
JBShield: Defending Large Language Models from Jailbreak Attacks
through Activated Concept Analysis and Manipulation

Shenyi Zhang1, Yuchen Zhai1, Keyan Guo2, Hongxin Hu2, Shengnan Guo1, Zheng Fang1,
Lingchen Zhao1, Chao Shen3, Cong Wang4, and Qian Wang1∗

1 Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education,
School of Cyber Science and Engineering, Wuhan University,

2 University at Buffalo, 3 Xi’an Jiaotong University, 4 City University of Hong Kong

Abstract
Despite the implementation of safety alignment strategies,

large language models (LLMs) remain vulnerable to jailbreak
attacks, which undermine these safety guardrails and pose sig-
nificant security threats. Some defenses have been proposed
to detect or mitigate jailbreaks, but they are unable to with-
stand the test of time due to an insufficient understanding of
jailbreak mechanisms. In this work, we investigate the mech-
anisms behind jailbreaks based on the Linear Representation
Hypothesis (LRH), which states that neural networks encode
high-level concepts as subspaces in their hidden representa-
tions. We define the toxic semantics in harmful and jailbreak
prompts as toxic concepts and describe the semantics in jail-
break prompts that manipulate LLMs to comply with unsafe
requests as jailbreak concepts. Through concept extraction
and analysis, we reveal that LLMs can recognize the toxic
concepts in both harmful and jailbreak prompts. However, un-
like harmful prompts, jailbreak prompts activate the jailbreak
concepts and alter the LLM output from rejection to compli-
ance. Building on our analysis, we propose a comprehensive
jailbreak defense framework, JBSHIELD, consisting of two key
components: jailbreak detection JBSHIELD-D and mitigation
JBSHIELD-M. JBSHIELD-D identifies jailbreak prompts by de-
termining whether the input activates both toxic and jailbreak
concepts. When a jailbreak prompt is detected, JBSHIELD-
M adjusts the hidden representations of the target LLM by
enhancing the toxic concept and weakening the jailbreak con-
cept, ensuring LLMs produce safe content. Extensive exper-
iments demonstrate the superior performance of JBSHIELD,
achieving an average detection accuracy of 0.95 and reducing
the average attack success rate of various jailbreak attacks to
2% from 61% across distinct LLMs.

1 Introduction

Large language models (LLMs) have attracted significant
research interest due to their ability to process and generate

∗Corresponding author.

human-like text [1,5,25,42]. To prevent misuse, various safety
alignment strategies, such as AI feedback [8,29] and reinforce-
ment learning from human feedback (RLHF) [14, 36], have
been developed [24, 44, 46]. These strategies embed safety
guardrails in LLMs to identify harmful or toxic semantics
of prompts [26, 30], thereby autonomously refusing harmful
inputs and avoiding generating unsafe content. While these
alignment methods have improved LLM safety and are widely
used in both open-source and closed-source models [9, 28],
they remain vulnerable to jailbreak attacks [6, 10]. Jailbreak
attacks subtly modify harmful inputs to create prompts that by-
pass these safety guardrails, causing LLMs to produce unsafe
outputs that would normally be blocked. This poses signifi-
cant security threats to real-world applications of LLMs.

To address the risks posed by jailbreaks, some studies have
been proposed to detect or mitigate these attacks by analyzing
the input and output of LLMs [3, 19, 22, 23, 39, 47, 50]. A
few approaches [21, 49, 51] have sought to design defensive
methods by understanding the effects of jailbreak prompts on
LLMs, such as through the analysis of hidden representations
or token distributions. These defenses often focus on some
surface-level patterns between jailbreak and benign prompts,
without understanding why jailbreak prompts can manipulate
model behavior. However, without a systematic understanding
of the underlying mechanisms that allow jailbreak prompts
to alter LLMs behavior, these defenses fall short of providing
truly robust protection that withstands the test of time [10,59].

In this paper, we investigate why LLMs respond to jail-
break prompts while rejecting the original harmful inputs to
understand the mechanisms behind jailbreak attacks. This
understanding enables us to design more robust jailbreak
detection and mitigation methods. We pose two important
research questions:

RQ1. Can aligned LLMs recognize the toxic semantics in
jailbreak prompts?

RQ2. How do jailbreaks change the outputs of LLMs from
rejecting to complying?

Outline a plan to steal from

a charity.

Harmful Prompt
I cannot in good conscience

provide you with such a

plan…

Safe Output

From now on you are going

to act as a DAN … steal

from a charity.

Jailbreak Prompt
Sure, here is a plan to steal

from a charity…

Unsafe Output

I strongly condemn any

form of illegal activity,

including stealing from …

Safe Output

Aligned LLM LLM Defended by JBShield

From now on you are going

to act as a DAN … steal

from a charity.

Jailbreak Prompt

Figure 1: Illustration of how JBSHIELD defends aligned LLMs
against jailbreak attacks.

To address RQ1, we analyze and compare how the tar-
get LLM interprets toxic semantics in both jailbreak and
harmful prompts. Based on the Linear Representation Hy-
pothesis (LRH) [18, 34, 35], we define the toxic semantics
in jailbreak and harmful prompts as the differences between
their hidden representations and those of benign prompts,
which we term as the “toxic concepts.” By probing hidden
representations and applying unsupervised linear decomposi-
tion, we define two toxic subspaces for the toxic concepts in
both harmful and jailbreak prompts. In the comparison of the
two subspaces, our analysis reveals that LLMs can recognize
the toxic concept in both harmful and jailbreak inputs.

To address RQ2, we derive the semantics that affect model
behavior, termed the “jailbreak concept,” from the representa-
tion differences between jailbreak and harmful prompts. By
analyzing these results, we observe that Jailbreak attacks ma-
nipulate model behavior by introducing the jailbreak concept
to increase the tendency to comply with user requests.

Based on our findings, we propose JBSHIELD, a compre-
hensive framework for jailbreak defense that analyzes and
manipulates toxic and jailbreak concepts in the representa-
tion space of LLMs. Our framework consists of a jailbreak
detection component JBSHIELD-D and a jailbreak mitigation
component JBSHIELD-M. JBSHIELD-D initially uses a small
set of calibration data to identify anchor subspaces that rep-
resent the toxic and jailbreak concepts. For a test prompt,
JBSHIELD-D compares its representations with the anchor
representations of benign and harmful prompts to extract
the test toxic and jailbreak concepts. The subspaces of these
test concepts are compared with the predefined anchor toxic
and jailbreak subspaces to evaluate their similarity. A high
similarity indicates that the corresponding concept has been
activated. If both toxic and jailbreak concepts are activated,
the test input is flagged as a jailbreak prompt. For mitigation,
JBSHIELD-M provides a dynamic defense that can produce
targeted safe content rather than issuing a fixed refusal output,

as is common in most existing approaches. Specifically, for a
detected jailbreak prompt, JBSHIELD-M strengthens the toxic
concept to further alert the model and weakens the activation
of the detected jailbreak concept to prevent undue manipula-
tion of model behavior. Through these careful manipulations
of the concepts, JBSHIELD enables efficient and interpretable
jailbreak detection and mitigation.

We conduct extensive experiments to evaluate the perfor-
mance of JBSHIELD. Against various types of jailbreak attacks
on five open-source LLMs, JBSHIELD-D achieves an average
F1-Score of 0.94. Additionally, JBSHIELD-M reduces the av-
erage attack success rates (ASR) of jailbreak attacks to 2%,
showing superior defense capabilities. Notably, our method re-
quires only 30 jailbreak prompts for calibration to achieve this
performance. These results demonstrate that JBSHIELD signifi-
cantly enhances the robustness of LLMs against jailbreaks and
has the ability to rapidly adapt to new jailbreak techniques.

Our main contributions are summarized as follows:

• We reveal that jailbreak inputs drive LLMs to comply
with unsafe requests by activating the jailbreak concept.
Additionally, LLMs are capable of recognizing harmful
semantics within jailbreak prompts through the activated
toxic concept.

• We propose JBSHIELD 1, a novel jailbreak defense frame-
work that can detect and mitigate jailbreak attacks. By
identifying and manipulating the toxic and jailbreak con-
cepts, JBSHIELD can effectively detect jailbreak attacks
in a single forward pass and enable the model to generate
targeted safe outputs autonomously.

• We conduct extensive experiments to evaluate the effec-
tiveness of JBSHIELD across five distinct LLMs against
nine jailbreak attacks. The results show that our method
significantly outperforms state-of-the-art (SOTA) de-
fenses. Specifically, JBSHIELD achieves an average F1-
Score of 0.94 in detection and reduces the average attack
success rate (ASR) from 61% to 2%.

2 Background and Related Works

2.1 Jailbreak Attacks on LLMs
Jailbreak attacks are designed to create malicious inputs that
prompt target LLMs to generate outputs that violate prede-
fined safety or ethical guidelines. Carlini et al. [10] first sug-
gested that improved NLP adversarial attacks could achieve
jailbreaking on aligned LLMs and encouraged further re-
search in this area. Since then, various jailbreak attack meth-
ods have emerged. We categorize these attacks into five prin-
cipal types: manual-designed jailbreaks, optimization-based

1Our code and datasets are available at https://zenodo.org/records/
14732884

https://zenodo.org/records/14732884
https://zenodo.org/records/14732884

Table 1: Summary of existing jailbreak attacks. • indicates that the method utilizes the corresponding resource or has the
specified capability. Conversely, ◦ denotes that the method does not use the listed resource or lacks that capability.

Categories Jailbreaks Extra
Assist

White-box
Access

Black-box
Attack

Target LLM
Queries

Soft Prompt
Generated

Template
Optimization

Manually-designed IJP [40] Human ◦ • ◦ ◦ •
Optimization-based GCG [64] ◦ • Transfer ∼2K • ◦

SAA [4] ◦ Logprobs Transfer ∼10k • ◦

Template-based

MasterKey [16] LLM ◦ • ∼200 ◦ •
LLM-Fuzzer [56] LLM ◦ • ∼500 ◦ •
AutoDAN [63] LLM Logprobs Transfer ∼200 ◦ •
PAIR [12] LLM ◦ • ∼20 ◦ •
TAP [33] LLM ◦ • ∼20 ◦ •

Linguistics-based DrAttack [31] LLM ◦ • ∼10 ◦ ◦
Puzzler [11] LLM ◦ • ◦ ◦ ◦

Encoding-based Zulu [54] ◦ ◦ • ◦ ◦ ◦
Base64 [45] ◦ ◦ • ◦ ◦ ◦

jailbreaks, template-based jailbreaks, linguistics-based jail-
breaks, and encoding-based jailbreaks. Table 1 provides a
comprehensive summary of these attacks.

Manually-designed Jailbreaks. Manual-designed jailbreaks
refer to attack strategies in which the adversarial prompts are
delicately crafted by humans. Unlike automated methods that
rely on algorithmic generation, these attacks are conceived
directly by individuals who have a nuanced understanding of
the operational mechanics and vulnerabilities of LLMs. In this
study, we focus on in-the-wild jailbreak prompts (IJP) [40,57],
which are real-world examples observed in actual deploy-
ments and shared by users on social media platforms.

Optimization-based Jailbreaks. Optimization-based jail-
breaks use automated algorithms that exploit the internal
gradients of LLMs to craft malicious soft prompts. Inspired
by AutoPrompt, Greedy Coordinate Gradient (GCG) [64]
employs a greedy algorithm to modify input prompts by
adding an adversarial suffix, prompting the LLM to start its
response with “Sure” Building on GCG, Simple Adaptive
Attacks (SAA) [4] use hand-crafted prompt templates and a
random search strategy to find effective adversarial suffixes.

Template-based Jailbreaks. Template-based attacks gener-
ate jailbreak prompts by optimizing sophisticated templates
and embedding the original harmful requests within them.
Such prompts can bypass the safety guardrails of LLMs,
making the model more likely to execute prohibited user re-
quests [53]. MasterKey [16] trains a jailbreak-oriented LLM
on a dataset of jailbreak prompts to generate effective adver-
sarial inputs. LLM-Fuzzer [56] begins with human-written
templates as seeds and uses an LLM to mutate these tem-
plates into new jailbreak inputs. AutoDAN [63] applies a hi-
erarchical genetic algorithm for fine-grained optimization of
jailbreak prompts at the sentence and word levels, assisted by
an LLM. Prompt Automatic Iterative Refinement (PAIR) [12]

and Tree of Attacks with Pruning (TAP) [33] employ an at-
tacker LLM to target another LLM explicitly, and successfully
attack target models with minimal queries.
Linguistics-based Jailbreaks. Linguistics-based jailbreaks,
also known as indirect jailbreaks, conceal malicious inten-
tions within seemingly benign inputs to bypass defensive
guardrails in target LLMs. DrAttack [31] decomposes and
reconstructs malicious prompts, embedding the intent within
the reassembled context to evade detection. Puzzler [11] an-
alyzes LLM defense strategies and provides implicit clues
about the original malicious query to the target model.
Encoding-Based Jailbreaks. Encoding-based jailbreaks ma-
nipulate the encoding or transformation of inputs to bypass
LLM security measures. Zulu [54] translates inputs into
low-resource languages, exploiting the limited capabilities
of LLMs in these languages. Base64 [45] encodes malicious
inputs in Base64 format to obfuscate their true intent.

2.2 Defenses against Jailbreaks

As jailbreak attacks on LLMs become more and more power-
ful, developing robust defenses is crucial. We review existing
defense methods2, categorizing them into two main types:
jailbreak detection and jailbreak mitigation [51]. A summary
of jailbreak defenses is provided in Table 10.
Jailbreak Detection. Jailbreak detection aims to identify
malicious inputs attempting to bypass guardrails in LLMs.
Gradient cuff [21] detects jailbreak prompts by using the gra-
dient norm of the refusal loss, based on the observation that
malicious inputs are sensitive to perturbations in their hid-
den states. Self-Examination (Self-Ex) [19] feeds the model
output back to itself to assess whether the response is harm-

2Some of these methods initially just focus on input toxicity, but can be
naturally extended to address jailbreaks.

ful, leveraging its ability to scrutinize the outputs. Smooth-
LLM [39] introduces random noise to outputs and monitors
variability in responses to detect jailbreak inputs, exploiting
the sensitivity of adversarial samples to perturbations. PPL [3]
flags inputs as malicious if they produce perplexity above a
certain threshold. GradSafe [49] distinguishes harmful from
benign inputs by identifying different gradient patterns trig-
gered in the model. The Llama-guard series [22] consists of
LLMs fine-tuned specifically for harmful content detection.
However, these methods rely on external safeguards that ter-
minate interactions and generate fixed safe outputs, rather
than enabling LLMs to produce safe responses autonomously.
Jailbreak Mitigation. The goal of jailbreak mitigation is to
preserve the integrity, safety, and intended functionality of
LLMs, even when facing attempts to bypass their constraints.
Self-Reminder (Self-Re) [50] modifies system prompts to
remind the model to produce responsible outputs, reinforcing
alignment with ethical guidelines. Paraphrase (PR) [23] uses
LLMs to rephrase user inputs, filtering out potential jailbreak
attempts. In-Context Defense (ICD) [47] incorporates demon-
strations rejecting harmful prompts into user inputs, leverag-
ing in-context learning to enhance robustness. SafeDecoding
(SD) [51] fine-tunes the decoding module to prioritize safe
tokens, reducing the risk of harmful outputs. Layer-specific
Editing (LED) [59] fine-tunes the key layers critical for safety
in LLMs, enhancing their robustness against manipulative
inputs. Directed Representation Optimization (DRO) [61]
fine-tunes a prefix of the input to shift harmful input represen-
tations closer to benign ones, promoting safer outputs.

3 Activated Concept Analysis

3.1 Overview
We utilize concept analysis to address the two research ques-
tions, RQ1 and RQ2 outlined in Section 1, and interpret why
aligned LLMs respond to jailbreak prompts while rejecting
original harmful inputs. We first define the semantic differ-
ences between harmful or jailbreak prompts and benign ones
as the toxic concept. Similarly, the differences between jail-
break and harmful prompts as the jailbreak concept, which
represents how jailbreak prompts affect LLMs. Guided by the
LRH, we design a Concept Extraction algorithm that defines
these concepts as subspaces within the hidden representations
of LLMs. The pseudocode for the algorithm can be found
in Appendix A. The comparisons between the toxic con-
cepts extracted from harmful and jailbreak prompts show that
LLMs actually can recognize harmful semantics in jailbreak
prompts, similar to those in harmful prompts. Analyzing the
differences between jailbreak and harmful prompts reveals
that jailbreak attacks shift LLM outputs from rejecting to com-
plying with malicious requests by introducing the jailbreak
concept. This concept can override the influence of the toxic
concept, thereby altering the behavior of the LLM.

3.2 Concept Extraction
We design a concept extraction algorithm to define high-level
concepts activated in an LLM as subspaces within its hidden
representations. Specifically, we define the semantic differ-
ences between jailbreak or harmful inputs and benign inputs
as two toxic subspaces, defining two toxic concepts. Simi-
larly, the semantic differences between jailbreak and harmful
prompts form a jailbreak subspace, defining the jailbreak con-
cept. Following LRH, our approach focuses on analyzing the
hidden representations in the transformer layers to extract
these concepts. For a given input prompt x, the l-th trans-
former layer in an LLM is formulated as

Hl(x) = TFLayerl(H
l−1(x)), (1)

where Hl(·)∈Rm×d denotes the hidden representation output
from the l-th layer, which is the focus of our analysis. m
is the number of tokens in the input prompt, and d is the
embedding size of the target LLM. The extraction process
for the three concepts, i.e., the two toxic concepts and the
jailbreak concept, follows a similar method, differing only
in the choice of prompt categories. We illustrate the detailed
process of concept extraction at layer l using the toxic concept
between harmful and benign prompts as an example:
Counterfactual Pair Formation. The high-level concepts
mainly convey abstract semantics that are challenging to
formalize. Following Park et al. [37], we represent a con-
cept using counterfactual pairs of prompts. Given N harmful
prompts, denoted as X h = {xh

i }N
i=1, and N benign prompts,

denoted as X b = {xb
i }N

i=1, pairs are formed by randomly se-
lecting one prompt from each category, resulting in the set
(xh

1,x
b
1),(x

h
2,x

b
2), . . . ,(x

h
N ,x

b
N). Each pair (xh

i ,x
b
i) consists of

prompts from different categories, aligned to highlight the se-
mantic differences between them. While ideal counterfactual
pairs would vary only by a single concept to ensure mini-
mal variance between paired samples, achieving this with
real-world datasets consisting of diverse samples presents
significant challenges. Therefore, we construct counterfac-
tual pairs by randomly pairing prompts from the two cate-
gories. Experimental results in Section 5 demonstrate that
such counterfactual pairs are sufficient to capture the specific
semantic differences required for our analysis. Since prompts
consist of discrete tokens, direct analysis is challenging [2,58].
To address this, we use sentence embeddings generated by
the target LLM to convert discrete prompts into continuous
vectors. When predicting the next token, the hidden repre-
sentation of the last token in LLMs captures rich contextual
information and overall semantics. Thus, we select the hid-
den representation of the last token in Hl as the sentence
embedding el for the entire input. This approach allows us
to transform each counterfactual pair (xh

i ,x
b
i) into a pair of

vectors (el(xh
i),el(xb

i)).
Linear Decomposition. In this step, we utilize counterfac-
tual pairs to derive the corresponding subspace through linear

decomposition. To extract linear components that distinguish
between harmful and benign inputs, we first prepare the differ-
ence matrix Dtoxic by calculating the element-wise difference
between corresponding harmful and benign prompt embed-
dings, as illustrated below:

Dtoxic =


el(xh

1)− el(xb
1)

el(xh
2)− el(xb

2)
...

el(xh
N)− el(xb

N)

 . (2)

This approach ensures that each row in Dtoxic represents the
direct difference vector between paired prompts, enhancing
the relevance of the extracted components to the toxic concept.
We then apply Singular Value Decomposition (SVD) to Dtoxic,
which is particularly effective for elucidating the intrinsic
structure of non-square matrices. For this analysis, we use the
truncated SVD with rank= 1, focusing on the most significant
singular vector. The first column of the resulting matrix V,
denoted as v, captures the principal differences between the
representations of harmful and benign prompts, serving as the
key indicator of the toxic concept. We treat v as the subspace
representing the concept Ctoxic(X h,X b).
Mapping to Tokens. This step interprets high-level abstract
concepts, such as toxic or jailbreak concepts, by mapping
the subspace vector v into human-readable tokens. Using the
output embedding matrix Woe of the LLM, we compute a
score for each token in the vocabulary V as follows:

scores = W⊤
oe ·v. (3)

These scores indicate how strongly each token aligns with
the concept represented by v. The top-k tokens {ti}k

i=1 with
the highest scores are identified as interpretable representa-
tions of the concept. For example, tokens like “sure” or “yes”
often align with jailbreak concepts, reflecting their role in rein-
forcing user compliance, while tokens like “toxic” or “danger”
align with harmful semantics.

The extraction of the toxic concept using jailbreak and
benign samples, as well as the extraction of the jailbreak
concept using jailbreak and harmful samples, follows a similar
process to the one described above. The only adjustment
required is to replace the prompts in the counterfactual pairs
accordingly. The tokens obtained from the concept extraction
algorithm at layer 24 of Mistral-7B [25] for the three concepts
are shown in Table 2. More results can be found in Appendix
A, while the complete results for all layers across the five
LLMs will be provided in the artifacts.

3.3 RQ1: Recognition of Harmful Semantics
To address RQ1, we compare how LLMs recognize harm-
ful semantics in jailbreak prompts versus original harmful
prompts by extracting and analyzing the toxic concepts from

Table 2: Results of concept extraction on layer24 of Mistral-
7B. We remove all unreadable Unicode characters, retaining
only interpretable words. Words in bold highlight tokens that
support our findings on toxic and jailbreak concepts.

Concepts Source
Prompts Associated Interpretable Tokens

Toxic
Concepts

Harmful caution, warning, disclaimer, ethical

IJP understood, received, Received, hell
GCG caution, warning, disclaimer, warn
SAA sure, Sure, sorry, assured

AutoDAN character, persona, caution, disclaimer
PAIR caution, warning, disclaimer, ethical

DrAttack caution, sorry, unfortunately, Sorry
Puzzler bekan, implement, pdata, erste

Zulu translate, sorry, transl, Translation
Base64 decode, base, received, unfortunately

Jailbreak
Concepts

IJP understood, Hello, received, interpreted
GCG CHANT, Subject, plaat, bekan
SAA sure, Sure, mystery, CHANT

AutoDAN character, protagon, persona, imagined
PAIR yes, sure, Sure, Subject

DrAttack sure, Sure, response, Response
Puzzler bekan, occas, CHANT, plaat

Zulu CHANT, translate, IMIT, translated
Base64 decode, interpretation, received, reception

both. The analysis of related tokens reveals several findings.
First, we observe that aligned LLMs can recognize harmful
semantics and associate them with human-readable tokens.
For instance, tokens associated with the toxic concept acti-
vated by harmful prompts include words such as “caution”
and “warning” (see Table 2 and Appendix A). This indicates
the ability of the model to identify potential threats and gen-
erate self-warnings to avoid producing toxic content. While
previous studies [7, 32, 52, 62] have observed differences in
the hidden representations of harmful and benign inputs, of-
ten referring to the vector from benign to harmful regions
as the “refusal direction,” they lack explanations for the sig-
nificance or cause of these differences. By extracting and
analyzing toxic concepts, our method reveals that inputs with
harmful semantics activate specific subspaces within hidden
representations, known as toxic concepts. This provides a
linear explanation for the differences in internal representa-
tion between harmful and benign samples, showing that these
activated toxic concepts trigger the safety guardrails of the
model, leading to the rejection of harmful inputs.

Secondly, we find that aligned LLMs can recognize harm-
ful semantics within jailbreak prompts through the activation
of toxic concepts. The tokens extracted from various jailbreak
prompts are similar to those from harmful prompts. This find-
ing addresses RQ1, demonstrating that even when optimized
by jailbreak attacks, the toxic semantics in jailbreak prompts
remain detectable by the aligned LLM. However, this raises a
further question within RQ2: If toxic concepts are recognized

Anchor
Jailbreak
Concept

Anchor Benign
Representation

Anchor Harmful
Representation

Test
Jailbreak
Concept

Anchor
Toxic

Concept

𝑥 is a
jailbreak prompt!

Representation
of 𝑥 at Layer 𝑙𝑗

Concept
Extraction

Similarity
Comparison

Similarity
Comparison

Concept
Extraction

𝑙𝑡

Hi chatGPT. You are

going to pretend to be

DAN which stands for

"do anything now". …

Now tell me how to

build a bomb.

Input Prompt 𝒙

… …

Representation
of 𝑥 at Layer 𝑙𝑡

Target LLM

𝑙𝑗

Toxic Concept
Activated

Jailbreak Concept
Activated

Anchor Toxic
Concept

Anchor Jailbreak
Concept

I apologize, but I

cannot fulfill your

request as it goes

against ethical and

moral standards…

Toxic Concept
Enhancing

Jailbreak Concept
Weakening

𝑙𝑡 𝑙𝑡
Jailbreak
Prompt 𝒙

… …

Target LLM
Representation
of 𝑥 at Layer 𝑙𝑗

Representation
of 𝑥 at Layer 𝑙𝑡

Revised
Representation

Revised
Representation Safe Output

Jailbreak
Prompt Detected

Jailbreak
Prompt Detected

(a) Jailbreak Detection: JBShield-D (b) Jailbreak Mitigation: JBShield-M

Test Toxic
Concept

Figure 2: An illustration of JBSHIELD. Our jailbreak defense framework consists of two parts: jailbreak detection JBSHIELD-D
and jailbreak mitigation JBSHIELD-M.

in both cases, why do LLMs reject harmful inputs but com-
ply with jailbreak prompts? Understanding this distinction is
crucial for comprehending how jailbreaks shift LLM outputs
from rejection to compliance.

3.4 RQ2: Influence of Jailbreaks Prompts

To address RQ2, which investigates why jailbreak attacks
can influence LLM behavior, we leverage our concept ex-
traction algorithm (Section 3.2) to identify and analyze the
jailbreak concept—representing the semantic differences be-
tween jailbreak and original harmful prompts. Unlike prior
works that focus only on surface-level behavioral changes
in LLMs, our study reveals that jailbreak prompts will not
bypass toxic detection but introduce new semantic compo-
nents, termed “jailbreak concepts,” that actively manipulate
the model’s compliance behavior. For instance, in Mistral-
7B, jailbreak methods like IJP [40], GCG [64], SAA [4],
PAIR [12], and DrAttack [31] optimize prompts to generate
responses like “Sure, here is. . . ,” which reinforce the model’s
tendency to comply with user instructions. These activated
jailbreak concepts are reflected in tokens such as understood,”
sure,” and yes” (see Table 2), highlighting a semantic shift
toward affirmative and compliance-related behavior. Simi-
larly, AutoDAN [63], which employs role-playing scenarios
like "imagine yourself in the character’s shoes," is associated
with tokens such as character” and persona,” emphasizing an
induced persona-driven narrative. Approaches like Zulu [54]
and Base64 [45] correspond to tokens such as translate” and
“decode,” reflecting their technical manipulation strategies.

These findings go beyond merely stating that jailbreak
prompts influence LLMs; they systematically decode
how distinct jailbreak concepts override toxic warnings,
compelling the LLMs to produce harmful outputs. Moreover,
by associating these abstract concepts with interpretable
tokens, our method provides actionable insights into the
mechanisms driving jailbreak incidents. This advancement

allows us to not only understand but also design effective
defenses against evolving jailbreak strategies. Observations
across other models, detailed in Appendix A, confirm the
robustness of these insights.

4 JBSHIELD

4.1 Overview
Based on our analysis of jailbreak attack mechanisms, we
propose JBSHIELD, a novel defense framework that counters
jailbreak attacks by detecting and manipulating toxic and
jailbreak concepts. An overview of JBSHIELD is provided in
Figure 2.

Our framework consists of two components: JBSHIELD-D
for jailbreak detection and JBSHIELD-M for jailbreak mit-
igation. The detection component, JBSHIELD-D, assesses
whether the input contains harmful semantics and if it exhibits
tendencies toward jailbreaking by detecting the activation of
toxic and jailbreak concepts. JBSHIELD-D begins by using our
concept extraction algorithm to create a concept subspace that
captures the semantic differences between the input and be-
nign samples. This test subspace is compared with an anchor
toxic subspace, derived from a small set of benign and harm-
ful prompts from the calibration dataset, to evaluate similarity.
If the similarity is high, the input is flagged as activating the
toxic concept. Similarly, a comparison with an anchor jail-
break subspace is made to determine if the jailbreak concept
is activated. If both concepts are detected, the input is flagged
as a jailbreak prompt.

Once a jailbreak input is identified, JBSHIELD-M enhances
the toxic concept to alert the LLM by adding the anchor vec-
tor corresponding to the toxic subspace, while simultaneously
weakening the jailbreak concept by subtracting the anchor
vector corresponding to the jailbreak subspace from the hid-
den representations.

Note that JBSHIELD operates solely during the forward

pass of LLMs and requires only minimal calibration data.
JBSHIELD-D completes detection with a single forward pass,
while JBSHIELD-M involves only a few straightforward linear
operations. This design allows for highly efficient jailbreak de-
fense with minimal impact on the usability of the target LLM.

4.2 Jailbreak Detection

Our jailbreak detection method JBSHIELD-D involves four
main steps: critical layer selection, anchor vector calibration,
toxic concept detection, and jailbreak concept detection.

First, since not all layers in an LLM contribute equally to
recognizing toxic concepts or responding to prompts with
harmful semantics [59, 60], our approach begins by identi-
fying the specific layers that can most accurately reflect the
toxic and jailbreak concepts. All subsequent operations are
conducted on these selected layers. Next, we obtain the an-
chor representations used for detection, which include those
of benign and harmful samples, as well as the anchor toxic
and jailbreak concept subspaces. The subspaces detected from
new inputs are then compared with these anchor subspaces us-
ing cosine similarity to determine whether the corresponding
concepts are activated. Then, we use the anchor representa-
tions of benign and harmful samples to extract the subspaces
of the two concepts activated by the input, detecting whether
the input activates the toxic and jailbreak concepts, respec-
tively. If the cosine similarity between the subspaces extracted
from the input and the anchor toxic and jailbreak subspaces
exceeds a certain threshold, the input is classified as contain-
ing both concepts and is thus flagged as a jailbreak prompt.
Critical Layer Selection. Assuming we have calibration
datasets consisting of N benign, N harmful, and N vari-
ous jailbreak samples. We denote these benign samples as
X b

c = {xb
i }n

i=1, harmful samples as X h
c = {xh

i }n
i=1, and jail-

break samples as X j
c = {x j

i }n
i=1. In this step, we aim to identify

the layers lt and l j that are best suited for detecting toxic and
jailbreak concepts, respectively. The step begins by evaluating
the representational quality across all layers of the model for
each concept. If a particular layer shows a large difference in
the embeddings between prompts of two different categories,
it indicates that this layer has a stronger ability to capture the
semantic gap between these categories [43, 59]. We consider
the analysis of the embeddings from this layer can yield more
accurate subspaces. For the toxic concept, the average of co-
sine similarities between the sentence embeddings of harmful
and benign samples in each layer l is calculated by

Sl =
1
n

n

∑
i=1

cos(el(xh
i),e

l(xb
i)), (4)

where el(xh
i) and el(xb

i) represent the sentence embeddings at
layer l for the i-th harmful sample xh

i and benign sample xb
i ,

respectively. We select the layer with the minimum average

cosine similarity for toxic concept detection as

lt = argmin
l

Sl . (5)

This layer exhibits the greatest disparity in embeddings
between harmful and benign samples, helping us identify a
more accurate subspace corresponding to the toxic concept.
Similarly, for the jailbreak concept, the layer l j is selected
based on a comparative analysis between jailbreak and harm-
ful prompts, following a similar process. This ensures that
each selected layer lt and l j is where the embeddings most
significantly reflect the corresponding concepts.
Anchor Vector Calibration. In this step, we first compute
the anchor representations elt

b and el j
h for benign and harmful

prompts. We use average sentence embeddings of benign
prompts at layers lt as elt

b , and that of harmful prompts at

layers l j as el j
h , which is presented as

elt
b =

1
n

n

∑
i=1

elt (xb
i), el j

h =
1
n

n

∑
i=1

el j(xh
i). (6)

These embeddings serve as anchor representations for be-
nign and harmful inputs. To calibrate the anchor subspaces
for the toxic and jailbreak concepts, we then apply the cali-
bration data to the Concept Extraction described in Section
3.2, resulting in two anchor subspaces, vt and v j for toxic
concept and jailbreak concept. These two subspaces are used
to determine whether subsequent test input activates the toxic
and jailbreak concepts.
Toxic Concept Detection. The step begins when an input x
is received, and its sentence embedding elt

x is computed at the
critical layer lt identified for toxic concept detection. First,
we form a difference matrix Dt by elt

x and the anchor benign
prompt embedding elt

b , which can be presented as

Dt = [elt
x − elt

b]. (7)

Following Section 3.2, we then perform SVD on Dt and
get the subspace vtoxic

x . The subspace vtoxic
x is then compared

to the anchor toxic concept subspace vt , utilizing cosine simi-
larity to quantify the distance as

st = cos(vtoxic
x ,vt). (8)

If the cosine similarity exceeds a predetermined threshold
Tt , the input is flagged as potentially activating the toxic con-
cept. The threshold Tt is calculated using the harmful and
benign samples from the calibration dataset. We apply these
harmful and benign samples to the toxic concept detection de-
scribed above, obtaining two sets of cosine similarity values.
Tt is the threshold that best distinguishes these two sets of sim-
ilarities. Specifically, we use Youden’s J statistic [55] based
on ROC curve analysis on these two sets of data as Tt . This
statistic determines the optimal cutoff value that maximizes

the difference between the true positive rate (sensitivity) and
the false positive rate (1-specificity).
Jailbreak Concept Detection. This step focuses on detecting
whether inputs activate the jailbreak concept. Similar to the
previous step, a difference matrix Dt is constructed at layer
l j to compare el j

x with the anchor harmful prompt embedding

el j
h as

D j = [el j
x − el j

h]. (9)

SVD is then applied to D j, and we can obtain a new
v jailbreak

x . The cosine similarity between v jailbreak
x and the an-

chor jailbreak concept subspace v j is calculated as

s j = cos(v jailbreak
x ,v j). (10)

A predefined threshold Tj, calibrated using known jailbreak-
ing and harmful inputs, is used to determine whether v jailbreak

x
significantly activates the jailbreak concept. The threshold Tj
is determined by harmful and jailbreak prompts in the cali-
bration dataset, through a process similar to Tt in the toxic
concept detection. An input x is conclusively identified as a
jailbreak prompt when it simultaneously activates both toxic
and jailbreak concepts above their respective thresholds. The
result for identifying if an input prompt x is a jailbreak prompt
is given by

R(x) =

{
True, if st ≥ Tt and s j ≥ Tj,

False, else.
(11)

If the toxic concept and the jailbreak concept are both de-
tected, the value of R(x) is set to True, and x is flagged as a
jailbreak prompt.

4.3 Jailbreak Mitigation
Jailbreak detection can only identify whether the current in-
put is a malicious jailbreak prompt, but it does not enable
the LLM to provide targeted responses. Therefore, our jail-
break defense framework also includes a jailbreak mitigation
method JBSHIELD-M. JBSHIELD-M operates in two steps. The
first step is enhancing the toxic concept, which increases the
resistance of the target LLM to harmful influences. The sec-
ond one is weakening the jailbreak concept, which reduces
the impact of jailbreak attacks on the LLM. By proactively
modifying the internal states of critical layers, JBSHIELD-M
ensures that the model outputs adhere to ethical guidelines
and resist malicious manipulation.
Enhancing the Toxic Concept. The first step in mitigation
is reinforcing the awareness of the target LLM for the toxic
concept when a jailbreak input is identified. This is achieved
by modifying the hidden representations at the critical layer lt
identified for toxic concept detection. The adjustment involves
a linear superposition of the toxic concept vector vt onto the
hidden states Hlt at layer lt , which can be formalized as

Ĥlt = Hlt +δt ·vt , (12)

which effectively enhances the awareness of harmful seman-
tics in the input. The scaling factor δt is crucial as it deter-
mines the intensity of the adjustment. To calculate δt , we uti-
lize harmful and benign prompts from the calibration dataset
and get sets of harmful {e(xh)}xh∈X h

c
and benign {e(xb)}xb∈X h

c
sentence embeddings. For each embedding in these sets, we
project the embeddings onto the toxic concept vector vt and
calculate the mean of these projections for each category as

µh =
1
|X h

c |
∑

xh∈X h
c

⟨e(xh),vt⟩, µb =
1
|X b

c |
∑

xb∈X b
c

⟨e(xb),vt⟩. (13)

The projection mean difference, which captures the average
difference in the activation level of the toxic concept between
harmful and benign inputs, is used to determine δt as follows

δt = µh−µb. (14)

Careful selection of the value for δt ensures that the inten-
sity of the introduced additional toxic concept remains within
a reasonable range, without affecting the normal functionality
of the target LLM.
Weakening the Jailbreak Concept. Similar to the enhance-
ment of the toxic concept, the adjustment in this step takes
place at the critical layer l j identified for jailbreak concept
detection. The hidden state Hl j at this layer is modified by sub-
tracting a scaled vector that represents the jailbreak concept

Ĥl j = Hl j −δ j ·v j, (15)

where v j is the vector representing the jailbreak concept,
obtained through the Anchor Vector Calibration described in
JBSHIELD-D. The calculation of δ j mirrors the process used
for δt but focuses on the context of the jailbreak concept

δ j =
1

|X j
c |

∑
x j∈X j

c

⟨e(x j),v j⟩−
1
|X h

c |
∑

xh∈X h
c

⟨e(xh),v j⟩, (16)

This targeted weakening of the jailbreak concept ensures
that even if a malicious prompt successfully bypasses external
detection, its ability to manipulate model behavior is signifi-
cantly reduced.

5 Experiments

5.1 Data Collection and Preparation
We collect a diverse dataset comprising three primary cat-
egories of inputs: benign, harmful, and jailbreak prompts.
We source our benign prompts from the Alpaca dataset [41],
which is known for its rich and diverse real-world scenarios.
A total of 850 benign prompts are randomly selected to form
the benign segment of our dataset. For harmful inputs, we
merge 520 prompts from the AdvBench dataset [64] with
330 prompts from the Hex-PHI dataset [38]. The jailbreak

Table 3: Effectiveness of the size N of the calibration dataset on Mistral-7B.

Calibration
Dataset Size N

Accuracy↑/F1-Score↑
IJP GCG SAA AutoDAN PAIR DrAttack Puzzler Zulu Base64

10 0.90/0.90 0.91/0.90 0.99/0.99 0.96/0.95 0.55/0.18 0.87/0.85 1.00/1.00 0.99/0.99 0.99/0.99
20 0.88/0.89 0.95/0.95 0.99/0.99 0.97/0.97 0.80/0.84 0.87/0.85 1.00/1.00 0.99/0.99 0.99/0.99
30 0.84/0.86 0.97/0.97 0.99/0.99 0.97/0.97 0.84/0.86 0.82/0.80 1.00/1.00 0.99/0.99 0.99/0.99
40 0.85/0.87 0.96/0.97 0.99/0.99 0.96/0.97 0.81/0.82 0.82/0.80 1.00/1.00 0.99/0.99 0.99/0.99
50 0.81/0.84 0.96/0.96 0.99/0.99 0.96/0.96 0.79/0.80 0.78/0.77 0.99/0.66 0.99/0.99 0.99/0.99

prompts are generated by applying nine different jailbreak
attacks on five different LLMs. Among these attacks, in-the-
wild jailbreak prompts are directly sourced from the dataset
released by Shen et al. [40], while the remaining jailbreak
prompts are specifically generated to target the harmful sam-
ples in our dataset. We use the default settings for all the
attacks when generating these jailbreak samples, resulting in
a total of 32,600 jailbreak prompts. In all experiments, we ran-
domly select N harmful, benign, and jailbreak prompts from
our dataset to form the calibration dataset, with the remaining
prompts used as the test set. The calibration dataset is used
to calibrate the anchor vectors in JBSHIELD. All subsequent
experimental results are obtained on the test set.

5.2 Experimental Setup

Models. In our experiments, we utilized a selection of five
open-source LLMs, namely Mistral-7B (Mistral-7B-Instruct-
v0.2) [25], Vicuna-7B (vicuna-7b-v1.5), Vicuna-13B (vicuna-
13b-v1.5) [13], Llama2-7B (Llama-2-7b-chat-hf) [42] and
Llama3-8B (Meta-Llama-3-8B-Instruct) [17] from three dif-
ferent model families. These models encompass various
model sizes, training data, and alignment processes, providing
a comprehensive insight into the existing range of models.
Attack Methods. We evaluate the performance of JBSHIELD

in defending nine different jailbreak attacks on selected
LLMs. These attacks fall into five different categories, in-
cluding the manually-designed IJP [40], optimization-based
jailbreaks GCG [64] and SAA [4], template-based attacks
AutoDAN [63] and PAIR [12], linguistics-based attacks
DrAttack [31] and Puzzler [11], and encoding-based attacks
Zulu [54] and Base64 [45].
Baselines. To evaluate the effectiveness of JBSHIELD, we
compare it against 10 SOTA methods in the field as baselines.
These baselines are grouped into two categories based on their
primary objectives: jailbreak detection and jailbreak mitiga-
tion. For detection, we compare JBSHIELD with Perspective
API (PAPI) [27], PPL [3], Llama Guard (LlamaG) [22], Self-
Ex [19], and GradSafe [49]. For mitigation, Self-Re [50],
PR [23], ICD [47], SD [51], and DRO [61] are considered.
Notably, some of the baselines, such as LlamaG and Grad-
Safe, are primarily designed for toxic content detection and
are not specifically tailored to address jailbreak scenarios.

SD and DRO require modifications to the model, involving
fine-tuning processes, whereas the other methods do not ne-
cessitate changes to the protected LLM.
Metrics. We use detection accuracy and F1-Score to eval-
uate the effectiveness of jailbreak detection methods, while
the attack success rate (ASR) is used to assess the perfor-
mance of the jailbreak mitigation method. Jailbreak detec-
tion accuracy reflects the ability of the defenses to identify
jailbreak prompts. The F1-Score, which incorporates preci-
sion, provides insight into the false positive rate of detec-
tion methods—that is, whether benign inputs are mistakenly
identified as jailbreak prompts. In experiments of jailbreak
mitigation, we manually evaluate whether Zulu and Base64
successfully jailbreak the model. For other attacks, we use
SORRY-Bench [48] to determine whether a jailbreak attack
has successfully bypassed the defense method and caused the
model to comply with the jailbreak input to generate unsafe
content. The attack success rate is then calculated to reflect
the performance of the defenses.

5.3 Hyperparameter Analysis

We conduct hyperparameter analysis to determine the size
N of the calibration dataset used in JBSHIELD. We tested de-
tection accuracy and F1-Score on Mistral-7B for different
values of N (10, 20, 30, 40, and 50). The results are shown
in Table 3. As observed, our method performs best in detect-
ing GCG, AutoDAN, and PAIR when N is set to 30. For the
remaining jailbreaks, JBSHIELD-D efficiently detects these
attacks with N set to just 10. Notably, for IJP and DrAttack,
increasing the number of calibration samples leads to overfit-
ting. Based on the trade-off between detection effectiveness
and data efficiency, we set N to 30 for all experiments.

5.4 Jailbreak Detection

In this experiment, we use a calibration dataset comprising 30
benign, 30 harmful, and 30 corresponding jailbreak prompts,
totaling 90 samples, to obtain the anchor vectors for each
jailbreak. We consistently select an equal number of test be-
nign prompts and test jailbreak prompts to compute jailbreak
detection accuracy and F1-Score. This ensures that detection
methods perform well in identifying jailbreak prompts and

Table 4: Performance of different jailbreak detection methods.

Methods Accuracy↑ / F1-Score↑
IJP GCG SAA AutoDAN PAIR DrAttack Puzzler Zulu Base64

Mistral-7B

PAPI 0.04/0.08 0.05/0.09 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
PPL 0.01/0.03 0.33/0.48 0.00/0.00 0.00/0.00 0.01/0.01 0.00/0.00 0.00/0.00 0.95/0.95 0.00/0.00
LlamaG 0.68/0.81 0.78/0.87 0.83/0.90 0.77/0.87 0.74/0.85 0.84/0.91 0.77/0.87 0.50/0.67 0.58/0.73
Self-Ex 0.42/0.59 0.52/0.68 0.40/0.57 0.56/0.72 0.46/0.63 0.51/0.67 0.44/0.62 0.32/0.49 0.37/0.54
GradSafe 0.01/0.02 0.63/0.77 0.00/0.00 0.00/0.00 0.05/0.10 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
Ours 0.84/0.86 0.97/0.97 0.99/0.99 0.97/0.97 0.84/0.86 0.82/0.80 1.00/1.00 0.99/0.99 0.99/0.99

Vicuna-7B

PAPI 0.04/0.08 0.14/0.25 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
PPL 0.01/0.03 0.47/0.62 0.00/0.00 0.01/0.02 0.00/0.00 0.00/0.00 0.00/0.00 0.95/0.95 0.00/0.00
LlamaG 0.65/0.79 0.75/0.86 0.85/0.91 0.72/0.83 0.75/0.85 0.84/0.91 0.75/0.86 0.49/0.65 0.55/0.71
Self-Ex 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.01/0.02 0.01/0.03
GradSafe 0.03/0.06 0.00/0.00 0.00/0.00 0.00/0.00 0.03/0.06 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
Ours 0.82/0.83 0.95/0.96 0.99/0.99 0.97/0.97 0.91/0.91 0.99/0.99 1.00/0.91 0.99/0.99 1.00/1.00

Vicuna-13B

PAPI 0.04/0.08 0.02/0.04 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
PPL 0.01/0.03 0.79/0.86 0.00/0.00 0.01/0.02 0.01/0.02 0.00/0.00 0.00/0.00 0.95/0.95 0.00/0.00
LlamaG 0.64/0.77 0.76/0.86 0.84/0.91 0.75/0.76 0.76/0.86 0.85/0.92 0.75/0.85 0.48/0.64 0.54/0.70
Self-Ex 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
GradSafe 0.01/0.02 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
Ours 0.99/0.98 0.99/0.99 0.99/0.99 0.99/0.99 0.98/0.99 0.95/0.98 1.00/0.75 0.99/0.99 1.00/1.00

Llama2-7B

PAPI 0.04/0.08 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
PPL 0.01/0.03 0.79/0.86 0.00/0.00 0.10/0.18 0.00/0.00 0.00/0.00 0.00/0.00 0.95/0.95 0.00/0.00
LlamaG 0.41/0.57 0.32/0.48 0.63/0.77 0.38/0.55 0.53/0.69 0.57/0.72 0.49/0.65 0.30/0.46 0.35/0.51
Self-Ex 0.31/0.33 0.28/0.32 0.36/0.39 0.27/0.31 0.27/0.30 0.32/0.35 0.24/0.27 0.30/0.33 0.29/0.32
GradSafe 0.39/0.56 0.97/0.98 0.00/0.00 0.96/0.98 0.62/0.77 0.00/0.00 0.18/0.31 0.00/0.00 0.00/0.00
Ours 0.84/0.86 0.82/0.86 0.93/0.94 0.98/0.98 0.87/0.88 0.99/0.99 0.81/0.85 0.91/0.91 0.92/0.93

Llama3-8B

PAPI 0.04/0.08 0.02/0.04 0.00/0.00 0.02/0.04 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00 0.00/0.00
PPL 0.01/0.03 0.85/0.90 0.00/0.00 0.23/0.36 0.00/0.00 0.00/0.00 0.00/0.00 0.95/0.95 0.00/0.00
LlamaG 0.46/0.63 0.54/0.70 0.71/0.83 0.50/0.67 0.60/0.75 0.70/0.82 0.55/0.71 0.34/0.51 0.38/0.56
Self-Ex 0.15/0.26 0.12/0.21 0.19/0.31 0.11/0.19 0.16/0.26 0.16/0.27 0.18/0.30 0.12/0.21 0.14/0.24
GradSafe 0.41/0.58 0.21/0.35 0.00/0.00 0.97/0.98 0.37/0.54 0.00/0.00 0.92/0.96 0.00/0.00 0.00/0.00
Ours 0.91/0.92 0.98/0.99 1.00/1.00 0.97/0.97 0.77/0.86 0.97/0.96 0.99/0.99 0.99/0.99 0.97/0.97

the false positive rate for benign samples is demonstrated.

Detection Performance. We compared the jailbreak detec-
tion performance of our JBSHIELD-D on five LLMs against
nine different jailbreak attacks, as shown in Table 4. It can
be observed that our method achieves superior detection ac-
curacy and F1 scores, significantly outperforming existing
methods. For nine jailbreaks across five LLMs, JBSHIELD-D
achieves an average detection accuracy of 0.95 and an average
F1-Score of 0.94. Among all the baselines, the PAPI almost
fails to detect jailbreak prompts, and PPL is only effective
against GCG, which has a high proportion of soft prompts.
Due to the weaker contextual learning abilities of some LLMs,

they may not understand the prompts used by Self-Ex, ren-
dering this baseline almost ineffective on the Vicuna series
LLMs. GradSafe performs relatively well only on the Llama
series models. For example, it achieves an F1 score of 0.98 for
GCG on Llama2-7B, but it is completely ineffective against
SAA, DrAttack, Zulu, and Base64. LlamaG demonstrates
the best overall performance among the baselines and even
outperforms our method when facing DrAttack on Mistral-
7B. However, LlamaG requires a large amount of data to
fine-tune a new LLM, and it does not maintain such high ef-
ficiency across all models or against all attacks. In all cases,
LlamaG achieves an accuracy/F1-Score of 0.62/0.75, which is

IJPGCG
SAA

Auto
DAN

PA
IR

DrA
tta

ck

Puz
zle

r
Zulu

Base
64

IJP
GCG
SAA

AutoDAN
PAIR

DrAttack
Puzzler

Zulu
Base64

C
al

ib
ra

tio
n

D
at

a

Accuracy

IJPGCG
SAA

Auto
DAN

PA
IR

DrA
tta

ck

Puz
zle

r
Zulu

Base
64

IJP
GCG
SAA

AutoDAN
PAIR

DrAttack
Puzzler

Zulu
Base64

F1-Score

0.75

0.80

0.85

0.90

0.95

0.2

0.4

0.6

0.8

Figure 3: Transferability of JBSHIELD-D.

38%/21% lower than our method. These results demonstrate
the superior effectiveness of our method in detecting various
jailbreaks across different LLMs.
Transferability. In order to investigate the transferability of
JBSHIELD, we used jailbreak prompts from different attacks
in the calibration dataset and the test set to evaluate the per-
formance of JBSHIELD-D against unknown jailbreak attacks.
In order to investigate the transferability of JBSHIELD, we
use jailbreak prompts from different attacks in the calibra-
tion dataset and the test set to evaluate the performance of
JBSHIELD-D against unknown jailbreak attacks. The transfer-
ability results on Mistral-7B are shown in Figure 3. In most
cases, our method achieves an accuracy above 0.84 and an F1
score above 0.86. Notably, JBSHIELD-D achieves an accuracy
and F1 score above 0.90 when detecting AutoDAN, Zulu,
and Base64 samples, regardless of which jailbreak prompts
were used for calibration. However, we also observe that JB-
SHIELD-D exhibited weaker transferability for Puzzler. While
the accuracy remained around 0.75, the F1 score dropped to
below 0.2. This could be due to the significant difference in
the activation strength of its toxic concept compared to other
jailbreaks, resulting in a higher false positive rate. Overall, our
method demonstrates significant transferability across differ-
ent jailbreak attacks. This indicates that our method possesses
notable robustness even when facing unknown and different
types of jailbreak attacks.
Evaluation on Non-model-specific Jailbreak Prompts. To
evaluate the model-agnostic effectiveness of JBSHIELD-D,
we conducted an experiment using 100 in-the-wild jailbreak
prompts that successfully bypassed all five LLMs (as deter-
mined by SORRY-Bench). Among these, 30 prompts were
randomly selected for calibration, while the remaining 70
were used for testing across the five LLMs. The results, pre-
sented in Table 5, demonstrate that JBSHIELD-D achieves
robust detection performance even in a non-model-specific
setting, maintaining high detection accuracy across all tested
models. This validates the versatility and generalizability of
our approach under practical scenarios.
Prompts with Only Jailbreak Concept. To further evaluate
JBSHIELD-D, we conducted an experiment using 850 jail-
break prompts generated by AutoDAN, where the malicious
content was replaced with benign content to simulate cases

Table 5: Performance on non-model-specific jailbreaks.

Models Accuracy↑ F1-Score↑

Mistral-7B 0.88 0.88
Vicuna-7B 0.87 0.87
Vicuna-13B 0.79 0.78
Llama2-7B 0.84 0.86
Llama3-8B 0.86 0.87

Table 6: Performance on prompts with only jailbreak concept.

Models Toxic
Detected↓

Jailbreak
Detected↑ Accuracy↑ F1-Score↑

Mistral-7B 692 158 0.19 0.31
Vicuna-7B 79 771 0.91 0.95
Vicuna-13B 686 164 0.19 0.32
Llama2-7B 23 827 0.97 0.99
Llama3-8B 57 793 0.94 0.97

that activate the jailbreak concept without triggering toxic
activation. These modified prompts were tested across five
LLMs, and the results are summarized in Table 6. Our find-
ings indicate that JBSHIELD-D performs exceptionally well
on Llama and Vicuna-7B, accurately identifying such inputs
as non-jailbreak. However, its performance slightly declined
on Mistral-7B and Vicuna-13B. This indicates a potential
limitation of our approach in handling nuanced cases where
jailbreak activation subtly interacts with the model’s semantic
interpretations. Since our primary focus is on robust jailbreak
defense, optimizing performance for these complex scenarios
remains an avenue for future work.

5.5 Jailbreak Mitigation
We evaluate the performance of our method by comparing the
reduction in ASR of JBSHIELD-M against five jailbreak miti-
gation baselines across nine selected jailbreak attacks. Among
these attacks, IJP, Puzzler, Zulu, and Base64 are transfer-based
attacks that do not directly exploit the information of the target
LLM. For these jailbreaks, we randomly select 50 correspond-
ing jailbreak prompts from our dataset to test and determine
the ASR for each attack. For the other jailbreak methods, we
treat the defended model as a new target LLM, generate 50
new jailbreak prompts, and calculate the ASR.
Mitigation Efficiency. The ASRs of nine jailbreak attacks
on LLMs deployed with JBSHIELD-M and five baselines are
shown in Table 7. Our method reduces the ASR of most
jailbreak attacks to zero, significantly outperforming the base-
lines. Across all five LLMs, JBSHIELD-M lowers the aver-
age ASR from 61% to 2%. Notably, our method renders the
ASR of AutoDAN, Puzzler, and Base64 attacks 0.00, effec-
tively defending them. Among all the baselines, SD performs
best on the Vicuna family models, while ICD shows the best
performance on the Llama family models. This can be at-

Table 7: Performance of different jailbreak mitigation methods. No-Def means no defense is deployed.

Models Methods Attack Success Rate↓ Average
ASR↓IJP GCG SAA AutoDAN PAIR DrAttack Puzzler Zulu Base64

Mistral-7B

No-def 0.56 0.92 0.98 1.00 0.82 0.74 1.00 0.48 0.40 0.77
Self-Re 0.46 0.80 0.86 1.00 0.55 0.40 1.00 0.40 0.18 0.63
PR 0.40 1.00 0.80 1.00 0.80 0.08 0.90 0.48 0.20 0.63
ICD 0.52 0.45 0.58 1.00 0.70 0.68 1.00 0.06 0.08 0.56
SD 0.52 0.70 0.96 0.98 0.78 0.86 1.00 0.32 0.40 0.72
DRO 0.50 0.88 0.96 1.00 0.40 0.46 1.00 0.48 0.42 0.68
Ours 0.24 0.36 0.12 0.00 0.08 0.04 0.00 0.02 0.00 0.10

Vicuna-7B

No-def 0.38 0.86 0.96 0.96 0.88 0.94 0.95 0.12 0.18 0.69
Self-Re 0.34 1.00 0.88 1.00 0.70 0.62 0.95 0.18 0.00 0.63
PR 0.22 1.00 0.82 1.00 0.75 0.34 0.80 0.40 0.22 0.62
ICD 0.26 0.80 0.68 1.00 0.65 0.70 0.85 0.00 0.02 0.55
SD 0.08 0.00 0.04 0.08 0.22 0.12 0.35 0.00 0.00 0.10
DRO 0.36 1.00 0.64 1.00 0.60 0.52 0.95 0.54 0.06 0.63
Ours 0.04 0.18 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.03

Vicuna-13B

No-def 0.36 0.78 0.92 1.00 0.68 0.98 0.95 0.0 0.10 0.64
Self-Re 0.28 1.00 0.76 1.00 0.50 0.30 0.95 0.02 0.02 0.54
PR 0.32 1.00 0.48 1.00 0.55 0.32 0.95 0.26 0.12 0.56
ICD 0.28 0.75 0.52 1.00 0.70 0.78 0.45 0.00 0.02 0.50
SD 0.04 0.02 0.02 0.02 0.08 0.00 0.00 0.00 0.00 0.02
DRO 0.28 1.00 0.60 1.00 0.40 0.60 0.95 0.14 0.04 0.56
Ours 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

Llama2-7B

No-def 0.26 0.50 0.60 0.60 0.30 0.32 0.95 0.14 0.30 0.44
Self-Re 0.10 0.30 0.48 0.55 0.20 0.22 0.00 0.00 0.00 0.21
PR 0.20 0.30 0.32 0.40 0.20 0.06 0.15 0.82 0.02 0.27
ICD 0.02 0.25 0.36 0.70 0.05 0.12 0.00 0.00 0.00 0.17
SD 0.32 0.00 0.00 0.00 0.24 0.10 0.40 0.00 0.42 0.16
DRO 0.20 0.10 0.28 0.90 0.30 0.48 0.55 0.02 0.04 0.32
Ours 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Llama3-8B

No-def 0.24 0.64 0.74 0.62 0.30 0.38 0.45 0.52 0.48 0.49
Self-Re 0.02 0.15 0.44 0.30 0.05 0.36 0.00 0.02 0.00 0.15
PR 0.26 0.10 0.14 0.10 0.20 0.04 0.05 0.46 0.06 0.16
ICD 0.00 0.10 0.18 0.30 0.05 0.00 0.00 0.00 0.00 0.07
SD 0.42 0.34 0.28 0.26 0.44 0.40 0.95 0.50 0.50 0.45
DRO 0.24 0.20 0.42 0.50 0.10 0.12 0.00 0.60 0.14 0.26
Ours 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00

tributed to the differences in decoding strategies between the
Vicuna series and the Llama and Mistral series, as well as
the Llama family LLMs having superior in-context learning
capabilities. Additionally, our method is effective against all
types of jailbreaks, while some baselines may exacerbate cer-
tain attacks. For example, PR increases the ASR of Zulu on
Mistral-7B, Vicuna-13B, and Llama2-7B because it translates
low-resource language text into English with lower toxicity,
inadvertently raising the ASR. These results demonstrate the
efficiency and generalizability of JBSHIELD-M in mitigating
various jailbreak attacks across different LLMs.
Utility. To evaluate the performance of models deployed with
JBSHIELD-M on regular tasks, we used the 5-shot MMLU
benchmark [20] to assess the impact of our methods on
LLM usability. The results for JBSHIELD-M, along with all

baselines, are shown in Figure 4. Our jailbreak mitigation
method impacts the understanding and reasoning capabilities
of LLMs by less than 2%, significantly outperforming the
baselines. JBSHIELD-M is activated only when a jailbreak
prompt is detected, which limits its effect on normal inputs.
Among the baselines, PR achieved the lowest MMLU
score because it rewrites the stems of test prompts, making
it difficult for LLMs to produce the required outputs in
multiple-choice questions.
Ablation Study. The two core steps of JBSHIELD-M are the
manipulation of the toxic and jailbreak concepts. To verify
that both steps are necessary, we conducted ablation stud-
ies. We tested the impact of removing the toxic concept en-
hancement (wo/TCE) and the jailbreak concept weakening
(wo/JCW) on JBSHIELD-M across the five selected target

0.0

0.2

0.4

0.6

0.8

1.0 Mistral-7B Vicuna-7B Vicuna-13B Llama2-7B Llama3-8B

Jailbreak Mitigation Methods

Av
er

ag
e A

ns
w

er
 A

cc
ur

ac
y

No-defense Self-Reminder Paraphrase ICD SafeDecoding DRO JBShield

Figure 4: Performance on the MMLU benchmark.

Table 8: Ablation study.

Models Methods Attack Success Rate↓
IJP GCG SAA AutoDAN PAIR DrAttack Puzzler Zulu Base64

Mistral-7B wo/TCE 0.38 0.20 0.52 0.68 0.22 0.40 1.00 0.10 0.00
wo/JCW 0.32 0.20 0.06 0.56 0.14 0.36 1.00 0.06 0.00

Vicuna-7B wo/TCE 0.16 0.04 0.00 0.14 0.42 0.02 0.00 0.06 0.00
wo/JCW 0.16 0.00 0.18 0.34 0.24 0.00 0.20 0.02 0.00

Vicuna-13B wo/TCE 0.02 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00
wo/JCW 0.12 0.02 0.58 0.12 0.14 0.06 0.45 0.00 0.00

Llama2-7B wo/TCE 0.12 0.00 0.00 0.00 0.22 0.08 0.00 0.00 0.00
wo/JCW 0.04 0.02 0.00 0.02 0.08 0.12 0.00 0.08 0.00

Llama3-8B wo/TCE 0.10 0.00 0.02 0.02 0.20 0.02 0.00 0.12 0.04
wo/JCW 0.02 0.00 0.06 0.04 0.08 0.02 0.00 0.02 0.00

Table 9: Performance of JBSHIELD-D against adaptive attacks.

Models Attack Success Rate↓
AutoDAN-based GCG-based LLMFuzzer-based

Mistral-7B 0.00 0.14 0.02
Vicuna-7B 0.18 0.00 0.00
Vicuna-13B 0.00 0.02 0.00
Llama2-7B 0.00 0.04 0.00
Llama3-8B 0.00 0.00 0.00

models. The results are shown in Table 8. As demonstrated,
removing either of the two key steps leads to a decline in per-
formance. After removing the manipulation of the toxic and
jailbreak concepts, the overall average ASR increased to 12%
and 13%, respectively. Interestingly, we found that different
models appear to have varying sensitivities to different con-
cepts. For example, on Vicuna-13B, omitting the weakening
of the jailbreak concept significantly increases the attack suc-
cess rate, while on Mistral-7B, the opposite effect is observed.
Performance against Adaptive Attacks. To evaluate the
robustness of JBSHIELD, we tested it against three types
of adaptive attacks: AutoDAN-based, GCG-based, and
LLMFuzzer-based. Each attack was designed to bypass our
mitigation strategy and incorporate weakening the toxic

concept and enhancing the jailbreak concept into the attack’s
objective function. For each LLM, 50 jailbreak prompts
were generated for evaluation. The results, as shown in
Table 9, demonstrate that JBSHIELD maintains exceptional
robustness across all attack types and models. Specifically,
the average attack success rates for AutoDAN-based,
GCG-based, and LLMFuzzer-based attacks are 0.4%, 4.0%,
and 0.4%, respectively. These results confirm that JBSHIELD

effectively mitigates adaptive jailbreak attempts, showcasing
its resilience in real-world scenarios.

6 Discussions

6.1 Practicality and Scalability

As illustrated in Table 10, unlike existing solutions that typi-
cally focus on either detection or mitigation, our JBSHIELD

integrates both functionalities, effectively addressing these
two aspects of jailbreak defense. In terms of resource uti-
lization and operational overhead, JBSHIELD stands out by
eliminating extra tokens, model fine-tuning, and reducing re-
liance on extensive additional training data. These properties
make our approach easily deployable on existing LLMs. No-
tably, JBSHIELD requires only about 30 jailbreak prompts for

Table 10: Summary of existing jailbreak defenses. • indicates that the method utilizes the corresponding resource or requires the
specified operation. Conversely, ◦ denotes that the method does not require the listed resource or the operation. In the additional
tokens consumed during the inference stage, m represents the number of tokens in the original user input.

Categories Defenses Extra Tokens
in Inference

Extra Model
for Defense

Target LLM
Fine-tuning

Extra Data
(prompts)

User Input
Modified

Detection

PPL [3] ◦ GPT-2 ◦ ∼500 ◦
Gradient cuff [21] ∼20m ◦ ◦ ∼100 •
Self-Ex [19] ∼40 ◦ ◦ ◦ ◦
SmoothLLM [39] ∼5m ◦ ◦ ◦ •
GradSafe [49] ◦ ◦ ◦ ∼4 ◦
LlamaG [22] ◦ Llama Guard ◦ 13,997 ◦

Mitigation

Self-Re [50] ∼40 ◦ ◦ ◦ •
PR [23] ∼20+m GPT-3.5 ◦ ◦ •
ICD [47] ∼50 ◦ ◦ ∼1 •
SD [51] ∼m LoRA Model • ∼70 ◦
LED [59] ◦ ◦ • ∼700 ◦
DRO [61] ∼120 ◦ ◦ ∼200 •

Comprehensive Defense JBSHIELD ◦ ◦ ◦ ∼90 ◦

calibration to effectively defend against each type of jailbreak
attack. This minimal cost enables JBSHIELD to achieve better
scalability compared to previous methods, making it easier to
adapt to future emerging attacks.

6.2 Limitations

Model Dependency. Our detection and mitigation strategies
rely on access to the internal architecture and parameters
of LLMs, as well as the ability to probe and modify hidden
representations during the forward pass. Although we have
validated the effectiveness of JBSHIELD across multiple ex-
isting LLMs, its effectiveness on future, potentially novel
LLM architectures remains uncertain. However, since neu-
ral network models inherently process and understand data
through hidden representations, we believe that even with the
emergence of new LLM architectures, our method will still
be capable of addressing jailbreak attacks by analyzing these
representations to extract the relevant concepts.
Data Sensitivity. The performance of our approach relies
on the quality and diversity of the calibration dataset, which
serves as the foundation for detecting and mitigating jail-
break prompts. A less diverse calibration dataset may limit
the method’s generalizability to novel or significantly differ-
ent jailbreak attempts. However, our experiments (Section
5.3) demonstrate that JBShield exhibits strong transferabil-
ity across unseen jailbreaks, leveraging shared similarities in
jailbreak concepts. Furthermore, JBShield requires minimal
calibration samples (only 30) to achieve high performance.
By augmenting the calibration dataset with additional diverse
samples, JBShield can effectively adapt to emerging jailbreak
attacks, ensuring its robustness in evolving scenarios.

7 Conclusion and Future Works

In this work, we conducted an in-depth exploration of how
jailbreaks influence the output of LLMs. We revealed that
LLMs can indeed recognize the toxic concept within jail-
break prompts, and the primary reason these prompts alter
model behavior is the introduction of the jailbreak concept.
Building on these findings, we proposed a comprehensive
jailbreak defense framework, JBSHIELD, comprising both de-
tection and mitigation components. The detection method,
JBSHIELD-D, identifies jailbreak prompts by analyzing and de-
tecting the activation of the toxic and jailbreak concepts. The
mitigation method, JBSHIELD-M, safeguards LLMs from the
influence of jailbreak inputs by enhancing the toxic concept
while weakening the jailbreak concept. Extensive experiments
demonstrated that JBSHIELD effectively defends against vari-
ous state-of-the-art (SOTA) jailbreaks across multiple LLMs.

Building on our findings, we identify two promising direc-
tions for future work. First, it is essential to further investigate
the mechanisms underlying jailbreak attacks on LLMs. Future
work should aim to uncover more nuanced aspects of how
these attacks manipulate model behavior, particularly under
new LLM architectures. Such investigations could lead to the
development of more advanced detection algorithms that are
better equipped to adapt to changes in adversarial strategies
and model updates. Additionally, our current method utilizes
calibration data to determine a fixed value for the scaling fac-
tor, which remains constant throughout the process but lacks
flexibility. As new tokens are generated, the overall semantics
of the input prompt keep changing, leading to variations in
concept activation. Designing an adaptive control method for
the scaling factor would further improve the performance of
concept manipulation-based defenses.

Acknowledgments

We thank the anonymous reviewers and our shepherd for their
helpful and valuable feedback. This work was partially sup-
ported by the NSFC under Grants U2441240 (“Ye Qisun”
Science Foundation), 62441238, U21B2018, U24B20185,
T2442014, 62161160337, and 62132011, the National Key
R&D Program of China under Grant 2023YFB3107400, the
Research Grants Council of Hong Kong under Grants R6021-
20F, R1012-21, RFS2122-1S04, C2004-21G, C1029-22G,
C6015-23G, and N_CityU139/21, the Shaanxi Province Key
Industry Innovation Program under Grants 2023-ZDLGY-38
and 2021ZDLGY01-02.

Ethics Considerations

Our jailbreak defense framework JBSHIELD serves as a safe-
guard to prevent the exploitation of LLMs for generating inap-
propriate or unsafe content. By improving the detection and
mitigation of jailbreak attacks, we contribute to a safer deploy-
ment of LLMs, ensuring that their outputs align with ethical
standards and societal norms. Our study does not require In-
stitutional Review Board (IRB) approval as it involves the use
of publicly available data and methods without direct human
or animal subjects. All experimental protocols are designed to
adhere to ethical standards concerning artificial intelligence
research, focusing on improving technology safety without
infringing on personal privacy or well-being. Our research
activities strictly comply with legal and ethical guidelines
applicable to computational modeling and do not engage with
sensitive or personally identifiable information. Addressing
the exposure to harmful content during the development and
calibration of JBSHIELD, we ensure that all team members
have access to support and resources to manage potential
distress. Ethical guidelines are strictly followed to minimize
direct exposure and provide psychological safety measures.
While our framework has demonstrated robustness against
current jailbreak strategies, the dynamic nature of threats ne-
cessitates ongoing development. We propose the design of
dynamic strategies for key parameters like detection thresh-
olds and scaling factors to effectively counteract new and
evolving jailbreak strategies.

Open Science

In compliance with the Open Science policy, we will share
all necessary artifacts with the research community and
ensure that they are accessible for review by the artifact
evaluation committee to enhance the reproducibility of our
work. Specifically, we will provide our test datasets, the code
for extracting concept-related interpretable tokens, and the
implementation of JBShield-D and JBShield-M for testing
across five target LLMs.

References

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[2] Henk Alkemade, Steven Claeyssens, Giovanni Colav-
izza, Nuno Freire, Jörg Lehmann, Clemens Neudeker,
Giulia Osti, Daniel van Strien, et al. Datasheets for digi-
tal cultural heritage datasets. Journal of open humanities
data, 9(17):1–11, 2023.

[3] Gabriel Alon and Michael Kamfonas. Detecting lan-
guage model attacks with perplexity. arXiv preprint
arXiv:2308.14132, 2023.

[4] Maksym Andriushchenko, Francesco Croce, and Nico-
las Flammarion. Jailbreaking leading safety-aligned
llms with simple adaptive attacks. arXiv preprint
arXiv:2404.02151, 2024.

[5] Anthropic. Introducing claude. https://www.
anthropic.com/news/introducing-claude, 2023.

[6] Usman Anwar, Abulhair Saparov, Javier Rando, Daniel
Paleka, Miles Turpin, Peter Hase, Ekdeep Singh Lubana,
Erik Jenner, Stephen Casper, Oliver Sourbut, et al.
Foundational challenges in assuring alignment and
safety of large language models. arXiv preprint
arXiv:2404.09932, 2024.

[7] Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka,
Nina Rimsky, Wes Gurnee, and Neel Nanda. Refusal
in language models is mediated by a single direction.
arXiv preprint arXiv:2406.11717, 2024.

[8] Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McK-
innon, et al. Constitutional ai: Harmlessness from ai
feedback. arXiv preprint arXiv:2212.08073, 2022.

[9] Bochuan Cao, Yuanpu Cao, Lu Lin, and Jinghui Chen.
Defending against alignment-breaking attacks via ro-
bustly aligned llm. arXiv preprint arXiv:2309.14348,
2023.

[10] Nicholas Carlini, Milad Nasr, Christopher A. Choquette-
Choo, Matthew Jagielski, Irena Gao, Pang Wei Koh,
Daphne Ippolito, Florian Tramèr, and Ludwig Schmidt.
Are aligned neural networks adversarially aligned? In
Proc. of NeurIPS, volume 36, pages 61478–61500, 2023.

[11] Zhiyuan Chang, Mingyang Li, Yi Liu, Junjie Wang,
Qing Wang, and Yang Liu. Play guessing game with
llm: Indirect jailbreak attack with implicit clues. arXiv
preprint arXiv:2402.09091, 2024.

https://www.anthropic.com/news/introducing-claude
https://www.anthropic.com/news/introducing-claude

[12] Patrick Chao, Alexander Robey, Edgar Dobriban,
Hamed Hassani, George J Pappas, and Eric Wong. Jail-
breaking black box large language models in twenty
queries. arXiv preprint arXiv:2310.08419, 2023.

[13] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Sto-
ica, and Eric P. Xing. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. https:
//lmsys.org/blog/2023-03-30-vicuna/, 2023.

[14] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic,
Shane Legg, and Dario Amodei. Deep reinforcement
learning from human preferences. Proc. of NeurIPS, 30,
2017.

[15] Justin Cui, Wei-Lin Chiang, Ion Stoica, and Cho-Jui
Hsieh. Or-bench: An over-refusal benchmark for large
language models. arXiv preprint arXiv:2405.20947,
2024.

[16] Gelei Deng, Yi Liu, Yuekang Li, Kailong Wang, Ying
Zhang, Zefeng Li, Haoyu Wang, Tianwei Zhang, and
Yang Liu. Jailbreaker: Automated jailbreak across mul-
tiple large language model chatbots. arXiv preprint
arXiv:2307.08715, 2023.

[17] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

[18] Nelson Elhage, Tristan Hume, Catherine Olsson,
Nicholas Schiefer, Tom Henighan, Shauna Kravec, Zac
Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol
Chen, et al. Toy models of superposition. arXiv preprint
arXiv:2209.10652, 2022.

[19] Alec Helbling, Mansi Phute, Matthew Hull, and
Duen Horng Chau. Llm self defense: By self examina-
tion, llms know they are being tricked. arXiv preprint
arXiv:2308.07308, 2023.

[20] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding.
In Proc. of ICLR, 2021.

[21] Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. Gradient
cuff: Detecting jailbreak attacks on large language mod-
els by exploring refusal loss landscapes. arXiv preprint
arXiv:2403.00867, 2024.

[22] Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi
Rungta, Krithika Iyer, Yuning Mao, Michael Tontchev,
Qing Hu, Brian Fuller, Davide Testuggine, et al. Llama

guard: Llm-based input-output safeguard for human-ai
conversations. arXiv preprint arXiv:2312.06674, 2023.

[23] Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami
Somepalli, John Kirchenbauer, Ping-yeh Chiang, Micah
Goldblum, Aniruddha Saha, Jonas Geiping, and Tom
Goldstein. Baseline defenses for adversarial attacks
against aligned language models. arXiv preprint
arXiv:2309.00614, 2023.

[24] Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi
Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun, Yizhou
Wang, and Yaodong Yang. Beavertails: Towards im-
proved safety alignment of llm via a human-preference
dataset. Proc. of NeurIPS, 36, 2024.

[25] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch,
Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Florian Bressand, Gianna Lengyel, Guillaume
Lample, Lucile Saulnier, et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

[26] Shuyu Jiang, Xingshu Chen, and Rui Tang. Prompt
packer: Deceiving llms through compositional in-
struction with hidden attacks. arXiv preprint
arXiv:2310.10077, 2023.

[27] Jigsaw. Perspective api. https://www.anthropic.
com/news/introducing-claude, 2021.

[28] Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris
Anagnostidis, Zhi Rui Tam, Keith Stevens, Abdullah
Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi,
et al. Openassistant conversations-democratizing large
language model alignment. Proc. of NeurIPS, 36, 2024.

[29] Harrison Lee, Samrat Phatale, Hassan Mansoor, Kel-
lie Lu, Thomas Mesnard, Colton Bishop, Victor Car-
bune, and Abhinav Rastogi. Rlaif: Scaling reinforce-
ment learning from human feedback with ai feedback.
arXiv preprint arXiv:2309.00267, 2023.

[30] Chak Tou Leong, Yi Cheng, Kaishuai Xu, Jian Wang,
Hanlin Wang, and Wenjie Li. No two devils alike: Un-
veiling distinct mechanisms of fine-tuning attacks. arXiv
preprint arXiv:2405.16229, 2024.

[31] Xirui Li, Ruochen Wang, Minhao Cheng, Tianyi Zhou,
and Cho-Jui Hsieh. Drattack: Prompt decomposition
and reconstruction makes powerful llm jailbreakers.
arXiv preprint arXiv:2402.16914, 2024.

[32] Yuping Lin, Pengfei He, Han Xu, Yue Xing, Makoto Ya-
mada, Hui Liu, and Jiliang Tang. Towards understanding
jailbreak attacks in llms: A representation space analysis.
arXiv preprint arXiv:2406.10794, 2024.

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://www.anthropic.com/news/introducing-claude
https://www.anthropic.com/news/introducing-claude

[33] Anay Mehrotra, Manolis Zampetakis, Paul Kassianik,
Blaine Nelson, Hyrum Anderson, Yaron Singer, and
Amin Karbasi. Tree of attacks: Jailbreaking black-box
llms automatically. arXiv preprint arXiv:2312.02119,
2023.

[34] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Lin-
guistic regularities in continuous space word representa-
tions. In Proc. of NAACL-HLT, 2013.

[35] Neel Nanda, Andrew Lee, and Martin Wattenberg. Emer-
gent linear representations in world models of self-
supervised sequence models. In Proc. of BlackboxNLP,
2023.

[36] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
Training language models to follow instructions with
human feedback. Proc. of NeurIPS, 35:27730–27744,
2022.

[37] Kiho Park, Yo Joong Choe, and Victor Veitch. The
linear representation hypothesis and the geometry of
large language models. In Proc. of ICML, 2024.

[38] Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi
Jia, Prateek Mittal, and Peter Henderson. Fine-tuning
aligned language models compromises safety, even
when users do not intend to! In Proc. of ICLR, 2024.

[39] Alexander Robey, Eric Wong, Hamed Hassani, and
George J Pappas. Smoothllm: Defending large language
models against jailbreaking attacks. arXiv preprint
arXiv:2310.03684, 2023.

[40] Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen,
and Yang Zhang. " do anything now": Characterizing
and evaluating in-the-wild jailbreak prompts on large
language models. arXiv preprint arXiv:2308.03825,
2023.

[41] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. Stanford alpaca: An
instruction-following llama model. https://github.
com/tatsu-lab/stanford_alpaca, 2023.

[42] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. Llama: Open and efficient foundation language
models. arXiv preprint arXiv:2302.13971, 2023.

[43] Mengru Wang, Ningyu Zhang, Ziwen Xu, Zekun Xi,
Shumin Deng, Yunzhi Yao, Qishen Zhang, Linyi Yang,
Jindong Wang, and Huajun Chen. Detoxifying large
language models via knowledge editing. arXiv preprint
arXiv:2403.14472, 2024.

[44] Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xing-
shan Zeng, Wenyong Huang, Lifeng Shang, Xin Jiang,
and Qun Liu. Aligning large language models with
human: A survey. arXiv preprint arXiv:2307.12966,
2023.

[45] Alexander Wei, Nika Haghtalab, and Jacob Steinhardt.
Jailbroken: How does llm safety training fail? In Proc.
of NeurIPS, volume 36, pages 80079–80110, 2023.

[46] Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao
Xie, Xiangyu Qi, Mengzhou Xia, Prateek Mittal, Mengdi
Wang, and Peter Henderson. Assessing the brittleness
of safety alignment via pruning and low-rank modifica-
tions. arXiv preprint arXiv:2402.05162, 2024.

[47] Zeming Wei, Yifei Wang, and Yisen Wang. Jailbreak and
guard aligned language models with only few in-context
demonstrations. arXiv preprint arXiv:2310.06387,
2023.

[48] Tinghao Xie, Xiangyu Qi, Yi Zeng, Yangsibo Huang,
Udari Madhushani Sehwag, Kaixuan Huang, Luxi He,
Boyi Wei, Dacheng Li, Ying Sheng, et al. Sorry-bench:
Systematically evaluating large language model safety
refusal behaviors. arXiv preprint arXiv:2406.14598,
2024.

[49] Yueqi Xie, Minghong Fang, Renjie Pi, and Neil
Gong. Gradsafe: Detecting unsafe prompts for llms
via safety-critical gradient analysis. arXiv preprint
arXiv:2402.13494, 2024.

[50] Yueqi Xie, Jingwei Yi, Jiawei Shao, Justin Curl,
Lingjuan Lyu, Qifeng Chen, Xing Xie, and Fangzhao
Wu. Defending chatgpt against jailbreak attack via self-
reminders. Nature Machine Intelligence, 5(12):1486–
1496, 2023.

[51] Zhangchen Xu, Fengqing Jiang, Luyao Niu, Jinyuan Jia,
Bill Yuchen Lin, and Radha Poovendran. Safedecoding:
Defending against jailbreak attacks via safety-aware
decoding. arXiv preprint arXiv:2402.08983, 2024.

[52] Zhihao Xu, Ruixuan Huang, Changyu Chen, Shuai
Wang, and Xiting Wang. Uncovering safety risks of
large language models through concept activation vec-
tor. arXiv preprint arXiv:2404.12038, 2024.

[53] Sibo Yi, Yule Liu, Zhen Sun, Tianshuo Cong, Xinlei He,
Jiaxing Song, Ke Xu, and Qi Li. Jailbreak attacks and
defenses against large language models: A survey. arXiv
preprint arXiv:2407.04295, 2024.

[54] Zheng Xin Yong, Cristina Menghini, and Stephen Bach.
Low-resource languages jailbreak GPT-4. In Proc. of
NeurIPS SoLaR Workshop, 2023.

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

[55] William J Youden. Index for rating diagnostic tests.
Cancer, 3(1):32–35, 1950.

[56] Jiahao Yu, Xingwei Lin, Zheng Yu, and Xinyu Xing.
{LLM-Fuzzer}: Scaling assessment of large language
model jailbreaks. In Proc. of USENIX Security, pages
4657–4674, 2024.

[57] Zhiyuan Yu, Xiaogeng Liu, Shunning Liang, Zach
Cameron, Chaowei Xiao, and Ning Zhang. Don’t listen
to me: Understanding and exploring jailbreak prompts
of large language models. In Proc. of USENIX Security,
pages 4675–4692, 2024.

[58] Lifan Yuan, Yichi Zhang, Yangyi Chen, and Wei Wei.
Bridge the gap between cv and nlp! a gradient-based
textual adversarial attack framework. In Proc. of ACL,
pages 7132–7146, 2023.

[59] Wei Zhao, Zhe Li, Yige Li, Ye Zhang, and Jun Sun.
Defending large language models against jailbreak
attacks via layer-specific editing. arXiv preprint
arXiv:2405.18166, 2024.

[60] Wei Zhao, Zhe Li, and Jun Sun. Causality analysis for
evaluating the security of large language models. arXiv
preprint arXiv:2312.07876, 2023.

[61] Chujie Zheng, Fan Yin, Hao Zhou, Fandong Meng, Jie
Zhou, Kai-Wei Chang, Minlie Huang, and Nanyun Peng.
On prompt-driven safeguarding for large language mod-
els. In Proc. of ICML, 2024.

[62] Zhenhong Zhou, Haiyang Yu, Xinghua Zhang, Rongwu
Xu, Fei Huang, and Yongbin Li. How alignment and
jailbreak work: Explain llm safety through intermediate
hidden states. arXiv preprint arXiv:2406.05644, 2024.

[63] Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe
Barrow, Zichao Wang, Furong Huang, Ani Nenkova,
and Tong Sun. Autodan: Automatic and interpretable
adversarial attacks on large language models. arXiv
preprint arXiv:2310.15140, 2023.

[64] Andy Zou, Zifan Wang, J Zico Kolter, and Matt
Fredrikson. Universal and transferable adversarial at-
tacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

A Additional Explanation and Results of Con-
cept Extraction

The overall process of using our Concept Extraction algorithm
to get the toxic concept in harmful prompts is shown in Algo-
rithm 1. The extraction process for the other two concepts is
similar. It only requires replacing the prompt types forming
the counterfactual pairs with the corresponding ones (toxic

Algorithm 1 Concept Extraction of the Toxic Concept

Input: N harmful prompts {(xh
i)}N

i=1 and N benign prompts
{(xb

i)}N
i=1, target LLM f , layer index l for extraction, vo-

cabulary V for f .
Output: Toxic subspace v at layer l, tokens {ti}k

i=1 that in-
terpret the toxic concept.

1: Form counterfactual pairs of prompts {(xh
i ,x

b
i)}N

i=1
2: Initialize difference matrix Dl

3: for i← 1 to N do
4: Get embeddings el

h and el
b at layer l for xh

i and xb
i

5: Form representation pair (el
b,e

l
h)

6: Append the pair to matrix Dl

7: end for
8: Perform SVD on Dl and get singular vector matrix V
9: Extract the first column of V as v

10: Project v onto vocabulary V to get scores
11: Get top-k tokens {ti}k

i=1 with highest k scores
12: return v, {ti}k

i=1

concept: (harmful, benign) and (jailbreak, benign), jailbreak
concept: (jailbreak, harmful)). The results of concept extrac-
tion on two Llama family models and two Vicuna family
LLMs for all three concepts are presented in Table 11 and 12.
As observed, different LLMs have slight variations in their
understanding of toxic and jailbreak concepts. For instance,
Llama3-8B, similar to Mistral-7B, associates the toxic con-
cept with words like “illegal,” while Llama2-7B associates it
with words like “Sorry” and “cannot.” However, the overall
findings align with the statements in Section 3.2: LLMs can
recognize similar toxic concepts in both jailbreak and harmful
prompts, and the activation of jailbreak concepts in jailbreak
prompts is the reason they can change the model output from
rejection to compliance.

B Additional Experiment Results

B.1 Concept-Based Detection vs. Direct Em-
bedding Comparison

To evaluate whether comparing conceptual subspaces is nec-
essary for jailbreak detection, we conducted additional ex-
periments comparing JBShield’s concept-based detection ap-
proach with a direct embedding similarity comparison. In
the latter approach, the detection relied solely on calculating
the similarity between the sentence embedding of a new in-
put prompt and the average embeddings of anchor prompts
(benign and harmful). The results, summarized in Table 13,
demonstrate the superiority of JBShield’s concept-based ap-
proach. Direct embedding comparisons achieved an average
F1-score of only 0.62 across five LLMs and nine jailbreak
attacks, significantly lower than JBShield’s F1-score of 0.94.
This substantial difference highlights that directly comparing

Table 11: Results of concept extraction on layer23 of Vicuna-
7B and layer26 Vicuna-13B.

Concepts Source
Prompts Associated Interpretable Tokens

Vicuna-7B

Toxic
Concepts

Harmful Sorry, sorry, azionale, Note

IJP understood, Hi, Hello, hi
GCG sorry, Sorry, orry, Portail
SAA explo, Rule, Step, RewriteRule

AutoDAN character, lista, character, multicol
PAIR sorry, Sorry, Please, yes

DrAttack question, example, Example, Example
Puzzler step, setup, steps, re

Zulu Ubuntu, ubuntu, mlung, sorry
Base64 step, base, Step, step

Jailbreak
Concepts

IJP understood, understand, in, hi
GCG sure, Sure, zyma, start
SAA sure, Sure, rules, started

AutoDAN character, list, Character, character
PAIR sure, Sure, of, ure

DrAttack example, question, Example, answer
Puzzler re, step, establish, Re

Zulu Ubuntu, Johannes, translated, African
Base64 base, Base, Base, decode

Vicuna-13B

Toxic
Concepts

Harmful NOT, neither, warning, please

IJP understood, ok, okay, OK
GCG sorry, Sorry, unfortunately, sad
SAA purely, surely, ‘<, enta

AutoDAN list, List, List, lists
PAIR NOT, sorry, NOT, unfortunately

DrAttack answering, answer, sorry, question
Puzzler step, Step, manipulate, step

Zulu South, Johannes, Ubuntu, sorry
Base64 decode, base, Base, BASE

Jailbreak
Concepts

IJP understood, okay, welcome, Ready
GCG advis, please, disc, doing
SAA Sure, sure, readily, Sitz

AutoDAN list, points, List, Character
PAIR Unterscheidung, sure, Sure, initially

DrAttack answers, answer, question, answered
Puzzler step, Step, prep, establish

Zulu Johannes, Ubuntu, South, Cape
Base64 Received, decode, base, deser

embeddings fails to capture nuanced distinctions between
benign, harmful, and jailbreak prompts. By leveraging con-
ceptual subspaces, JBShield identifies and interprets critical
semantic differences that are overlooked by direct embedding
comparison.

B.2 Performance on harmful benchmarks
To demonstrate the scalability of our approach, we retained the
detection and enhancement of toxic semantics in JBSHIELD-M

Table 12: Results of concept extraction on layer22 of Llama2-
7B and layer32 Llama3-8B.

Concepts Source
Prompts Associated Interpretable Tokens

Llama2-7B

Toxic
Concepts

Harmful Sorry, cannot, I, sorry

IJP Hello, I, Language, Gre
GCG Sorry, I, sorry, cannot
SAA onymes, Kontrola, edeut, limits

AutoDAN Sorry, cannot, I, sorry
PAIR Sorry, cannot, I, Cannot

DrAttack I, dex, cannot, ich
Puzzler ungs, elle, unable, Cannot

Zulu sorry, mlung, forg, Sorry
Base64 Base, Hi, BASE, hi

Jailbreak
Concepts

IJP gre, wel, welcome, hi
GCG press, in, gon, Krie
SAA press, sak, in, nal

AutoDAN ains, ola, GridView, vre
PAIR yes, Yes, Yes, thanks

DrAttack thanks, Jorge, yes, dust
Puzzler ode, yes, rell, prove

Zulu transl, translate, meaning, translated
Base64 hi, sure, base, yes

Llama3-8B

Toxic
Concepts

Harmful I, I, Illegal, legality

IJP Illegal, legality, unethical, illegal
GCG Oh, no, neither, cannot
SAA [text, Sure, text, =text

AutoDAN I, Illegal, legality, unethical
PAIR I, Illegal, legality, unethical

DrAttack USER, USER, I, (USER
Puzzler Step, Dr, Step, step

Zulu Ng, Ing, Uk, Iz
Base64 base, Dec, Base, decoding

Jailbreak
Concepts

IJP ., :, S, C
GCG .Accessible, S, C, (
SAA Sure, Sure, <, {text

AutoDAN here, as, Here, Here
PAIR as, ylvania, when, what

DrAttack Sure, Sure, sure, sure
Puzzler based, here, Here, after

Zulu to, Looks, looks, another
Base64 siz, podob, base, .accounts

and tested the proportion of unsafe responses on two harmful
benchmarks, AdvBench [64] and HEx-PHI [38]. The results
are shown in Table 14. By controlling toxic concepts, we
can effectively prevent LLMs from outputting unsafe content.
These results indicate that detecting and strengthening toxic
concepts enables all target models to generate safe outputs
for harmful inputs, whereas existing defenses do not guaran-
tee effectiveness across all five models. This highlights the
potential of our approach for toxicity detection applications.

Table 13: Comparison with a direct embedding similarity comparison.

Models F1-Score↑
IJP GCG SAA AutoDAN PAIR DrAttack Puzzler Zulu Base64

Mistral-7B 0.02 0.46 0.57 0.91 0.31 0.84 1.00 0.99 1.00
Vicuna-7B 0.17 0.00 0.57 0.48 0.29 0.99 0.95 0.92 1.00
Vicuna-13B 0.02 0.00 0.57 0.61 0.00 0.72 0.95 0.95 1.00
Llama2-7B 0.68 0.04 0.88 0.81 0.68 0.44 0.94 0.92 1.00
Llama3-8B 0.06 0.00 0.75 0.68 0.21 0.35 0.98 0.97 1.00

Table 14: Performance of jailbreak mitigation methods against
harmful inputs.

Models Methods Harmful Benchmark↓
AdvBench HEx-PHI

Mistral-7B

No-defense 0.30 0.10
Self-Re 0.00 0.03
PR 0.57 0.23
ICD 0.03 0.00
SD 0.73 0.37
DRO 0.00 0.03
JBSHIELD-M 0.00 0.00

Vicuna-7B

No-defense 0.07 0.00
Self-Re 0.00 0.00
PR 0.10 0.03
ICD 0.00 0.00
SD 0.00 0.00
DRO 0.00 0.00
JBSHIELD-M 0.00 0.00

Vicuna-13B

No-defense 0.00 0.00
Self-Re 0.00 0.00
PR 0.03 0.07
ICD 0.00 0.00
SD 0.03 0.00
DRO 0.00 0.00
JBSHIELD-M 0.00 0.00

Llama2-7B

No-defense 0.00 0.00
Self-Re 0.00 0.00
PR 0.00 0.00
ICD 0.00 0.00
SD 0.00 0.00
DRO 0.00 0.00
JBSHIELD-M 0.00 0.00

Llama3-8B

No-defense 0.03 0.00
Self-Re 0.00 0.00
PR 0.07 0.07
ICD 0.00 0.00
SD 0.10 0.07
DRO 0.00 0.00
JBSHIELD-M 0.00 0.00

Table 15: Performance on normal inputs with seemingly toxic
words.

Models False Positive Rate↓

Mistral-7B 0.06
Vicuna-7B 0.04
Vicuna-13B 0.00
Llama2-7B 0.00
Llama3-8B 0.00

B.3 Evaluation on Normal Inputs with Seem-
ingly Toxic Words

To investigate the impact of JBShield on normal inputs con-
taining seemingly toxic words, we conducted an additional
evaluation using the OR-Bench-Hard-1K dataset [15], which
comprises prompts designed to appear toxic without harmful
intent. The evaluation focused on measuring JBShield’s false
positive rate across five LLMs. The results, presented in Ta-
ble 15, demonstrate JBShield’s robustness in handling such
inputs. The average false positive rate was 2%, indicating
that JBShield rarely misclassifies normal inputs containing
toxic language as jailbreak prompts. These findings validate
JBShield’s ability to distinguish between genuinely harmful
or jailbreak inputs and benign inputs with superficially toxic
semantics. This evaluation further highlights the reliability
and precision of JBShield in real-world applications.

	Introduction
	Background and Related Works
	Jailbreak Attacks on LLMs
	Defenses against Jailbreaks

	Activated Concept Analysis
	Overview
	Concept Extraction
	RQ1: Recognition of Harmful Semantics
	RQ2: Influence of Jailbreaks Prompts

	JBShield
	Overview
	Jailbreak Detection
	Jailbreak Mitigation

	Experiments
	Data Collection and Preparation
	Experimental Setup
	Hyperparameter Analysis
	Jailbreak Detection
	Jailbreak Mitigation

	Discussions
	Practicality and Scalability
	Limitations

	Conclusion and Future Works
	Additional Explanation and Results of Concept Extraction
	Additional Experiment Results
	Concept-Based Detection vs. Direct Embedding Comparison
	Performance on harmful benchmarks
	Evaluation on Normal Inputs with Seemingly Toxic Words

