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Abstract

Denial-of-service (DoS) attacks present significant challenges

for Tor onion services, where strict anonymity requirements

render conventional mitigation strategies inapplicable. In re-

sponse, the Tor community has recently revived the client

puzzle idea in an official update to address real-world DoS at-

tacks, leading to its adoption by several major onion services.

In this paper, we uncover a critical vulnerability in the cur-

rent puzzle system in Tor through a novel family of attacks,

dubbed ONIONFLATION. The proposed attacks artificially

inflate the required puzzle difficulty for all clients without

causing noticeable congestion at the targeted service, render-

ing any existing onion service largely unusable at an attack

cost of a couple of dollars per hour. Our ethical evaluation on

the live Tor network demonstrates the impact of these attacks,

which we have reported to the Tor Project and received ac-

knowledgment. Our analysis reveals an undesirable trade-off

in the client puzzle mechanism, which is the root cause of

the discovered vulnerability, that forces the Tor onion system

to choose between inflation resistance and congestion resis-

tance, but not both. We offer practical guidance for Tor onion

services aimed at balancing the mitigation of these attacks.

1 Introduction

The Tor network [16] stands as the leading tool for anony-

mous communication, ensuring the anonymity of both senders

and receivers through its Tor onion services [45] (formerly

known as hidden services). They are a vital component of

the Tor network, playing a crucial role for whistle-blowers,

journalists, and activists who rely on platforms like Secure-

Drop [41], GlobaLeaks [23], and Proton Mail [36] for secure

and confidential information sharing.

While substantial research has focused on breaking the

anonymity and confidentiality of Tor onion services, there

has been a notable lack of attention to understanding and

enhancing the availability of these services. This gap in

research is critical, as several real-world incidents have

highlighted the importance of guaranteeing the availability

of Tor onion services, with documented denial-of-service

(DoS) attacks repeatedly targeting these services over the

years [7, 8, 13, 28, 29, 39]. Consequently, these attacks have

prompted the Tor community to call for more robust de-

fenses [13, 28, 58]. Without reliable availability, users are

forced to resort to less secure communication methods,

thereby compromising their anonymity and confidentiality.

Unfortunately, the unique system design of Tor onion ser-

vices makes defending against DoS attacks particularly chal-

lenging. For example, in Tor onion services, the sender is

anonymous, making it difficult to attribute the source of an

attack and to rate-limit or block potentially malicious con-

nection requests. Also, replicating services in a scalable man-

ner is challenging for Tor onion services due to the receiver

anonymity; see more discussion in Section 2.3.

Given the persistent risks of DoS attacks on Tor onion

services and the technical difficulties in applying traditional

DoS defenses, the Tor community officially recommended

the adoption of client puzzles in August 2023 to mitigate spe-

cific types of DoS attacks, including introduction-flooding

attacks [58]. The resurgence of this 2.5-decade-old defense

mechanism — originally proposed by Juels and Brainard [27]

in 1999 — is a response to this pressing need. This revival

is met with both excitement, as client puzzles have yet to

see large-scale adoption in commodity systems, and concern,

given that their effectiveness at scale remains unproven. Nev-

ertheless, the official proposal has been well-received by the

Tor community, with several major Tor onion services includ-

ing the CIA [10] and instances of SecureDrop [40] already

implementing client puzzles to protect their services.

In this paper, however, we show that a critical denial-of-

service vulnerability remains in the current client puzzle so-

lution of Tor onion services. We demonstrate on the live Tor

network that a malicious client with minimal computing re-

sources (e.g., a handful of 4-core laptops) can significantly

increase the puzzle difficulty for all clients of a target service,

effectively preventing the majority of legitimate clients from

connecting to the service even after 60 seconds (where the



median connection waiting time without attacks is about 10

seconds). The core idea of our attack, which we dub ONION-

FLATION, is to inflate the puzzle difficulty suggested to all

clients, thereby increasing the puzzle solving time until it be-

comes prohibitively expensive while minimizing the volume

of attack traffic and required computing resources. The cost of

successfully executing and maintaining the ONIONFLATION

attack is only about a couple of dollars per hour, which is

more than two orders of magnitude cheaper than the cost of

the traditional introduction-flooding attack [8, 13, 28, 29]. We

have reported the identified vulnerability to the Tor develop-

ers, and they have acknowledged the issue (stating they are

“taking it very seriously”) and are working on a fix.

As we design the ONIONFLATION attack and its miti-

gation, we identify several critical limitations due to the

strong anonymity properties of the Tor onion services (such

as the lack of timely, accurate, and individualized feedback

to clients) that render large-scale operations of client puzzles

challenging. Considering these limitations, we formulate the

client puzzle operation model for Tor onion services and ana-

lyze its effectiveness. Consequently, we find that the inherent

limitations lead to a fundamental trade-off in the design of

client puzzles for Tor onion services. That is, the client puzzle

mechanism in Tor onion services should choose between two

undesirable outcomes, either making the service vulnerable

to inflation attacks or congestion attacks.

With the understanding of the undesirable choice between

inflation resistance and congestion resistance (but not both)

in Tor onion services, we propose a simple, configurable diffi-

culty update algorithm for client puzzles that strikes a balance

between resisting inflation attacks and managing congestion

effectively. Our evaluation of the proposed update algorithm

shows that the service operator can easily make the system ro-

bust against inflation attacks (e.g., enforcing more than 80% of

attack cost compared to the traditional introduction-flooding

attacks) while moderately hedging against temporary conges-

tion attacks (e.g., increasing the suggested puzzle difficulty

proportionally to the attack intensity). Furthermore, adjusting

the balance between inflation and congestion resistance can

be performed easily with one parameter. This new algorithm

is currently under review by the Tor security team.

We summarize our contributions as follows:

•We identify a new set of powerful denial-of-service attacks

that inflate puzzle difficulties without causing significant

congestion at Tor onion services. We conduct a real-world

evaluation on the live Tor network and receive acknowledg-

ment from the Tor Project.

•We conduct the first academic investigation into applying

client puzzles within Tor onion services, highlighting the

fundamental limitations and an undesirable trade-off inher-

ent in using puzzles in this context.

•We propose a practical mitigation strategy balancing infla-

tion resistance and effective congestion management.

2 Background

2.1 Tor and Onion Services

The Tor network is one of the most popular anonymity

networks for Internet users, routing their communications

through a series of volunteer-operated servers known as re-

lays [16]. This process, which involves multiple layers of

encryption, ensures that the original source of the data is con-

cealed from both the destination and intermediary entities.

Tor onion services [45] (previously known as hidden ser-

vices) extend the anonymity provided by the Tor network to

both clients and servers, enabling a system where neither party

knows the other’s identity or location. This dual anonymity is

achieved through a specialized addressing scheme that uses

.onion addresses. Each onion service is associated with a

unique .onion address, which serves as its identifier within

the Tor network. When a client wishes to connect to an onion

service, it uses this address to establish a connection, with

the entire process being routed through Tor relays that further

protect the identities of both the client and the service.

2.2 Introduction-Flooding Attacks against Tor

Onion Services

Introduction points and rendezvous points. Central to

the Tor onion service architecture’s provision of mutual

anonymity are rendezvous points (RPs). Both the client and

the service independently establish Tor circuits to a common

RP, where these circuits are stitched together, ensuring that

neither party can directly trace the other’s network location.

In the early designs of onion routing [24, 25], RPs were

semi-static; they were chosen by the onion services, and

clients selected these RPs from a public list advertised by the

onion services. However, this static nature of RPs made them

vulnerable to various attacks. To mitigate this, the concept of

an introduction point (IP) was introduced [16], enabling the

fully distributed selection of RPs. The client first selects an

RP and establishes a circuit to it. Following this, the client

sends an introduction request (or intro-request) to the onion

service via an IP, asking the onion service to establish its

circuit to the chosen RP. IPs, a known set of Tor relays, are

responsible for forwarding these intro-requests from clients

to onion services, preserving the anonymity of both parties.

Introduction-flooding attacks. Yet, a critical vulnerability

remains within the introduction request handling logic and

this has given rise to a class of attacks known as introduction-

flooding (or intro-flooding) attacks, which specifically target

the intro-request handling mechanism of onion services. In the

wild, real attacks have been observed where adversaries flood

the onion service with a large number of intro-requests [8, 13,

28, 29]. As a result of the attack, the targeted onion service

is forced to establish an excessive number of Tor circuits to

numerous RPs, leading to significant resource exhaustion.



The focus of this work is to address this threat model —

namely, the introduction-flooding attack. Our scope is con-

fined to the analysis and mitigation of DoS attacks against

the intro-request handling logic within onion services. It is

important to distinguish this from directly flooding the IPs

themselves, which falls outside the scope of this paper.1

2.3 Challenges of Handling DoS against Onion

Services

In this paper, we focus on client puzzle mechanisms for mit-

igating intro-flooding attacks as they represent the only of-

ficially implemented, practical solution currently available.

However, other denial-of-service (DoS) mitigation strate-

gies also deserve discussion. Here, we briefly examine three

classes of DoS mitigation strategies and explain why the

anonymity-first design of Tor makes them inapplicable to

onion services. For a more comprehensive taxonomy of DoS

mitigation strategies, readers are referred to the literature [30].

• Source-based filtering is inapplicable. When a target ser-

vice is able to attribute the source of traffic, it can em-

ploy measures such as rate limiting, banning suspicious

sources, prioritizing traffic, or redirecting traffic to a scrub-

bing service for further analysis. However, source-based

filtering schemes require the target service to be able to

distinguish between different sources of traffic. This is pre-

cisely the challenge faced by Tor onion services, which

are designed to prevent the identification of traffic sources.

The anonymity feature of Tor, by design, prevents the tar-

get service from distinguishing between different sources

of traffic, rendering source-based filtering ineffective. As

a result, the current Tor system is unable to attribute the

source of intro-flooding attacks.

Note that this limitation should not be confused with the

existing rate-limiting mechanisms implemented at individ-

ual introduction points. These mechanisms limit the overall

rate of introduction requests [47] without distinguishing

between traffic sources.

• Replication-based mitigation is inapplicable. Another com-

mon DoS mitigation is the overprovision of the target ser-

vice through replication. Replicating Tor onion services

is, unfortunately, non-trivial. Due to the design of the Tor

network, which prioritizes anonymity and decentralization,

replicating an onion service would require not only addi-

tional onion service instances but also the distribution of

these instances in a manner that maintains user anonymity.

As a result, fast (e.g., within seconds to minutes) scale-out

of introduction points along with the distribution of repli-

cated services has been limited in the Tor network. For

instance, Onionbalance [51] has been proposed as a solu-

tion for horizontal scaling of onion services; however, it has

1In fact, directly flooding IPs does not pose a significant threat in practice

because IPs are often well-provisioned and rate-limited.

notable limitations as a DoS mitigation tool: (1) it may pre-

vent clients from accessing any introduction points when

the service is under a DoS attack [43,52] and (2) it imposes

constraints on the maximum number of replications [48].

Worse still, its ability to scale rapidly enough to counter

sudden surges in DoS attack traffic remains untested.

• Mitigation through testing sources is inapplicable. Some

DoS mitigation strategies rely on challenge-response mech-

anisms to test client legitimacy before granting access to the

service. CAPTCHA [54], for instance, distinguishes human

users from automated bots to prevent bots from overwhelm-

ing the service. However, CAPTCHA is impractical for Tor

onion services due to their sender anonymity design. A

service can only present a CAPTCHA challenge to a client

after establishing a rendezvous circuit, which occurs after

the intro-request has been received (see Section 4.2.1 for a

detailed discussion).

2.4 Return of the Puzzles

The idea of client puzzles is one of the oldest and most well-

understood strategies in the context of DoS mitigation. Orig-

inally proposed by Dwork and Naor in 1992 [18] for spam

mitigation, the idea of proof-of-work has been widely adopted

across various systems to curb unwanted activities in comput-

ing. Proof-of-work is particularly effective in addressing the

asymmetry between attackers and defenders: attackers must

expend significant computational resources to generate attack

traffic (e.g., spam emails), while defenders can easily verify

the proof-of-work with minimal effort.

Client puzzles in DoS defense. In 1999, Juels and

Brainard [27] first applied the idea of proof-of-work to DoS

defense by introducing client puzzles as a means to mitigate

general volumetric DoS attacks. In a client puzzle system, the

server challenges each client to solve a cryptographic puz-

zle before granting access to the service. This imposes some

(hopefully small) computational burden on legitimate clients

but places a significant burden on attackers, who must solve

many puzzles to sustain an attack, thereby countering the

asymmetry that favors attackers in traditional DoS scenarios.

Client puzzles quickly gained attention within the research

community and have been extensively studied in various con-

texts, including TCP/IP [11,33,55,56], TLS [15,34], and Inter-

net key exchange [32], etc. The idea has also been integrated

into other DoS mitigation systems, such as the capability-

setup channel [35].

Why have client puzzles not been widely adopted? Despite

their theoretical effectiveness, client puzzles have not seen

widespread adoption over the past 2.5 decades in the real-

world Internet applications. The reasons for this are complex

and varied, but one clear drawback is the unjustifiable and

non-negligible burden placed on legitimate clients.

While client puzzles effectively reduce the asymmetry be-

tween attackers and defenders, they place a computational



burden on legitimate clients, who must solve puzzles to ac-

cess the service, whereas the target incurs minimal cost. This

leads to a poor user experience, as even a few seconds of

additional delay can be frustrating in many modern Internet

services, such as video streaming or web browsing [31]. In

time-sensitive applications like online gaming, these delays

can become prohibitive. This drawback makes client puzzles

less attractive than other DoS mitigation strategies that place

the burden on the service’s infrastructure rather than its users.

Return of the puzzles for onion services: Why now? After

years of relative dormancy, the idea of client puzzles has seen

renewed interest and, for the first time, global-scale deploy-

ment. The Tor community has officially recommended the

adoption of client puzzles to mitigate DoS attacks on Tor

onion services [58], and many onion service operators have

already implemented this strategy in practice.

The short answer to ‘why now?’ is that, unfortunately, there

are no other practical alternatives. As discussed earlier, many

traditional DoS mitigation techniques are impractical for Tor

onion services, leaving client puzzles as the best available

solution at the moment.

A more detailed explanation lies in the nature of Tor onion

services, which are generally more tolerant of the delays in-

troduced by client puzzles than other Internet services. For

example, the average connection establishment time for Tor

onion services is around 10 seconds (see our experiments

in Section 3.1.4), significantly longer than the 2–3 seconds

typical for clearnet services [9, 26]. Therefore, adding a few

more seconds for solving a puzzle is considered a minor in-

crease in the overall connection time for Tor onion services.

Our real-world experiments, detailed in Section 3.1.4, confirm

that the additional delay introduced by client puzzles is indeed

marginal in Tor onion services, while still being effective in

mitigating DoS attacks.

3 Vulnerability in Tor Onion Puzzles

The renewed interest in client puzzles for Tor onion services,

however, we argue, has also brought about a new vulnerability.

In this section, we present a novel class of attacks, which we

refer to as ONIONFLATION, that exploits the client puzzle

system in Tor onion services. We first describe the current

client puzzle system in Tor onion services (Section 3.1), fol-

lowed by the design of the ONIONFLATION attack and its

evaluation on the live Tor network (Section 3.2).

3.1 Current Onion Puzzle Design

In this section, we overview the basic puzzle design (Sec-

tion 3.1.1), the system’s end-to-end operation (Section 3.1.2),

the puzzle difficulty update algorithm (Section 3.1.3), and

the system’s effectiveness against intro-flooding attacks (Sec-

tion 3.1.4). All information presented here regarding the cur-

rent onion puzzle design has been derived from two primary

sources: the specification [49] and the source code [50]. De-

spite our best efforts to ensure accuracy, the information may

not be exhaustive. For additional or specific details, readers

are encouraged to consult these references.

3.1.1 Basic Puzzle Design

Client puzzles are a proof-of-work mechanism used to miti-

gate DoS attacks by requiring clients to solve cryptographic

challenges before receiving service [27] (see Section 2.4

for details). Each puzzle instance typically includes service-

specific parameters and a seed that prevents precomputation

attacks: once the seed changes, previously valid solutions

become invalid. Upon receiving a puzzle, clients iteratively

perform cryptographic operations to find a valid solution,

whereas the server verifies proposed solutions with signifi-

cantly less computational effort, ensuring efficient verifica-

tion.

Building on these fundamental principles, several important

improvements have been made to the puzzle design over the

years. We summarize three characteristics that have been in-

corporated into the current Tor onion puzzle system [49].

• ASIC resistance: Application-Specific Integrated Circuits

(ASICs) may provide unfair advantages to adversaries

against benign clients with general-purpose hardware as

they can be optimized for specific puzzle-solving tasks [37].

To counter this, onion puzzles use a custom hash function

that randomizes its internal logic for each new seed, effec-

tively mitigating fixed-hardware optimizations [49].

• Memory-requirements: Several client puzzles have been

designed to be memory-hard, requiring substantial RAM

operations to solve puzzles, thus reducing the performance

disparity between devices [17]. Tor onion puzzles also

employ this type of puzzle structure [49].

• Linear difficulty scaling: Unlike traditional cryptographic

puzzles that often use exponential difficulty functions (e.g.,

leading zeros requirements [6, 15]), onion puzzles employ

a linear difficulty scale. The computational workload, quan-

tified as the number of expected hash operations, increases

linearly with difficulty. This approach allows onion services

to make finer-grained adjustments to difficulty [49].

3.1.2 End-to-End Client Puzzle Operation

Figure 1 illustrates the end-to-end operation model of the cur-

rent onion puzzle system. A client fetches a descriptor from

one of directory servers and extracts the seed, suggested puz-

zle difficulty, and service-specific identity string. The client

solves a puzzle based on these parameters, and sends an intro-

duction request to the service through an introduction point.

Upon receiving an intro-request, the service verifies the

puzzle solution and enqueues the request into the priority

queue, which sorts requests based on their puzzle difficulties.

The service in parallel dequeues requests from the queue and
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Figure 1: Overview of the client puzzle mechanism in Tor

onion services.

establishes onion circuits to the rendezvous points specified in

the requests. The rate at which the service dequeues requests

is capped by 250 requests per second on average in the current

implementation to curb the load on the Tor network.

Note that simply increasing this service rate (which is one

of the most common DoS mitigation strategies in non-Tor

systems) is not a viable option in the Tor network. Raising

the dequeue rate (i.e., creating more rendezvous connections

at the service) in response to a surge of incoming requests

can significantly increase the load on the overall Tor network

during intro-flooding attacks. Hence, the current onion puzzle

system imposes a limit of 250 requests per second on average.

Server-centric feedback loop. While the Tor onion puzzle

system allows clients to choose own puzzle difficulty at their

discretion in theory, the default implementation simply fol-

lows the puzzle difficulty suggested by the onion service.2

The most critical operation in the onion puzzle system, there-

fore, is how the service updates the suggested puzzle difficulty.

The current onion puzzle system updates the suggested puz-

zle difficulty periodically at the end of each update round.

The suggested difficulty is then advertised to clients through

directory servers; see the bottom part of Figure 1.

2The effectiveness of the client-side difficulty adjustment mechanism is

very limited in practice; thus, we exclude it from our main discussion. See

Appendix A for a more in-depth discussion.
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Figure 2: Illustration of the current difficulty update algo-

rithm. For a detailed definition of ❸ and ❹, refer to line 4 and

line 7 of Algorithm 1, respectively.

3.1.3 Difficulty Update Algorithm (DUA)

The heart of the puzzle difficulty update is at the Difficulty

Update Algorithm (DUA). The onion service must set the

suggested puzzle difficulty to a proper level to limit the impact

of DoS attacks whenever necessary. The higher the suggested

difficulty is set, the more costly it becomes for adversaries

to generate attack traffic, thus reducing the amount of attack

traffic from a rational adversary with limited resources.

Here, we describe the exact details of the DUA that has

been implemented in the Tor onion service since its introduc-

tion in August 2023 [58]. The main design principle of the

DUA is to adjust the suggested puzzle difficulty based on the

status of the priority queue. Most fundamentally, it detects

a symptom of congestion to efficiently update the suggested

difficulty. The amount of each adjustment basically follows

an additive increase and multiplicative decrease (AIMD) rule

(which is, of course, inspired by the TCP congestion control

algorithm [2,12]); that is, the suggested difficulty is increased

by one when a symptom is found and decreased to two-thirds

when such symptoms are not detected. In addition to this, the

DUA also implements a few other rules to quickly adapt to the

changing environment by ramping up the suggested difficulty

when noticing signs of severe congestion. For example, see ❶

in Figure 2 and the increase logic in Algorithm 1. Figure 2 il-

lustrates the process as a simple flow chart, while Algorithm 1

provides the detailed steps. The service interprets the trim-

ming of high-difficulty requests as a symptom of congestion

and increases the suggested difficulty based on queue status.

3.1.4 Effectiveness against Intro-Flooding Attacks

The proposed official onion puzzle system has been widely

adopted (e.g., CIA [10], instances of SecureDrop [40]) as

of September 2024. To evaluate its effectiveness against



Algorithm 1 Current Difficulty Update Algorithm

state:

Dsug[n]: The suggested puzzle difficulty at round n.

Dmax−trim[n]: The highest puzzle difficulty of trimmed requests

during round n. Trimming can occur when requests that are too

old (i.e., enqueued more than 15 seconds earlier) are dequeued,

or when the queue reaches its capacity (i.e., 16,384 or 17,500 re-

quests, depending on the configuration). For the latter, the service

discards half of the queue.

∑Denqueued [n]: The sum of all puzzle difficulties of enqueued

requests during round n.

rendhandled [n]: The number of handled requests during round n.

f lagcongestion: A flag which is set if the priority queue is filled with

a certain number of requests (i.e., 16 or 63 requests, depending

on the configuration). It is unset at the start of each round.

decision:

at the end of each update round, the service

1: if Dmax−trim[n]> Dsug[n] then

2: increases the suggested difficulty

3: else if f lagcongestion then

4: if at least one request remains whose puzzle difficulty is

Dsug[n] or high then

5: increases the suggested difficulty

6: end if

7: else if the current number of requests in the queue is below a

threshold (i.e., 16 or 63 requests, depending on the configura-

tion) then

8: decreases the suggested difficulty

9: else

10: maintains the suggested difficulty

11: end if

increase:

Dsug[n+1]←max(∑Denqueued [n]
rendhandled [n]

,Dsug[n]+1)

decrease:

Dsug[n+1]← 2
3 ×Dsug[n]

introduction-flooding attacks, we conduct a real-world attack

experiment on the live Tor network (see Section 7 for ethical

considerations).

Experiment setup. We set up our own onion service on the

live Tor network and send a large number of intro-requests for

24 hours.3 Specifically, requests are sent at the maximum pos-

sible rate within the constraints of limited resources through-

out the experiment. We dedicate one server-grade CPU to run

the onion service and another server-grade CPU to launch the

attack. To test varying attack intensities, we adjust the number

of CPU cores used for the attacks. For this experiment, we

utilize 30 cores, the highest number employed to implement

ONIONFLATION attack strategies (see Section 3.2.2 for de-

tails). As a result, we achieve a peak rate of 505 requests per

second in one round and an average rate of 47 requests per

second. Note that 30 cores are sufficient to evaluate the effec-

tiveness of onion puzzles against naive intro-flooding attacks,

3All Tor implementations used are based on Tor version 0.4.9.0-alpha-dev.

The adversary’s Tor client is modified to perform attacks.
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gregated for each round; and (right Y-axis) changes in the

suggested puzzle difficulty during intro-flooding attacks.

as an adversary with this level of resources can disrupt the

onion service in the absence of onion puzzles (see Figure 4).

Figure 3 provides the changes in the suggested puzzle diffi-

culty for one full day of the experiment, along with the number

of requests that were either handled or unhandled throughout

the attack for each round. The X-axis represents time, the

main Y-axis (bars) indicates the number of requests aggre-

gated for each update round, and the secondary Y-axis (×)

indicates the suggested puzzle difficulty. Although the num-

ber of requests sent initially fluctuated due to the experiment

being conducted on the live network, it stabilized over time.

This figure clearly demonstrates that the current DUA can

maintain the number of requests at a manageable level (e.g.,

20,000). In other words, the adversary succeeded in generat-

ing large enough traffic when the suggested puzzle difficulty

was low, but began to fail as the suggested puzzle difficulty

increased.

We observe that the current DUA mechanism often leads

to non-negligible variations in difficulty levels, even when

the server experiences similar traffic volumes. For instance,

a similar number of requests were sent around 08:00 and

12:00 (approximately 8,800 and 10,150, respectively), yet

the service managed to handle twice as many requests at

08:00 compared to 12:00, resulting in a much lower suggested

puzzle difficulty. This disparity in handled requests is largely

attributable to the behavior of the mass trimming mechanism

(see Dmax−trim in Algorithm 1), which reacts differently to

varying packet burst patterns. For further insights, we include

two additional full-day experiment results in Appendix B.

Figure 4 illustrates the efficacy more directly. It provides cu-

mulative distributions of legitimate clients’ waiting times un-

der intro-flooding attacks compared to normal circumstances.

We measure the waiting time of a legitimate client using the

Tor Browser one hundred times throughout each experiment.

Unlike the service and attackers, we use a standard desktop to

model the client. Given that the increase in waiting time due

to the attack is much shorter when the onion puzzle system

is activated, it is clear that the current onion puzzle system

effectively mitigates intro-flooding attacks.
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Figure 4: Cumulative distribution of legitimate clients’ wait-

ing time. Compared to normal circumstances, clients wait

only a few seconds longer under intro-flooding attacks when

the current puzzle is activated. By contrast, the waiting time

mostly exceeds 90-second timeout when the puzzle is absent.

The result with the new DUA (dashed line) is discussed later

in Section 4.3.

3.2 The ONIONFLATION Attack

We introduce a novel class of attacks, which we call ONION-

FLATION, that aims to artificially inflate the puzzle difficulty

the target onion service would suggest to its clients. While

inflating the puzzle difficulty, the attack aims to minimize

the attack traffic volume and computing resources required to

solve puzzles, thus it barely causes congestion on the target.

3.2.1 Attack Strategies

By thoroughly inspecting the system, we designed two at-

tack strategies to inflate the suggested puzzle difficulty, one

to reduce the service capacity, and one to maintain the in-

flated difficulty, each exploiting different parts of the system.

Figure 5 illustrates the first three attack strategies.

• Strategy ①: End-rush attack strategy. The goal of this

strategy is to create a false impression that the priority

queue has been occupied for most of the time on the tar-

get service. It exploits one particular mechanism in the

current Tor onion puzzle system that attempts to capture

a symptom of congestion: the service increases the sug-

gested puzzle difficulty if, at the end of each update round,

at least one unhandled request whose difficulty is at least

the suggested difficulty remains (❸ in Figure 2). The adver-

sary can induce this symptom by sending a small number

of high-difficulty requests just before the next update; see

how the adversary leaves requests unhandled at the end

of the round by sending only a few intro-requests in Fig-

ure 5(a). This is feasible because timing information of the

next update (e.g., when it will occur) can be easily obtained

by frequently fetching the descriptors from the directory

servers. Consequently, the adversary can effectively inflate

the suggested difficulty by sending a minimal number of
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Figure 5: Three attack strategies of ONIONFLATION. The first

two creates a false impression of congestion while the third

actually reduces the service’s capacity.

requests, without causing congestion on the service.

• Strategy ②: Temporary-turmoil attack strategy. The goal

of this strategy is also to create a false impression of con-

gestion on the target service, but with much easier puzzle

solutions and more intro-requests than the end-rush strategy.

It exploits one specific algorithm in the current Tor onion

puzzle system that calculates the new suggested puzzle dif-

ficulty (the increase logic in Algorithm 1). Currently, when

increasing the suggested difficulty, the larger value between
∑Denqueued

rendhandled
and Dsug +1 is chosen. The issue is that the ra-

tio can lead to a rapid increase in suggested difficulty due

to its inherent discrepancy: while ∑Denqueued includes the

puzzle difficulty of both handled and unhandled requests,

rendhandled counts only the number of requests that were ac-

tually handled. Therefore, if an adversary triggers the mass

trimming of the queue (i.e., discarding half of the queue;

see Dmax−trim[n] in Algorithm 1) by sending a sufficient

number of requests (i.e., 16,384 or 17,500 requests, depend-

ing on the configuration), the suggested difficulty will be

much higher than what the adversary actually solved; see

how the number of requests in the queue changes during

this attack in Figure 5(a).

• Strategy ③: Choking attack strategy. Unlike the previous

two strategies, this one aims to actually reduce the service’s



capacity, not just inflate the suggested difficulty. This strat-

egy kicks in after the adversary has successfully inflated

the suggested difficulty using the end-rush or temporary-

turmoil attack strategies. When the suggested difficulty

has been inflated beyond the client-side maximum diffi-

culty (10,000; see Appendix A for details), the service is

forced to limit the number of establishing connections to

the rendezvous points to 16 in the current implementation.

This operation is what our choking strategy exploits. Once

the suggested difficulty has been inflated, the adversary

periodically4 sends some (e.g., 16 or slightly more) high-

difficulty requests but deliberately leaves the corresponding

rendezvous connections half-open (i.e., does not connect

to the rendezvous points), making the service temporarily

unavailable to handle benign (thus, low-difficulty) requests.

This behavior is illustrated by the adversary half-opening

new rendezvous connections in Figure 5(b).

• Strategy ④: Maintenance strategy. After successfully in-

flating the suggested puzzle difficulty, the adversary must

maintain the inflated suggested difficulty to extend the

effects. This can be easily achieved by sending several

zero-difficulty requests (i.e., 16 or 63 requests, depending

on the configuration), as the current system maintains the

suggested puzzle difficulty based solely on the number of

requests, regardless of their difficulty levels (❹ in Figure 2).

3.2.2 Evaluation on the Live Tor Network

We evaluate each strategy against our own onion service on

the live Tor network, utilizing a similar experiment setup as

described in Section 3.1.4, but with variations in experiment

duration, attack strategies, and the number of CPU cores used

for attacks. A detailed discussion on the ethical considerations

of conducting these live network experiments is provided later

in this paper (Section 7).

Experiment parameters. Regarding the specific parameters

used in our experiments, we first perform analytical calcu-

lations to determine optimal values and then fine-tune them

through iterative experimentation. This approach allows us

to identify near-optimal parameters that are empirically vali-

dated to be effective in practice (see Appendix C for details).

End-rush attack strategy. We show that the ONIONFLATION

adversary successfully inflates the suggested difficulty from

0 to 27,636 with the end-rush strategy. First, the adversary

sends a sufficient number of zero-difficulty requests (i.e., up

to 439 requests per second) to trigger a suggested difficulty

update, while fetching the service descriptor at 0.5-second

intervals to infer the precise timing of the updates. Using this

timing information, the adversary then solves puzzles with a

difficulty of 11,011 and begins sending intro-requests about

15 seconds before an update begins. The volume of requests

is set to be sufficient to trigger the flag f lagcongestion and leave

4Note that the onion service dynamically determines the timeout for

circuit establishment at runtime, rather than using a fixed value.
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Figure 7: Cumulative distribution of legitimate clients’ wait-

ing time. H, M, and L refer to the performance categories of

the devices, high-end, mid-range, and low-end, respectively.

Regardless of device categories, the ONIONFLATION attack

significantly increases clients’ waiting time.

at least one request pending at the end of the round (i.e., up

to a maximum of 273 requests per second).

The attack process is well demonstrated in Figure 6, which

shows the request rates during the update round. The X-axis

represents the remaining time until the next update, while

the Y-axis indicates the request rates. For the end-rush attack

strategy, it is evident that a number of requests were enqueued

just before the suggested difficulty update.

To better understand its impact, we measure the waiting

time for legitimate clients using different devices with the

Tor Browser one hundred times when the suggested difficulty

is 27,636. Since the average time required to solve puzzles

depends on the client’s processor, we categorize the devices

into three segments based on their computing power in CPU

cycles: high-end (3+ GHz), mid-range (2-3 GHz), and low-

end (0-2GHz). Typically, high-end devices include modern

laptops, desktops, and flagship mobile devices, while older

laptops and desktops or non-flagship mobile devices fall into

mid-range or low-end categories. For the measurement, we

use specific devices from each segment: a desktop with an In-

tel® Core™ i7-10700 Processor (maximum frequency of 4.7
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Figure 8: Rate of rendezvous circuit establishment by the

onion service during the choking attack (i.e., Strategy ③). The

suggested difficulty is updated at around 270 seconds.

GHz) for the high-end category, a Samsung Galaxy A24 (2.2

GHz) for the mid-range category, and a BlackBerry KEY2

LE (1.8 GHz) for the low-end category.

Figure 7 shows the CDF of clients’ waiting time using de-

vices from each device segment before and after a successful

attack. First, even the high-end devices experience signifi-

cant increase of waiting time, if not completely fail to make

connections before the 90-second timeout. The average wait-

ing time for the high-end devices goes beyond 30 seconds,

which is well above the typical 10-second Tor onion service

waiting time. Moreover, about 10% of the high-end devices

experience timeouts, which is an extremely rare event under

normal circumstances. Mid-range and low-end devices suffer

even more from the ONIONFLATION attack, with their aver-

age waiting times exceeding 90 seconds, which is the hard

timeout limit for the Tor Browser. For those that succeed in es-

tablishing connections (before the timeout), the waiting time

is still significantly longer (about 50 seconds on average) than

the normal waiting time. This clearly indicates that inflating

the suggested difficulty causes significant delays across all de-

vice categories and leads to frequent timeouts for mid-range

and low-end devices.

It is important to note that while this experiment clearly

demonstrates the attack’s impact (as evidenced by the signif-

icant increase in waiting time across all device categories),

precise comparisons between device categories should be

avoided due to the limited numbers and highly heterogeneous

nature of the devices used in the study (i.e., distinct hardware

and OS configurations). For example, the high-end device

used in the study exhibits slightly longer waiting times under

normal conditions than mid-range and low-end devices, which

may not accurately represent the performance of all high-end

devices. Similarly, the low-end device occasionally shows

slightly shorter waiting times than the mid-range device, a

result that should not be generalized to all low-end devices.

While Figure 7 illustrates the attack’s impact in terms of

waiting time, it does not provide insights into how quickly the

attack takes effect or when the service begins to fail. For the

temporal aspect of the attack, readers are referred to Figure 6,

which shows that the attack becomes effective approximately

10 seconds after the arrival of the first attack packet.

In this experiment, the adversary is limited to using only 11

cores, and the total time taken to solve the puzzles was approx-

imately 7,185 seconds. Based on AWS on-demand pricing [4],

the cost of this attack strategy amounts to $1.2 (6 instances×
$0.09576 /(hour× instance)×7,185 seconds).5

Considering that a naive introduction-flooding attack (i.e.,

sending high-difficulty requests at the maximum dequeue

rate) to inflate and maintain the suggested difficulty would

cost $478.9 per hour, the end-rush attack costs only 0.2% of

that amount (see Appendix D for the estimation process).

Temporary-turmoil attack strategy. We also show that the

ONIONFLATION adversary succeeds in inflating the sug-

gested difficulty from 0 to 12,770 by solving and submitting

only low-difficulty (800) puzzles using the temporary-turmoil

strategy. Unlike the end-rush strategy, this approach focuses

on relatively easy puzzles while the number of puzzles solved

was large enough to trigger massive queue trimming (i.e., up

to maximum 950 requests per second). As a result, the service

discards half of the queue during the attack, leading to a sharp

increase in the suggested difficulty at the end of the round.

This pattern is well shown in Figure 6, where a large number

of requests are enqueued in the middle of the update round.

The impact of this strategy is equivalent to that of the end-

rush attack. Since the client-side maximum puzzle difficulty is

capped at 10,000 (see Appendix A for details), clients would

solve puzzles at this maximum difficulty level rather than the

inflated values of 12,770 or 27,636 observed in the experi-

ments. We omit the experiment results for this strategy, as

they are exactly the same as those for the end-rush strategy in

Figure 7. Similar to the end-rush strategy, the attack becomes

effective once the suggested difficulty is updated; e.g., around

260 seconds after the arrival of the first packet in Figure 6.

The adversary is allowed to use only 30 cores and solved

the puzzles over about 6,930 seconds. Based on AWS on-

demand pricing [4] again, the cost of this attack is $2.8, which

is only 0.6% of the cost of the naive intro-flooding attack.

Choking attack strategy. This attack strategy affects the

onion service in two sequential phases: first, it reduces the ser-

vice rate (using the end-rush or temporary-turmoil strategies),

and then it consumes the reduced service capacity. Accord-

ingly, we analyze these two effects separately.

To demonstrate the impact of service rate reduction, we

measure the number of newly established rendezvous circuits

with legitimate clients per second, both before and after in-

flating the suggested difficulty. Figure 8 shows the circuit

establishment rates throughout the experiment. Before the

suggested difficulty is inflated, more than 60 circuits are es-

tablished per second on average. However, immediately fol-

lowing the inflation, the service completely stops dequeuing

requests for over two minutes. Subsequently, the circuit es-

tablishment rate drops below 10 for most of the time and

5We verified that the per-core computing power of Amazon EC2 M7i-

flex [3] is comparable to that of the processors used in our experiments.



frequently falls to zero. This clearly demonstrates the service

rate reduction caused by the suggested difficulty inflation.

Next, we examine whether the adversary can efficiently

consume up the reduced service capacity. By sending high-

difficulty (10,001) requests and leaving the corresponding

rendezvous connections half-open, the adversary makes the

service primarily handle these requests, almost monopolizing

(i.e., 85%) its capacity.

Based on these observations, we estimate the cost of an

attack capable of fully consuming the reduced service capac-

ity. Considering the number of hash operations required per

second, we estimate that such an attack could be successful

with 21 instances, which would cost $2.0 per hour according

to AWS on-demand pricing [4]. For a detailed explanation of

the estimation process, see Appendix D.

Maintenance strategy. We finally demonstrate that the

ONIONFLATION adversary successfully maintains the inflated

suggested difficulty by simply sending only zero-difficulty

requests (a total of 184 requests). Given that the number of ac-

tive cores is limited to one in this experiment, the cost of this

strategy is only $0.1 per hour, based on the same pricing [4].

4 Mitigation against Inflation Attacks

4.1 Tweaking Difficulty Update Algorithm

The best practical mitigation against inflation attacks would

be to make use of the current difficulty update algorithm

(DUA) only by tweaking its parameters to a certain extent.6

However, surprisingly perhaps, no simple tweak of the current

DUA seems to be effective against inflation attacks, as we will

show in this section. Specifically, the current DUA seems to be

overly sensitive to small bursts of intro-requests, rendering it

difficult to mitigate inflation attacks by making simple tweaks.

To make a comprehensive evaluation of all possible tweaks,

we revisit the current DUA logic, illustrated in Figure 2, and

enumerate various simple adjustments. We list the proposed

tweaks as follows:

• [T1] Extreme thresholds for trimming and f lagcongestion:

The service discards requests or sets f lagcongestion less fre-

quently, only when the queue length exceeds an extreme

threshold (e.g., update round duration×maximum dequeue

rate). This modifies Condition ❶ and ❷ in Figure 2.

• [T2] Randomized round duration: The service updates

the suggested puzzle difficulty at irregular intervals, making

timing-based exploitation (i.e., end-rush attack strategy)

more challenging. This tweak significantly weakens the

adversary’s ability to exploit Condition ❸.

• [T3] Eased conditions for decreasing suggested puzzle

difficulty: The service reduces the suggested difficulty

6Since an effective choking attack requires a successful inflation attack

to precede it, choking attacks can be largely thwarted by mitigating inflation

attacks. Therefore, we focus solely on mitigating inflation attacks.

more frequently. Regardless of f lagcongestion, the service

decreases the suggested difficulty if either the queue is

nearly empty (i.e., the current Condition ❹) or the average

difficulty of remaining requests is below the suggested

difficulty. This modifies Condition ❹.

• [T4] New formula for calculating the suggested puz-

zle difficulty: When increasing the suggested difficulty,

the service sets it to max(
∑Denqueued

rendenqueued
,Dsug + 1) instead of

max(
∑Denqueued

rendhandled
,Dsug + 1), where rendenqueued is the num-

ber of enqueued requests. We include this tweak in our

consideration despite introducing a new state, as it directly

fixes the flaw that the temporary-turmoil strategy exploits.

• [T5] Cap on suggested puzzle difficulty updates: The

service limits the increase in the suggested difficulty. If the

previous suggested difficulty was zero, the maximum new

suggested difficulty is capped at 8; otherwise, it is limited

to twice the previous value. This adjustment ensures a more

gradual increase in the suggested puzzle difficulty.

We assess the effectiveness of each adjustment by esti-

mating the cost of attack strategies it impacts. All estimated

costs are calculated based on the required number of hash

operations and AWS on-demand pricing [4] (see Appendix D

for details). Unfortunately, neither the above adjustments nor

their combinations raise the costs enough to deter inflation

attacks. Table 1 summarizes the evaluation results.

Table 1: Estimated attack costs in response to the proposed

tweaks T1–T5. All the listed costs are one-time expenses,

except for the hourly cost of the maintenance strategy (‡). We

omit the estimated cost for T2 because it would effectively

mitigate the end-rush attack strategy.

Tweak Affected Condition Affected Strategy Estimated Cost

T1 Condition ❶, ❷ Strategy ①, ② $2.6

T2 Condition ❸ Strategy ① -

T3 Condition ❹ Strategy ④ $0.5‡

T4 - Strategy ② $10.0

T5 - Strategy ①, ② $1.9

T2-T5 Condition ❸, ❹ Strategy ①, ②, ④ $25.9, $0.5‡

First, the estimated inflation attack cost against the

DUA with extreme thresholds is $2.6 (14 instances ×
0.09576 USD/(hour× instance)×6,930 seconds). This sug-

gests that merely adjusting parameters is insufficient to miti-

gate the attack. Furthermore, these extreme values allow the

adversary to conduct large-scale DoS attacks without raising

the suggested difficulty. Therefore, we use this approach as a

stand-alone tweak, without combining with other adjustments.

Randomizing round duration effectively mitigates the end-

rush attack by making it challenging to obtain timing informa-

tion. However, the temporary-turmoil attack remains effective.

Easing the conditions for lowering the suggested difficulty

raises the maintenance strategy cost, but not significantly. The

hourly cost would rise from $0.1 to only $0.5 (5 instances).



Employing the new formula increases the cost of the

temporary-turmoil strategy by lifting the required puzzle diffi-

culty, but the increase is insignificant: the total estimated cost

is only $10.0 (54 instances and 6,930 seconds).

Finally, capping suggested difficulty updates also results

in an insufficient increase in the attack cost. Although the

number of rounds required for the suggested difficulty to reach

an extreme value increases from one to twelve, its impact on

the overall cost is minimal. The estimated cost remains just

$1.9 (247 instances and 286 seconds).

Even worse, combining these adjustments fails to effec-

tively mitigate inflation attacks. Inflating the suggested diffi-

culty above 10,000 by attacking the DUA with all adjust-

ments applied, except for extreme thresholds, would cost

$25.9 (3,401 instances and 286 seconds) as a one-time ex-

pense, with an additional cost of $0.5 per hour to maintain the

inflated difficulty. Given that the cost of the naive introduction-

flooding attack (i.e., sending high-difficulty requests at the

maximum dequeue rate) is estimated at $478.9 per hour, this

cost is still considered too low (5.5%).

4.2 Root Cause: Undesirable Trade-Off be-

tween Inflation and Congestion

Understanding that simple tweaks are not effective, we delve

deeper into the root cause of the problem. The core of the

problem is deeply intertwined with the fundamental limita-

tions of Tor onion services, particularly when scaling client

puzzles for large-scale operations.

4.2.1 Limitations in Tor Onion Services

Quick review of client puzzle operation models. To manage

the client puzzle mechanism at a large scale, a feedback-based

control system is essential for adjusting puzzle difficulty based

on the system’s overall status. Historically, since its inception

in 1999 [27], client puzzle mechanisms have employed one

of two types of feedback-based control models.

The first model, known as the puzzle-auction model, allows

each client to independently adjust its puzzle difficulty based

on the outcome of its last request. After an initial connection

attempt, if the request is not handled or is delayed beyond

a certain threshold, the client increases the puzzle difficulty

(i.e., its bid). Each client separately applies these adjustments

according to its own policy, considering the service’s impor-

tance and its available computational resources, while the

service prioritizes handling requests with higher bids. This

model, originally proposed by Wang and Reiter in 2003 [55],

has been shown to be robust against various attacks [32, 35].

The second model is the challenge-response model, where

the server assigns a new puzzle challenge with a directed

difficulty separately to each client upon receiving a re-

quest [6, 11, 15, 27, 32–34, 56]. The server determines the

puzzle difficulty based on the overall system status. This

model grants the server full control over the system, enabling

it to swiftly increase puzzle difficulty in response to conges-

tion. The downside, however, is that clients have no control

over the difficulty, which may be problematic for those with

limited computing resources, such as mobile devices.

Fundamental limitations. Unfortunately, neither of these

models is well-suited for Tor onion services due to the unique

characteristics of the Tor network. The first limitation is the

inability to provide instant feedback. Unlike the public Inter-

net, Tor operates on a much larger timescale. While a typical

web client expects a response within a few seconds, Tor onion

services are much slower and thus Tor clients are configured

by default to wait up to 90 seconds for a response. Conse-

quently, it may take up to 90 seconds for a client to determine

that its request was not handled, making the puzzle-auction

model too slow to adapt to the DoS attacks.

The second limitation is the inability to provide individual-

ized feedback due to Tor’s stringent anonymity requirements.

To preserve client anonymity, the service cannot identify or di-

rectly communicate with clients before establishing a secure

onion circuit, which includes several relays and a rendezvous

point. When a service receives an initial intro-request, no

secure circuit is available for sending feedback. This limita-

tion renders the challenge-response model impractical for Tor

onion services.

Therefore, the only possible operation model left for Tor

onion services is to make global announcements to suggest

the difficulty of the puzzle. Worse yet, such global announce-

ments (from an onion service to all its potential clients) can-

not be made quickly enough, unfortunately. This is because

the announcements should be made through the Tor directo-

ries (due to the receiver anonymity) that are not designed to

support real-time broadcast services. As a result, the service

suggests the common difficulty of the puzzle to all clients

at a slow pace with infrequent announcements. This is the

root cause of difficulties in mitigating inflation attacks in Tor

onion services, as we will discuss in the following.

4.2.2 Undesirable Trade-Off

Trade-off between inflation and congestion. The limitations

of the current puzzle operation model, rooted in the design of

Tor onion services, result in an undesirable trade-off concern-

ing resistance to inflation attacks. Here, we define two types

of attack goals: inflation, where the attacker seeks to increase

the puzzle difficulty to an extent that most legitimate users

cannot solve in a reasonable time, and congestion, where the

attacker aims to use up significant portion of service resources,

leading to service denial for legitimate users during the attack.

These goals differ in that inflation creates a false sense

of flooding, while congestion directly impacts the service,

denying access to legitimate users. Our findings indicate that

no DUA mechanism for onion services can simultaneously

resist both inflation and congestion. This undesirable trade-off



observed is that the more resistant a service is to inflation, the

more vulnerable it becomes to congestion, and vice versa.

The current DUA of the Tor onion services is designed to

be highly resistant to congestion attacks, which inherently

makes it susceptible to inflation attacks. A short burst of

intro-requests within a round prompts the DUA to react ag-

gressively, significantly increasing puzzle difficulty for the

next round. This strategy effectively mitigates congestion at-

tacks by making subsequent congestion attacks more costly

and thus smaller in scale. However, it also increases the risk of

inflation attacks, as observed in the ONIONFLATION attack.

Conversely, consider a hypothetical DUA resistant to infla-

tion attacks. Such a DUA would need to be nearly insensitive

to small, short bursts of introduction requests within a round,

avoiding significant increases in puzzle difficulty. While this

approach would protect against inflation attacks, it would

leave the service vulnerable to congestion attacks, as it would

fail to escalate defenses against brief congestion attempts,

allowing congestion attacks to succeed in subsequent rounds.

4.2.3 Security Analysis

To better analyze this trade-off, we devise an abstract model

that focuses on high-level design choices while abstracting

away low-level details. We present our model through a few

important definitions and assumptions.

Definition 1. An adversary A attacks onion services by send-

ing a burst of intro-requests. The parameter α refers to the

ratio of the attack period to the round length, and Datt [t] indi-

cates the difficulty of puzzles that A solves at round t.

Definition 2. A Tor onion service S handles intro-requests
by dequeuing them from a priority queue, with a maximum
rate of µmax requests per second. S periodically broadcasts
the suggested puzzle difficulty Dsug, based on the queue status
during the last update period. The difficulty Dsug[t] refers
to the suggested puzzle difficulty at round t. The function

β(α) =
Dsug[t]

Datt [t−1] models the difficulty update algorithm (DUA).

Where γ is the maximum adjusting parameter for the suggested
difficulty, all β(α) must satisfy the following condition:

0≤ β(α) =
Dsug[t]

Datt [t−1]
≤ γ

Definition 3. The resistance to congestion attacks of a DUA

is defined as
∫ 1

0 β(α)dα. If this value is close to γ, that DUA
is classified as highly congestion-resistant. This implies that
S increases the suggested difficulty even if α is close to 0. The
function βr−c(α) is the most congestion-resistant DUA:

βr−c(α) =

{

0 (α = 0)

γ (α > 0)

Definition 4. The resistance to inflation attacks of a DUA

is defined as
∫ 1

0

(

γ−β(α)
)

dα. If this value is close to γ, that
DUA is classified as highly inflation-resistant. This implies

that S increases the suggested difficulty only if α is close to 1.
The function βr−i(α) is the most inflation-resistant DUA:

βr−i(α) =

{

0 (α < 1)

γ (α = 1)

Assumptions. We assume that adversary A sends requests at

a rate of µmax during attacks and adjusts attack intensity using

varying α and Datt values. Additionally, we assume that all

β(α) are monotonically increasing, starting at 0 when there is

no attack (α = 0) and reaching γ at maximum attack intensity

(α = 1), reflecting rational behavior by service S.

Using the above model, we now prove that a trade-off exists

between resistance to congestion attacks and inflation attacks.

Lemma 1. There exists a perfect negative correlation be-

tween the resistance to congestion attacks and the resistance

to inflation attacks of a DUA.

Proof. By definition, the sum of the resistance to congestion
attacks and the resistance to inflation attacks is calculated as
follows: ∫ 1

0
β(α)dα+

∫ 1

0

(

γ−β(α)
)

dα =
∫ 1

0
γdα = γ

Therefore, an increase in the resistance to congestion attacks

must correspond to a decrease in the resistance to inflation

attacks, and vice versa.

Lemma 2. A congestion-resistant DUA is vulnerable to infla-

tion attacks.

Proof. Let β
′

r−c(α) be a congestion-resistant DUA. By def-

inition, β
′

r−c(α) should be close to βr−c(α). Since all β(α)

are monotonically increasing, we have β
′

r−c(α) ≈ γ for all

small α sufficiently distant from 0. Therefore, adversary A

can increase the suggested puzzle difficulty to an extreme

value by sending only a short burst of intro-requests.

Lemma 3. An inflation-resistant DUA is vulnerable to con-

gestion attacks.

Proof. Let β
′

r−i(α) be an inflation-resistant DUA. By defini-

tion, β
′

r−i(α) should be close to βr−i(α). Since all β(α) are

monotonically increasing, we have β
′

r−i(α)≈ 0 for all large

α sufficiently distant from 1. Therefore, adversary A can sig-

nificantly consume the service resources without raising the

suggested puzzle difficulty. This allows A to conduct success-

ful congestion attacks continuously in subsequent rounds.

Theorem 1. No DUA can be simultaneously resistant to both

congestion and inflation attacks.

Proof. By Lemma 1, if a DUA is congestion-resistant, it can-

not be inflation-resistant. Conversely, if a DUA is inflation-

resistant, it cannot be congestion-resistant. By Lemma 2 and 3,

a congestion-resistant DUA is vulnerable to inflation attacks,

and an inflation-resistant DUA is vulnerable to congestion

attacks. Therefore, no DUA can be resistant to both types of

attacks at the same time.
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Figure 9: Number of enqueued requests aggregated for each

round and changes in the suggested puzzle difficulty during

intro-flooding attacks, with the new DUA employed. U/H

denotes unhandled requests, and H indicates handled requests.

4.3 Finding a Balance

Recognizing the undesirable trade-off, we propose a new

DUA that offers controllability to onion service operators.

Our design aims to provide a simple yet effective control

mechanism, enabling service operators to balance this trade-

off. We first design a DUA that linearly adjusts the suggested

difficulty based on attack intensity, then add a parameter to

adjust its sensitivity for controlling the balance. It is important

to note that we present this as one approach to mitigate the

identified vulnerability, rather than as the optimal solution.

Our new DUA departs from the current approach by moni-

toring the overall dequeue rate rather than specific symptoms

of congestion (e.g., trimming or remaining requests), enabling

a more direct and consistent adjustment of puzzle difficulty.

The next suggested puzzle difficulty is determined by the dis-

crepancy between the target and (adjusted) actual dequeue

rates, without requiring a decision. By default, the actual

dequeue rate is used as-is for calculating the suggested diffi-

culty, but it can be adjusted to control sensitivity. Algorithm 2

presents the detailed process. Note that the suggested puzzle

difficulty is set to 8 instead of 1 at line 4 to accelerate the

initial difficulty adjustment process.

The new DUA significantly raises the cost of inflating the

suggested difficulty, making inflation attacks more expensive

and less appealing to adversaries compared to the current sys-

tem. For instance, inflating the suggested difficulty to 10,001

requires $383.1 per hour with the default parameters. If the

service operator increases δ from 1 to 1.2 (i.e., reducing sensi-

tivity), the cost rises to $459.7 per hour. Conversely, decreas-

ing δ to 0.8 lowers the hourly cost to $306.5. These costs are

80.00%, 96.00%, and 66.67% of the cost of conducting the

naive introduction-flooding attack, respectively.

Additionally, this algorithm escalates defenses against rel-

atively short congestion attacks. For example, if the adver-

sary attacks the service for only half of the round duration

(i.e., α = 0.5), the suggested difficulty would increase to
µmax

µtarget
× Datt

2 with the default δ. With δ = 1.2, it is set to
µmax

µtarget
× Datt

2.4 , while it becomes µmax

µtarget
× Datt

1.6 if δ is 0.8.

To further evaluate our algorithm, we conduct a similar

Algorithm 2 New Difficulty Update Algorithm

parameter:

µtarget : The target dequeue rate that the service aims to maintain.

δ: The adjusting parameter, with a default value of 1.

state:

Dsug[n]: The suggested puzzle difficulty at round n.

∑Dhandled [n]: The sum of all puzzle difficulties of handled re-

quests during round n.

rendhandled [n]: The number of handled requests during round n.

update:

at the end of each update round,

1: µad just [n]←
rendhandled [n]

Tround×δ
where Tround is round duration

2: Dhandled [n]←
∑Dhandled [n]
rendhandled [n]

3: if Dhandled [n] = 0 and µad just [n]> µtarget then

4: Dsug[n+1]← 8

5: else

6: Dsug[n+1]←
µad just [n]

µtarget
×Dhandled [n]

7: end if

experiment to the one described in Section 3.1.4. Figure 9

presents the suggested puzzle difficulties and the number

of enqueued requests aggregated for each round, during the

intro-flooding attack against a service using our new DUA.

Compared to the results with the current DUA (see Figure 3),

it is evident that the new DUA is much more stable in adjust-

ing the suggested puzzle difficulty.

While our DUA less aggressively increases the suggested

puzzle difficulty, it maintains incoming request rates at a mod-

erate level, as shown in Figure 4. The solid brown line and

dotted brown line represent the cumulative distribution of

legitimate clients’ waiting times during attacks when using

the original DUA and new DUA, respectively. The slight dif-

ference between these lines suggests that our DUA remains

effective in managing congestion under intro-flooding attacks.

Finally, we evaluate the effectiveness of our new DUA in

resisting the ONIONFLATION attack. The attack strategies are

implemented with the same configuration as in Section 3.2.2,

but with the onion service employing our new DUA instead of

the original. Although all parameters remain unchanged, the

adversary completely fails to inflate the suggested difficulty

(staying at zero) when using the end-rush and temporary-

turmoil attack strategies, thereby failing to execute the chok-

ing attack. The adversary also fails to maintain the suggested

difficulty by sending zero-difficulty requests (i.e., implement-

ing the maintenance strategy). These results align with our

expectations, as the new DUA evaluates the average queue

status rather than detecting isolated symptoms of congestion.

5 Related Work

We review several related studies and projects that fall within

and extended scope of our work. We first discuss previous

studies on DoS mitigation in Tor onion services, followed by a



review of client puzzles as a general DoS defense mechanism.

Finally, we explore the broader context of mitigating DoS

attacks in other anonymity networks.

DoS mitigation in Tor onion services. A few studies have

explored strategies to mitigate intro-flooding attacks in Tor

onion services. Döpmann et al. proposed a cryptographic

token-based defense [19], providing flexibility in the choice

and implementation of challenge types. However, their so-

lution requires users to have successfully connected to the

target service at least once, seriously limiting its effectiveness

against general intro-flooding attacks; see Section 2.3 for a

discussion on the challenges related to source testing. More

recently, Arora and Garman introduced CenTor [5], a content

delivery network designed for onion services. As one of the

earliest replication-based DoS mitigation solutions, CenTor

has the potential to spin up new instances of the target service

dynamically, potentially limiting the impact of intro-flooding

attacks. Yet, actual evaluation results on the effectiveness

of CenTor against intro-flooding attacks have not been pro-

vided. Note also that both approaches are third-party propos-

als, unlike onion puzzles which are officially implemented

and recommended by the Tor project.

Client puzzles for DoS mitigation. Since their introduc-

tion [27], various studies have explored the effectiveness of

client puzzles as a DoS defense. We discuss two main aspects:

security analysis and real-world deployment.

Existing research primarily focuses on proposing novel

designs or implementations of client puzzles. Most stud-

ies [6, 11, 15, 27, 32–35, 55–57] address straightforward DoS

attacks, where adversaries overwhelm the target by sending

excessive requests, as demonstrated with the introduction-

flooding attacks in Section 3.1.4, as well as other potential

vulnerabilities of client puzzles (e.g., precomputation attacks,

replay attacks, collision attacks, and dictionary attacks). Be-

yond these basic attacks, only brief discussions have been

made on the mere possibility of more sophisticated attacks.

For instance, Waters et al. [57] and Feng et al. [11] expressed

concerns about the risk of eavesdropping on the puzzle solu-

tion; yet, this is trivially mitigated in Tor onion puzzles due to

its encryption scheme. Nygren et al. pointed out that hostile

servers may exploit legitimate clients to solve puzzles for

other services [34] but this is not applicable to onion puzzles

due to the service-specific string used in puzzle generation.

Last, Parno et al. [35] briefly mentioned the potential for in-

flation attacks in their client puzzle design for general DoS

mitigation but concluded that such attacks would be ineffec-

tive against general puzzle designs like theirs, which allow

for individualized and timely feedback.

While having been discussed since its inception, client puz-

zles have not seen widespread adoption in real-world Internet

applications until recently with the introduction of Tor onion

puzzles. Outside of Tor, RFC 8019 [32] was officially ac-

cepted as a client puzzle based DoS defense mechanism for

the Internet Key Exchange Protocol (IKE) 2 in 2016; how-

ever, no large-scale adoption has followed [42]. The lack of

widespread adoption can be attributed to several operational

challenges: (1) the puzzle construction and difficulty-setting

process can be non-trivial in practice [1]; (2) non-negligible

computational burden on legitimate clients may lead to un-

desirable delays. While Waters et al. [57] proposed puzzles

that can be solved off-line to reduce delay, their applicability

depends on the specific operation model, and they still impose

a non-negligible burden on legitimate clients.

DoS mitigation in other anonymity networks. This work

focuses exclusively on the Tor network for its discussion on

DoS mitigation. Yet, several other anonymity networks [14,22,

38,44] may face similar challenges in addressing DoS attacks.

To the best of the authors’ knowledge, no existing anonymity

network has implemented concrete DoS defenses similar to

Tor’s onion puzzles. Consider the Invisible Internet Project

(I2P) [44] as an example. I2P, known for its hidden service-

centric design (referred to as eepSites or I2P sites) [20], has

not yet adopted DoS defenses comparable to Tor’s onion puz-

zles. As a result, we are unable to directly compare or evaluate

the ONIONFLATION attack and proposed client puzzle mech-

anism within the context of I2P or other anonymity networks.

Instead, we outline key considerations for effectively in-

tegrating robust client puzzles into I2P or other anonymity

networks. Many anonymity networks share two fundamental

limitations with Tor when adopting client puzzles (see Sec-

tion 4.2.1): the inability to provide instant and individualized

feedback. For example, I2P hidden services cannot provide

instant feedback due to latency constraints [21] and are simi-

larly unable to offer individualized feedback due to anonymity

requirements. Consequently, many existing DoS mitigation

mechanisms (e.g., rate limiting, over-provisioning) may not

be directly applicable to them, leaving client puzzles as a

promising alternative; see a similar discussion for Tor onion

services in Section 2.3. When considering the deployment

of client puzzles in I2P or other anonymity networks, our

findings—namely, the undesirable trade-off and ONIONFLA-

TION attack—are relevant and deserve careful examination.

6 Conclusion

Denial-of-service attacks, a persistent challenge for many

services on today’s open Internet, are even more difficult

to address in the context of Tor onion services. The non-

trivialities of handling DoS in Tor end up reviving the client

puzzle idea, which has not been explored in this context until

now. In this paper, we take a close look at this problem and

identify a critical trade-off that must be considered when

implementing client puzzles in these networks. Without a

careful design that accounts for this trade-off, we argue that

there is a risk of introducing a new and powerful type of

attack, which we call the ONIONFLATION attack. We have

responsibly disclosed this vulnerability to the Tor community.
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7 Ethics Considerations

We conduct all experiments with careful ethical precautions to

minimize any impact on the broader Tor network. Moreover,

we have shared our attack scripts and the setup on the live

Tor network with the Tor developers so that they can review

any potential impact on the network while reproducing our

results.

As a basic precaution, we set up our own onion service

as the target and establish as many introduction points as

possible (twenty) to distribute the attack traffic effectively.

We then carefully review the impact of our experiments on

other parts of the network (e.g., relays, directory servers) to

ensure it is not significant.

First, in terms of bandwidth, our experiments can con-

sume up to 3.7 Mbit per second in the worst case

(771 requests/second × 602 bytes/request × 8 bit/byte).

With twenty introduction points, our bandwidth consump-

tion per relay is 0.2 Mbit/s. Given that the minimum required

bandwidth is 10 Mbit/s and the recommended bandwidth is

16 Mbit/s [46], our experiments consume only 1.9% of the

minimum required bandwidth (1.2% of the recommended

bandwidth) even in the worst case.

Next, since each experiment generates a different amount

of traffic, we first calculate the maximum number of generated

requests by summing the number of requests each experiment

can produce. Assuming we conduct the same experiment

three times, the total number of requests is 14,100,000. Given

that the maximum traffic each request can generate is less

than 7,000 bytes, the total traffic generated is less than 98.7

GB, with 4.9 GB per relay. Considering that the minimum

required traffic is 100 GB/month and the recommended traffic

is 2 TB/month [46], our experiments account for 4.9% of

the minimum required traffic and 0.2% of the recommended

traffic even in the worst case.

Regarding CPU and memory, it is important to note that

the primary target of our experiments is not the relays but the

onion service under our control. Since relays are merely parts

of the paths to the service, the impact on the relays’ CPU and

memory is minimal. Specifically, given that relays should be

able to handle at least 7,000 concurrent connections [46] and

the maximum instantaneous connection rate in our experi-

ments is 39 per relay, we only occupy 0.6% of the minimum

required capacity. Even assuming each connection lasts for 5

seconds (our connections typically last less than 5 seconds),

we still account for just 2.8% of the required capacity.

Responsible disclosure. To ensure the ethical disclosure of

our findings, we reported the discovered vulnerability to the

Tor developers in August 2024. We shared comprehensive

details of the vulnerability, including test sets and experiment

results, to assist the developers in identifying and resolving

the issue. They acknowledged the issue and the team is cur-

rently evaluating the attack strategies and working on a fix. In

particular, we have obtained permission to state that the Tor’s

security team is “taking it very seriously.”

8 Open Science

Our research artifacts comprise a comprehensive set of seven

modified versions of the Tor source code, eight attack scripts

(including three Python scripts and five Bash scripts), and

twenty-five miscellaneous files. Because these artifacts can be

directly exploited to perform the described attacks on onion

services, we have decided to share them exclusively with

the core Tor developers rather than making them publicly

available. We have provided the developers with access to

our GitHub repository, and they subsequently imported our

artifacts into the official Tor GitLab project as a private repos-

itory.
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A Client-Side Difficulty Adjustment

The current onion puzzle design heavily relies on the server-

side difficulty update algorithm, as we discussed in Sec-

tion 3.1.2. While it allows clients to adjust the difficulty of

puzzles in theory, the current implementation rarely activates

this in practice. Let us first present the detailed client-side

puzzle difficulty adjustment algorithm in Algorithm 3.

Due to the lack of a direct communication channel between

the client and service (because of the strict sender anonymity

requirement), the client can only infer the failures of previous

attempts based on timeouts. This process is inherently slow:

since the client increases puzzle difficulty incrementally after

each failure, it should experience several failures before reach-

ing an appropriate difficulty level. Given that each failure can

Algorithm 3 Client-Side Difficulty Adjustment Algorithm

state:

Dsug: The suggested puzzle difficulty.

Dclient : The difficulty of puzzles a client solves. It cannot be

greater than Dclient−max.

limit:

1: if Dsug > Dclient−max then

2: Dclient ← Dclient−max

3: else

4: Dclient ← Dsug

5: end if

adjust:

1: while a rendezvous connection is not established or waiting

time is less than an acceptable threshold do

2: the client solves a puzzle with Dclient

3: if a rendezvous connection is established then

4: break

5: else if a certain amount of time elapses then

6: Dclient ← γ×Dclient where γ is a constant

7: end if

8: end while

take a considerable amount of time (e.g., 90 seconds by de-

fault, though adjustable at runtime), the client-side difficulty

adjustment is too slow to be practical.

Our experiments support this conclusion, as we barely ob-

served such client-side difficulty adjustments, demonstrating

the impracticality of the mechanism due to its slow feedback

loop. Even worse, while we identified and addressed a few

bugs in the current implementation that aggravated these de-

lays, the mechanism remains too slow. This simple fix we

made has been suggested to Tor developers, and all our ex-

periments involving benign clients were conducted using the

revised version.

B Additional Evaluation of Onion Puzzles’ Ef-

fectiveness against Intro-Flooding Attacks

To assess the effectiveness of onion puzzles against intro-

flooding attacks, we have conducted real-world attack experi-

ments on the live Tor network in Section 3.1.4. This section

presents two additional experiment results that complement

our main discussion.

We repeated the experiment using the same parameters

in two additional runs: once for 24 hours (Figure 10, top)

and once for 27 hours (Figure 10, bottom). As before, the

X-axis represents time, the main Y-axis (bars) indicates the

number of requests aggregated for each update round, and

the secondary Y-axis (×) represents the suggested puzzle

difficulty. Consistent with the main results, we observe that

the adversary began to struggle in generating sufficient traf-

fic as the suggested difficulty increased. Additionally, the

patterns of puzzle difficulty changes exhibited similar fluctu-

ations to some extent, aligning with the results presented in
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Figure 10: (Left Y-axis) Number of enqueued requests ag-

gregated for each round; and (right Y-axis) changes in the

suggested puzzle difficulty during intro-flooding attacks.

Section 3.1.4.

C Determination of Experiment Parameters

In Section 3.2.2, we evaluate our ONIONFLATION attack

strategies on the live Tor network, targeting our own onion

service. In this section, we briefly describe how several exper-

iment parameters (e.g., puzzles difficulty, timing for initiating

attacks, etc.) are determined.

First, we analytically model the onion puzzle mechanism

and the attack process. This includes calculating the error in

update timing inference for the end-rush strategy, the general

latency of request transmission [53], and the average puzzle

difficulty for each round. Throughout this process, we derive

analytically optimal parameters that increase the suggested

difficulty beyond 10,000 (the client-side maximum puzzle dif-

ficulty; see Appendix A) while minimizing the consumption

of computing resources (i.e., the number of cores used). Next,

we assess the effectiveness of our attack strategies with these

calculated parameters and make incremental adjustments until

they perform effectively in live experiments. These adjust-

ments primarily involve fine-tuning puzzle difficulty and the

number of cores allocated for the attacks. As a result, we

identify parameter values that are both efficient and empiri-

cally proven to be effective in real-world experiments. While

further optimizing our attacks through parameter adjustments

may still be possible, we conclude that the current values are

sufficiently efficient, particularly given the minimal cost of

our attacks compared to naive intro-flooding attacks (0.2%

and 0.6%; see Section 3.2.2).

D Cost Estimation Process

When estimating the cost of attacks based on the number

of required hash operations, we assume that adversaries can

scale their computing resources using cloud services. Specif-

ically, we assume that the adversaries utilize Amazon EC2

M7i-flex [3] (M7i-flex.large) instances, as their per-core per-

formance is comparable to that of the processors used in our

experiments.

Although the time taken to solve puzzles has minimal im-

pact on costs due to on-demand pricing [4], we assume that

adversaries solve puzzles over the same duration as in our

experiments (i.e., 7,185 seconds for Strategy ① and 6,930

seconds for Strategy ②), if possible.

The average number of hash operations needed to solve a

puzzle of difficulty D is D itself, meaning adversaries must

perform R×D
T

hash operations per second to solve R requests

of difficulty D within T seconds. Since each M7i-flex instance

can perform approximately 500 hash operations per second,

the required number of instances I can be calculated as

I = ⌈
R×D

T
×

1

500
⌉.

Based on this number, the total cost C can be estimated as

C = I×0.09576×
T

3600
.

Similarly, the hourly cost C′ can be estimated as

C′ = I′×0.09576, where I′ = ⌈
R×D

500
⌉.
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