak heap objects by exploiting D1/2,
page tables by exploiting D1, and kernel stacks by exploit-
ing D3. The Success Rate (SR) represents the true positives
divided by the total number of runs within the averaged re-
quired Time (T). The Corrected Rate (CR) considers that we
can repeat detected false negatives’. Examples of detected
false negatives are no address found or the contention pattern
does not satisfy alignment constraints. The T denotes that ex-
ploiting D1 to leak cred was not stable because we perform
cred spraying with fork, which allocates numerous other
objects, resulting in the credentials rarely being allocated to
4 kB mapped memory. Table | shows that most attacks have
no false positives — referred to as misidentified addresses —
and the attacks that do have only about 2 %. The main cause
of false positives for the D1 exploit is that its allocation cre-
ates numerous other objects, resulting in, e.g., pipe_buffer
may not be located on 4 kB mapped memory. However, in-
stead of leaking the pipe_buffer %, we can leak msg_msg
and reallocate its slot in-cache with a CR of 100 %, working

3For the D1 exploit, we only insert modules in the first run after boot.
4 TELrp FN+TP

roral , with true/false positives 7P/F P, and false negatives FN.

|:|64—byte memory slot [Jpipe_buffer [[JPipe page [One-time corruption [JArbitrary corruption [[JArbitrary page

X
o
! buffered
S_(pipe_buffer2: o pipe_buffer2:
& len l offset hde len l offset e
< page - page
S
S buffered
=2| pipe_bufferl: data pipe_bufferil:
% len I offset pas len I offset e
N page - page -
1S 9
[buffered Unlink
| pipe_buffer0: et Primitive | pipe_buffer0: ;
S| 1en I offset il len I offset |7
%! ’)
page -~ @ | —> page

—

buffered

buffered e data

pipe_buffer2: .

len l offset /
page

// read from corrupted pipe_bufferi

buffered

read(fd1,&val) @

pipe_bufferi: // write to corrupted pipe_bufferl

write(fd1,val)@

arbitrary
page

len | offset
RRES -~

Sen

ipe_buffer0Q: .
E‘].Ben Ioffset »°, _// corrupt pipe_bufferQ

o 1(@)// corrupt pipe_bufferl
7% write(£d0,buf)

Figure 8: The exploit technique uses the unlink primitive and the known location of this slab page to obtain an arbitrary r/w.
Initially, the unlink primitive @ corrupts the pipe buffer, i.e., pipe_buffer0.page, to point to its physical page. Writing with
£d0 @ corrupts the adjacent pipe_bufferl, whereby reading from ® or writing to @ (via £d1) enables the arbitrary r/w.

with all defenses in v6.9, including D2. The main cause of
false positives for the D2 exploit is that we could not apply
the slab side channel [41] to cred and seq_file.

We also evaluated other Intel CPUs from the 8th to the
most recent 14th generation with generic kernels ranging
from v5.15 to v6.8. In particular, we exploited D1 and D3 as
these defenses are integrated in these generic kernels. Table 2
shows the evaluation results of the stack disclosure attacks.

Stress. To test the resilience of our side channel, we test the
stack disclosure attack against TLB pressure. We start stress
-m <nr_cpus-1> -vm-keep to create memory stress with
TLB pressure on all other cores, including the exploit’s sibling
hyperthread. Performance counters show that it causes around
60 x 10° dTLB misses per second, while the exploit causes
around 4 x 10 misses, representing considerable stress. On
our Raptor Lake, stressing the system causes the CR to drop
to around 93 %. By monitoring the CPU frequency, we find
this is caused almost entirely by the fluctuating frequency
resulting from adaptive power management on the laptop CPU
in line with prior findings [42]. When fixing the frequency,
this TLB pressure has a negligible effect on the CR.

7 Reliable and Stable Kernel Exploitation

In this section, we discuss that by enabling defenses such
as CONFIG_SLAB_VIRTUAL or CONFIG_KMALLOC_CG, kernel
exploitation by pure vulnerabilities has been made much more
difficult. In particular, we discuss that the inclusions prevent
or severely limit the use of existing exploit techniques. We
then show that with our location disclosure attack, which is
counterintuitively possible due to some defenses, we re-enable
the prevented exploit techniques or enable a new one.

In the following, we present three exploit techniques as
case studies. These techniques exploit write primitives to per-
form privilege escalation with an exceptional reliability of

more than 99.99 % on real hardware. First, we exploit the
unlink primitive (see Section 7.1), which has been used by
several real-world exploits [40,48,50,51,55,58] but has also
been largely mitigated by modern defenses. Second, we ex-
ploit the more generic UAF and OOB write (see Section 7.2),
which is considered a weak exploitation primitive [41]. While
it typically requires complex primitive conversions for privi-
lege escalation, we present a stable and reliable exploit tech-
nique. Third, we exploit a constrained write primitive (see
Section 7.3) where no read primitive is available. Prior work
requires either complex primitive conversions [10, 18,24, 52]
or re-triggering the same [46] or another vulnerability [48,53],
all of which come with the risk of crashes. For this primitive,
we present a novel exploit technique for privilege escalation.

Setup. We implement Proof-Of-Concepts (POCs) for the
following exploit techniques to escalate privileges. We also
implement a helper kernel module that provides the initial
primitive. We evaluate them on two configurations, Ubuntu
24.04 with the generic kernel v6.8 (i.e., D1 and D3 enabled)
and the kernel v6.6 with the D2 enabled (i.e., all three en-
abled). We run Ubuntu on real hardware, i.e., Intel 13th Gen
i7-1360P and 32 GB of RAM. To show the reliability of our
techniques, we repeat their execution 1000 times. A run is
considered successful if we achieve privilege escalation. If
a run results in a system crash, we explicitly mark it as a
system crash. We repeat the 1000 executions for 10 reboots,
also demonstrating reliability between different reboots.

7.1 Unlink Primitive

In this case study, we discuss the problem statement of exploit-
ing the unlink primitive. We discuss that modern defenses
either prevent or significantly increase the difficulty of its
exploitation. We then show that with our exploit technique
(exploiting D1/2), we obtain an arbitrary physical read/write,
allowing us to escalate privileges.

[J64-byte memory slot [Jpipe_buffer [[JPipe page [JFreed slot

e

pipe_buffer2: } pipe_buffer2: }
I offset ‘s I >

8&

len q len offset g
IR =2 page _-

page =2 page =2

D\

Slab Page of kmalloc-cg-64

pipe_buffer0: } pipe_buffer0:
len I offset ps len I offset b
page =2 page _-

msg_msgseg

pipe_bufferi: } Invalid | pipe_bufferdi: } @ pipe_bufferi:
len offset > len offset Al len offset
J Free | J — ,{

msg_msgseg

Reclaimed msg_msgseg [/|One-time corruption [[JArb corruption [JArb page

@ /\/: arbitrary
» [B3SE
pipe_buffer2: |} pipe_buffer2: .
Write 1 len I offset pials len roffset :read(fdﬂ,&val)
rite to e L e __rwrite(fd2,val)

pipe_bufferi:
len [offset £

»\

page S PS5

~_urite(£d1,buf)
buffered
In-Cache |Pipe_buffer0: |} pipe_buffer0: dajtj;
R len I offset o len I offset ps
page - page _!

Figure 9: The exploit technique uses an IF and the known location of this slab page to obtain an arbitrary r/w. Initially, the
IF @ frees a memory slot containing pipe_bufferl. In-cache reclaiming of this slot @ as a msg_msgseg enables corrupting
pipe_bufferl to point to its physical page @. Writing to with £d1 @ corrupts pipe_buffer2, while ®/® allows arbitrary r/w.

To exploit the unlink primitive, a bad actor typically ex-
ploits a UAF to gain overwrite capability on an object with a
linked-list member. They then trigger the overwrite to corrupt
the linked-list member. When the corrupted object is unlinked,
the following 2 writes are performed instead of unlinking the
element: * (next + 8) = prev; *(prev) = next;. Var-
ious prior exploits convert this primitive to a more stable read
or write primitive, e.g., exploits [40,48,50,51, 58] do this by
corrupting objects, such as msg_msg [48], or seq_£file [50].
They typically trigger the unlink primitive multiple times to
get a prior read primitive for leaking heap pointers. However,
with the CONFIG_KMALLOC_CG defense, these pointer leaks
have become much more difficult because the used security-
critical objects are separated from vulnerable objects. There-
fore, bad actors would need more powerful read primitives,
which are typically not present at this stage and are difficult
to transform by the unlink primitive itself.

Reliable and Stable Exploit Technique. = We demon-
strate the exploit technique to convert the unlink primitive into
an arbitrary read/write by corrupting security-critical objects.
While this is a generic technique usable with objects such
as pipe_buffer [34], file [53,56], or seq_£file [50,58], we
detail it using the pipe_buffer as an example.

Figure 8 illustrates the high-level technique of exploiting
pipe_buffers, which we detailed in Appendix A. Here, we
require that the slab page’s address is leaked and that all
memory slots on this page are populated with pipe_buffers.
We showed in Section 5 how to achieve both. The pipe_-
buffer is the kernel object created when a user calls pipe2,
and acts as a physically-backed ring buffer. It provides oper-
ations to read data from and write data to this buffer, which
contains page, len, and offset as members. While pipe_-
buffer.page refers to its physically-backed page used as the
ring buffer, pipe_buffer.len/offset store the read and
write end within the physical page. We initially trigger the
unlink primitive @ to refer the target pipe_buffer0.page
to the physical page it resides on. Consequently, writing to

this physically-backed page via £d0 now corrupts pipe_-
buffer0/1 @. We corrupt pipe_buffer0 to enable arbi-
trary corruption of pipe_buffer0/1, while pipe_bufferl
corruption allows us to read @ from and write @ to the con-
trolled kernel address, i.e., pipe_bufferl.page. This re-
sults in the arbitrary physical read/write primitive.

We also provide an alternative technique, where we are
required to leak a slab page populated with pipe_buffers
and a page table, i.e., PUD. Here, we first use the unlink
primitive to overwrite pipe_buffer0.page with the leaked
page table. We then convert the single page-table overwrite
to a physical read/write primitive similar to SLUBStick [41].

Evaluation. We implement a helper, allowing us to trigger
an unlink primitive. We then implement two POCs that lever-
age this primitive to manipulate pipe_buffer for v6.8 and
a pipe_buffer/page table for v6.6, obtaining the arbitrary
read/write. Evaluating them results in 100 % reliability.

Takeaway 5

While modern kernel defenses largely mitigate the unlink-
ing primitive, our exploit technique re-enables it.

7.2 Use-After-Free & Out-Of-Bounds Write

A common technique is to convert an in-cache write primitive
due to a UAF or OOB bug into a Double-Free (DF) or an
Invalid-Free (IF), as they are typically more powerful. Prior
research [33,40,41] and real-world exploits [32,46-48,56,64,
65] have followed this approach. In particular, prior work [41]
has shown how to convert it to a DF or IF, which, in the
following, we transform to an arbitrary read/write primitive.

Reliable and Stable Exploit Technique. Figure 9 illus-
trates the exploit technique to convert an IF to privilege esca-
lation. Again, we require that the slab page address be leaked
and that all memory slots of that slab page be populated with
pipe_buffers. Since we know the memory slot layout of
the slab page and its base address, we leverage the IF to free

top of stack

user registers

top of stack

user registers

g
&5 ¥

ret_from_fork+Oxla

ki 1 st
erne reg{k? ers

g g
< <
S S
® C)

~

/_\/

/_\/

2
£
Z

S

5

]

top of stack

user registers

top of stack

user registers

ret_from_fork+Oxla

L

/_\/

ret_from_fork(fn, arg): __switch_to_asm(rdi, rsi):
(Dschedule_tail() push rbp-ri5
if (fn) ®mov rsp, threadsp(rdi)
fn(arg) mov threadsp(rsi), rsp
exit_to_user_mode() pop rilb5-rbp

fn: 0, arg: O fn: 0, arg: O

__switch_to_asm(rdi, rsi):

®mov threadsp(rsi), rsp

- fn: stk-pivot, arg: ropchain

ret_from_fork(fn, arg):
push rbp-rib schedule_tail ()
mov rsp, threadsp(rdi) if (fn)
©® fn(arg)
pop ri5-rbp exit_to_user_mode()

fn: stk-pivot, arg: ropchain

Figure 10: The exploit technique of register corruption for control-flow hijacking. A freshly cloned thread first executes ret_-
from_fork, which internally calls schedule_tail @ and saves the callee-saved registers to the kernel stack @. It then performs
a context switch ®, which takes a considerable time to continue. During this time, a bad actor uses the constrained write to
corrupt the kernel registers @. On register restoration ®, fn/arg are corrupted, resulting in kernel code execution ®.

a slot, marking pipe_buffer1 as free @. Subsequently, we
in-cache reclaim the invalid slot as a msg_msgseg object @
via the msgsnd syscall. This is possible because both objects
are allocated for the control-group allocator cache kmalloc-
cg-*. After the reclaiming, the msgsnd syscall overwrites
pipe_bufferl with attacker-controlled data, corrupting its
members to refer to the physical page it resides on ®. Writ-
ing the corrupted physically-backed page via £d1 now allows
arbitrary corruption and control of pipe_buffer1/2 @. Con-
trolling pipe_buffer2 enables to read @ from and write @
to the controlled kernel address, i.e., pipe_buffer2.page,
resulting in the arbitrary physical read/write.

Evaluation. We first implement a helper that allows us to
free a controlled address, mimicking the capabilities of a UAF
or OOB write to a free-able heap pointer. We then implement
two POC:s that leverage this free to manipulate pipe_buffer
for v6.8 and a pipe_buffer/page table for v6.6, obtaining
the arbitrary read/write. Evaluating them results in a 100 %
and 99.99 % reliability, respectively, with no crashes.

Takeaway 6

The UAF or OOB write is a generic exploitation primitive.
We showed a compelling and reliable exploit technique to
convert this primitive to an arbitrary physical r/w.

7.3 Constrained Write Primitive

Exploits that only have a constrained write with no read prim-
itive either perform complex primitive conversions [10, 18,24,
52] or re-trigger the same [46] or another vulnerability [48,53]
to escalate privileges, all of which have the risk of crashes.
Instead, we demonstrate 3 reliable and stable exploit tech-
niques: First, we perform an approach similar to the tech-
nique presented in Section 7.1. Second, we overwrite a leaked
cred/file directly. Third, we perform the following novel

exploit technique for privilege escalation, which builds on a
control-flow hijacking primitive from prior work [43].

Reliable and Stable Exploit Technique. Figure 10 illus-
trates the technique that hijacks the control flow, whereas
Appendix A details it. Its prerequisites are to leak the loca-
tion of the kernel stack and an object that contains the ROP
chain. The first is solved by exploiting the side-channel leak
of D3 (see Section 5.3). The second is solved by exploiting
the leakage of D1/2 (see Section 5.1 or 5.2) and storing the
ROP chain in all controlled objects (i.e., msg_msg.mtext)
from the leaked slab page. Other options are to leak the DPM
base address, store the ROP chain on user pages, and access
one via the DPM, i.e., ret2dir [26].

A thread (i.e., 70) initially calls clone, which creates a
new thread (i.e., T/) with a leaked stack location. On first T/
scheduling, ret_from_fork inherently calls schedule_-
tail @©. This schedule function initiates a context switch,
saving all T/ callee-saved registers to its stack @. It keeps
the T/ to sleep and switches the execution context to the next
thread @. At this stage, the entire state of the 7'/ is stored to
memory, while it will be restored at its next scheduling. Dur-
ing this time window, 70 leverages the constrained write @
to tamper with the stack, specifically where fn and arg are
located. Since the kernel does not include any randomiza-
tion at this stage, these locations can be determined with our
known kernel stack location. After restoring the corrupted
state of 71 ®, it returns to ret_from_fork+0x1la, where it
calls fn(arg) ® and redirects the control flow.

Evaluation. We implement a helper for a constrained write
primitive and a v6.8 POC for privilege escalation. The evalu-
ation results in 100 % reliability.

Takeaway 7

While the security benefit of D3 is low, it reliably allows a
novel control-flow hijacking technique.

8 Discussion and Related Work

This section discusses the security implications of our attacks,
the mitigation challenges, related work, and future work.

Security Implications. We have shown that while cer-
tain kernel defenses improve security in one dimension, they
can reduce it in another. For our 3 identified exploitable de-
fenses, we discussed that D1/2 substantially limits the ex-
ploitation of kernel memory-corruption bugs. In contrast, D3
provides little security benefit compared to other stack-based
defenses, e.g., CONFIG_STACKPROTECTOR or CONFIG_RAN-
DOMIZE_KSTACK_OFFSET_DEFAULT, in conjunction with the
low incidence of stack-based corruption flaws. Since D3 al-
lows the kernel stack to be leaked and the exploit technique in
Section 7.3, we argue that its security benefit doesn’t outweigh
its security drawback.

While we have shown the threat of our disclosure attacks,
the actual impact is more severe. Consider kernel attacks such
as the file UAF [56,63], which requires a kernel heap pointer
leak. With our location disclosure attacks, this heap pointer
leak can be done reliably without the risk of crashing the
system. The same is true for other exploit techniques.

Going one step further, in addition to the objects we leak
due to kernel defense leakages, our disclosure attacks can be
performed on other objects residing in 4 kB mappings. For
instance, objects allocated via vmalloc (see Section 2) can
be equally susceptible. If these objects also have appropriate
allocation and access primitives, bad actors can leak their
locations, making their exploitation more reliable. A notable
example of such objects is the bytecode for the extended
Berkeley Packet Filter (eBPF), where eBPF is widely used for
network packet filtering, profiling, and monitoring. A recent
exploit technique [3] demonstrated how a limited OOB write
could manipulate the eBPF bytecode and achieve privilege
escalation on the latest Ubuntu systems. A critical component
of this attack is heap shaping, where the bytecode must be
positioned at a specific offset to align with the OOB write
constraints. With our location disclosure attacks, this heap-
shaping step can be stabilized and verified, increasing the
reliability of this exploit technique. As a result, beyond the
security-critical kernel objects discussed in this paper, our
disclosure attacks can be used generically to leak the locations
of kernel objects allocated in memory regions mapped with
4 kB pages, further extending the scope of potential kernel
exploitation.

Mitigations. The key factors of our exploit techniques are
the leverage of location disclosure attacks, exploit primitives,
or TLB side channels. Eliminating any of these can partially
or fully prevent the techniques. First, the underlying problem
with disclosure attacks is prevented by never placing kernel
objects in memory slots mapped with 4 kB pages, thus elimi-
nating C1. For D1, one solution is to have a dedicated page
allocator cache for the physical pages of kernel modules. This
results in the module code never sharing the same 2 MB mem-

ory area as kernel objects. Therefore, the mapping of kernel
objects cannot be changed to 4 kB using D1, which prevents
leakage of their location. For D2/3, one solution is to map the
memory of these allocators with 2 MB. However, while these
two solutions seem appealing, they must be developed with
memory performance and memory reuse in mind, and require
significant engineering effort to redesign various allocators.

Second, if bad actors cannot obtain exploit primitives, they
cannot perform the exploit techniques. Security experts con-
tinue incorporating defenses that complicate converting UAF
or OOB vulnerabilities into write primitives. For instance,
combining the more-fined separation of heap objects —e.g.,
per call-site [9], which is under discussion, or user control-
lable [5], which will be included — with the cross-cache miti-
gation [45] complicates obtaining write primitives from UAF
vulnerabilities. However, this only partially prevents the ex-
ploit techniques, as UAF [53, 58], which provides a more
powerful write primitive, or OOB writes [3, 10, 37,46], still
cannot be mitigated.

Third, TLB side channels can be prevented either by soft-
ware or hardware. Software mitigations include designing
existing kernel memory management such that information
disclosure is limited or defenses like FLARE [2], preventing
the distinction between mapped and unmapped pages. An-
other mitigation is KPTI, which comes with significant per-
formance overhead. In hardware, starting with Sierra Forest
and Lunar Lake architectures, Intel CPUs will feature Linear
Address-Space Separation (LASS) [21], separating kernel and
user space addresses by the MSB of the virtual address. This
terminates illegal accesses before any paging-based timing
differences become visible and should prevent access-based
attacks like double-page fault or prefetch [15,20], though a
different distinguishing mechanism might exist and be used.

Prior Kernel Exploit Techniques. Recently, there has
been a burst of novel exploit techniques. Some also presented
exploits combined with side-channel leaks [1,30,38,39,41,52].
Prior work has used the prefetch side channel [15] to leak
the per-CPU entry area, either to hijack the control flow [52]
or to store attacker-controlled data [13]. Liu et al. [38, 39]
demonstrated a KASLR break even with KPTI enabled and a
vulnerability exploit combined with a kernel base leak via the
prefetch side channel. However, these works only leak coarse-
grained locations, e.g., the kernel base and per-CPU entry area,
while we presented location leakage of kernel heap objects,
page tables, and stacks. Lee et al. [30] and Maar et al. [41]
presented a side channel on the slab allocator to make heap
spraying and cross-cache attacks more reliable. In addition,
many other privilege escalation techniques have been pro-
posed. These include DirtyCred [33], which exchanges low-
privileged with high-privileged creds for privilege escala-
tion and Dirty PageTable [65], Dirty PageDirectory [47], and
SLUBStick [41], which exploits a write primitive on a page
table for an arbitrary read/write.

TLB-based Side-Channel Attacks. Prior work has used

TLB side channels to break aspects of KASLR. In 2013,
Hund et al. [20] used the timing difference of page faults
that depend on the TLB to detect the mapping layout of the
kernel and locate specific code executed by a syscall or driver.
Gruss et al. [15] demonstrated that the prefetch instruction
can be used to break code KASLR and find driver locations
on Intel, and Lipp et al. [36] later extended this work to AMD.
TLB reverse-engineering efforts have revealed the workings
of TLBs and demonstrated that they can also be attacked in
similar ways as caches [14,29,59,70]. They reverse-engineer
the dimensions and properties of the TLB structures on Intel
CPUs and their addressing functions and tagging functionality,
which can also be used to break KASLR.

Software-Only Location Leaks. While most prior work
has focused on leaking code or physical KASLR [15, 20,29,
38], Maar et al. [42] have shown how to leak kernel heap
pointers via a hardware-agnostic software side channel.

Future Work. We may extend to AMD and ARM, as the
TLB side channel is present [15, 36]. However, AMD has
the additional complication that the TLB caches unmapped
translations for prefetch, which would require a slightly
different treatment of the mapped/unmapped distinction.

9 Conclusion

Based on a systematic analysis of 127 defenses, we showed
that 3 of them create exploitable, fine-grained TLB contention
patterns. By combining strategic kernel allocator massaging
with these patterns, we presented location disclosure attacks
that leak the locations of security-critical kernel objects. We
demonstrated that our attacks enable reliable and stable ex-
ploitation of kernel vulnerabilities even on the latest Linux
kernel and across a wide range of Intel CPUs and kernel ver-
sions. With an attack runtime of 0.3 s to 17.8 s and almost no
false positives, we showed that our attack is highly practical.
We concluded that while defenses close the door to one attack
variant, e.g., vulnerability exploitation, they may open the
door to another, e.g., side-channel leakage.

Acknowledgements

This research was funded in whole or in part by the Austrian
Science Fund (FWF) [SFB project SPyCoDe 10.55776/F85],
the Austrian Research Promotion Agency (FFG) via the
SEIZE project (FFG grant number 888087), and the Euro-
pean Research Council (ERC project FSSec 101076409). Ad-
ditional funding was provided by a generous gift from Intel.
Any opinions, findings, conclusions, or recommendations ex-
pressed in this paper are those of the authors and do not
necessarily reflect the views of the funding parties.

10 Ethics Considerations

We have followed standard responsible disclosure practices
by disclosing our findings to the Linux kernel security team’s
mailing list before the submission, leaving more than 90 days
until the earliest date of publication.

Our experiments were conducted locally on our own ma-
chines without involvement of third-party participants or data.

11 Open Science

All distinct experiments/exploits discussed in the paper will
be published and made available as POCs for the artifact
evaluation’.

References

[1] EntryBleed: A Universal KASLR Bypass against KPTI
on Linux, 2023.

[2] Claudio Canella, Michael Schwarz, Martin Haubenwall-
ner, Martin Schwarzl, and Daniel Gruss. KASLR: Break
It, Fix It, Repeat. In AsiaCCS, 2020.

[3] Pumpkin Chang. How I use a novel approach to exploit
a limited OOB on Ubuntu at Pwn20wn Vancouver
2024, 2024. URL: https://ulf383.github.io/
slides/talks/2024_P0OC-How_I_use_a_novel_
approach_to_exploit_a_limited_00B_on_
Ubuntu_at_Pwn20wn_Vancouver_2024.pdf.

[4] Yueqi Chen, Zhenpeng Lin, and Xinyu Xing. A System-
atic Study of Elastic Objects in Kernel Exploitation. In
CCS, 2020.

[5] Kees Cook. mm/slab: Introduce kmem_-
buckets_create and family, 2024. URL:
https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=
b32801d1255beldab62ea8134df3ed9£3331fbal2.

[6] Jonathan Corbet. Solutions for direct-map fragmen-
tation, 5 2022. URL: https://lwn.net/Articles/
894557/.

[7] Jonathan Corbet. A slab allocator (removal) update, 5
2023. URL: https://lwn.net/Articles/932201/.

[8] Jonathan Corbet. The proper time to split struct page,
2023. URL: https://lwn.net/Articles/937839.

[9] Jonathan Corbet. Per-call-site slab caches for heap-
spraying protection, 2024. URL: https://lwn.net/
Articles/986174/.

Shttps://zenodo.org/records/14736361

https://u1f383.github.io/slides/talks/2024_POC-How_I_use_a_novel_approach_to_exploit_a_limited_OOB_on_Ubuntu_at_Pwn2Own_Vancouver_2024.pdf
https://u1f383.github.io/slides/talks/2024_POC-How_I_use_a_novel_approach_to_exploit_a_limited_OOB_on_Ubuntu_at_Pwn2Own_Vancouver_2024.pdf
https://u1f383.github.io/slides/talks/2024_POC-How_I_use_a_novel_approach_to_exploit_a_limited_OOB_on_Ubuntu_at_Pwn2Own_Vancouver_2024.pdf
https://u1f383.github.io/slides/talks/2024_POC-How_I_use_a_novel_approach_to_exploit_a_limited_OOB_on_Ubuntu_at_Pwn2Own_Vancouver_2024.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b32801d1255be1da62ea8134df3ed9f3331fba12
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b32801d1255be1da62ea8134df3ed9f3331fba12
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b32801d1255be1da62ea8134df3ed9f3331fba12
https://lwn.net/Articles/894557/
https://lwn.net/Articles/894557/
https://lwn.net/Articles/932201/
https://lwn.net/Articles/937839
https://lwn.net/Articles/986174/
https://lwn.net/Articles/986174/
https://zenodo.org/records/14736361

[10] Devil. CoRJail: From Null Byte Overflow To Docker
Escape Exploiting poll_list Objects In The Linux
Kernel, 2022. URL: https://syst3mfailure.io/
corjail/.

[11] Jake Edge. Kernel address space layout randomization,
2013. URL: https://lwn.net/Articles/569635/.

[12] Jake Edge. Control-flow integrity for the kernel, 2020.
URL: https://lwn.net/Articles/810077/.

[13] Google. kernelCTF rules, 2023. URL: https:
//google.github.io/security-research/
kernelctf/rules.html.

[14] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Translation Leak-aside Buffer: Defeating
Cache Side-channel Protections with TLB Attacks. In
USENIX Security, 2018.

[15] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. Prefetch Side-
Channel Attacks: Bypassing SMAP and Kernel ASLR.
In CCS, 2016.

[16] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Rowhammer.js: A Remote Software-Induced Fault At-
tack in JavaScript. In DIMVA, 2016.

[17] Ziyi Guo, Dang K Le, Zhenpeng Lin, Kyle Zeng, Ruoyu
Wang, Tiffany Bao, Yan Shoshitaishvili, Adam Doupé,
and Xinyu Xing. Take a Step Further: Understanding
Page Spray in Linux Kernel Exploitation. In USENIX
Security, 2024.

[18] hOmbre. Escaping the Google kCTF Container
with a Data-Only Exploit, 2023. URL: https://
hOmbre.github.io/kCTF_Data_Only_Exploit/#.

[19] Hongli Han, Rong Jian, Xiaodong Wang, and Peng
Zhou. Typhoon Mangkhut: One-click Remote Universal
Root Formed with Two Vulnerabilities, 2021. URL.:
https://i.blackhat.com/USA21/Wednesday-
Handouts/us-21-Typhoon-Mangkhut-0One-
Click-Remote-Universal-Root-Formed-With-
Two-Vulnerabilities.pdf.

[20] Ralf Hund, Carsten Willems, and Thorsten Holz. Practi-
cal Timing Side Channel Attacks against Kernel Space
ASLR. In S&P, 2013.

[21] Intel. Intel Architecture Instruction Set Extensions Pro-
gramming Reference, 2024.

[22] Jann Horn. Mitigations are attack
surface, too, 2020. URL: https://
googleprojectzero.blogspot.com/2020/02/
mitigations-are-attack-surface-too.html.

[23] Jann Horn. How a simple Linux kernel
memory corruption bug can lead to complete
system compromise, 2021. URL: https:
//googleprojectzero.blogspot.com/2021/
10/how-simple-linux-kernel-memory.html.

[24] javierprtd. No CVE for this bug which has never
been in the official kernel, 2023. URL: https:
//soez.github.io/posts/no-cve-for-this.-It-
has-never-been-in-the-official-kernel/.

[25] Xingyu Jin and Richard Neal. The Art of Exploiting
UAF by Ret2bpf in Android Kernel, 2021. URL:
https://i.blackhat.com/EU-21/Wednesday/
EU-21-Jin-The-Art-of-Exploiting-UAF-by-
Ret2bpf-in-Android-Kernel-wp.pdf.

[26] Vasileios P Kemerlis, Michalis Polychronakis, and An-
gelos D Keromytis. ret2dir: Rethinking kernel isolation.
In USENIX Security, 2014.

[27] Imran Khan. Linux SLUB Allocator Inter-
nals and Debugging, 2022. URL: https:
//blogs.oracle.com/linux/post/linux-slub-
allocator-internals-and-debugging-1.

[28] Kenneth C Knowlton. A fast storage allocator. Commu-
nications of the ACM, 1965.

[29] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. TagBleed: Breaking KASLR on the
Isolated Kernel Address Space Using Tagged TLBs. In
EuroS&P, 2020.

[30] Yoochan Lee, Jinhan Kwak, Junesoo Kang, Yuseok Jeon,
and Byoungyoung Lee. PSPRAY: Timing Side-Channel
based Linux Kernel Heap Exploitation Technique. In
USENIX Security, 2023.

[31] Zhenpeng Lin. How AUTOSLAB Changes
the Memory Unsafety Game, 2021. URL:
https://grsecurity.net/how_autoslab_
changes_the_memory_unsafety_game.

[32] Zhenpeng Lin, Yueqi Chen, Xinyu Xing, , and Kang
Li. Your Trash Kernel Bug, My Precious 0-day,
2021. URL: https://www.blackhat.com/eu-21/
briefings/schedule/#your-trash-kernel-
bug-my-precious--day-24849.

[33] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. DirtyCred:
Escalating Privilege in Linux Kernel. In CCS, 2022.

[34] Zhenpeng Lin, Xinyu Xing, Zhaofeng Chen, and Kang
Li. Bad io_uring: A New Era of Rooting for Android,
2023. URL: https://i.blackhat.com/BH-US-23/
Presentations/US-23-Lin-bad_io_uring.pdf.

https://syst3mfailure.io/corjail/
https://syst3mfailure.io/corjail/
https://lwn.net/Articles/569635/
https://lwn.net/Articles/810077/
https://google.github.io/security-research/kernelctf/rules.html
https://google.github.io/security-research/kernelctf/rules.html
https://google.github.io/security-research/kernelctf/rules.html
https://h0mbre.github.io/kCTF_Data_Only_Exploit/#
https://h0mbre.github.io/kCTF_Data_Only_Exploit/#
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Typhoon-Mangkhut-One-Click-Remote-Universal-Root-Formed-With-Two-Vulnerabilities.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Typhoon-Mangkhut-One-Click-Remote-Universal-Root-Formed-With-Two-Vulnerabilities.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Typhoon-Mangkhut-One-Click-Remote-Universal-Root-Formed-With-Two-Vulnerabilities.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-Typhoon-Mangkhut-One-Click-Remote-Universal-Root-Formed-With-Two-Vulnerabilities.pdf
https://googleprojectzero.blogspot.com/2020/02/mitigations-are-attack-surface-too.html
https://googleprojectzero.blogspot.com/2020/02/mitigations-are-attack-surface-too.html
https://googleprojectzero.blogspot.com/2020/02/mitigations-are-attack-surface-too.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://soez.github.io/posts/no-cve-for-this.-It-has-never-been-in-the-official-kernel/
https://soez.github.io/posts/no-cve-for-this.-It-has-never-been-in-the-official-kernel/
https://soez.github.io/posts/no-cve-for-this.-It-has-never-been-in-the-official-kernel/
https://i.blackhat.com/EU-21/Wednesday/EU-21-Jin-The-Art-of-Exploiting-UAF-by-Ret2bpf-in-Android-Kernel-wp.pdf
https://i.blackhat.com/EU-21/Wednesday/EU-21-Jin-The-Art-of-Exploiting-UAF-by-Ret2bpf-in-Android-Kernel-wp.pdf
https://i.blackhat.com/EU-21/Wednesday/EU-21-Jin-The-Art-of-Exploiting-UAF-by-Ret2bpf-in-Android-Kernel-wp.pdf
https://blogs.oracle.com/linux/post/linux-slub-allocator-internals-and-debugging-1
https://blogs.oracle.com/linux/post/linux-slub-allocator-internals-and-debugging-1
https://blogs.oracle.com/linux/post/linux-slub-allocator-internals-and-debugging-1
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://grsecurity.net/how_autoslab_changes_the_memory_unsafety_game
https://www.blackhat.com/eu-21/briefings/schedule/#your-trash-kernel-bug-my-precious--day-24849
https://www.blackhat.com/eu-21/briefings/schedule/#your-trash-kernel-bug-my-precious--day-24849
https://www.blackhat.com/eu-21/briefings/schedule/#your-trash-kernel-bug-my-precious--day-24849
https://i.blackhat.com/BH-US-23/Presentations/US-23-Lin-bad_io_uring.pdf
https://i.blackhat.com/BH-US-23/Presentations/US-23-Lin-bad_io_uring.pdf

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Linux Kernel Driver DataBase. CONFIG_VMAP_-
STACK: Use a virtually-mapped stack, 2024. URL:
https://cateee.net/1lkddb/web-1kddb/VMAP_
STACK.html.

Moritz Lipp, Daniel Gruss, and Michael Schwarz. AMD
Prefetch Attacks through Power and Time. In USENIX
Security, 2022.

William Liu. CVE-2022-0185 - Winning a
$31337 Bounty after Pwning Ubuntu and Escap-
ing Google’s KCTF Containers, 2022. URL:
https://www.willsroot.i0/2022/01/cve-2022-
0185.html.

William Liu. EntryBleed: Breaking KASLR under KPTI
with Prefetch (CVE-2022-4543), 2022. URL: https:
//www.willsroot.io/2022/12/entrybleed.html.

William Liu. corCTF 2023 sysruption - Exploit-
ing Sysret on Linux in 2023, 2023. URL: https:
//www.willsroot.io/2023/08/sysruption.html.

Lukas Maar, Florian Draschbacher, Lukas Lamster, and
Stefan Mangard. Defects-in-Depth: Analyzing the Inte-
gration of Effective Defenses against One-Day Exploits
in Android Kernels. In USENIX Security, 2024.

Lukas Maar, Stefan Gast, Martin Unterguggenberger,
Mathias Oberhuber, and Stefan Mangard. SLUBStick:
Arbitrary Memory Writes through Practical Software
Cross-Cache Attacks within the Linux Kernel. In
USENIX Security, 2024.

Lukas Maar, Jonas Juffinger, Thomas Steinbauer, Daniel
Gruss, and Stefan Mangard. KernelSnitch: Side-
Channel Attacks on Kernel Data Structures. In NDSS,
2025.

Lukas Maar, Pascal Nasahl, and Stefan Mangard. Be-
yond the Edges of Kernel Control-Flow Hijacking Pro-
tection with HEK-CFI. In AsiaCCS, 2024.

Lukas Maar, Martin Schwarzl, Fabian Rauscher, Daniel
Gruss, and Stefan Mangard. DOPE: DOmain Protection
Enforcement with PKS. In ACSAC, 2023.

Ingo Molnar. Re: [RFC PATCH 00/14] Pre-
vent cross-cache attacks in the SLUB alloca-
tor, 2023. URL: https://lore.kernel.org/
all/CAHKBlwLetbLZj hg1UVhA1QwZHo226BRL=
Khm962JEfhOF+CVbQ@mail.gmail.com/T/.

Andy Nguyen. CVE-2021-22555: Turning
x00x00 into 10000$, 2021. URL: https:
//google.github.io/security-research/pocs/
linux/cve-2021-22555/writeup.html.

[47]

(48]

[49]

(50]

(51]

[52]

[53]

[54]

[55]

[56]

[57]

Lau Notselwyn. Flipping Pages: An analysis of a new
Linux vulnerability in nf_tables and hardened exploita-
tion techniques, 2024. URL: https://pwning.tech/
nftables/.

Alexander Popov. Four Bytes of Power: Ex-
ploiting CVE-2021-26708 in the Linux kernel,
2021. URL: https://al13xp0pOv.github.io/2021/
02/09/CVE-2021-26708.html.

James Randall. pipe_buffer arbitrary read write,
2022. URL: https://www.interruptlabs.co.uk/
articles/pipe-buffer.

Eloi Sanfelix. A bug collision tale, 2020. URL:
https://labs.bluefrostsecurity.de/files/
OffensiveCon2020_bug_collision_tale.pdf.

Blue Frost Security. Exploiting CVE-2020-0041 -
Part 2: Escalating to root, 2020. URL: https://
labs.bluefrostsecurity.de/blog/2020/04/08/
cve-2020-0041-part-2-escalating-to-root/.

Seth Jenkins. Exploiting CVE-2022-42703 -
Bringing back the stack attack, 2022. URL:
https://googleprojectzero.blogspot.com/
2022/12/exploiting-CVE-2022-42703-
bringing-back-the-stack-attack.html.

Seth Jenkins. Analyzing a Modern In-the-
wild Android Exploit, 2023. URL: https:
//googleprojectzero.blogspot.com/2023/
09/analyzing-modern-in-wild-android-
exploit.html.

Seth Jenkins. Driving forward in An-
droid drivers, 2024. URL: https://
googleprojectzero.blogspot.com/2024/06/
driving-forward-in-android-drivers.html.

Maddie Stone. Bad Binder: Android In-
The-Wild Exploit, 2019. URL: https:
//googleprojectzero.blogspot.com/2019/11/
bad-binder-android-in-wild-exploit.html.

Maddie Stone. A Very Powerful Clipboard: Analysis
of a Samsung in-the-wild exploit chain, 2022. URL:
https://googleprojectzero.blogspot.com/
2022/11/a-very-powerful-clipboard-
samsung-in-the-wild-exploit-chain.html.

Maddie Stone. The Ups and Downs of
0-days: A Year in Review of 0-days Ex-
ploited In-the-Wild in 2022, 2023. URL:

https://security.googleblog.com/2023/07/
the-ups-and-downs-of-0-days-year-in.html.

https://cateee.net/lkddb/web-lkddb/VMAP_STACK.html
https://cateee.net/lkddb/web-lkddb/VMAP_STACK.html
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://www.willsroot.io/2022/12/entrybleed.html
https://www.willsroot.io/2022/12/entrybleed.html
https://www.willsroot.io/2023/08/sysruption.html
https://www.willsroot.io/2023/08/sysruption.html
https://lore.kernel.org/all/CAHKB1wLetbLZjhg1UVhA1QwZHo226BRL=Khm962JEfh0F+CVbQ@mail.gmail.com/T/
https://lore.kernel.org/all/CAHKB1wLetbLZjhg1UVhA1QwZHo226BRL=Khm962JEfh0F+CVbQ@mail.gmail.com/T/
https://lore.kernel.org/all/CAHKB1wLetbLZjhg1UVhA1QwZHo226BRL=Khm962JEfh0F+CVbQ@mail.gmail.com/T/
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://pwning.tech/nftables/
https://pwning.tech/nftables/
https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html
https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html
https://www.interruptlabs.co.uk/articles/pipe-buffer
https://www.interruptlabs.co.uk/articles/pipe-buffer
https://labs.bluefrostsecurity.de/files/OffensiveCon2020_bug_collision_tale.pdf
https://labs.bluefrostsecurity.de/files/OffensiveCon2020_bug_collision_tale.pdf
https://labs.bluefrostsecurity.de/blog/2020/04/08/cve-2020-0041-part-2-escalating-to-root/
https://labs.bluefrostsecurity.de/blog/2020/04/08/cve-2020-0041-part-2-escalating-to-root/
https://labs.bluefrostsecurity.de/blog/2020/04/08/cve-2020-0041-part-2-escalating-to-root/
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://googleprojectzero.blogspot.com/2022/12/exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html
https://googleprojectzero.blogspot.com/2023/09/analyzing-modern-in-wild-android-exploit.html
https://googleprojectzero.blogspot.com/2023/09/analyzing-modern-in-wild-android-exploit.html
https://googleprojectzero.blogspot.com/2023/09/analyzing-modern-in-wild-android-exploit.html
https://googleprojectzero.blogspot.com/2023/09/analyzing-modern-in-wild-android-exploit.html
https://googleprojectzero.blogspot.com/2024/06/driving-forward-in-android-drivers.html
https://googleprojectzero.blogspot.com/2024/06/driving-forward-in-android-drivers.html
https://googleprojectzero.blogspot.com/2024/06/driving-forward-in-android-drivers.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2022/11/a-very-powerful-clipboard-samsung-in-the-wild-exploit-chain.html
https://googleprojectzero.blogspot.com/2022/11/a-very-powerful-clipboard-samsung-in-the-wild-exploit-chain.html
https://googleprojectzero.blogspot.com/2022/11/a-very-powerful-clipboard-samsung-in-the-wild-exploit-chain.html
https://security.googleblog.com/2023/07/the-ups-and-downs-of-0-days-year-in.html
https://security.googleblog.com/2023/07/the-ups-and-downs-of-0-days-year-in.html

[58] Zi Fan Tan, Gulshan Singh, and Eugene Rodi-
onov. Attacking Android Binder: Analysis and
Exploitation of CVE-2023-20938, 2024. URL:
https://androidoffsec.withgoogle.com/
posts/attacking-android-binder-analysis-
and-exploitation-of-cve-2023-20938/
#unlink-primitive

[59] Andrei Tatar, Dani€l Trujillo, Cristiano Giuffrida, and
Herbert Bos. TLB;DR: Enhancing TLB-based attacks
with TLB desynchronized reverse engineering. In
USENIX Security, 2022.

[60] The Linux Kernel. Kernel Self-Protection, 2024.
URL: https://docs.kernel.org/security/self-
protection.html.

[61] Eduardo Vela. Making Linux Kernel Ex-
ploit Cooking Harder, 2022. URL: https:
//security.googleblog.com/2022/08/making-
linux-kernel-exploit-cooking.html.

[62] Ruipeng Wang, Kaixiang Chen, Chao Zhang, Zulie Pan,
Qianyu Li, Siliang Qin, Shenglin Xu, Min Zhang, and
Yang Li. AlphaEXP: An Expert System for Identifying
Security-Sensitive Kernel Objects. In USENIX Security,
2023.

[63] Yong Wang. Ret2page: The Art of Exploiting Use-Afer-
Free Vulnerabilities in the Dedicated Cache, 2022. URL:
https://i.blackhat.com/USA-22/Thursday/US-
22-WANG-Ret2page-The-Art-of-Exploiting-
Use-After-Free-Vulnerabilities-in-the-
Dedicated-Cache.pdf.

[64] Le Wu and Qi Zhang. Game of Cross Cache: Let’s
win it in a more effective way!, 2024. URL: https:
//i.blackhat.com/Asia-24/Presentations/
Asia-24-Wu-Game-of-Cross-Cache.pdf.

[65] Nicolas Wu. Dirty Pagetable: A Novel Exploitation
Technique To Rule Linux Kernel, 2023. URL:
https://yanglingxil993.github.io/dirty_
pagetable/dirty_pagetable.html.

[66] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou. KE-
PLER: Facilitating Control-flow Hijacking Primitive
Evaluation for Linux Kernel Vulnerabilities. In USENIX
Security, 2019.

[67] Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang, Tianyi
Xie, Yuanyuan Zhang, and Dawu Gu. From collision to
exploitation: Unleashing use-after-free vulnerabilities
in linux kernel. In CCS, 2015.

[68] Ptr Yudai. Understanding Dirty Pagetable -
mOleCon Finals 2023 CTF Writeup, 2023. URL:
https://ptr-yudai.hatenablog.com/entry/
2023/12/08/093606.

Table 2: Evaluation results on various CPUs and kernel ver-
sions of the D3 exploit to leak the location of kernel stacks.

CPU Model Architecture Kernel SR T CR
i7-8650U Kaby Lake (8th Gen) v6.8 100 0.2 100
19-9900K Coffee Lake (9th Gen) v5.15 97 1.4 100
i7-1260P Alder Lake (12th Gen) v6.5 92 03 99
v6.8 97 03 100
i7-1270P Alder Lake (12th Gen) v5.15 99 04 100
i7-1360P Raptor Lake (13th Gen) v6.8 98 0.3 100

Ultra7 155H Meteor Lake (14th Gen) v6.8 9% 02 97

[69] Kyle Zeng, Zhenpeng Lin, Kangjie Lu, Xinyu Xing,
Ruoyu Wang, Adam Doupé, Yan Shoshitaishvili, and
Tiffany Bao. RetSpill: Igniting User-Controlled Data to
Burn Away Linux Kernel Protections. In CCS, 2023.

[70] Weixi Zhu. Exploring superpage promotion policies for
efficient address translation. Master’s thesis, 2019.

[71] Xiaochen Zou and Zhiyun Qian. Exploit esp6 modules
in Linux kernel, 2022. URL: https://etenal.me/
archives/1825.

A Detailed Exploitation

This section details the reliable and stable exploitation.

Unlink Primitive. As shown in Figure 11, the pipe_-
buffer stores the physical-backed page via a page reference
of the vmemmap region. Before corruption, the pipe_buffer
refers to the pipe_page @ that stores the user data. On
triggering the unlink primitive @, *(pipe_buffer.page)
is overwritten with slot_page, while *(slot_page+8) is
overwritten with pipe_buffer.page. The first overwrite is
willing by the bad actor to refer the pipe_buffer with the
physical page it resides on ®, while the second overwrite is
an unwilling artifact of the unlink primitive. However, un-
willing writing does not affect any functionality as it corrupts
currently unused data [8]. As a result of this unlink primi-
tive triggering, writing to the pipe via its file descriptor now
corrupts this pipe_buffer and all adjacent ones.

In addition to the leaked slab page, we need to leak
anon_pipe_buf_ops (stored in ops) and vmemmap [slot_-
pfn/pipe_pfn]. Obtaining anon_pipe_buf_ops is
straightforward, as we can use the TLB side channel to
leak the kernel base address and increment the ANON_-
PIPE_BUF_OPS_OFFSET, obtained by the kernel binary.
Obtaining vmemmap [pfn] works as follows: First, we leak
vmemmap_base via the TLB side channel. Second, since
the vmemmap is indexed by the physical frame number,
we can reconstruct the virtual address with the leaked
vmemmap_base and the physical address of slot_page.

Constrained Write Primitive. Since a gadget that per-
forms stack pivoting within one instruction sequence is hard

https://androidoffsec.withgoogle.com/posts/attacking-android-binder-analysis-and-exploitation-of-cve-2023-20938/#unlink-primitive
https://androidoffsec.withgoogle.com/posts/attacking-android-binder-analysis-and-exploitation-of-cve-2023-20938/#unlink-primitive
https://androidoffsec.withgoogle.com/posts/attacking-android-binder-analysis-and-exploitation-of-cve-2023-20938/#unlink-primitive
https://androidoffsec.withgoogle.com/posts/attacking-android-binder-analysis-and-exploitation-of-cve-2023-20938/#unlink-primitive
https://docs.kernel.org/security/self-protection.html
https://docs.kernel.org/security/self-protection.html
https://security.googleblog.com/2022/08/making-linux-kernel-exploit-cooking.html
https://security.googleblog.com/2022/08/making-linux-kernel-exploit-cooking.html
https://security.googleblog.com/2022/08/making-linux-kernel-exploit-cooking.html
https://i.blackhat.com/USA-22/Thursday/US-22-WANG-Ret2page-The-Art-of-Exploiting-Use-After-Free-Vulnerabilities-in-the-Dedicated-Cache.pdf
https://i.blackhat.com/USA-22/Thursday/US-22-WANG-Ret2page-The-Art-of-Exploiting-Use-After-Free-Vulnerabilities-in-the-Dedicated-Cache.pdf
https://i.blackhat.com/USA-22/Thursday/US-22-WANG-Ret2page-The-Art-of-Exploiting-Use-After-Free-Vulnerabilities-in-the-Dedicated-Cache.pdf
https://i.blackhat.com/USA-22/Thursday/US-22-WANG-Ret2page-The-Art-of-Exploiting-Use-After-Free-Vulnerabilities-in-the-Dedicated-Cache.pdf
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Wu-Game-of-Cross-Cache.pdf
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Wu-Game-of-Cross-Cache.pdf
https://i.blackhat.com/Asia-24/Presentations/Asia-24-Wu-Game-of-Cross-Cache.pdf
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html
https://ptr-yudai.hatenablog.com/entry/2023/12/08/093606
https://ptr-yudai.hatenablog.com/entry/2023/12/08/093606
https://etenal.me/archives/1825
https://etenal.me/archives/1825

Table 3: Allocation and access primitives for allocating and accessing kernel objects.

Kernel Objects Allocation Primitive Access Primitive
msg_msg int qid = msgget(IPC_PRIVATE, 0666 | IPC_CREAT); struct msg message = {.mtype = MSG_TYPE};
struct msg message = {.mtype = MSG_TYPE}; msgrecv(qid, &message, MSG_SIZE, 0, MSG_COPY|IPC_NOWAIT);
msgsnd(qid, &message, MSG_SIZE, 0);
cred unshare (CLONE_NEWUSER) ; getuid();
open("/proc/$PID/ns/user");
file int fd = open("/path/to/file"); struct stat buf;
fstat (fd, &buf);
seq_file int fd = open("/proc/self/stat"); lseek(fd, 0, SEEK_SET);

pipe_buffer int pipel2];

pipe2(pipe, O_NONBLOCK);
fentl(pipe[0], F_SETPIPE_SZ, 8192);
char buffer[0x1000] = {0};
write(pipe[1], buffer, 8);

PUD, PMD, and PT void *addr = mmap(ADDR, PAGE_SIZE, O,

MAP_PRIVATE | MAP_ANON | MAP_FIXED, -1, 0);

Kernel stack clone();

read(pipe[0], (void *)0Oxdeadbeef000, 8);

alternating between:
mprotect (addr, PROT_WRITE);
mprotect (addr, PROT_READ) ;
syscall(-1);

pipe_buffer: // *(prev) = next @

private *(page) = slot_page
| flag // *(next+8) = prev
6os x(slot_page+8) = page
len | offset
page

5 64-byt memory slot

DMemory slot [Jpipe_buffer
[Elvmemmap page [7]Corrupted 8 bytes
- » Corrupted reference

: Svmemmep-pipe—piat
&vmemmap [slot_pfn]

- »Reference

Figure 11: The detailed exploit technique of using the unlink
primitive to allow arbitrary overwriting of a page containing
pipe_buffer.

to find in the Linux kernel [66, 69], we leverage user space
data already present on the kernel stack as a first stage of the
ROP attack. As depicted in Figure 12, we prepare user regis-
ters, which are then spilled to the kernel stack of 70 by the
syscall, i.e., clone. These user registers contain the location
of ROP gadgets to perform stack pivoting within multiple
instruction sequences and will be copied to the kernel stack
of T1 during cloning. When 71 is put to sleep by the context
switch, 70 overwrites £n with the location of a gadget that
increases rsp to reference the stack pivoting gadgets, i.e.,
mem[add rsp, 0x40; ret;] @. 70 also overwrites arg
with the ROP chain location, i.e., msg_msg.mtext. When the
control flow is redirected to the stack pivoting gadgets @, they
overwrite the stack pointer with msg_msg.mtext and initi-
ate the ROP chain to perform privilege escalation ®. While
we performed an ROP attack in this example, JOP would
be another possibility. Zeng et al. [69] have demonstrated
a systematic analysis of the use of user registers to initiate
control-flow hijacking attacks.

top of stack msq_msgq object

user registers: header
Stack Pivoting Gadgets .mtext:
mem[mov rsp, arg; ret;] 9\
[ROP Chain
\4
Tet_from_fork+0xla ! \
kernel registers: ! \‘
/ rsp
fn—»|mem[add rsp, 0x40; ret;]|@) \.\
arg —»|msg_msg.mtext \-‘ Privilege
Escalation

S

Figure 12: Technique to turn a write primitive into privilege
escalation. First, a bad actor tampers @ with of fn and arg
located on the stack. The call to £n adjusts the rsp to point to
stack pivoting gadgets @ passed to the kernel via user regis-
ters. Pivoting then overwrites the rsp with msg_msg.mtext
where the ROP chain for privilege escalation is located ©.

B Page-Table Contention Patterns

Figure 13 illustrates the workflow of leaking the location of
the page table ©. We first allocate three pages with fixed
virtual addresses, whose address translation is as follows:
The addr0 uses page tables @—O—O— to refer to its
page, the addr1 uses page tables @—®—®—@ to refer to
its page, and the addr2 uses page tables @—0—0—@ to
refer to its page. Executing the mprotect syscall performs
a software page-table walk and loads the physical addresses
(accessible via the DPM) of the page tables into the TLB,
while also accessing other kernel objects, e.g., vma_struct.
Similar to the approach in Section 5.1, we call mprotect with
different addresses to create common and differential patterns.
From these patterns, we deduce the physical address of the
page table ®. In particular, calling mprotect with addr0 ©
creates a common pattern with addrl @, as both use page
table @, resulting in a pattern of @, @, and ®. Conversely,
calling mprotect with addr2 @ creates a differential pat-

DPM CR3 PGD PUD PMD PT Page

k/»o fg pudel /8 pmdel /@ ptel

@ TLB pude? pmde2

pgde

flags = MAP_PRIVATE | MAP_ANON | MAP_FIXED;

// addr0 with mapping 1->2->3->4

@TLB addr0 = mmap(0x800000000, 0x1000, 0, flags, -1, 0);
// addrl with mapping 1->2->3->5

addrl = mmap(0x800200000, 0x1000, 0, flags, -1, 0);
// addr2 with mapping 1->2->6->7

addr2 = mmap(0x840000000, 0x1000, 0, flags, -1, 0); @ /@ /
pmded pted

// load 1/2/3/4 to TLB
QTLB mprotect (addr0, PROT_WRITE); (D)
// load 1/2/3/5 to TLB
® mprotect(addrl, PROT_WRITE) ;2
// load 1/2/6/7 to TLB
mprotect(addr2, PROT_WRITE) ;@

O €9 ©®

N

pte2

locations of pages and page tables

Figure 13: By strategically allocating user memory, we get an address translation for addr0 with @/@/®/®, addr1 with
0/0/0/0, and addr2 with @/@/®/@. Executing mprotect performs a software page-table walk (i.e., @, @, and ®) that creates
contention patterns of the page table’s physical addresses, allowing to leak the address of PT.

tern to addrO of @ and @®. Eliminating this pattern from the
common one results in the correct derived page table ©.

	Introduction
	Background
	High-Level Overview
	Side-Channel Analysis of Kernel Defenses
	Requirements
	Classification of Kernel Defenses

	Exploitation of Kernel Defenses
	D1: Strict Kernel Memory Permissions
	D2: Virtual Memory for Kernel Heap
	D3: Virtual Memory for Kernel Stack

	Location Disclosure Attacks through Defense Side-Channel Leakages
	Distinguish Different Memory Mappings
	Evaluation of Disclosure Attacks

	Reliable and Stable Kernel Exploitation
	Unlink Primitive
	Use-After-Free & Out-Of-Bounds Write
	Constrained Write Primitive

	Discussion and Related Work
	Conclusion
	Ethics Considerations
	Open Science
	Detailed Exploitation
	Page-Table Contention Patterns

