
“Threat modeling is very formal, it’s very technical, and also very hard to do
correctly”: Investigating Threat Modeling Practices in Open-Source Software

Projects

Harjot Kaur‡∗, Carson Powers†∗, Ronald E. Thompson III†, Sascha Fahl‡, Daniel Votipka†

‡CISPA Helmholtz Center for Information Security; †Tufts University

Abstract
Vulnerabilities in open-source software (OSS) projects can

potentially impact millions of users and large parts of the
software supply chain. Rigorous secure design practices, such
as threat modeling (TM), can help identify threats and de-
termine and prioritize mitigations early in the development
lifecycle. However, there is limited evidence regarding how
OSS developers consider threats and mitigations and whether
they use established TM methods.

Our research is the first to fill this gap by investigating
OSS developers’ TM practices and experiences. Using semi-
structured interviews with 25 OSS developers, we explore
participants’ threat finding and mitigation practices, their chal-
lenges and reasons for adopting their practices, as well as
desired support for implementing TM in their open-source
projects. Because OSS development is often a volunteer effort,
decentralized, and lacking security expertise, more structured
TM methods introduce additional costs and are perceived as
having limited benefit. Instead, we find almost all OSS de-
velopers conduct TM practices in an ad hoc manner due to
the ease-of-use, flexibility, and low overhead of this approach.
Based on our findings, we provide recommendations for the
OSS community to better support TM processes in OSS.

1 Introduction

A substantial amount of software depends on open-source
software (OSS) projects, which provide commonly used li-
braries and frameworks. Up to 96% of codebases depend on
OSS [86], many of these OSS dependencies have known vul-
nerabilities, and experts believe OSS security is critical in
ensuring the software supply chain’s integrity [38, 84, 96]. A
recent industry report audited 1,067 commercial codebases,
finding 77% of their code originated from OSS, and 84%
of those projects introduced at least one vulnerability origi-
nating from OSS code [86]. Unmitigated vulnerabilities in
OSS dependencies can jeopardize the entire software supply

*These authors contributed equally to this work.

chain and affect millions or billions of users, as happened
in the Log4Shell vulnerability [6], which caused widespread
panic [21, 40, 87]. To ensure the integrity of the software
supply chain, we must improve OSS security.

Secure Design using Threat Modeling. One possible solu-
tion is to improve security practices during code design to
achieve “secure by design” software [22, 55]. One approach
to secure design is using threat modeling (TM), “[a] process
of using hypothetical scenarios, system diagrams, and testing
to help secure systems and data” [23]. TM is a practice rec-
ommended by many organizations [22, 23, 25, 29, 51, 67, 78].
Tasks associated with TM can be broken into a set of guid-
ing questions developed by experts in the TM community,
known as the “Four Questions”: What are we building?, What
can go wrong?, What are we going to do about it?, and Did
we do a good enough job? [80, 102]. These questions pro-
vide an overarching structure for framing TM research that
does not constrain participants [89]. TM emerged as a way to
provide more structure to what previously was an ad hoc prac-
tice, whereby threats are noted, and possibly mitigated, within
a system as they arise or from an arbitrary list of threats
(we use “ad hoc” going forward to describe these unstruc-
tured practices). Using ad hoc practices likely creates issues
with completeness, rationale, and consistency [11, pg. 16-17].
More structured processes have emerged to alleviate these
issues, which establish specific steps to use as well as ways
to identify, classify, and document threats [55, 80]. These
include STRIDE [55], PASTA [90], attack trees [75], and oth-
ers [30, 78, 88]. We collectively describe these established
and documented TM processes as “structured.” While there
has not been a methodical evaluation of the challenges of
TM, anecdotal evidence suggests that TM requires significant
expertise [49], requires significant resource coordination [93],
and in practice can be exclusionary and opaque [76, pg. 87].

Though some resources suggest how to conduct structured
TM in OSS [97], it is generally assumed OSS projects rarely
use these processes [26,34]. However, to the best of our knowl-
edge, analysis of whether and how OSS developers consider
threats and mitigations during design has not been conducted.

We fill this gap by interviewing 25 OSS contributors and
maintainers (collectively referred to as “OSS developers”)
regarding how they think about threats and mitigations during
design and whether they follow ad hoc practices or use some
version of structured TM processes. We also investigate the
challenges they face conducting TM.

Specifically, we answer the following research questions:
RQ1 [Process]: What are OSS projects’ practices for identi-

fying and mitigating threats?
RQ2 [Challenges]: What are the obstacles and challenges to

using threat identification and mitigation practices in
OSS projects?

RQ3 [Adoption]: What motivated OSS projects to adopt prac-
tices for identifying and mitigating threats?

We found almost all OSS developers’ practices were best
described as ad hoc. That is, TM was not necessarily a regular
part of their development process, but threats and mitigations
were considered as the developer thought they might be rele-
vant. In many cases, this meant the developer maintained a
mental set of common threats or mitigations and went through
the checklist if they believed the current feature or asset might
warrant scrutiny.

A few participants reported a structured process where TM
is a regular step in the software development process. Many
of these participants followed established methods such as
STRIDE and attack trees, but others used bespoke solutions
such as their own checklists of threats common to their soft-
ware stack. Of note, participants using ad hoc practices report
threats independently, e.g., in an issue tracker, but not in a
manner which allows a full view of the system threat model.

We also observed several challenges unique to TM in OSS,
which motivated ad hoc practice adoption. Most notably, many
OSS developers are volunteers and have limited time. This
motivated our participants to seek easy to use threat identifica-
tion and mitigation practices with limited overhead. Similarly,
because few developers are security experts, some partic-
ipants viewed the additional overhead unhelpful believing
structured TM processes would not be effective without secu-
rity expertise. Also, OSS projects are decentralized making it
challenging to keep track of a full-system threat model. This
motivated participants to seek flexible processes that could
be applied to individual segments and shared among several
lightly coordinated parties. While participants believed ad
hoc practices are not ideal as they will not be applied in all
cases, they allow developers to consider program segments
in isolation during threat identification and mitigation. Par-
ticipants viewed structured processes as requiring regular
whole-system reviews. While this is not necessarily true, as
Shostack has argued structured processes can be adapted to be
more lightweight [81], we note most participants view estab-
lished methods like STRIDE and attack trees as heavy-weight,
leading most to develop their own approaches.

Key Contributions.

• Through interviews with 25 OSS developers, we show
that almost all used ad hoc TM practices and a few had
structured processes integrated into their workflow

• We also identify reported challenges to TM, which in-
clude volunteers having limited motivation to do TM,
lack of access to security expertise, and the decentralized
structure of OSS teams

• We give suggestions for TM process and tool improve-
ments, a future study of ad hoc practices’ effectiveness,
and how to effectively prioritize TM adoption in OSS

2 Related Work

We discuss related work in three key areas: OSS security
practices, developer security behaviors, and TM.

OSS Security Practices. OSS projects provide researchers
with readily accessible software and data that can reveal how
security challenges manifest in the real world. Much of this
work investigates publicly available development artifacts to
make conclusions about the prevalence and form of security
practices in OSS [15, 35, 44, 50, 57, 69, 77]. For instance, Fa-
vato et al. looked at how the number of developers affects
the incidence of security flaws, finding projects with more
developers are associated with fewer flaws [35]. However,
there have been few user studies investigating OSS security
practices. Most notably, Wermke et al. investigated security
practices and trust within the OSS community [96]. They
interviewed OSS developers to learn the security practices
OSS projects employ, including challenges to adoption. While
projects may have large contributor bases, the number of core
contributors is much smaller, and core contributors implement
most changes. Additionally, they found practices differed sig-
nificantly among projects, and many OSS developers believe
automation only solves so much. We build on this work by
investigating a specific security practice, TM, and understand-
ing what challenges OSS developers face in adoption.

Developer Security Behaviors. Prior work has investigated
how developers more generally approach security through-
out the development lifecycle. This work has explored
how organizations impact developers’ approaches to secu-
rity [13, 14, 41, 48, 68, 96], and how developers approach and
implement security [9, 62, 64, 71, 73, 95]. Most relevant to
our work is the research focusing on secure design practices.
Haney et al. looked at cryptographic developers’ security prac-
tices and mindsets, finding that a strong security culture is not
linked to organization size nor resources available [48]. These
findings are relevant to our work as they suggest a strong
security culture should be able to exist in OSS, and that a
form of TM, whether ad hoc or structured, would be present.
Palombo et al. used an ethnographic study to understand how
security is implemented in the development lifecycle within a
company [68]. Work focusing on developer security practices
provides an important view of the software lifecycle; while

similar to our work, it does not address the specific issues
facing OSS developers nor their TM approaches.
Threat Modeling User Studies. Several studies have looked
at TM using user studies [16, 37, 39, 42, 82, 83, 85, 89, 92, 93].
This work can be divided by research focusing on practition-
ers [16, 37, 39, 82, 83, 85, 89, 93] and those using students
in controlled lab settings [42, 92]. Of the work focused on
practitioners, some has prescribed specific TM processes to
understand the challenges when adopting them [37, 85]. For
example, Stevens et al. performed a field observation in New
York City Cyber Command, observing participant TM prac-
tices over time after training team members on a specific TM
process, Center of Gravity analysis [85]. Shull et al. conducted
a controlled experiment, assigning participants to use one of
three established TM processes and asking them to identify
threats in an emulated system [37]. Of the research that has
been more exploratory [39, 82, 83, 89, 93], both Thompson
et al. and Shreeve et al. leveraged scenario-based research to
observe how practitioners approach TM. They found secu-
rity experts and decision-makers often considered mitigations
before the associated risk and that these users relied on flex-
ible approaches [39, 82, 83, 89]. Most similar to our work
is Verreydt et al., which looked at TM adoption in Dutch
organizations [93]. They found TM adoption faces several
challenges, including coordinating stakeholders and documen-
tation needs, having sufficient resources, and systematically
following up on the results. Unlike our work, they focused
on organizations actively using TM due to compliance re-
quirements in their sectors, and their participants were active
advocates for TM adoption. While we believe our results
have broader implications for TM across organization types,
our work focuses on OSS projects presenting unique orga-
nizational challenges and security processes different from
previously investigated settings [15, 16, 35, 50, 57, 69, 96].

3 Methodology

This section describes the interview guide development, in-
cluding input from domain experts. Then, we explain our data
collection process, including the screening survey and inter-
view, as outlined in Figure 1. We describe our recruitment
strategies, data analysis and the work’s limitations.

3.1 Community Engagement
Because there is no prior investigation of TM in open-source
communities, we began by engaging with senior OSS commu-
nity members to understand the community’s language and
dynamics better. This engagement supported our questions’
face validity by ensuring appropriate terminology use. It also
provided helpful context to appropriately interpret participant
responses.

We contacted organizations mentioned in two lists of OSS
organizations. The first was a curated list of organizations

displaying their open source projects on github.com [43],
which suggested they might be open to discussing their TM
practices. The second was a curated list of organizations pro-
viding support services, e.g., security audits, to OSS projects
on opensource.com [65]. We expected these organizations
might provide useful insights into security practices of the
projects they support. We also contacted members of our
professional networks with significant OSS experience.

We had informal conversations with four OSS profes-
sionals from different projects. Two were recruited from
the github.com and opensource.com lists, and two were
through our professional contacts. Of these four, two were
sysadmins who host OSS projects and two were OSS devel-
opers. These discussions helped us refine research questions
and develop a recruitment strategy, so they did not complete
the interview and are not pilots. They all had experience sup-
porting OSS projects, either generally, for security, or both.
In each conversation, we inquired about the channels OSS
developers use to discuss threats, the terminology developers
use when talking about threats, and suggestions for recruit-
ing OSS developers in a non-invasive way. Additionally, we
asked if they provided OSS projects with resources for secure
development and if they knew of OSS projects that conducted
structured or ad hoc TM activities.

These conversations taught us that though some OSS
projects conduct TM processes, these practices and the re-
sulting models are rarely publicly shared. This motivated us
to design an interview study investigating these TM practices,
instead of an artifact analysis. These discussions also revealed
the terms “threat” and “threat modeling” are not universally
used. Also, prior work suggests these definitions can dif-
fer [99] and we observed differences among TM resources [23,
25, 29, 61, 67]. To ensure we captured a broad set of perspec-
tives, we chose to use “threats/vulnerabilities/security issues”
together (Section 3.4 contains interview content).

3.2 Screening Survey
The first step in our study flow was a short screening survey
(Figure 1.A), which obtained informed consent and asked
about participants’ OSS development experience. Our screen-
ing survey is given in our supplemental materials [3].
Questions and Eligibility Criteria. After obtaining in-
formed consent, the remaining survey questions assessed
interview eligibility (Figure 1.B). To be interview eligible,
participants first needed OSS development experience. This
included participants who self-reported at least one year of
OSS development experience and regular OSS project contri-
butions. To assess their activity in OSS, we asked participants
to provide a link to a public page verifying their contributions.

Our goals were to learn what threat-finding and mitigat-
ing processes OSS developers use (RQ1), their reasons for
adopting and using TM (RQ3), what challenges exist (RQ2),
and what improvements they would like to see. Hence, we

github.com
opensource.com
github.com
opensource.com

Informed
Consent

Demographics
SSD-SES
TM familiarity

Eligible
Participants

Survey Interview

Introduction
&

Background

Process
Followed

Threat
Modeling Adoption Challenges Improvements

A

B

C

RQ 1 RQ 3 RQ 2

Figure 1: Study flow.

also needed participants who had thought about threats to
their projects or at least knew how to think about threats. To
assess participants’ background, we included seven questions
adapted from the Secure Software Development Self-Efficacy
Scale (SSD-SES) [94] which asked how frequently partici-
pants think about threats and one question asking about fa-
miliarity with established TM processes. If the participant
indicated they perform threat-finding activities at least “some-
times,” they could answer RQ1 and possibly RQ3 questions,
so they were eligible. If they agreed or strongly agreed with
the statement “I am familiar with at least one threat model-
ing method (e.g., STRIDE, PASTA, Attack trees, etc.),” they
could answer RQ2 questions and questions about TM im-
provements, so they were eligible. Overall, if they passed the
eligibility check and the OSS experience check, they were
eligible. We did not require participants to have experience
with or knowledge of established TM methods. As long as
they reported previously considering security threats at some
point during development, they were eligible.

After conducting five pilot interviews, we added these TM
background questions, as participants who neither performed,
nor knew about threat identification and mitigation processes
could not answer our interview questions.

3.3 Interview Procedure
After screening for eligibility, two authors conducted the inter-
views collaboratively, alternating as the primary interviewer.
The primary interviewer conducted the interview (i.e., read
the interview script and asked questions), while the supporting
interviewer took notes and asked follow-up questions when
appropriate. Both interviewers followed a structured and de-
tailed interview guide to ensure consistency. The interview
guide also contains general background and instructions, out-
lining interview goals, stressing the importance of avoiding
priming or leading participants, and presenting guidelines for
conducting effective interviews based on the original work
by Rader et al. [70] and adapted work by Mink et al. [60].
The interview guide is provided in supplemental materials [3]
and the interview questions are presented in Appendix A. We
compensated interview participants with $40.
Pilot Test. We conducted pilot interviews to ensure the ques-
tion wording was clear and our questions captured responses
relevant to our research questions. We piloted and refined

our interview questions with five OSS developers. After five
pilots, we decided to split process questions to ask how TM
practices differ between design and implementation stages.
Since we extracted details about both stages from three of five
pilots through follow-up questions, thus receiving answers
to all questions in our final interview protocol, we include
these three pilots in our final sample of 25 and exclude the
remaining two.

3.4 Interview Structure
Interviews consisted of six segments (S1-S6) based on our
research questions as illustrated in Figure 1-C. We structured
TM process questions around the “Four Questions”, which, as
discussed in Section 1, provide a high-level structure without
constricting participants [89]. To avoid priming, and due to the
lack of cohesive definition from our community engagement
(Section 3.1) or prior literature [23, 25, 29, 61, 67, 99], we
avoided using the term “Threat Modeling” at the beginning
of our interviews. Instead, we used the phrases “look for
threats/vulnerabilities/security issues” for identification and
“solutions to security issues” for mitigation. We introduced
our definition of “Threat Modeling” in S3 (see below), which
encompasses structured and ad hoc practices. We defined
“formal TM” as structured processes (e.g., STRIDE, PASTA,
attack trees). We referred to formal TM exclusively when it
was needed. All interview questions are listed in Appendix A.
S1: Introduction and Background. At the start of the in-
terview, we introduced ourselves and provided a brief study
overview. Next, we asked participants about their OSS experi-
ence, their projects, OSS development roles and responsibili-
ties, and details about external contributors, as well as if their
projects are maintained or supported by an organization. We
also asked their opinion on the importance of security, both
in general and concerning their projects.
S2: Process Followed (RQ1). We then asked the participants
how they visualize the systems they build (e.g., diagramming),
their threat identification and mitigation practices, how they
communicate and document threats and mitigations, who is re-
sponsible for identifying and mitigating threats, the resources
used, and the challenges faced when applying their process.
Throughout, we asked whether these practices differed be-
tween the design and implementation phases and how they re-
sume when later changes are made to the code. We frequently

asked probing questions to ensure we covered all develop-
ment stages. For example, “How do you look for threats before
you begin writing code” and “Do your threat brainstorming
processes differ once you have begun writing code?”

S3: Threat Modeling (RQ1). Next, we asked if they had
heard of TM, whether they use a structured process (e.g.,
STRIDE), how they defined TM, and whether they believed
their process met their definition of TM. To ensure a common
understanding when asking subsequent questions, we gave
our definition of TM, i.e., “the general process of finding
threats to a system, as well as what to do about those threats.”

S4: Adoption (RQ3). Then, we covered participants’ reasons
for using and adopting their process, as well as any advice
they would give others looking to adopt a TM process. If they
did not use structured TM, we asked why they chose not to
use a structured approach. If the participant was part of a team
when TM was adopted, we asked how the group embraced
their TM process. We adapted adoption questions from Fulton
et al.’s investigation of Rust adoption [41].

S5: Challenges (RQ2). In the fifth segment, we asked par-
ticipants whether they believe their process ensures sufficient
security. We then asked about challenges limiting their TM
process (if applicable), challenges to TM caused by external
contributors, and difficulties getting support when they are
unsure how to use a particular TM process.

S6: Improvements. Finally, we asked participants to sug-
gest ways to support TM in OSS projects, including desired
resources. We also asked whether they would do anything
differently if they used TM in another open-source project.

3.5 Recruitment Strategies
We recruited participants using direct messages to project
developers, social media posts, professional contacts, postings
on Upwork.com [8], and snowball sampling [45]. Because
we aimed to reach saturation in structured and ad hoc TM
processes used in OSS projects, we recruited participants from
a broad set of project types and sizes.

We prioritized contacting contributors to security-related
projects since we assumed security-related projects are more
likely to use TM, though contributing to a security-related
project was not a requirement. We broadly define “security-
related” as: (a) projects in which security incidents could have
a broad impact (e.g., large user base), (b) projects for which
security is the product (e.g., cryptography), (c) projects that
may have significant financial risk (e.g., project is supported
by a corporation), or (d) projects utilizing tools associated
with security considerations (e.g., programmed in Rust).

To find potential participants, we used several lists of
projects hosted on GitHub and found email addresses for
the top contributors. Since using email addresses found on
GitHub violates acceptable use policies [7], we searched for
personal or project-related websites with contact information.

To find projects satisfying criteria (a), we searched for
projects listed on NPM (https://www.npmjs.com/) con-
taining the “security” or “cryptography” keywords, then con-
tacted the most downloaded projects first. To find instances for
(b), we extracted GitHub projects with the tag “cryptography.”
We excluded repositories without source code, e.g., a reposi-
tory with collections of documents. For (c), we used Google
search with the key phrase “end user open source software”
and recorded all projects on the first results page. Finally, for
(d), we downloaded the database of crates.io [1], a centralized
repository for Rust packages. For the cryptography tag (b)
and Rust repositories (d), we sorted the lists of repositories by
highest star and fork count first, similar to Wermke et al. [96].
For consistency, we removed projects from (c) and (d) that
were not hosted on GitHub. To ensure we contacted active
projects, we ignored projects without at least one commit in
six months prior to the start of data collection.

Also, we recruited our professional contacts with expe-
rience developing OSS. We received one participant from
Upwork and one from snowball sampling. Due to interface re-
strictions, we used an abridged screening survey for Upwork
(in supplemental material [3]). However, the Upwork partic-
ipant later completed the remaining demographic questions.
We stopped recruiting after reaching thematic saturation [74]
at 19 interviews and completed interviews for participants
who were already scheduled. We conducted interviews pri-
marily via video-conferencing software, except for one par-
ticipant who answered questions via email.

3.6 Data Analysis and Coding

We used a GDPR-compliant service to transcribe interview
recordings. Due to technical issues, we did not have the record-
ing for one eligible participant and instead coded our detailed
notes for that participant. One additional eligible participant
answered all interview questions via email.

We used thematic analysis with a mix of deductive and
inductive coding to analyze the transcripts [24,27]. We coded
at the interview level, applying one code even if the practice
was mentioned multiple times. Two researchers created an
initial version of the codebook based on the interview guide
which was then refined using comments from all authors. Two
researchers then independently coded 16 interviews, allowing
additional codes to arise from the data, meeting after each
to resolve disagreements and adjust the codebook. The same
two researchers then independently coded interviews in three
rounds of three interviews each, meeting after each round to
calculate inter-rater reliability and resolve disagreements.

They achieved agreement with Krippendorff’s α ≥ 0.94 for
each variable, indicating sufficient agreement [56]. The same
two researchers collaboratively organized and interpreted the
qualitative data using affinity diagramming [17] to identify
key themes and patterns. Our full codebook and per-variable
Krippendorff’s α values are in our supplemental materials [3].

https://www.npmjs.com/

3.7 Limitations

Some of our study’s limitations are typical of qualitative re-
search. This encompasses self-reporting, under- and over-
reporting, social desirability bias, and recall bias. The framing
effect in interview studies can potentially introduce bias in
participants’ responses. We avoided leading questions and
carefully crafted unbiased questions to avoid this effect. To re-
duce social desirability bias, we assured participants through-
out the interview that we were not testing or judging their
practices.

We only interviewed developers of active projects and may
have missed challenges unique to inactive projects. We do not
capture how adding TM may affect project abandonment.

Targeting security-relevant projects for recruitment may
introduce sampling bias. Thus, we expect our results are an
upper bound as projects with fewer security considerations are
less likely to employ TM processes. Because we advertised
our study’s topic as how OSS contributors “think about threats
to their projects,” this may introduce self-selection bias. How-
ever, we do not make claims about TM practice prevalence
among all OSS projects. Though we reached saturation, it
is possible we did not capture all TM activities, challenges,
and desired improvements. While we included participants
who did not have experience using established TM methods,
we excluded participants who self-reported never considering
potential security threats in any way, i.e., formally or infor-
mally. We chose to exclude these developers as they would
not have relevant experiences to respond to our questions
about their process looking for threats or considering adopt-
ing TM methods. However, there are possible challenges and
method improvements specific to this population that does
not consider security threats during development that we do
not include. We should consider our results a first step toward
understanding and supporting TM practices in OSS develop-
ment, guiding future research.

4 Participant Demographics

We interviewed 28 participants. We discarded two responses
after determining they gave misleading survey answers and
were ineligible, and one due to incomplete data, leaving 25
valid participants. Table 1 includes participant demographics.

We recruited 22 by emailing OSS developers from the npm
list, cryptography list, end-user OSS software search, and Rust
list. We recruited one participant from Upwork, one from our
professional contacts, and one from snowball sampling. The
mean interview length was 1 hour and 4 minutes.

Our participants had 12.9 years of OSS development expe-
rience on average (median=11), and all have contributed to
multiple projects. Participants often held different roles for
different projects, including contributor (N=15), maintainer
(N=14), security engineer/analyst (N=5), and tech lead (N=3).
Some indicated they serve as project leaders in addition to one

All
Almost

all

100%0% 15% 30% 45% 55% 70% 85%

None A few Some Many
About
half MostMajority

1 - 4 5 - 8 9 - 11 12 - 13 14 - 17 18 - 21 22 - 240 25

Figure 2: Quantifier terminology used to report the percentage
of participants who expressed a given theme.

or more roles mentioned above. The majority of participants
contributed to a project that is backed by a company.

All participants were involved in at least one security-
related project (as defined in Section 3.5). Participants men-
tioned several reasons for caring about security, such as op-
erating on sensitive data, providing a security product, or
feeling a moral obligation. All participants discussed perform-
ing structured TM or ad hoc practices in at least one of their
projects, though more than half reported at least one project
where they did not conduct any form of TM.

We include specific characteristics of participants for con-
text only. While we point to possible relationships between
these characteristics and TM practices observed through our
thematic analysis, we do not claim these are generalizable.
We offer them as possible hypotheses to test in future work.

5 TM Practices in OSS (RQ1)

In this section, we detail participants’ different ad hoc prac-
tices and structured processes. We discuss practices from only
the projects listed in Table 1. Almost all participants used ad
hoc threat identification and mitigation practices (which we
call “ad hoc practices”), and a few currently or previously
used structured TM processes. Of the participants who used
ad hoc practices, some did not perceive these as “TM” though
they may fit some definitions of TM. We discuss differences
in company backing when we see them. We did not see differ-
ences between contributor and maintainer roles, which may be
explained by many participants serving both roles for different
projects. We also describe who participants believe is respon-
sible for TM, how participants communicate, and resources
they use. We do not evaluate efficacy of practices, hence, we
do not make claims about effectiveness or thoroughness.

We combine or omit specific interview questions or sec-
tions for conciseness while broadly following our interview
guide. Because this is a qualitative interview study, we do not
report exact participant response counts. Instead, we use the
quantifier terminology in Figure 2 to refer to theme preva-
lence, similar to prior works [33, 46, 54, 91, 101].

5.1 System Representation
We began by asking participants how they represent their
system when identifying threats. This answers the first key
TM question, “What are we working on?”

The majority of participants diagrammed their system.
These participants used diagrams such as data flow [58], UML

Interview Interviewee Projects

Roles

ID In
te

rv
ie

w
D

ur
at

io
n1

R
ec

ru
itm

en
t

C
ha

nn
el

2

T
M

E
xp

er
ie

nc
e3

Ye
ar

sO
SS

E
xp

er
ie

nc
e

M
ai

nt
ai

ne
r

C
on

tr
ib

ut
or

Se
cu

ri
ty

en
g.

Te
ch

le
ad

Pr
oj

ec
t

C
at

eg
or

ie
s4

C
om

pa
ny

ba
ck

ed
5

C
om

m
its

6

C
on

tr
ib

ut
or

s7

P1 01:06:16 Personal website 15 x - - - Operating system No 100+ <10
P2 01:14:14 Personal website 11 x - - - Security library, messaging app Yes 10,000+ 100+
P3 00:54:09 Project website 20 - x x - Web browser Yes * *

P4 01:04:21 Personal website 10 - x x x
XDR (Extended Detection

and Response) system Yes 100+ 10+

P5 01:08:46 Personal website 11 - x - - Encryption tool Yes 1000+ 10+
P6 01:01:12 Personal website 45 - x - - Operating system, messaging app No 1000+ 10+
P7 01:16:56 Personal website 10 x - - - Encryption tool No 1000+ 100+
P8 00:54:43 Personal website 10 x - - - Security library No 100+ 10+
P9 01:00:00 Personal website 15 - x - - Security library, Operating system Yes 1000+ 100+
P10 00:35:48 Personal website 24 - x - - DevOps tooling No 1000+ 100+

P11 01:14:59 Personal website 1 x - - -
Cryptocurrency, frontend,

operating system, streaming app Yes 1000+ 10+

P12 00:53:20 Personal website 13 x x - - Cryptocurrency Yes 1000+ 100+
P13 00:36:43 Personal website 12 x x - - System software, database No 100+ 10+
P14 00:32:46 Upwork 10 x - - - Security library, password manager No 10+ <10

P15 01:17:31 Personal website 20 - x x -
Security lib, XDR,
operating system Yes 1000+ 100+

P16 01:06:03 Personal website 11 - x - x System software, web browser Yes 100,000+ 1000+
P17 - Personal website 7 x x - - Security library No 100+ 10+
P18 01:36:35 Personal website 5 x x - - Covid app, security library No 1000+ 100+
P19 00:43:08 Snowball 8 - - x - Cryptocurrency Yes 1000+ 100+
P20 01:28:55 Personal website 10 x x - - Cryptocurrency, Security library Yes 10,000+ 100+
P21 01:26:01 Personal website 8 - x - - Security library Yes 100+ 10+
P22 01:14:45 Professional contact 16 x - x - Security library No 100+ < 10
P23 00:52:03 Personal website 4 x - - - Security library, encryption tool No 100+ <10
P24 01:23:24 Personal website 6 x - - x Security library, password manager Yes 1000+ 100+
P25 - Personal website 20 - x - - Password manager Yes 1000+ 10+

1 Duration unavailable for participant who responded by email and participant without recording. 2 “Personal website” includes websites self-hosted
by the participant or an organization for which they work. 3 has experience applying formal TM (e.g., STRIDE) in this or other project(s).
no previous experience applying formal TM. 4 Covers only projects with practices discussed in the interview. 5 (Yes) if at least one project is
company-backed, (No) if none is company-backed. 6 If multiple projects, the number is for the project with the most commits. 7 If multiple projects,
the number is for the project with the largest contributors. * We omit data for this participant to protect the privacy of their project.

Table 1: Overview of participant demographics and project metadata. We report binned project metrics to preserve the privacy of
our participants and their projects.

class [19], architecture [5], and network diagrams [59] to rep-
resent their system structure. Some participants used text-
based specifications, including system requirements, function-
ality, and constraint descriptions of varying detail. Though
company-backed projects more often used diagramming, it
was not exclusive to this group. All participants who used a
structured process used a diagram or written specification.

The remaining participants used mental models. Mental
models are internal representations reflecting an individual’s
understanding of how things work [63]. While everyone uses
mental models during TM, participants who do not use dia-
gramming are relying on mental models exclusively. Mental
models do not provide shareable and interrogateable exter-

nalized views. They are internal maps used to probe system
behaviors and threats [72]. A few participants who used men-
tal models mentioned diagramming would not add value. As
P15 said, “I mentally model things. I’m pretty good at holding
complex systems in my head. Every time I try to diagram
things, just something tends to be lost in the process.”

Key Takeaways: System Representation.

• The majority of participants diagrammed their system
• Diagramming was slightly more common among company-

backed projects

5.2 Threat Identification and Mitigation
Next, we turn to the question “What could go wrong?”, i.e.,
threat identification and “What are we going to do about
it”, i.e., mitigation. We consider these steps together as the
mitigations often flowed directly from identified threats. We
explicitly state below when this is not the case.
Some participants described a background adversarial
mindset while writing code. An adversarial mindset, or ad-
versarial thinking, is commonly called the ability to “think
like a hacker” [47] or think about how one could subvert
the system’s rules [28]. This viewpoint is helpful when elic-
iting threats, but some participants discussed ad hoc prac-
tices more as a general adversarial mindset they maintain at
all times: “threat modeling is very much the constant back-
ground thought of, hmm, maybe what I’m doing right now is
something that somebody could attack, and then stopping and
thinking about how would I attack this” (P1). P18 found this
adversarial mindset the natural way to think through threats:
“We never said to ourselves, ‘Okay, let’s take like two days
and just think through the security implications of it.’ No, it
wasn’t like that. It was more organic.”
Some participants focused on memorized threats. While
adversarial thinking can be considered actively brainstorming
attacks, other participants reported a more passive ad hoc
process of “just knowing” the possible threats in their software
domain and where those threats apply. As P12 explained, “I
don’t actively look [for threats]. It’s mostly common sense.”

This strategy may work for certain domains. For exam-
ple, multiple participants developing cryptographic libraries
mentioned the set of threats to their domain are well known:
“The class of bugs that you have or threats that you have. . . is
somewhat well-understood for these kind of things” (P9).
Some participants begin by considering mitigations.
These participants’ ad hoc practices began by applying miti-
gations (e.g., use secure tools/frameworks/languages) to their
software. As P14 explained, “I tend to look at [security is-
sues] more from the defensive side, not classifying by threat,
but by the defense, by the best practice I use to avoid any po-
tential threats.” A few participants later brainstormed threats
after applying mitigations, which supports Thompson et al.’s
observation of a similar behavior with medical device threat
modeling [89]. However, a few others did not attempt to iden-
tify threats. These participants applied secure coding practices
and other common mitigations without ever determining if
there was an applicable threat requiring the mitigation.
Customized threat and mitigation checklist. One partici-
pant who contributes to a large company-backed project men-
tioned a checklist written by the company’s security team
used by all developers during code review. This checklist was
a product of structured TM with external auditors. P3 reported
“vulnerabilities [are] reported to us, we will often see if we
can update the checklist.” Though utilizing the checklist is
not TM per se, it is a lightweight application of the threat

model. We consider it an ad hoc practice, as contributors
need not be familiar with the threat model in order to use
it. Though mitigation checklists appear elsewhere [4, 12, 36],
this participant’s security team tailored it to their product and
workflow.
A few participants had structured TM processes inte-
grated into their workflow. One uses STRIDE, and the other
attack trees. The STRIDE participant completed a full system
analysis after implementing the project and frequently refer-
ences the threat model documents when changing security-
related code. The attack trees participant also refers back
to the completed model when making changes to security-
related code. As P7 noted: “I would definitely [revisit the TM]
depending on the nature of the changes. . . it was very helpful
to have the threat model and we could then revisit that.”

An additional participant used LINDDUN when designing
a project with privacy concerns, though the project was aban-
doned before implementation. They preferred ad hoc practices
for other projects without these privacy considerations.

Key Takeaways: Threat Identification and Mitigation.

• A few participants used structured processes
• Some considered mitigations before identifying threats
• Some maintained a background adversarial mindset instead

of including threat identification as a separate activity

5.3 Responsibility
As OSS projects typically lack the clearly defined roles and re-
sponsibilities seen in organizations, we asked participants who
is responsible for threat identification and mitigation. They
reported several groups, including “all developers,” “maintain-
ers,” and “the project leader.” For company-backed projects,
we also saw “security team,” “superiors,” and “project commit-
tee.” Specific to finding mitigations, we saw one participant
mention the person who found the threat is responsible (P15),
and another said the person who introduced the threat is re-
sponsible (P3). In general, we did not see patterns between
parties responsible and project type, size, or process/practices
used. However, we note two interesting themes below.
Some externalized responsibility for security. When asked
who decides their project has met its security goals, some par-
ticipants placed responsibility outside the project team in two
ways: 1) holding users responsible, e.g., “I hope the people
using my code” (P22), or 2) saying no one is responsible.

OSS development’s cornerstones are collaboration, trans-
parency, and active participation from a community of con-
tributors and users [66]. As such, OSS projects tend to re-
ceive more community feedback than proprietary projects.
We found a few participants rely on community feedback for
their design processes, while a few others mentioned users
have some responsibility for finding and reporting threats after
product release. As P9 stated, “we rely on people. . . somebody
working on this area posts the design on the mailing list,

and they rely also on others [developers] critically reading
through the design and giving their feedback.”

However, P15 disagreed strongly with externalizing secu-
rity responsibility, explicitly stating it is harmful, because
users do not have a deep enough system understanding to
find threats. They explained, “You can’t expect people using
your software to understand the security implications of the
software themselves, to do the threat modeling themselves.
It’s your [the developer’s] responsibility to do that.”
Participants took responsibility for their personal
projects. Participants mentioned they take more responsi-
bility for their personal projects than projects with a larger
number of core contributors. As P21 noted, the responsible
party “varies across projects that I contribute to. For projects
that I own, it’s just the code owner.” Additionally, P14 men-
tioned “on my personal projects, I decide. Who else? In some
other places where I worked on bigger projects, it would be
a security team.” Perhaps this is an artifact of interviewing
participants interested in security, but it seems our participants
were less likely to externalize finding threats and mitigations
to others when they own the project. This is particularly im-
portant, given some small, personally owned projects can
become crucial components of the software supply chain.

Key Takeaways: Responsibility.

• Some participants placed responsibility for security outside
the project team

• Participants took responsibility for the projects they own

5.4 Communication Practices
As OSS projects rely on collaboration and volunteers, effi-
cient and timely communication is important. It is especially
helpful to share threat models so other contributors can ensure
their commits are consistent with the planned approach.
About half of participants primarily communicated about
identified threats via issue trackers. These issue trackers
(e.g., GitHub Issues) allow the public to view identified threats
and mitigations (or accepted risk). Using issue trackers is an
easy way to document and communicate, because it is already
an integral OSS development tool for “a very GitHub-centric
person” (P21). However, it is difficult to get a complete view
of the threat model from these discrete items.
Some participants keep threat information private. When
asked how they communicate identified threats during design,
some participants mentioned only private communication.
A developer who had experience making security contribu-
tions to multiple OSS projects noted they rarely can view
the project’s early security decisions: “I don’t think I’ve ever
really seen a project that goes deeply into the internal secu-
rity decisions. . . [it’s] maybe discussed in the code comments,
but it’s otherwise just invisible” (P15). Another participant
shared none of their threat documentation, saying it’s “only on
my hard drive” (P12). The participant who uses attack trees

did not share process documentation, nor a list of identified
attacks with others. Even the checklist participant (P3) pre-
ferred to keep details of the checklist private. This supports
our finding in community engagement; some TM practices
are not publicly viewable. This practice may be problematic if
external contributors are unaware of private design decisions
and make incorrect security assumptions when adding code.

Key Takeaways: Communication Practices.

• About half of the participants primarily communicated
about threats they identified via issue trackers, which does
not show a complete view of the threat model

• Some participants’ TM practices were private

5.5 Resources

Almost all participants relied on expected, standard sources
for threat identification and mitigation (i.e., books and web-
sites for best practices, research papers, forums, and blogs).
We found only company-backed projects relied on security
experts. We elaborate on two other noteworthy themes below.

A few participants use ChatGPT to identify threats or
mitigations. Just as LLMs have become a regular part of un-
derstanding tasks in other computer security domains [100],
we observed the same with TM. P20 indicated they use Chat-
GPT as their only resource for threat identification during
design and while coding. P11 uses ChatGPT just for finding
mitigations (among other resources): “I would definitely pro-
pose to ChatGPT, for example, ‘could you please tell me any
possible mitigations for that [vulnerability]?’”

A few participants relied exclusively on prior knowledge
and experiences for threat identification. Prior knowledge
or past experiences help shape an individual’s thinking pattern
and problem-solving approach when facing complex novel
challenges [53]. Though we expect everyone uses prior knowl-
edge to some degree while finding threats, a few participants
said they rely on prior knowledge exclusively. Though refer-
encing a list of threats may be sufficient if it is community-
generated (i.e., a threat library), relying only on what threats a
single individual has seen before may lead to missed threats.

Key Takeaways: Resources.

• Only company-backed projects relied on security experts
• A few relied exclusively on prior knowledge and experi-

ences to identify threats
• A few used ChatGPT to identify or mitigate threats

6 Challenges to Using TM in OSS (RQ2)

We observed several common OSS attributes that present
unique challenges for TM. In this section, we describe each
attribute in turn and how it creates challenges for developers
when identifying threats and selecting mitigations.

6.1 OSS Contributors Are Volunteers
The first crucial OSS attribute is that the OSS community is
primarily composed of volunteers donating their free time out
of passion or personal interest. These contributors may be
easily discouraged if forced to spend a portion of their time
on overhead. Below, we describe challenges related to this
volunteer workforce.
Volunteer contributors lack time and motivation for TM.
A few participants mentioned a perceived lack of time for TM.
Many OSS developers create software projects as a hobby or
in their free time and do not feel they have the time to do TM.
This theme appeared in threat identification, mitigation, and
overall challenges to adopting TM. P19 mentioned “I would
tell them not to bother with any of those tools [like] STRIDE
and whatnot. I don’t think they’re worth the investment [or]
the time.” While some experts suggest structured TM can be
done quickly [81], our participants believed otherwise.
Project owners worry TM requirements will reduce vol-
unteer enthusiasm. Some participants reported other devel-
opers – or they themselves – have no interest in the additional
steps necessary for structured TM. P13 indicated that this was
because structured TM is not fun saying, “[TM] doesn’t sound
that much fun, and there’s other more fun things to build.” P10
mentioned adding a meticulous TM process may kill enthu-
siasm saying, “Whenever there is too much structure. . . not
so many people are eager to do it. . . I think establishing a
formal process would give quite a lot of pushback and people
not wanting to do it.” Maintaining enthusiasm is already an
ongoing concern for these volunteer-fueled projects [20], and
adding more overhead threatens momentum.

Key Takeaways: OSS Contributors Are Volunteers.

• Volunteer contributors lack motivation and time for TM
• Overhead for structured TM may hinder momentum

6.2 Decentralized and Transient OSS Teams
OSS projects are often decentralized and lack a hierarchy
to facilitate progress. Contributors come and go and may
contribute irregularly or inconsistently.
A few participants found it difficult to organize a TM
process due to time or geographical barriers. OSS projects
tend to have globally distributed contributors. TM is believed
to be best when conducted together as a team [102], but due
to OSS structure, it becomes hard to gather everyone together
to do TM: “In my experience, [TM] works best when all
the people that are owning a component of the system are
able to work together or do some whiteboarding together or
brainstorming in the same meeting” (P24). Additionally, the
transient nature of OSS teams makes it difficult to rely on
a consistent set of contributors to do the TM process. P24
noted one contributor “did a lot of work on trying to list all
operational security threats and issues and mitigations, but

it was really like an individual effort and he did that on his
own. . . and also the team disappeared.”

OSS’s decentralized structure complicates determin-
ing threat model soundness and completeness. Knowing
whether your threat model is sound and complete is a chal-
lenge in any setting [18, pg. 10], but the decentralized nature
of OSS makes this especially difficult. There is not always a
central authority that dictates how the software will evolve.
Some contributors then add functionality that the original
designers never intended to be part of the project. This new
functionality may then introduce threats that were never con-
sidered in the original threat model. For example, P24 ex-
plained, “when you are working on open-source stuff with
external contributors adding features. . . you actually never
really intended on leaving that, or you really never realized
it was part of the system now. You never really considered it
in your threat model initially.” Drift in functionality adds an
extra challenge to keeping the threat model up-to-date.

Another participant mentioned they serve as the “shepherd”
for their project, who does not actively participate in develop-
ment, but serves as a gatekeeper when contributors propose
new functionality. They noted the difficulty keeping the threat
model up-to-date when they are unaware how new functional-
ity was designed. A few participants additionally mentioned
external contributors may not be “paranoid” enough to elicit
all threats to a system. This is a problem if a project relies on
developers maintaining an adversarial mindset, as described in
Section 5.2, as they cannot assume all contributors, especially
first-time contributors, share this mindset.

A few mentioned consensus in TM can be hard to reach.
OSS projects often require consensus from multiple parties
for decision-making due to their flat organizational structure.
However, there is limited consensus in the security community
on the “right” process for TM [78]. This creates a barrier in
OSS as parties might disagree whether to adopt TM, what pro-
cess to adopt, whether an elicited threat applies, and whether
the threat warrants mitigation. As P15 stated, “what I find
challenging sometimes is figuring out how to convince other
people that the threat exists and needs to be taken seriously,
[which is] especially an issue with open-source projects.” P16
elaborated when discussing reaching consensus for mitiga-
tion actions: “If there is contention about, is this issue worth
solving...it usually takes a really long time to make that kind
of decision, especially if the answer is no.”

Key Takeaways: Decentralized and Transient OSS Teams.

• Decentralized structure and transient OSS teams make or-
ganizing the TM process and reaching consensus difficult,
and complicates evaluating the threat model’s soundness
and completeness

6.3 OSS Teams May Be Small
While large teams can create issues, a few participants dis-
cussed teams too small for structured TM to be valuable.
A few participants believed their teams were too small for
structured TM to make sense. These participants believed
their projects, which have small teams or where they are the
only maintainer, would not therefore benefit from TM. P25
mentioned TM is important for large teams only, explaining
they have not done structured TM in their OSS project be-
cause “it’s just too small of a software and team for that. I’ve
used [structured TM] in non-OSS places, when dealing with
Finance/Banking software and teams in the hundreds.” P11
believed TM would take less time if they had others to work
together: “I would probably stick to an informal process my-
self just because of the time constraints. . . you’re only alone,
you already have enough to build on yourself.” The partici-
pant who did STRIDE did so alone, which for them made the
process more boring. Their advice for projects adopting TM
was to “try to involve multiple people with it, because that’s
going to make it more fun” (P7).

Key Takeaways: OSS Teams May Be Small.

• A few participants believed structured TM in small teams
is too time consuming or lacks benefit

6.4 OSS Projects Lack Security Expertise
Though most company-backed projects had security special-
ists, other projects must make do without professional help.
Lack of access to security professionals limits threat iden-
tification and threat information dissemination. A few
participants mentioned the lack of security teams as a chal-
lenge to finding threats since they did not have the knowledge
necessary to know what to look for. P21 explained, “You have
to have like knowledge and experience.” Security teams also
help disseminate threat information to keep developers up-to-
date, as noted by P12: “they [the security team] share knowl-
edge. . . there’s a channel for InfoSec news. The notion of the
team has a lot of information on security like best practices.”
This is a crucial task, as a few participants mentioned they
struggle to keep up-to-date with the latest attacks, threats, or
best practices. Though having up-to-date knowledge is a chal-
lenge for any developer, OSS developers are at a disadvantage
for lack of security professionals as a resource.

Key Takeaways: OSS Projects Lack Security Expertise.

• The lack of access to security professionals makes finding
threats and disseminating threat information challenging

6.5 Projects Start without Security Concerns
Since some projects begin as hobbyist musings, they lack
security concerns at inception. However, security becomes a
concern for the fraction of projects that gain widespread use.

A few participants only add security when the project
transitions from hobby to use by others. A few developers
are not motivated to add any security until they know the
project will be used by others. As P13 explained, “I’m just
trying to build something to see if it works. . . I think it’s more
important to have a product that people use first, because
there’s no point building the most secure product if nobody
uses it.” It is arguably unreasonable to expect all developers
to add security to their hobby projects they only work on
for leisure. However, OSS users should be aware that some
products added security only post hoc.

Key Takeaways: Projects start without security concerns.

• Some developers do not consider security until the project
is used by others

7 Reasons for Adopting TM (RQ3)

For each challenge identified in Section 6, we describe how
this motivates developers’ adoption of the processes/practices
described previously in Section 5, along with other reasons
for TM process adoption beyond these specific challenges.

We consider reasons for adopting and reasons for continu-
ing to use TM practices together, since about half of partici-
pants never made a conscious decision to adopt. Instead, their
TM practices arose naturally. Overall, the unique attributes of
OSS development led participants to strongly consider TM
process usability (e.g., ease-of-use, flexibility, and efficiency)
when considering adoption, often leading them to ad hoc
practices. They also discussed that while a more structured
review might promise better security outcomes, they believe
the actual gains do not outweigh the extra cost.

7.1 Contributors chose practices that limit
overhead and documentation

To address concerns about volunteer contributors’ time and
motivation (Section 6.1) and challenges posed by small teams
(Section 6.3), many participants chose TM practices with little
overhead, eliding requirements for detailed documentation.

Some participants focused on time saved using ad hoc
practices. These participants believed using a structured pro-
cess is too time-consuming, instead, choosing ad hoc practices
that are “a bit less time-consuming” (P24). P3 believed es-
tablished structured methodologies like STRIDE may be too
heavy for smaller open-source projects, as they believe these
methods require significant time and record-keeping. Impor-
tantly, lack of usability has negatively affected developers’
adoption of other security best practices in the past [52, 98].
However, structured TM methods such as STRIDE or attack
trees can be applied in a lightweight manner, e.g., conducting
a STRIDE analysis on a subset of system components instead
of the entire system. Therefore, we are not suggesting our

participants’ ad hoc practices are more usable. Instead, we
highlight these as important properties participants consider.
Participants chose practices that limit creating and main-
taining documents. A few participants avoided structured
processes to avoid the overhead of creating documents. Since
any model produced would be prone to rotting as the code
quickly changes, one must continually invest time to keep
the model up-to-date. They believed creating documents only
begets maintenance with no guarantee that developers will
use them. P24 explained: “it’s relatively time-consuming to
set up and then it’s prone to rotting.” P1 said “It’s a huge
discouraging thing to have to maintain this huge body of
text that isn’t somehow technically enforceable and hope that
people are looking at it, including other maintainers.”
Some structured processes have low overhead. Though
participants believed structured processes strictly require
meticulous documentation, it is possible to adapt established
structured processes to reduce documents created. A few
of our participants mentioned their structured processes are
lightweight. P22, who uses attack trees, adopted the process
because they could use it without the optional overhead of
meticulous documentation. They believe their process in-
corporating attack trees is not “completely” doing TM, be-
cause they do not record all considered risks, which they be-
lieved was only necessary if making legal guarantees. Because
they still wanted to perform a thorough security review, they
adopted this established process, but ignored the suggested
documentation steps to limit overhead.

Alternatively, P3, who works on a large company-backed
project, described a process where only a few people—the
security team—performed structured TM, then developed an
easy-to-use checklist for other developers to follow based on
the threat model. This reduces the overhead for most devel-
opers who can quickly consider security without having to
generate their own ideas.

Key Takeaways: Choosing practices with limited overhead.

• Structured processes were believed to be time-consuming
and requiring the overhead of documentation

• Some structured TM can be used in a lightweight manner

7.2 Ad hoc practices are flexible
Since some established structured processes may not be opti-
mal for decentralized teams that lack a strong hierarchy (see
Section 6.2), a few developers rejected established processes
for a more flexible ad hoc approach. One participant high-
lighted using a written specification in their process which
they keep updated throughout design and implementation.
They find this process more flexible and easier to update as
the threat model is not a “set-in-stone” document (P23). P25
mentioned that since they previously hired auditors for for-
mal security assessments, using a flexible ad hoc approach
where they reconsidered issues raised in the prior audit was

apt. Using this approach, they can focus on different parts of
the system as needed instead of completing a broad system
review and repeating effort.

Key Takeaways: Ad hoc practices are flexible.

• A few developers preferred the flexibility of ad hoc practices

7.3 Filling the gap of security expertise
Lack of security expertise (see Section 6.4) led some partici-
pants to believe adding TM would provide no benefit. Without
expertise, some sought whichever process had the most avail-
able support materials.
Without security expert help, a few participants believed
structured processes are no better or possibly worse than
ad hoc practices. These participants believe structured pro-
cesses require security expertise to be effective. Without se-
curity experts, adopting structured processes would add over-
head without benefit. P1 noted structured approaches do not
fix the issue of extensive prerequisite knowledge required for
effective TM: “When it comes to threat modeling. . . it requires
a lot of a priori knowledge that you might just not have. Writ-
ing cool code and putting it out on GitHub is way easier than
having 15, 20 years of experience and understanding what a
poison null byte attack in PHP was.” Structured processes do
not help the user understand the threats elicited.

Developers who believe TM can be a stand-in for security
expertise may be putting their project at risk by maintaining
a false sense of security. P6 reported avoiding existing TM
processes like “design methodology or a threat analysis risk
framework” or “acronym checklists” (i.e., STRIDE, PASTA,
etc.) for this reason: “I’ve seen people using those [frame-
works] to fool themselves into thinking they’re secure because
they checked off all the boxes on their framework. . . it’s proba-
bly good to also get an expert to come in from the side and just
critique it.” Some experts acknowledge this tradeoff when
advocating for TM adoption among non-experts, and having
developers threat model in the absence of security expertise
is better than claiming all TM is harmful [80].
Structured TM adopted based on support materials.
Availability of support materials drove P7 to adopt STRIDE,
which had “the most documentation, and all public documen-
tation. It was easily available, readily available.” This helped
them understand their project’s limitations and risk.

Key Takeaways: Filling the gap of security expertise.

• Structured TM was believed to be beneficial when comple-
mented with security expertise

• Support material availability drove structured TM adoption

7.4 Other Adoption Decisions
In addition to adoption decisions driven by the unique charac-
teristics of OSS development, we observed other themes in

participants’ reasoning for choosing TM practices.

Ad hoc practices are sufficient for about half of the par-
ticipants. These participants knew their approach might not
cover all threats, but felt confident their ad hoc practices suf-
fice. For example, P19, who worked in high-risk financial
environments, was confident maintaining a general adversar-
ial mindset (see Section 5.2) provides sufficient security, and
they “don’t need to map out formally our threat models be-
cause. . . it’s really inherent to the work that we do.”

Old, ingrained ad hoc practices resist change. A few partic-
ipants have entrenched ad hoc practices and are not compelled
to transition to a structured process. For example, P4’s pro-
cess was in place before they were aware of structured TM
frameworks and noted the deterrent to adopting an structured
process is probably a “symptom of ossification where, ‘Oh,
we’ve done it this way, and we seem to work out for us.’” Since
their team members mostly have security backgrounds, they
have “been able to manage in an ad hoc, informal way.” How-
ever, it is possible they may see less benefit from a structured
process, which disproportionately benefits projects without
security-experienced contributors.

A few participants inherited a threat model from a forked
project. These participants “inherited” threat models when
they forked projects that already conducted structured TM.
One assumed the inherited model was sound: “the [code]
which I forked for my repositories has already undergone
this [TM] process” (P11). Another participant reviewed their
inherited model and added threats they considered relevant: “I
think, in general, [the parent project] is safe from that attack,
but I do plan to make a change” (P20). They ensured code
changes would not invalidate the inherited threat model.

Key Takeaways: Other Adoption Decisions.

• Ad hoc practices were believed to be sufficient even if they
do not cover all threats

• A few projects inherited threat models from projects they
forked that had implemented structured TM

8 Discussion

Our results show OSS developers often adopt ad hoc threat
identification and mitigation practices. This aligns with Ver-
reydt et al.’s recent investigation of TM in corporate set-
tings [93] and existing general assumptions [26,34]. However,
we show ad hoc practices are particularly prevalent due to
unique challenges in OSS.

Additionally, we note a general perception among partici-
pants that established TM processes like STRIDE and attack
trees are inherently structured and heavy weight: “Things like
STRIDE are interesting, but. . . for the average open source
project. . . those methodologies are too heavy. . . it would be
useful to have other examples of approaches to TM that are
still considered TM, but maybe don’t have these formalisms

attached” (P3). However, this is not necessarily the case.
For example, one of STRIDE’s pioneers has argued for the
mnemonic to be used in a quick, ad hoc manner to support
more systematic brainstorming [81]. This misconception po-
tentially limits the use of existing processes that could im-
prove practices. For example, our participants using mental
checklists could incorporate the STRIDE and LINDDUN
threat categories into their assessments. Conversely, even
though our participants completed most TM process steps
(i.e., system diagramming, threat identification, and mitiga-
tion), because they did not follow a structured TM process,
they did not believe they performed any TM (see Section 5).
These perceptions suggest a potential form of functional fixed-
ness [10, 32] around TM processes among our participants
which could inhibit adoption of even minimal structure.

Participants’ actions and perceptions motivate two cate-
gories of recommendations: 1) TM process and tool develop-
ment that more prominently considers usability and presents
how processes can support ad hoc practices, and 2) future
research empirically assessing the efficacy of the ad hoc prac-
tices organizations use. We conclude with recommendations
in both categories and recommendations to OSS leaders and
stakeholders for improved OSS security. We note because our
recommendations are based on a small sample of develop-
ers’ responses, they require future validation. However, they
provide directions for possible improvement.

8.1 Recommendations for Structured TM Pro-
cess and Tool Improvement

TM processes and tools should consider ease-of-use, flexi-
bility, and efficiency first-order priorities. Part-time volun-
teer contributors are unlikely to use any TM process unless it
is highly lightweight and flexible. As indicated, this is already
true of many existing structured TM processes. It is possible
participants believed otherwise because tooling and documen-
tation of these processes either do not support these lighter
weight versions or our participants were unaware they exist.
One step toward resolving this issue is for future TM tools to
support GitHub integration (specifically requested by a few
participants), a framework commonly used in OSS.

Similarly, a few participants wanted additional documen-
tation support. Established methods, such as STRIDE and
PASTA, have some guidance for how they should be used,
but they lack clear examples of application and discussion of
how they can be used informally. Therefore, the development
of templates and simple example models could be beneficial.
For example, P15 wanted a step-by-step guide of proper pro-
cedures: “a runbook-type document for a specific process
with templates. Like, ‘Here’s a procedure that you can follow,
here’s some templates that you fill out.’” P14 highlighted that
these example threat models should “show how to apply [TM]
without it feeling like just explicitly writing things that you
already have in your head”. These examples are significant

for OSS developers who lack access to security expertise.
OSS developers need tools to automate documenting im-
plicit project information. While many established struc-
tured TM processes can be modified to fit the needs of OSS
developers, this is not true for the flexible distributed coordina-
tion necessary in OSS. For example, when describing how to
simplify STRIDE, Shostack argued the most time-consuming
portion of adding TM is writing out all the implicit (“ambi-
ent”) information shared among project members [81]. He ar-
gued a team can skip documenting this information when first
adopting TM. Unfortunately, this does not work for OSS. The
decentralized nature of OSS means it is hard to get everyone
in the room to do TM together, so all the implicit informa-
tion cannot be shared in this way. Therefore, tools should be
developed to assist developers in documenting their projects’
implicit information quickly. While we can encourage devel-
opers to document more of this information, automated tools
are a better way to lift the burden from OSS contributors.

Also, these tools should support sharing assumptions that
affect which threats are elicited. It is unclear from prior work
how tools may support assumption sharing [79], though as-
sumptions are implicit information external contributors need.
Customized threat checklists may be a usable product of a
structured TM process. A criticism of structured TM is that
it requires significant effort, resulting in documentation useful
only to the security team. P1 lamented, “It’s a huge discourag-
ing thing to have to maintain this huge body of text that isn’t
somehow technically enforceable.” One possible solution is
the hybrid approach adopted by P3 where a structured TM pro-
cess created a living document updated regularly by a small
number of security experts, then used to develop a checklist
for ad hoc threat identification and mitigation by developers
(see Section 5.2). This offers benefits of structured processes,
i.e., thoroughness, and ad hoc practices, i.e., flexibility and
low overhead, while limiting burdens of documentation and
expertise to the security team. This hybrid process is likely
not as thorough as a fully structured TM process, but may
produce sufficient security and is more likely to actually be
used. Additionally, as P3 mentioned, it simplifies onboarding
new developers and makes it easier to enforce mitigations as
contributors must review the checklist at commit time.

8.2 Recommendations for Researchers
While we expect structured TM processes and tools provide
better security, as has been the community’s general assump-
tion [102] and demonstrated by the focus on structured TM
(e.g., [37, 42, 85]), this has not been systematically studied.
Conversely, about half of our participants believed their ad
hoc practices provided sufficient security.
Researchers should investigate ad hoc practices’ out-
comes. We performed a simple analysis of ad hoc practice
effectiveness using OpenSSF Scorecard [2] to count vulnera-
bilities in the 32 Github-hosted participant projects. We found

no clear relationship between vulnerabilities and the TM prac-
tices. The three projects with more-structured processes had
0, 95, and 2 vulnerabilities each. Most projects with ad hoc
practices had 0-1 vulnerabilities, though some had over 30.
These ad hoc practices may achieve security commensurate
with or sufficiently similar to structured TM processes. How-
ever, this lack of relationship is possibly due to the diversity
of other project characteristics (e.g., function, size, use cases).
Our small scale qualitative analysis cannot tease apart these
confounding factors to assess the outcomes of ad hoc prac-
tices. Future work is needed to investigate whether ad hoc
TM is sufficient and could reveal how we can systematize
practices without adding overhead or sacrificing security.

8.3 OSS Community Recommendations

Finally, we highlight one additional insight that suggested a
potentially high-impact strategy for improving OSS security.

Prioritize TM adoption among projects with many forks.
Among our participants, we observed some slowness in adopt-
ing new TM processes. This is expected when working with
mainly volunteer contributors and decentralized organizations,
with the primary focus being functionality, not security. Thus,
participants were likely to continue using ad hoc practices.
However, a few participants had forked projects using TM
processes, meaning initial TM steps were already completed
(see Section 6.5). This suggests potential in supporting highly
forked projects to adopt TM and share their threat models.
This could create ripple effects across the OSS ecosystem,
making adoption easier, spreading TM awareness, and nor-
malizing sharing threat models within the community.

9 Conclusion

We conducted semi-structured interviews with 25 OSS devel-
opers to understand their TM practices and challenges, how
those challenges shape adoption decisions, and how to sup-
port their TM practices. Almost all participants used ad hoc
TM practices. Our participants primarily developed their own
ad hoc practices emphasizing flexibility, ease of use, and lim-
ited overhead. Volunteer contributors lack access to security
experts, motivation, and time for TM and find it difficult to
reach a consensus due to OSS’s decentralized structure. Many
structured TM processes can be more lightweight, such as
using the STRIDE mnemonic to support as-needed review.
However, improved tool support that minimizes developer
effort, integrates with existing technology, and supports asyn-
chronous work, along with example threat models reducing
the need for on-team security experts, are missing. Through
these recommendations, we hope to encourage greater TM
use in OSS to secure the core of the software supply chain.

Acknowledgments

We thank all the interviewees for participating and supporting
our research. We thank the anonymous reviewers who pro-
vided helpful comments on drafts of this paper. This project
was partially supported by gifts from Cisco and MedCrypt.
This research was also partially funded by VolkswagenS-
tiftung Niedersächsisches Vorab (ZN3695). The views pre-
sented in the paper are those of the authors and do not neces-
sarily reflect the views of any funding agencies.

Ethics Considerations

Before the four informal conversations with OSS profession-
als, we approached the Tufts University Social, Behavioral,
and Educational Research Institutional Review Board (Tufts
SBER IRB), who deemed these conversations non-human
subjects research as we did not ask about participants’ spe-
cific practices or report particular findings from these con-
versations. Considering we did not compensate these four
participants for these early discussions, we avoided asking
anything that could not be ascertained via public data, and we
do not report on specific comments. Instead, we used their
responses to shape our interview design.

Our interview study was reviewed and approved by Tufts
SBER IRB. We obtained mandatory informed consent from
all participants before they could proceed with the survey.
At the interview start, we reminded the participant about key
information in the previously signed consent form, includ-
ing that we would remove from the interview transcript any
mentions of their name, their project’s name, or any other
information that could de-anonymize associated people or
projects. We asked participants to reaffirm their consent be-
fore recording the interview. They could skip any question or
stop the interview anytime if they felt uncomfortable. This
study was conducted in a GDPR-compliant manner and is
consistent with the standards defined in the Menlo Report [31].
As mentioned in Section 3.5, though we utilized several lists
of projects hosted on GitHub, we did not extract participants’
emails from GitHub since using email addresses found on
GitHub violates the website’s acceptable use policies [7]. In-
stead, we searched for personal or project-related websites
that contained contact information of the contributors.

The only potential harm we envision from publishing this
work is that malicious hackers may target OSS projects know-
ing they do not perform structured TM processes that reduce
vulnerabilities. However, we believe this risk is low, as there
already exists a general assumption that OSS projects rarely
use suggested TM practices [26, 34]. Conversely, we believe
our work offers a significant benefit for OSS developers as
we suggest improvements for OSS development to encourage
greater adoption of TM processes. Our analysis of TM prac-
tices and challenges to TM throughout the software lifecycle
allows us to make actionable recommendations for the OSS

community, tool developers, companies relying on OSS, and
researchers to continue securing OSS. Therefore, we believe
the limited potential harms to the OSS community are out-
weighed by the benefits of this work to the same community.

Open Science

To enhance and support transparency, replication, meta-
research, and in compliance with the open science policy,
we provide the following research artifacts in online supple-
mental materials [3] in addition to the appendix: (1) interview
guide, (2) survey questions (3) Upwork screening questions,
and (4) codebook.

We do not include raw interview data, i.e. interview audio
and transcripts in our replication package in compliance with
data protection requirements and ethical research practices.
This emphasizes our commitment to protecting participant
privacy and ensuring their right to data protection. By doing
this, we mitigate the risk of leaking any information that could
be used to identify our participants or their projects, maybe
through contextual and/or meta information. Instead, we use
thematic analysis along with anonymized interview quotes to
share our research findings.

References
[1] crates.io: Rust package registry. https://crates.io/.

[2] Openssf scorecard. https://scorecard.dev/.

[3] OSS threat modeling interviews supplemental materials. https:
//osf.io/kn5pb/?view_only=d82c73d6ca5749c38fad348806
703642.

[4] OWASP Secure Coding Practices - Quick Reference Guide | Secure
Coding Practices | OWASP Foundation. https://owasp.org/ww
w-project-secure-coding-practices-quick-reference-g
uide/stable-en/02-checklist/05-checklist.html.

[5] What is architecture diagramming? - software & system architecture
diagramming explained - aws. https://aws.amazon.com/what-i
s/architecture-diagramming/#:~:text=Architecture%20di
agrams%20identify%20potential%20system,that%20signif
icant%20issues%20appear%20later.

[6] Nvd - CVE-2021-44228, 2021. nvd.nist.gov/vuln/detail/CVE
-2021-44228.

[7] Github acceptable use policies, 2023. https://docs.github.com/
en/site-policy/acceptable-use-policies/github-accepta
ble-use-policies.

[8] Upwork, 2024. https://www.upwork.com/.

[9] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel,
Doowon Kim, Michelle L Mazurek, and Christian Stransky. Compar-
ing the usability of cryptographic apis. In 2017 IEEE Symposium on
Security and Privacy (SP). IEEE, 2017.

[10] Robert E. Adamson. Functional fixedness as related to problem
solving: a repetition of three experiments. Journal of experimental
psychology, 44(4):288, 1952.

[11] Edward G Amoroso. Fundamentals of computer security technology.
Prentice-Hall, Inc., 1994.

[12] Andrew van der Stock, Brian Glas, Neil Smithline, and Torsten Gigler.
OWASP Top Ten. https://owasp.org/www-project-top-ten/.

https://crates.io/
https://scorecard.dev/
https://osf.io/kn5pb/?view_only=d82c73d6ca5749c38fad348806703642
https://osf.io/kn5pb/?view_only=d82c73d6ca5749c38fad348806703642
https://osf.io/kn5pb/?view_only=d82c73d6ca5749c38fad348806703642
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/stable-en/02-checklist/05-checklist.html
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/stable-en/02-checklist/05-checklist.html
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/stable-en/02-checklist/05-checklist.html
https://aws.amazon.com/what-is/architecture-diagramming/#:~:text=Architecture%20diagrams%20identify%20potential%20system,that%20significant%20issues%20appear%20later.
https://aws.amazon.com/what-is/architecture-diagramming/#:~:text=Architecture%20diagrams%20identify%20potential%20system,that%20significant%20issues%20appear%20later.
https://aws.amazon.com/what-is/architecture-diagramming/#:~:text=Architecture%20diagrams%20identify%20potential%20system,that%20significant%20issues%20appear%20later.
https://aws.amazon.com/what-is/architecture-diagramming/#:~:text=Architecture%20diagrams%20identify%20potential%20system,that%20significant%20issues%20appear%20later.
nvd.nist.gov/vuln/detail/CVE-2021-44228
nvd.nist.gov/vuln/detail/CVE-2021-44228
https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies
https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies
https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies
https://www.upwork.com/
https://owasp.org/www-project-top-ten/

[13] Hala Assal and Sonia Chiasson. Security in the software development
lifecycle. In Proceedings of the Fourteenth USENIX Conference on
Usable Privacy and Security, 2018.

[14] Hala Assal and Sonia Chiasson. ’Think secure from the beginning’:
A survey with software developers. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, CHI ’19, New
York, NY, USA, 2019. Association for Computing Machinery.

[15] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaid-
man. Analyzing the state of static analysis: A large-scale evaluation in
open source software. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), volume 1,
2016.

[16] Karin Bernsmed, Daniela Soares Cruzes, Martin Gilje Jaatun, and
Monica Iovan. Adopting threat modelling in agile software develop-
ment projects. Journal of Systems and Software, 183, 2022.

[17] Hugh Beyer and Karen Holtzblatt. Contextual Design: Defining
Customer-Centered Systems. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1997.

[18] Eric Bodden, Sam Weber, and Laurie Williams. Empirical Evalu-
ation of Secure Development Processes (Dagstuhl Seminar 23181).
Dagstuhl Reports, 13(5):1–21, 2023.

[19] Grady Booch. The unified modeling language user guide. Pearson
Education India, 2005.

[20] Rosalie Chan. Open-source developers are burning out, quitting, and
even sabotaging their own projects - and it’s putting the entire internet
at risk, May 2022.

[21] CISA. CISA Issues Emergency Directive Requiring Federal Agencies
to Mitigate Apache Log4J Vulnerabilities, December 2021. https:
//www.cisa.gov/news-events/news/cisa-issues-emergency
-directive-requiring-federal-agencies-mitigate-apach
e-log4j.

[22] CISA, NSA, FBI, ACSC, NCSC-UK, CCCS, BSI, NCSC-NL, CERT
NZ, and NCSC-NZ. Shifting the Balance of Cybersecurity Risk: Prin-
ciples and Approaches for Security-by-Design and -Default. Technical
report, April 2023.

[23] Cisco. What Is Threat Modeling?, September 2020. https://www.
cisco.com/c/en/us/products/security/what-is-threat-m
odeling.html.

[24] Victoria Clarke and Virginia Braun. Thematic analysis. The journal
of positive psychology, 12(3):297–298, 2017.

[25] CMS Threat Modeling Team. CMS Threat Modeling Handbook,
February 2024. https://security.cms.gov/policy-guidance/
threat-modeling-handbook.

[26] Dan Conn. What I found when modelling threats in the open (source),
February 2023. www.youtube.com/watch?v=S1UXqPQs2Sw.

[27] Juliet Corbin and Anselm Strauss. Basics of qualitative research:
Techniques and procedures for developing grounded theory. Sage
publications, 2014.

[28] Melissa Dark and Jelena Mirkovic. Evaluation Theory and Prac-
tice Applied to Cybersecurity Education. IEEE Security & Privacy,
13(2):75–80, March 2015.

[29] Darran Boyd. How to approach threat modeling, January 2021. https:
//aws.amazon.com/blogs/security/how-to-approach-threa
t-modeling/.

[30] Tamara Denning, Adam Lerner, Adam Shostack, and Tadayoshi
Kohno. Control-alt-hack: the design and evaluation of a card game
for computer security awareness and education. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications
security, 2013.

[31] David Dittrich and Erin Kenneally. The Menlo Report: Ethical Princi-
ples Guiding Information and Communication Technology Research.
Technical report, U.S. Department of Homeland Security, Aug 2012.

[32] Karl Duncker and Lynne S. Lees. On problem-solving. Psychological
monographs, 58(5):i, 1945.

[33] Pardis Emami-Naeini, Henry Dixon, Yuvraj Agarwal, and Lorrie Faith
Cranor. Exploring how privacy and security factor into iot device
purchase behavior. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, 2019.

[34] Erin Farr. 12 ways to improve your open source security, April 2022.
developer.ibm.com/articles/12-ways-to-improve-your-o
pen-source-security/.

[35] Danilo Favato, Daniel Ishitani, Johnatan Oliveira, and Eduardo
Figueiredo. Linus’s law: More eyes fewer flaws in open source
projects. In Proceedings of the XVIII Brazilian Symposium on Soft-
ware Quality, SBQS ’19, 2019.

[36] Joint Task Force. Security and Privacy Controls for Information Sys-
tems and Organizations. Technical Report NIST Special Publication
(SP) 800-53 Rev. 5, National Institute of Standards and Technology,
December 2020.

[37] Forrest Shull. Evaluation of Threat Modeling Methodologies. In SEI
2016 Research Review, October 2016.

[38] Frank Nagle, Jessica Wilkerson, James Dana, and Jennifer L. Hoffman.
Vulnerabilities in the Core Preliminary Report and Census II of Open
Source Software. Technical report, The Linux Foundation & The
Laboratory for Innovation Science at Harvard, February 2020.

[39] Sylvain Frey, Awais Rashid, Pauline Anthonysamy, Maria Pinto-
Albuquerque, and Syad Asad Naqvi. The good, the bad and the ugly: A
study of security decisions in a cyber-physical systems game. In 2018
IEEE/ACM 40th International Conference on Software Engineering
(ICSE), 2018.

[40] FTC. FTC warns companies to remediate Log4j security vulnerability,
January 2022. https://www.ftc.gov/policy/advocacy-resea
rch/tech-at-ftc/2022/01/ftc-warns-companies-remedia
te-log4j-security-vulnerability.

[41] Kelsey R. Fulton, Anna Chan, Daniel Votipka, Michael Hicks, and
Michelle L. Mazurek. Benefits and Drawbacks of Adopting a Se-
cure Programming Language: Rust as a Case Study. In Seventeenth
Symposium on Usable Privacy and Security (SOUPS 2021), 2021.

[42] Kelsey R. Fulton, Daniel Votipka, Desiree Abrokwa, Michelle L.
Mazurek, Michael Hicks, and James Parker. Understanding the how
and the why: Exploring secure development practices through a course
competition. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, 2022.

[43] Github. Open source organizations, 2023. https://github.com/c
ollections/open-source-organizations.

[44] Antonios Gkortzis, Dimitris Mitropoulos, and Diomidis Spinellis.
VulinOSS: a dataset of security vulnerabilities in open-source sys-
tems. In Proceedings of the 15th International Conference on Mining
Software Repositories, 2018.

[45] Leo A. Goodman. Snowball sampling. The annals of mathematical
statistics, pages 148–170, 1961.

[46] Hana Habib, Sarah Pearman, Jiamin Wang, Yixin Zou, Alessandro
Acquisti, Lorrie Faith Cranor, Norman Sadeh, and Florian Schaub.
"It’s a scavenger hunt": Usability of websites’ opt-out and data dele-
tion choices. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, 2020.

[47] Seth T. Hamman, Kenneth M. Hopkinson, Ruth L. Markham, An-
drew M. Chaplik, and Gabrielle E. Metzler. Teaching Game Theory
to Improve Adversarial Thinking in Cybersecurity Students. IEEE
Transactions on Education, 60(3):205–211, August 2017.

[48] Julie M. Haney, Mary Theofanos, Yasemin Acar, and Sandra Spickard
Prettyman. "We make it a big deal in the company": Security mindsets
in organizations that develop cryptographic products. In Fourteenth
Symposium on Usable Privacy and Security (SOUPS 2018), 2018.

https://www.cisa.gov/news-events/news/cisa-issues-emergency-directive-requiring-federal-agencies-mitigate-apache-log4j
https://www.cisa.gov/news-events/news/cisa-issues-emergency-directive-requiring-federal-agencies-mitigate-apache-log4j
https://www.cisa.gov/news-events/news/cisa-issues-emergency-directive-requiring-federal-agencies-mitigate-apache-log4j
https://www.cisa.gov/news-events/news/cisa-issues-emergency-directive-requiring-federal-agencies-mitigate-apache-log4j
https://www.cisco.com/c/en/us/products/security/what-is-threat-modeling.html
https://www.cisco.com/c/en/us/products/security/what-is-threat-modeling.html
https://www.cisco.com/c/en/us/products/security/what-is-threat-modeling.html
https://security.cms.gov/policy-guidance/threat-modeling-handbook
https://security.cms.gov/policy-guidance/threat-modeling-handbook
www.youtube.com/watch?v=S1UXqPQs2Sw
https://aws.amazon.com/blogs/security/how-to-approach-threat-modeling/
https://aws.amazon.com/blogs/security/how-to-approach-threat-modeling/
https://aws.amazon.com/blogs/security/how-to-approach-threat-modeling/
developer.ibm.com/articles/12-ways-to-improve-your-open-source-security/
developer.ibm.com/articles/12-ways-to-improve-your-open-source-security/
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2022/01/ftc-warns-companies-remediate-log4j-security-vulnerability
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2022/01/ftc-warns-companies-remediate-log4j-security-vulnerability
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2022/01/ftc-warns-companies-remediate-log4j-security-vulnerability
https://github.com/collections/open-source-organizations
https://github.com/collections/open-source-organizations

[49] Michael Howard and Steve Lipner. The security development lifecycle,
volume 8. Microsoft Press Redmond, 2006.

[50] Nasif Imtiaz, Brendan Murphy, and Laurie Williams. How do develop-
ers act on static analysis alerts? An empirical study of coverity usage.
In 2019 IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE), 2019.

[51] James Ritchey. Threat Modeling, May 2024. https://handbook.g
itlab.com/handbook/security/product-security/applicat
ion-security/threat-modeling/.

[52] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert
Bowdidge. Why Don’t Software Developers Use Static Analysis Tools
to Find Bugs? In 2013 35th International Conference on Software
Engineering (ICSE), 2013.

[53] Gary A Klein. Sources of power: How people make decisions. MIT
press, 2017.

[54] Sabrina Klivan, Sandra Höltervennhoff, Rebecca Panskus, Karoly
Marky, and Sascha Fahl. Everyone for themselves? A qualitative study
about individual security setups of open source software contributors.
In 45th IEEE Symposium on Security and Privacy (SP), 2024.

[55] Loren Kohnfelder and Praerit Garg. The threats to our products, April
1999. shostack.org/files/microsoft/The-Threats-To-Our
-Products.docx.

[56] Klaus Krippendorff. Reliability in content analysis: Some common
misconceptions and recommendations. Human communication re-
search, 30(3):411–433, 2004.

[57] Raula Gaikovina Kula, Daniel M. German, Ali Ouni, Takashi Ishio,
and Katsuro Inoue. Do developers update their library dependencies?
Empirical Software Engineering, 23(1):384–417, February 2018.

[58] Qing Li and Yu-Liu Chen. Data flow diagram. In Modeling and Anal-
ysis of Enterprise and Information Systems, pages 85–97. Springer,
2009.

[59] Microsoft. Network diagram and mapping software | microsoft visio.
https://www.microsoft.com/en-us/microsoft-365/visio/n
etwork-diagrams.

[60] Jaron Mink, Harjot Kaur, Juliane Schmüser, Sascha Fahl, and Yasemin
Acar. “Security is not my field, I’m a stats guy”: A qualitative root
cause analysis of barriers to adversarial machine learning defenses
in industry. In 32nd USENIX Security Symposium (USENIX Security
23), August 2023.

[61] Mozilla. Rapid Risk Assessment (RRA), October 2019. https:
//infosec.mozilla.org/guidelines/risk/rapid_risk_ass
essment.html.

[62] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, and Matthew
Smith. On conducting security developer studies with cs students:
Examining a password-storage study with cs students, freelancers,
and company developers. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems, 2020.

[63] A Norman Donald. The design of everyday things. MIT Press, 2013.

[64] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad
Akefirad, Donovan Ellis, Eliany Perez, Rahul Bobhate, Lois A. De-
Long, Justin Cappos, and Yuriy Brun. API blindspots: Why experi-
enced developers write vulnerable code. In Fourteenth Symposium on
Usable Privacy and Security (SOUPS 2018), August 2018.

[65] Opensource.com. Open source organizations, 2023. https://open
source.com/resources/organizations.

[66] Opensource.com. The open source way, 2023. https://opensour
ce.com/open-source-way.

[67] OWASP. Threat Modeling, April 2024. https://cheatsheetseri
es.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet
.html.

[68] Hernan Palombo, Armin Ziaie Tabari, Daniel Lende, Jay Ligatti, and
Xinming Ou. An ethnographic understanding of software (in) security
and a co-creation model to improve secure software development. In
Proceedings of the Sixteenth USENIX Conference on Usable Privacy
and Security (SOUPS 2020), USA, 2020.

[69] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. Detection,
assessment and mitigation of vulnerabilities in open source dependen-
cies. Empirical Software Engineering, 25(5):3175–3215, September
2020.

[70] Emilee Rader, Samantha Hautea, and Anjali Munasinghe. "I have
a narrow thought process": Constraints on explanations connecting
inferences and Self-Perceptions. In Sixteenth Symposium on Usable
Privacy and Security (SOUPS 2020), August 2020.

[71] Maria Riaz, Jason King, John Slankas, Laurie Williams, Fabio Mas-
sacci, Christian Quesada-López, and Marcelo Jenkins. Identifying
the implied: Findings from three differentiated replications on the use
of security requirements templates. Empirical Software Engineering,
22(4):2127–2178, August 2017.

[72] William B. Rouse and Nancy M. Morris. On looking into the black
box: Prospects and limits in the search for mental models. Psycholog-
ical Bulletin, 100(3):349–363, 1986.

[73] Andrew Ruef, Michael Hicks, James Parker, Dave Levin, Michelle L
Mazurek, and Piotr Mardziel. Build it, break it, fix it: Contesting
secure development. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 690–703,
2016.

[74] Benjamin Saunders, Julius Sim, Tom Kingstone, Shula Baker, Jackie
Waterfield, Bernadette Bartlam, Heather Burroughs, and Clare Jinks.
Saturation in qualitative research: exploring its conceptualization and
operationalization. Quality & quantity, 52:1893–1907, 2018.

[75] Bruce Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21–29,
1999.

[76] Brook S.E. Schoenfield. Secrets of a Cyber Security Architect. Auer-
bach Publications, 2019.

[77] Muhammad Shahzad, Muhammad Zubair Shafiq, and Alex X. Liu. A
large scale exploratory analysis of software vulnerability life cycles. In
2012 34th International Conference on Software Engineering (ICSE),
pages 771–781, 2012.

[78] Nataliya Shevchenko, Brent R. Frye, and Carol Woody. Threat Mod-
eling for Cyber-Physical System-of-Systems: Methods Evaluation.
Technical report, Carnegie Mellon University Software Engineering
Institute, September 2018. Section: Technical Reports.

[79] Zhenpeng Shi, Kalman Graffi, David Starobinski, and Nikolay
Matyunin. Threat modeling tools: A taxonomy. IEEE Security &
Privacy, 20(4):29–39, 2022.

[80] Adam Shostack. Threat modeling: Designing for security. 2014.

[81] Adam Shostack. Fast, Cheap and Good: An Unusual Trade-off Avail-
able in Threat Modeling, December 2021.

[82] B. Shreeve, J. Hallett, M. Edwards, K. M. Ramokapane, R. Atkins,
and A. Rashid. The best laid plans or lack thereof: Security decision-
making of different stakeholder groups. IEEE Transactions on Soft-
ware Engineering, 48(05):1515–1528, 2022.

[83] Benjamin Shreeve, Joseph Hallett, Matthew Edwards, Pauline Antho-
nysamy, Sylvain Frey, and Awais Rashid. “So If Mr Blue Head Here
Clicks the Link...” Risk Thinking in Cyber Security Decision Making.
ACM Trans. Priv. Secur., 24(1), 2020.

[84] Sonatype. 8th Annual State of the Software Supply Chain. Technical
report, 2023. https://www.sonatype.com/state-of-the-sof
tware-supply-chain/introduction.

[85] Rock Stevens, Daniel Votipka, Elissa M. Redmiles, Colin Ahern,
Patrick Sweeney, and Michelle L. Mazurek. The battle for new york:
A case study of applied digital threat modeling at the enterprise level.
In 27th USENIX Security Symposium, August 2018.

https://handbook.gitlab.com/handbook/security/product-security/application-security/threat-modeling/
https://handbook.gitlab.com/handbook/security/product-security/application-security/threat-modeling/
https://handbook.gitlab.com/handbook/security/product-security/application-security/threat-modeling/
shostack.org/files/microsoft/The-Threats-To-Our-Products.docx
shostack.org/files/microsoft/The-Threats-To-Our-Products.docx
https://www.microsoft.com/en-us/microsoft-365/visio/network-diagrams
https://www.microsoft.com/en-us/microsoft-365/visio/network-diagrams
https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html
https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html
https://infosec.mozilla.org/guidelines/risk/rapid_risk_assessment.html
https://opensource.com/resources/organizations
https://opensource.com/resources/organizations
https://opensource.com/open-source-way
https://opensource.com/open-source-way
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://www.sonatype.com/state-of-the-software-supply-chain/introduction
https://www.sonatype.com/state-of-the-software-supply-chain/introduction

[86] Synopsys. Analyst report open source security and analysis report.
Technical report, 2024. www.synopsys.com/software-integri
ty/resources/analyst-reports/open-source-security-ris
k-analysis.html.

[87] Tatum Hunter and Gerrit De Vynck. The ‘most serious’ security
breach ever is unfolding right now. Here’s what you need to know.,
December 2021. https://www.washingtonpost.com/technolog
y/2021/12/20/log4j-hack-vulnerability-java/.

[88] Microsoft Software Development Lifecycle Team. The stride per
element chart. https://www.microsoft.com/en-us/security
/blog/2007/10/29/the-stride-per-element-chart/, 2007.

[89] Ronald Thompson, Madeline McLaughlin, Carson Powers, and Daniel
Votipka. "there are rabbit holes I want to go down that I’m not allowed
to go down": An investigation of security expert threat modeling
practices for medical devices. In 33rd USENIX Security Symposium,
August 2024.

[90] Tony UcedaVélez and Marco M. Morana. Risk Centric Threat Model-
ing: process for attack simulation and threat analysis. John Wiley &
Sons, 2015.

[91] Warda Usman, Jackie Hu, McKynlee Wilson, and Daniel Zappala.
Distrust of big tech and a desire for privacy: Understanding the moti-
vations of people who have voluntarily adopted secure email. In Nine-
teenth Symposium on Usable Privacy and Security (SOUPS 2023),
2023.

[92] Dimitri Van Landuyt and Wouter Joosen. A descriptive study of
assumptions in stride security threat modeling. Software and Systems
Modeling, pages 1–18, 2021.

[93] Stef Verreydt, Koen Yskout, Laurens Sion, and Wouter Joosen. Threat
modeling state of practice in dutch organizations. In Twentieth Sym-
posium on Usable Privacy and Security (SOUPS 2024). USENIX
Association, August 2024.

[94] Daniel Votipka, Desiree Abrokwa, and Michelle L. Mazurek. Building
and validating a scale for secure software development self-efficacy.
In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, 2020.

[95] Daniel Votipka, Kelsey R. Fulton, James Parker, Matthew Hou,
Michelle L. Mazurek, and Michael Hicks. Understanding security
mistakes developers make: Qualitative analysis from build it, break it,
fix it. In 29th USENIX Security Symposium, 2020.

[96] Dominik Wermke, Noah Wöhler, Jan H Klemmer, Marcel Fourné,
Yasemin Acar, and Sascha Fahl. Committed to trust: A qualitative
study on security & trust in open source software projects. In 2022
IEEE Symposium on Security and Privacy (SP), 2022.

[97] David A. Wheeler. Secure software development fundamentals, 2023.

[98] Chamila Wijayarathna and Nalin AG Arachchilage. Why Johnny
Can’t Store Passwords Securely? A Usability Evaluation of Bouncy-
castle Password Hashing. In Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software Engineering,
2018.

[99] Wenjun Xiong and Robert Lagerström. Threat modeling – a system-
atic literature review. Computers & Security, 84:53–69, 2019.

[100] Jie Zhang, Haoyu Bu, Hui Wen, Yu Chen, Lun Li, and Hongsong Zhu.
When llms meet cybersecurity: A systematic literature review, 2024.

[101] Shikun Zhang, Yuanyuan Feng, Yaxing Yao, Lorrie Faith Cranor, and
Norman Sadeh. How usable are ios app privacy labels? Proceedings
on Privacy Enhancing Technologies, 2022.

[102] Zoe Braiterman, Adam Shostack, Jonathan Marcil, Stephen de Vries,
Irene Michlin, Kim Wuyts, Robert Hurlbut, Brook S.E. Schoenfield,
Fraser Scott, Matthew Coles, Chris Romeo, Alyssa Miller, Izar Taran-
dach, Avi Douglen, and Marc French. Threat Modeling Manifesto.

A Interview Questions
Section 1: Background and Introduction.

1. [Experience] In your survey, you mentioned you have been involved
in OSS for [years from survey] years. Can you tell us a little more
about your experience?

2. [Project details] Can you tell us a bit about your project(s)? For e.g.
these could be security-related projects you most contributed to / your
most recent project.

2.1. What is it about?
2.2. What is your role in this project? (i.e. What are your responsi-

bilities and duties?)
2.3. Is your project completely or partly open source?
2.4. [If the project is supported by a company] Roughly what per-

centage of core contributors are within [company] compared to
external contributors?

2.4.1. What does that look like overall for the project, i.e. both
core and non-core contributors?

3. [Project security relevance] Do you consider security an important
aspect for you in general and for your project?

3.1. [If yes for 3.] Why do you care about security?
3.2. [If no for 3.] Why not?

Section 2: Process Followed.
4. [Scope of threat model - Security Objectives] What are the “security

objectives” for your projects? (i.e., what is the level of security or
security properties you want to achieve?)

5. [what am I building] How do you visualize the system you are build-
ing? For e.g., this could include everything from diagramming to
making a mental model etc.
(If prompt needed): How do you visualize your system to keep track
of where you have looked for threats? Which elements of your system
do you look at to find threats?

6. [What can go wrong? - Threat Identification in {De-
sign/Implementation} *] Now we are going to ask a few
questions about identifying threats when you are {designing / writing}
the software, or while {designing / writing} a specific component.
When {designing software / writing code}, how do you look for
threats/vulnerabilities/security issues? Can you give us an example?

6.1. [Documentation] {During software design / While writing
code}, do you keep a record of the identified threats using well-
defined documentation for future reference?

6.2. [Communication] {During software design / While writing
code}, how do you communicate the identified threats to other
people on the project?

6.2.1. [if software library] How do you communicate the identi-
fied threats to developers who use the library?

6.2.2. [if external contributors] How do you communicate the
identified threats to external contributors?

a. Do you have a policy for what gets communicated
to external contributors?

6.3. [Responsibility] Whose responsibility is it to think about/
identify threats {during software design / while writing code}?

6.4. [Resources] Do you rely on any resources (e.g. books, websites,
training, blogs, specific people etc.) to help you with threat
identification {during software design / while writing code}?

6.5. [Challenges] What are the most challenging aspects of your
threat identification process {during software design / while
writing code}?
(If prompt needed): Are there any resources you lack? Better
software visualization? More hours? More structure?

*We asked the question block “what can go wrong” both for design and
implementation stages. We first asked the entire question block probing for
practices during design. We then ask the same set of questions probing for
practices during implementation. Changes in wording are marked as {during
software design / while writing code} or similar text.

www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.washingtonpost.com/technology/2021/12/20/log4j-hack-vulnerability-java/
https://www.washingtonpost.com/technology/2021/12/20/log4j-hack-vulnerability-java/
https://www.microsoft.com/en-us/security/blog/2007/10/29/the-stride-per-element-chart/
https://www.microsoft.com/en-us/security/blog/2007/10/29/the-stride-per-element-chart/

6.5.1. [if project supported by company & external contribu-
tors involved] You mentioned that your project has a mix
of internal contributors from your company and external
contributors. Do you find any challenges to threat identifi-
cation {during software design / while writing code} due
to the in-group and out-group structure?

7. [What am I going to do about it? - Threat Mitigation in {Design /
Implementation}*] When {designing software / writing code}, how
do you decide what to do about security issues you identified? Can
you give an example?

7.1. In what order do you think about mitigations? How do you
triage these threats? (If prompt needed): i.e., do you think of an
issue and then a solution one-by-one, or all the issues first and
then what to do about each of them, etc.?)

7.1.1. Do you categorize the identified security issues in some
way? [If yes] Why do you categorize them?

7.2. [Documentation] Do you keep a record of these solutions to
security issues using well-defined documentation for future
reference?

7.3. [Communication] How do you communicate these solutions
to security issues to other people on the project?

7.3.1. [If software library] How do you communicate the solu-
tions to security issues to developers who use the library?

7.3.2. [If external contributors] How do you communicate these
mitigation strategies to external collaborators to ensure
their commits are consistent with this approach?

7.4. [Responsibility] Who decides what is a valid issue that should
be fixed or which fixes will be used?

7.4.1. Whose responsibility is to come up with solutions/fixes?
7.5. [Resources] Do you rely on any resources (e.g. books, websites,

training, blogs, specific people etc.) to help you with threat
mitigation?

7.6. [Challenges] What are the most challenging aspects of the
mitigation process?

7.6.1. [if project supported by company & external contributors
involved] You mentioned that your project has a mix of
internal contributors from your company and external
contributors. Do you find any challenges to the threat
mitigation process {during software design / while writing
code} due to the in-group and out-group structure?

8. [Threat identification & mitigation - other stages] Do you identify
or mitigate threats at any other stages?

9. [What can go wrong? - Frequency/Revising threat identification &
mitigation] Now we are going to ask about when you make changes to
your code. By “changes,” we mean: changes to functionality, changes
in involved parties, changes due to a vulnerability being found etc..
Do your threat identification and mitigation processes resume when
making a change?

9.1. [If yes for 9.] Could you elaborate?
9.2. Does this happen with every change or just for specific changes?

10. [Did I do a good enough job? - Validation] Is there any process for
determining you’ve met your security objectives? (Can you give us an
example?)

10.1. Is a particular person responsible for determining that you’ve
met your security objectives?

Section 3: Threat Modeling.
• [Introducing Threat Modeling] The questions we have been ask-

ing are about your process of finding threats and mitigations. These
processes are frequently called “Threat Modeling”.

*We follow the same strategy we used previously for the “what can go
wrong" block for the current questions block "What am I going to do about
it?"

11. Have you heard of Threat Modeling?

11.1. [If yes for 11.] How would you define threat modeling?
11.2. Do you feel the processes you described above meet that

definition of “Threat Modeling?”

[Our definition] We define Threat Modeling as the general
process of finding threats to a system, and deciding what to
do about those threats. We don’t believe it must be a rigorous,
structured process as some people define it, so we have so far
avoided using that term.

12. [if they do not mention any formal TM techniques above] Do you imple-
ment any kind of formal threat modeling in your project? (By “formal,”
we mean structured approach like STRIDE, PASTA, LINDDUN, etc.)

12.1. [If no for 12.] Why do you not use a formal threat modeling
process?

12.2. [If no for 12.] Have you considered using it in the past?

Section 4: Adoption.
13. [If they do implement TM in any way] [Reasons] What are your reasons

for using threat modeling (or a threat modeling-like process you just
mentioned)?

14. [If they do implement TM in any way] [Adoption] Why did you/your
team decide to adopt threat modeling (or a threat modeling-like process
you just mentioned)?

14.1. Were you a part of this group when this process was adopted?

15. [Adoption] Was it hard to convince the necessary people in your group
to adopt this threat modeling-like process?

15.1. What concerns did they have?
15.2. What were they excited about?

16. [Adoption] What would you tell someone in your position in a differ-
ent OSS project that is also thinking about adopting a threat modeling
process?

Section 5: Challenges.
17. [If they do implement TM only to some extent but not completely] Based

on your previous responses, we see that you implement some threat
modeling in your projects - Do you think/believe that the extent to
which you implement threat modeling in your project is sufficient to
ensure security?

17.1. [if no for 17.] Do you find any challenges or barriers that prevent
you from completely implementing threat modeling in your
project?

18. [if project supported by company & external contributors involved] Do
you encounter any other challenges with implementing threat modeling
(or a threat-modeling like process) due to having internal and external
contributors?

19. How easy is it for you to find solutions to any problems you encounter
while implementing threat modeling (or a threat modeling-like process
you just mentioned)?

20. [If no TM] Do you find any challenges or obstacles that prevent you
from utilizing any threat modeling in your project?

Section 6: Improvements.
21. [Ask only if they have a familiarity with TM] In your opinion, how do

you think OSS projects can be better supported in implementing threat
modeling?

21.1. What additional resources would be helpful for implementing
threat modeling in your open source project(s)?

21.1.1. [if they do informal TM] If you were to implement for-
mal TM in your project, what resources would you find
helpful?

22. What would you do differently if you were to implement threat model-
ing in another open source project?

Section 7: End of Interview.
23. Before we finish, is there anything that we did not discuss that you

think would be helpful for us to know?

	Introduction
	Related Work
	Methodology
	Community Engagement
	Screening Survey
	Interview Procedure
	Interview Structure
	Recruitment Strategies
	Data Analysis and Coding
	Limitations

	Participant Demographics
	TM Practices in OSS (RQ1)
	System Representation
	Threat Identification and Mitigation
	Responsibility
	Communication Practices
	Resources

	Challenges to Using TM in OSS (RQ2)
	OSS Contributors Are Volunteers
	Decentralized and Transient OSS Teams
	OSS Teams May Be Small
	OSS Projects Lack Security Expertise
	Projects Start without Security Concerns

	Reasons for Adopting TM (RQ3)
	black Contributors chose practices that limit overhead and documentation
	 black Ad hoc practices are flexible
	black Filling the gap of security expertise
	Other Adoption Decisions

	Discussion
	Recommendations for Structured TM Process and Tool Improvement
	Recommendations for Researchers
	OSS Community Recommendations

	Conclusion
	Interview Questions

