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Abstract

Semi-asynchronous federated learning (SAFL) enhances
the efficiency of privacy-preserving collaborative learning
across clients with diverse processing capabilities. It updates
the global model by aggregating local models from only par-
tial fast clients without waiting for all clients to synchronize.
We realize that such semi-asynchronous aggregation may
expose the system to serious poisoning risks, even when de-
fenses are in place, since it introduces considerable incon-
sistency among local models, giving chances for attackers
to inject inconspicuous malicious ones. However, such risks
remain largely underexplored. To plug this gap and fully ex-
plore the vulnerability of SAFL, in this paper, we propose a
scalable stealth poisoning attack framework for Byzantine-
resilient SAFL, called PoiSAFL. It can effectively impair
SAFL’s learning performance while bypassing three typical
kinds of Byzantine-resilient defenses by strategically con-
trolling malicious clients to upload undetectable malicious
local models. The challenge lies in crafting malicious models
that evade detection yet remain destructive. We construct a
constrained optimization problem and propose three modules
to approximate the optimization objective: the anti-training-
based model initialization, loss-aware model distillation, and
distance-aware model scaling. These modules initialize and
refine malicious models with desired poisoning ability while
keeping their performance, prediction entropy, and dissim-
ilarity within benign ranges to bypass detection. Extensive
experiments demonstrate that PoiSAFL can defeat three typ-
ical categories of defenses. Besides, PoiSAFL can further
amplify its attack impact by flexibly executing three proposed
modules. Note that PoiSAFL is scalable and can incorporate
new modules to defeat future new types of defenses.

∗Zhibo Wang is the corresponding author.

1 Introduction

Federated learning (FL) is widely used in distributed systems
since it enables multiple clients to train a shared global model
by sending local model updates to the server while keeping
their private data locally. In conventional synchronous FL
(SFL) [15, 21, 23, 28, 34, 40], the server performs the global
aggregation only after receiving local updates from all clients,
causing inefficiencies due to clients’ various speed. For that,
asynchronous FL (AFL) [8, 9, 39, 41, 47, 50, 54, 56–58] is
introduced to enable the server to perform the aggregation
once receiving a local update from any client and broadcast
the updated global model to that client. However, it results
in a high inconsistency among local models, greatly slowing
down convergence. Recently, semi-asynchronous FL (SAFL)
[20,22,27,30,33,42] has emerged to strike a balance between
the efficiency of AFL and the convergence speed of SFL by
performing the global aggregation in a semi-asynchronous
manner. Specifically, in SAFL, the server buffers local updates
uploaded by clients and aggregates them to update the global
model when the buffer reaches a certain size or a fixed period
has elapsed. Thus, SAFL offers advantages in terms of faster
convergence, more flexible client participation, and improved
computation resource usage.

Previous works highlight FL systems’ susceptibility to
Byzantine poisoning attacks crafted from malicious manipu-
lation of clients’ behaviors. They inject dirty data (known as
data poisoning attacks) [13, 16, 18, 36, 37] or malicious local
updates (known as model poisoning attacks) [1–3,6,10,31,48]
into FL systems through adversary-controlled clients to im-
pair the system learning performance. Recently, with full
awareness of such serious security hazards, various Byzantine-
resilient approaches have been proposed to defend SFL and
AFL against poisoning risks. They effectively detect or filter
out malicious local updates to weaken their negative effect
on the global model. According to how they determine if
the local update is malicious, they can be categorized as: 1)
Similarity-based defenses [11, 26, 35, 38, 44, 46, 49]: con-
sidering that benign local updates have a certain degree of



consistency, these defenses screen potential malicious local
updates based on statistical similarity. 2) Performance-based
defenses [5, 10, 29, 45]: with the intuition that benign local
updates will lead to higher global model performance, these
defenses identify malicious local updates by detecting high-
loss local models or measuring the loss/accuracy of the global
model integrated with each local update. 3) Entropy-based
defenses [29]: these defenses believe that benign local mod-
els result from local training rather than random generation,
thus their predictions should have high confidence and low
entropy. So they insulate malicious local models from global
aggregation by filtering those with high prediction entropy.

As a FL system, SAFL is inherently susceptible to Byzan-
tine poisoning attacks. Meanwhile, as a compromise of SFL
and AFL, it can adopt the above-mentioned three kinds of
defense methods designed for SFL and AFL to strengthen its
defenses against malicious clients seeking to undermine the
integrity of the learning process. Nevertheless, we realize that
in some cases, SAFL systems may face greater poisoning risks
than SFL and AFL systems due to their semi-asynchronous
nature. For example, while SFL allows all clients to utilize the
same global model as the initialization during local training,
clients in SAFL train locally based on different versions of
the global model (from different global rounds), which leads
to high inconsistency among local models. Therefore, when
defenses (such as statistical similarity-based defenses) are
deployed, compared to SFL, the higher divergence of local
updates in SAFL gives attackers more flexibility to bypass de-
tections and launch successful poisoning attacks. Additionally,
in AFL, only one client participates in the global aggregation
process at each global round, while SAFL uses local updates
from more clients for the global aggregation. Therefore, with
the same number of global rounds, slow clients have more
opportunities to participate in the global aggregation in SAFL
than in AFL, indicating that they can have a more significant
impact on the final global model. In this context, when slow
clients are compromised as malicious clients, they can achieve
stronger poisoning attack impacts in SAFL than AFL. How-
ever, the threat of poisoning attacks on SAFL systems with
Byzantine-resilient defenses remains largely underexplored.

In this paper, we are motivated to take an important step
towards exploring the significant poisoning risk in SAFL
systems by demonstrating how model poisoning attacks can
be successfully launched against SAFL, even when Byzantine-
resilient approaches are adopted. To achieve our goal, we are
facing two major challenges. First, in SAFL, the frequency
at which each client participates in the global aggregation
varies, leading to their different levels of influence on the
global model. Therefore, it becomes challenging to ensure
that malicious clients exert their influence and significantly
destroy the SAFL system’s learning performance to show
the desired toxicity. Second, since the adversary is generally
unable to ascertain the specific countermeasures deployed by
the SAFL system, it must be capable of bypassing all three

typical kinds of defenses to launch the attack successfully.
Whereas, it is challenging to maintain a strong impact of the
attack while circumventing comprehensive defenses.

To solve the challenges and substantiate such a poisoning
threat, we propose a scalable poisoning attack framework
for Byzantine-resilient SAFL systems as a pioneer research,
called PoiSAFL. It can effectively diminish the global model
performance while evading the three potential kinds of de-
fenses deployed in the server. To this end, PoiSAFL crafts
undetectable malicious local models for compromised mali-
cious clients and strategically controls their participation fre-
quency in the global aggregation to amplify the attack impact.
Specifically, to produce satisfactory malicious local models,
we formulate a constrained optimization problem and develop
three modules to effectively approximate the optimization
objective: 1) To maximize the malicious model’s negative
influence on the global model, the anti-training-based model
initialization module initializes a seed malicious model with
an inverted loss function, which minimizes the probability
of correct classification. 2) To counteract entropy-based and
performance-based defenses, instead of directly generating
malicious local models like existing model poisoning attacks,
the loss-aware model distillation module trains malicious lo-
cal models under the supervision of the seed malicious model
as well as ground truths. This can transfer the poisonousness
of the seed malicious model to malicious local models while
keeping their small prediction entropy and loss. 3) To avoid
being identified by similarity-based defenses, the distance-
aware model scaling module further optimizes each malicious
local model to keep its distance from benign local models
within tolerable limits. These three components ensure that
the crafted malicious local models remain stealthy from vari-
ous perspectives and possess high toxicity. Note that PoiSAFL
is a scalable framework as it can incorporate new poisoning
evasion modules in the future by extending its process flow
and increasing constraints in the malicious local model opti-
mization problem.

Our key contributions can be summarized as follows:

• We propose a stealth poisoning attack framework for
SAFL, called PoiSAFL, which can effectively compro-
mise the learning performance while evading three typ-
ical kinds of defenses. To the best of our knowledge,
this work is the first to reveal that integrating existing
Byzantine-resilient defenses into SAFL gives a false
sense of security against poisoning attacks.

• To ensure attack effectiveness and undetectability, we
propose the anti-training-based model initialization
mechanism to make sure that crafted malicious local
models have satisfactory poisonousness. Then, we de-
velop the loss-aware model distillation mechanism and
the distance-aware model scaling mechanism to ensure
that malicious local models can bypass the detection of
three typical kinds of Byzantine-resilient approaches.



• Extensive experiments validate that PoiSAFL can ef-
fectively degrade the global model accuracy in SAFL
despite what kind of defense the server adopts and out-
performs state-of-the-art poisoning attacks. Meanwhile,
PoiSAFL can cause more remarkable performance degra-
dation when the adopted defense is known by flexibly
executing the proposed three modules.

2 Background and Related Work

In this section, we introduce background knowledge and re-
lated work.

2.1 SFL, AFL and SAFL
A typical FL system contains a server and plenty of clients,
and the typical FL algorithm contains the following steps at
each round: 1) Local training: each selected client trains its
local model with its own dataset using the received global
model as the initialization. 2) Uploading: each selected client
uploads the local update (i.e. local model or gradient) to the
server after completing the local training. 3) Global aggre-
gation: the server strategically aggregates a part of or all the
received local updates to update the global model. 4) Broad-
casting: the server broadcasts the latest global model to those
clients participating in the global aggregation. Both SFL,
AFL, and SAFL follow the above typical system model and
algorithm, but they differ in the global aggregation step.

Specifically, represented by FedAvg [23], at each round,
SFL waits for all selected clients to upload their local updates
before performing the global aggregation, leading to system
inefficiencies. In contrast, AFL [8, 9, 39, 41, 47, 50, 54, 56–58]
updates the global model immediately each time receiving
a local update from any client, leading to a more responsive
learning process. However, the fully asynchronous aggre-
gation may include stale or outdated information with high
inconsistency, potentially slowing down convergence and di-
minishing the global model accuracy. SAFL is introduced
to strike a balance between the efficiency of AFL and the
convergence speed of SFL. As a compromise of SFL and
AFL, SAFL [7, 20, 22, 24, 25, 27, 30, 33, 42, 51–53] involves
the server aggregating buffered local model updates from a
part of fast-trained clients. To be more specific, at each round,
the server buffers received local updates and aggregates them
to update the global model once the buffer reaches a predeter-
mined size or after a set time interval has passed. For instance,
as shown in Figure. 1, the server aggregates the received local
updates periodically at a regular interval.

Note that in AFL and SAFL, there may be a delay between
when a client completes local training and when its local
update are incorporated into the global model. During this
time, the global model may have already been updated several
times by other clients. As a result, the client’s local update is
outdated compared to the current global model. The metric

Client 1

...

Client 2

Client 3

Client M

.  .  .
𝒘𝟎 𝒘𝟏 𝒘𝟐 𝒘𝟑 𝒘𝟒

SAFL with periodic aggregation

Round 0 Round 1 Round 2 Round 3 Round 4

Figure 1: The schematic illustration of SAFL. The blue line
means the server performs the global aggregation, and the
black line with arrow means the client completes local training
and uploads local update to the server.

staleness is often used to measure how stale the local update
is compared to the current global model, which is typically
computed as the difference between the update round of the
global model adopted in the local training and the current
round where the local update is incorporated into the global
model. For example, in SAFL with periodical aggregation
shown in Figure. 1, at the global round 3 where the server
gets the global model w3, the staleness of client 1 is 3 −
2 = 1 and that of client M is 3− 0 = 3. Most algorithms
[24, 25, 51, 54, 55] assign staleness-aware weights for clients
during the global aggregation to mitigate the effect of stale
information and improve learning performance.

2.2 Poisoning Attacks and Defenses to SFL

SFL, due to its distributed nature, is vulnerable to poisoning
attacks. The adversary can control some malicious clients to
undermine the robustness of the global model and make it
generate erroneous predictions. Such attacks can be differ-
entiated into data poisoning attacks [13, 16, 18, 36, 37] and
model poisoning attacks [1–3, 6, 10, 31, 48]. The former pol-
lutes the training data of compromised clients while the latter
manipulates the local updates of compromised clients directly.

Many Byzantine-resilient defenses have been devised to
secure SFL against poisoning attacks by discarding or down-
weighting outlier local updates during global aggregation.
Based on their outlier detection strategies, they can be broadly
categorized into two primary groups: similarity-based ap-
proaches and performance-based methods. Similarity-based
defenses primarily identify outliers among client updates by
measuring their similarity using statistical metrics, such as
Euclidean distance [4, 11, 12], cosine similarity [11, 26, 46],
L2 norm [35] and other specially designed metrics [38,44,49].
The fundamental insight underlying performance-based de-
fenses [5, 10, 29, 45] is that benign local models outperform
malicious ones and will lead to better global model perfor-
mance. Based on that, they typically assume access to a small
and clean public dataset on the server that has the same distri-
bution as clients’ local data, and use this dataset to evaluate
local models’ loss or accuracy, allowing them to exclude un-
derperforming local models.



2.3 Defenses for AFL
Some researchers have recognized that AFL is also highly
susceptible to poisoning attacks. They put forth novel de-
fenses for AFL predicated on the server’s possession of a
trusted dataset for the learning task. For example, following
the principle of existing similarity-based and performance-
based SFL defenses, they update the global model using the
trusted dataset to produce a benign reference model and iden-
tify malicious clients by comparing local models to this refer-
ence through statistical similarity or performance discrepan-
cies [11,46]. Beyond that, Prak et al. [29] introduces a unique
method based on predictive entropy. The underlying intuition
is that benign models, genuinely trained on real data, will
exhibit lower predictive entropy. The proposed entropy-based
method evaluates the predictive entropy of local models using
the trusted dataset and filters out local models with higher
entropy during the global aggregation.

There is currently no work specifically designed for poison-
ing attacks or defenses against SAFL. However, considering
that SAFL is a compromise of SFL and AFL, SAFL sys-
tems can adopt the above-mentioned three typical kinds of
Byzantine-resilient defenses designed for SFL and AFL to
bolster their defense capability.

2.4 Knowledge distillation
In this paper, we utilize the Knowledge distillation (KD) tech-
nology to transfer the poisonousness between malicious mod-
els. KD empowers knowledge transfer between two different
models (called the teacher and the student), where the student
model is enabled to quickly learn new complex concepts that
the teacher model has learned. The pioneering KD work by
Hinton et al. [14] suggested that the student model should
acquire the knowledge of the teacher network by mimicking
the output logits (i.e., the inputs to the final softmax) of the
teacher model for the public dataset since logits carry the dark
knowledge learned by the teacher model. Suppose the teacher
model and the student model have output logits zt and zs re-
spectively for the same input sample (x,y), then the trianing
loss L in KD can be computed by:

L = α∗φ(ρ(zs),y)+(1−α)∗φ(ρ(zs,τ),ρ(zt ,τ)), (1)

where φ is the distance measure function (e.g., the cross-
entropy, KL divergence), ρ is the softmax function that con-
verts logits into a probability distribution over classes. τ > 1
is a temperature factor that is applied as a scaling factor to
the logits soft the target distribution. The first item is the
prediction loss and the second item is the distillation loss.

3 Problem Definition

This section introduces our risk analysis and gives the threat
model and problem we considered.
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Figure 2: Results of motivation experiments.

3.1 Risk Analysis and Motivation
In this paper, we have an insight that although SAFL can
adopt defense methods designed for SFL and AFL to defeat
poisoning attacks, it still faces serious poisoning risks due
to its distributed and semi-asynchronous characteristics. At
some point, the poisoning risks in SAFL can be even greater
than in SFL and AFL. This is because SAFL has 1) more
noisy local updates compared to SFL, providing more room
to manipulate malicious local models to bypass detections,
and 2) a more balanced client contribution compared to AFL,
allowing stronger attack impacts by compromising any group
of clients (even slow clients) as malicious ones.

Specifically, in SAFL, clients with different processing
power asynchronously join the global aggregation and per-
form local training based on different versions of the global
model. This leads to local models with varying staleness and
high inconsistency, then the server would receive noisy local
models with high divergence. Unlike that, in SFL, clients per-
form local training based on the same global model, showing
much lower inconsistency among local updates. Therefore,
when defenses are deployed, SAFL may face greater poison-
ing risks than SFL since it introduces additional flexibility for
the adversary to inject hard-to-detect malicious local models
during the global aggregation.

Moreover, the gap in the participation frequency in global
aggregation between fast and slow clients in AFL is huge,
making slower clients, potentially including malicious ones,
unable to have a meaningful impact on the global model.
SAFL reduces such a gap by aggregating buffered local model
updates from multiple clients, providing slower clients with
more opportunities to contribute to the global model. There-
fore, with the same number of global rounds, when compro-
mising slow clients as malicious ones, the adversary can cause
a greater destructive effect in SAFL than AFL. That is, when
slow clients act as malicious clients, SAFL may fact greater
poisoning risks than AFL.

To validate our analysis, we implement SFL, AFL, and
SAFL algorithms (i.e., FedAvg [23], staleness-aware AFL
[54], staleness-aware SAFL with periodic aggregation [7])
with the FashionMNIST dataset. We set 60 clients and allo-
cate the dataset to these clients in an IID manner. Both clients
and the server use CNN2 as the model architecture. The al-
gorithms are conducted for 150 rounds with Adam optimizer
with a learning rate of 0.01 and batch size of 64, and the attack



starts from the 100-th round. To be more specific, to compare
the inconsistency among local updates in SAFL and SFL, in
Figure. 2(a), we visualize the local updates buffered by the
server in a single round (where there is no attack) based on
PCA dimensionality reduction. We can find that the diver-
gence of local updates in SAFL is much higher than that in
SFL, which is inconsistent with our analysis. To compare the
attack impacts in SAFL and AFL when the adversary compro-
mises slow clients to act maliciously, we launch two sample
poisoning attacks (i.e., LabelFlip and SignFlip) when compro-
mising 20% slowest clients as malicious clients. Figure. 2(b)
gives the results, and the observation that attacks are more
harmful in SAFL than in AFL supports our analysis.

Despite its increased vulnerability, the specific investigation
of poisoning attacks within SAFL has been scarce. Therefore,
we are motivated to fully reveal and explore poisoning risks
in SAFL. Given that SAFL systems can adopt existing three
kinds of Byzantine-resilient defense methods to defeat poison-
ing attacks, our goal is to design a new poisoning attack for
SAFL that can bypass potential defenses while significantly
impairing the system learning performance.

3.2 Threat Model

We characterize our threat model with respect to the capabili-
ties, knowledge, and goal of the adversary.

The adversary’s capabilities: Following the regular SAFL
architecture, PoiSAFL assumes that the adversary has control
of a part of the whole M clients and manipulates them to inject
malicious local models to compromise the system integrity.
Considering the characteristics of SAFL, we assume that these
malicious clients include at least one of the fastest-trained
clients for convenient information estimation. Suppose the
number of controlled clients (malicious clients) is C, and that
of benign clients is M−C. Then we have a set Um of malicious
clients and a set Ub of benign clients, where |Um| = C and
|Ub|= M−C.

The adversary exerts complete control over malicious
clients, including accessing their local data and controlling
their local training, local update uploading frequency, and
the uploaded content, as well as facilitating information shar-
ing among malicious clients. Besides, it has very strong pro-
cessing power to train and optimize malicious local models
for malicious clients. That is, it can quickly craft malicious
models for malicious clients, which takes less time than the
fastest-trained clients’ local training. Therefore, it enables
malicious clients to upload malicious updates as quickly as
the fastest clients. However, the adversary lacks the ability to
compromise the central server or benign clients.

The adversary’s knowledge: The adversary knows all
information about malicious clients. It can observe the fre-
quency of all clients participating in the global aggregation
and thus has the knowledge of the highest staleness value
during the SAFL process. However, it doesn’t know the local

data or local models of benign clients and is unaware of the
server’s adopted defense mechanisms against attacks.

The adversary’s goal: The adversary focuses on launching
untargeted poisoning attacks to SAFL to significantly com-
promise the performance of the global model while bypassing
potential defenses. To this end, it exploits vulnerabilities and
blind spots in current defenses and strategically manipulates
the upload frequency and local models of compromised ma-
licious clients to poison the global model. The main goal is
to strategically craft and upload malicious local models that
can be covertly injected into the global aggregation process
to damage the global model, even with Byzantine-resilient
defenses in place.

3.3 Problem Formulation
Suppose there are M heterogeneous clients, and each client
i ∈U = {1,2, · · · ,M} has its own training data Di, and D =⋃M

i=1 Di is a collection of all training data. Then the SAFL
problem can be formulated as:

min
w

{F (w,D)≜
|Di|
|D|

M

∑
i=1

F (w,Di)}, (2)

where w denote the final learned global model,
F (w,Di) is the local loss function defined as
F (w,Di) = 1

|Di| ∑(x,y)∈Di φ(h(w,x),y). Note that h(w,x)
is the prediction vector of the model w for the input x, and φ

measures the distance.
Specifically, let U t denote the set of clients that participate

in the global aggregation at global round t, i.e., local updates
of clients in U t are buffered and aggregated in round t. Let
U t

j ⊂U t ( j < t) denote the set of clients whose local training is
performed using the global model w j of the global round j as
the initialization. Then we have

⋃t−1
j=0 U t

j =U t and U t
j ∩U t

j′ =

/0 for j ̸= j′. For the client i ∈ U t
j , its staleness τt

i can be
computed by τt

i = t − j, which measures how stale the global
model adopted in local training is. Then SAFL performs the
following semi-asynchronous global aggregation step at each
global round t:

wt = πwt−1 +(1−π) fAGR({wt
i}i∈U t ), (3)

where wt−1 is the previous global model, {wt
i}i∈U t denotes the

buffered local updates, π weights the effects of the two terms,
and fAGR is the aggregation rule (AGR) adopted by the server
(it can be Byzantine-resilient or not). The mostly-used non-
Byzantine-resilient AGR is to compute the staleness-aware
weighted average of buffered local models, where the weight
of the client i ∈U t is inversely proportional to its staleness τt

i .
In PoiSAFL, the adversary controls a set of malicious

clients Um ⊂ U t to upload malicious local models at each
global round. Let {ŵt

i}i∈Um denote buffered malicious local
models at the global round t, then, according to Eq. (3), the



server gets the poisoned aggregated global model ŵt at global
round t by:

ŵt = πwt−1 +(1−π) fAGR({ŵt
i}i∈Um ,{wt

i}i∈U t\Um). (4)

We let ŵ denote the final SAFL global model in the event
of a poisoning attack. The problem to be solved by PoiSAFL
is: under the defined threat model, how to craft malicious
local models {ŵt

i}i∈Um for malicious clients at each poison-
ing round t to significantly mislead the global model while
evading the detection of three typical kinds of defenses (i.e.,
performance-based, entropy-based, and similarity-based de-
fenses) to significantly damage the performance of the final
global model ŵ.

4 Stealth Poisoning Attack Framework for
Semi-asynchronous Federated Learning

This paper proposes a scalable stealth poisoning attack frame-
work for SAFL, called PoiSAFL. In this section, we first
introduce the design principle of PoiSAFL and then give a
high-level overview and design details of PoiSAFL.

4.1 The Design of PoiSAFL

As previously analyzed, in SAFL, inconsistency among lo-
cal models arises due to varying staleness levels of global
models used for updates. Despite this, these noisy local mod-
els provide valuable information and diverse perspectives,
aiding the global model’s learning. Thus, such inconsistency
caused by differing levels of staleness is acceptable in SAFL’s
learning process. In this case, it is challenging to differentiate
whether inconsistencies among local models are due to the
benign issue of staleness or the malicious actions of adversary-
controlled clients, giving chances for malicious local models
to bypass the detection of defenses for poisoning attacks.

Our intuition is that the adversary can take advantage of
SAFL’s tolerance for a certain level of inconsistency among
buffered local models to blend malicious local models into
legitimate, inconsistent local models, thus evading the detec-
tion of Byzantine-resilient defenses. Inherently, at each global
round, the buffered local model with the highest staleness
is likely to have the greatest inconsistency (in terms of sta-
tistical similarity and performance) compared to the current
global model and other buffered local models. This level of
inconsistency from the stalest local updates is still considered
tolerable by the SAFL system. Thus, we can use the stalest
local models as the reference to determine an approximate
upper bound for “tolerable inconsistency”. Then, to achieve
our attack goal, our principle is to craft malicious local mod-
els that introduce inconsistencies no larger than the tolerable
inconsistency bound but can effectively mislead the global
model and significantly degrade its performance.

More specifically, since performance-based defenses nor-
mally detect and filter local models that have highly incon-
sistent loss (higher loss in general), to bypass such defenses,
the key is to ensure that the loss of malicious local mod-
els is no higher than the loss of the most stale local model.
Similarly, since the similarity-based defenses recognize and
eliminate local models with high statistical dissimilarity from
others, to evade such defenses, the crafted malicious local
models should keep their distance from the current global
model within the range of the distance between the most
stale local model and the global model. While existing works
have explored strategies to bypass performance-based and
similarity-based defenses, they usually rely on generic op-
timization techniques to generate desirable malicious local
models. However, these generated malicious models often
exhibit high prediction entropy and are vulnerable to entropy-
based defense mechanisms. In this paper, we propose a novel
approach to train malicious local models with local data rather
than generating vectors of malicious local model parameters
based on the optimization method directly. Therefore, our
crafted malicious local models can effectively circumvent
not only performance-based and similarity-based defenses
but also entropy-based detection. To sum up, the key of our
approach is to train malicious models to maintain the loss and
statistical distance within the tolerances of SAFL.

Let i∗ be the fastest-trained malicious client with the small-
est staleness (it may participate in the global aggregation at
every global round), and S denote the highest staleness of
clients in the SAFL process. With the information from client
i∗, we propose an approximation strategy to approximate the
stalest local model at the current round. Specifically, we use
the client i∗’s local model wt−S

i∗ from S rounds before (whose
staleness at the current round t is S) as a proxy for the accept-
able stalest model in the current round t. Then, based on our
principle, the tolerable loss of malicious models should be
approximatively bounded by F (wt−S

i∗ ,Do), where Do is the
public dataset used for performance-based and entropy-based
detection on the server and Do is in the same distribution
with the raw data of clients. Similarly, the tolerable distance
between the malicious model and the newest global model
wt−1 should be approximatively bounded by D(wt−S

i∗ ,wt−1),
where D is the function to measure the distance between the
two models. Then to achieve the attack goal defined in Sec.
3.3, at each poisoning round t, PoiSAFL trains and crafts ma-
licious local models according to the following optimization
problem:

min
{ŵt

i}i∈Um
∑

(x,y)∈D
P[h(ŵt ,x) = y],

s.t. ŵt = πwt−1 +(1−π) fAGR({ŵt
i}i∈Um ,{wt

i}i∈U t\Um)

F (ŵt
i,Do)≤ βF (wt−S

i∗ ,Do)

D(ŵt
i,w

t−1)≤ γD(wt−S
i∗ ,wt−1),

(5)



where P[h(ŵt ,x) = y] is the probability that the poisoned
global model ŵt labels the input sample x as y. Since model
accuracy is influenced by various factors beyond staleness,
wt−S

i∗ with the maximum staleness S may not necessarily rep-
resent the upper bound of local model loss. Thus, we use a
hyperparameter β (β ≥ 1) to relax the loss constraint. Addi-
tionally, considering the maximum staleness of buffered local
models at round t can be less than S, we introduce a hyper-
parameter γ (0 < γ ≤ 1), to tighten the distance constraint.
With such a constrained optimization objective, the malicious
local models are able to closely mimic the behavior of le-
gitimately stale models, exhibiting consistent performance,
similarity, and prediction confidence, while still significantly
compromising the global model performance.

Notably, we assume that the adversary compromises at
least one of the fastest-trained clients because such clients
participate in the global aggregation in every round, providing
convenience to obtain information from S rounds before (e.g.,
the local model with staleness S) to estimate the system’s tol-
erable upper bounds for distance and loss in Eq. (5). However,
this can also be achieved by compromising other clients, e.g.,
clients that participate in the global aggregation every S round.
Therefore, controlling at least one of the fastest-trained clients
is not the condition that the adversary must meet.

4.2 Overview

As shown in Figure. 3, PoiSAFL consists of three modules
to craft malicious models that can effectively approximate
the objective defined in Eq. (5): anti-training-based model ini-
tialization, loss-aware model distillation, and distance-aware
model scaling.

To be specific, the anti-training-based model initialization
module trains the current global model with an inverted loss
function to generate a seed malicious model, maximizing its
misclassification probability. Then, taking the seed malicious
model as the teacher, the loss-aware model distillation module
trains a malicious model for each malicious client with its
local data based on KD until the loss is tolerable, striking a
balance between mimicking the seed malicious model and
predicting the true labels. Such a training process enables
the malicious model to achieve high prediction confidence
and low information entropy to evade entropy-based defenses
and small loss to evade performance-based defenses, address-
ing the loss constraint in Eq. (5). Meanwhile, by mimicking
the seed malicious model, malicious models are imbued with
strong poisoning potency, which can maximize the reduction
in the global model’s correct prediction probabilities, thereby
satisfying the optimization objective in Eq. (5). Finally, the
distance-aware model scaling module helps malicious models
evade detection by the similarity-based defenses by further
scaling them to limit their statistical dissimilarity to the other
models within the acceptable range, as specified by the dis-
tance constraint in Eq. (5).

4.3 Anti-training-based Model Initialization

The goal of an untargeted poisoning attack to SAFL is to re-
duce the overall accuracy of the global model, without having
a specific target class or objective in mind. The maximized at-
tack impact of the untargeted poisoning attack represents the
worst case where the global model completely loses its ability
to classify, i.e., it would misclassify samples in every class. In
order to launch a successful untargeted poisoning attack and
significantly degrade the performance of the global model, we
need to craft malicious models that have strong enough poi-
sonousness to lead the global model to the worst case. There-
fore, we initialize a seed malicious model via anti-training to
make it misclassify samples in every class. Specifically, we
train the seed malicious model ŵm with Dm = ∑i∈Um |Di| to
maximize the probability of each sample being classified into
incorrect classes with the following inverted loss function:

Lanti =
1

|Dm| ∑
(x,y)∈Dm

φ(1−h(ŵm,x),y)

=
1

|Dm| ∑
(x,y)∈Dm

L

∑
l=1

− logy(l)(1−h(ŵm,x)
(l)),

(6)

where φ is the distance measure function, and here we adopt
the cross-entropy. L is the number of classes, h(ŵm,x) is the
output class probability vector of ŵm when the input is x, and
h(ŵm,x)

(l) is the prediction probability of class l. Similarly,
y(l) is the value of l-th element in label vector y. Aggregating
a model like the seed malicious model into the global model
would greatly degrade its prediction performance.

4.4 Loss-aware Model Distillation

Intuitively, deriving malicious models from the seed mali-
cious model that has the strongest poisonousness enables the
malicious model to possess sufficient poisoning capability to
poison the global model. To this end, taking the seed mali-
cious model as the teacher model and the malicious model as
the student model, we propose to train the malicious model
for each malicious client based on KD to inherit the toxic-
ity from the seed malicious model. However, to evade the
performance-based defenses that filter out local models with
high loss or low accuracy, we need to ensure that the loss
of the malicious model remains within an acceptable range.
Therefore, based on Eq. (1), we design the following training
loss function for each malicious model w̄t

i to achieve the trade-
off between mimicking the seed malicious model (inheriting
the strong poisoning capability) and predicting the true labels
(evading performance-based defenses):

Lmal =
1

|Di| ∑
(x,y)∈Di

{α∗φ(h(w̄t
i,x),y)

+(1−α)∗φ[ρ(h̄(w̄t
i,x),τ),ρ(h̄(ŵm,x),τ)]},

(7)
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Figure 3: The overview of PoiSAFL.

where h̄(w̄t
i,x) and h̄(ŵm,x) are the output logits of w̄t

i and
ŵm for the input x, respectively. The first item enables the ma-
licious model w̄t

i to maintain a reasonable level of prediction
performance while the second item allows it to inherit the
malicious capabilities from the seed malicious model.

In this work, we consider a realistic attack model that
makes only weak assumptions about the adversary’s knowl-
edge, where the adversary does not have access to the server’s
trusted dataset Do. Based on the known information of the
adversary, we approximate F (wt−S

i∗ ,Do) by F (wt−S
i∗ ,Dm).

Then we train the malicious model until F (w̄t
i,Dm) ≤

βF (wt−S
i∗ ,Dm). This allows the malicious model to bypass

detection methods that rely on model performance metrics
while having the ability to mislead the global model.

4.5 Distance-aware Model Scaling
After malicious models have been initialized and refined
through the first two modules, we apply a scaling mechanism
for the model parameters to satisfy the distance constraint.
This step is crucial for evading similarity-based defenses em-
ployed in the SAFL system since it ensures that malicious
models would not be outliers in terms of statistical similarity.
Let ε denote the scaling factor, the goal of the distance-aware
model scaling can be formulated by:

D(εw̄t
i,w

t−1)≤ γD(wt−S
i∗ ,wt−1). (8)

We adopt Euclidean distance as D. By employing this
principled scaling approach, we can craft malicious models
whose statistical dissimilarity to other models is within the
acceptable range of the SAFL system to bypass the similarity-
based defenses, while still maintaining the desired adversarial
properties established in the previous modules. Then we get
the final carefully crafted malicious local model ŵt

i = εŵt
i for

each malicious client.

Note that if the parameter scaling in this module is un-
able to craft malicious models that are statistically similar to
benign models to bypass the similarity-based defenses, the
PoiSAFL framework will cycle back to the second module to
perform additional loss-aware model distillation. This itera-
tive process involves repeatedly refining the malicious models
through distillation to transfer the toxic characteristics of the
seed malicious model, followed by attempts to scale the mod-
els’ parameters to decrease their statistical distance from the
benign models. The framework cycles through these steps
until the crafted malicious models meet constraint conditions
on model loss and statistical similarity.

4.6 The Workflow of PoiSAFL
In PoiSAFL, the adversary rapidly crafts malicious models
for malicious clients and controls them to upload malicious
models as quickly as the fastest clients while benign clients
perform normally. The workflow of PoiSAFL contains the
following steps at the poisoning round t:

1) Local Training: Each benign client i ∈ Ub trains its
local model with local data Di. As for malicious clients in
Um, they do not need to perform local training themselves,
but the adversary crafts malicious local models for them. For
each malicious client i ∈Um, the adversary crafts malicious
model ω̂t

i based on Di and Dm. To be specific, as described
in our design details, the adversary first performs the anti-
training-based model initialization, then circularly performs
loss-aware model distillation and the distance-aware model
scaling to meet the constraint conditions on model loss and
statistical similarity.

2) Local update uploading: Each benign client i ∈ Ub
uploads their local model to the server when the local train-
ing is completed. Each malicious client i ∈Um uploads their
malicious model ω̂t

i as quickly as the fastest clients.



3) Semi-asynchronous global aggregation: The server
buffers local models uploaded by clients and aggregates them
to update the global model based on Eq. (4) once a fixed
period has elapsed.

4) Broadcasting: The server broadcasts the latest global
model to those clients participating in the global aggregation
to act as the initialization of their local training, including all
malicious clients and some of the benign clients.

Note that in PoiSAFL, the adversary can quickly crafts
malicious models for malicious clients and the required time
is less than that required by the fastest clients to perform local
training. In this case, malicious clients are able to upload ma-
licious local models and participate in the global aggregation
at each poisoning round. Then, according to the calculation
method of staleness in Sec. 2.1, malicious clients’ staleness
is stably equal to 1 during the poisoning procedure, which
is the smallest. Therefore, even though the server performs
staleness-aware aggregation among buffered local updates,
malicious clients could achieve high attack impacts since they
would not be down-weighted.

5 Evaluation

In this section, we evaluate the performance of PoiSAFL and
compare it with existing attacks under three typical kinds of
defenses.

5.1 Experimental setup
Dataset. We use three commonly used datasets in FL for the
performance evaluation. 1) FashionMNIST [43] consists of
70k grayscale 28× 28 images associated with labels from
10 classes. Each class has 6k training examples and 1k test
examples. 2) CIFAR10 [17] contains 60k 32× 32 RGB im-
ages associated with a label from 10 classes. Each class has
5k training examples and 1k test examples. 3) GTSRB [32]
contains 32×32 traffic-sign images, with 39, 209 for training
and 12, 630 for validation, and their labels are from 43 classes.
In our experiments, we construct both the IID and Non-IID
distribution among clients. For IID settings, we divide the
training dataset into M+1 equal partitions. The first M parti-
tions, each containing 60k/(M+1) samples, are distributed
to the M clients. The final partition is retained as a public
dataset, which is needed by performance-based and entropy-
based defense methods. For non-IID settings, we choose the
first 100 training samples from each class to form the pub-
lic dataset and use Dirichlet distribution with parameter δ

to distribute the rest training samples to each client. Here δ

indicates the non-IID degree and a smaller δ means a higher
non-IID degree.

Model Architecture. During training, a simple convolu-
tional neural network with 2 convolutional layers and 2 fully
connected layers (called CNN2) is utilized for FashionM-
NIST, and ResNet18 is adopted for CIAFR10. For GTSRB,

we employ a convolutional neural network that consists of two
convolutional layers, a Spatial Transformer Network (STN)
layer incorporating two more convolutional layers within it,
and two fully connected layers (called CNN-STN). Appendix.
A gives details of CNN2 and CNN-STN.

SAFL and Attack Settings. For the three datasets used
- FashionMNIST, CIFAR10, and GTSRB, we set 60 clients.
The default local processing time for clients is evenly dis-
tributed over 1 to 6 unit times, and the global aggregation is
performed every 1 unit time. In this case, the upper bound
of staleness is 6. For both FashionMNIST and CIFAR10, we
use Adam optimizer with a learning rate of 0.01 and batch
size of 64, and local epoch 1 is adopted for all clients. For
GTSRB, we adjust the learning rate to 0.0001, while main-
taining the same batch size and local epoch configuration.
The total number of training rounds is set to 150 for Fashion-
MNIST, and 250 for CIFAR-10 and GTSRB, respectively.
The poisoning attacks commence at the training round 100
for Fashion-MNIST and 200 for CIFAR-10 and GTSRB. For
our attack, we train the seed malicious model based on Eq.
(6) 15 rounds for Fashion-MNIST, 5 rounds for CIFAR-10,
and 1 round for GTSRB. Then, we train each malicious lo-
cal model based on Eq. (7) until the loss of the malicious
model meets the loss constraint or reaches the maximum op-
timization round 15. By default, we set the percentage of
adversary-controlled malicious clients equal to 20% and set
the non-IID degree δ equal to 1. Specifically, to control at
least one of the fastest-trained clients, we set that the adver-
sary first selects one malicious client from the fastest client
group, then randomly picks other malicious clients from the
rest clients. We set π = 0.8 when performing the global aggre-
gation. When performing the loss-aware model distillation,
the temperature factor τ = 2. What’s more, given that there
are 20% malicious clients, we set the distance constraint hy-
perparameter γ = 0.8 to prevent malicious clients from being
identified as 20% outliers and detected by similarity-based
defenses. As for β (β ≥ 1) that relaxes the loss constraint,
given that it should not be too large or too small to ensure
the negative impact and undetectability of malicious models,
we tested values from 1 to 8 and found β = 2.5 optimal (The
results can be found in Appendix. A).

Metric. In our experiments, we test the global model ac-
curacy and use the attack impact, i.e., the reduction in global
model accuracy caused by the attack, as the evaluation metric.
If Ao denotes the best accuracy of the global model when
there is no attack, A f denotes the final overall accuracy of
the global model after the adversary launches the attack, then
the attack impact can be computed by Ao −A f . Successful
poisoning attacks would cause significant attack impacts. We
present averaged results calculated over three runs.

Compared Attacks. We compare our proposed attack
against several well-known and representative attacks to evalu-
ate its performance. The compared attacks include classic data
poisoning attacks (LabelFlip [36]), typical model poisoning



attacks (SignFlip [19]), and several state-of-the-art poison-
ing attacks that claim to bypass existing defenses (LIE [2],
LA [10], MinSum [31], Grad [31]). The details of these at-
tacks can be found in the Appendix. A. For a fair comparison,
we implement all these attacks with the same assumption
about the adversary’s knowledge. That is, the adversary can
only access information about malicious clients but is un-
aware of local data and local models of benign clients.

Defenses. We study the attack performance of various poi-
soning attacks against the three typical kinds of defense meth-
ods, including 5 statistical similarity-based defenses (Me-
dian [44, 49], TriMean [44, 49], Norm-clipping [35], FLARE
[38], AFLGuard [11]), 2 performance-based defenses (LFR
[10], Sageflow [29]), and 2 entropy-based defenses (Sage-
flow [29], Efilter [29]). Among them, AFLGuard, Sageflow,
and Efilter are designed for AFL and others are designed for
SFL. Note that AFLGuard, LFR, Sageflow, and Efilter all re-
quire a trusted dataset on the server that has the same data
distribution as clients’ local data. The details of these defenses
can be found in the Appendix. A.

5.2 Experimental Results

5.2.1 Attack Performance Comparison

Table 1, 2 and 3 summarize the attack impacts of PoiSAFL
and compared attacks under three typical kinds of defenses
with Fashion MNIST, GTSRB, and CIFAR10, respectively.

PoiSAFL outperforms baseline attack methods: We can
observe that in both IID and non-IID scenarios, PoiSAFL
has significant attack impacts under all tested defenses, and
outperforms the baseline attack methods in almost all cases.
This validates the effectiveness of PoiSAFL, i.e., PoiSAFL
can effectively degrade the global model performance while
bypassing three typical kinds of Byzantine-resilient defenses.
PoiSAFL derives malicious local models from a seed model
that misclassifies all samples, following a guideline to main-
tain the discrepancy between the malicious and benign mod-
els within an acceptable range. Meanwhile, it controls all
malicious clients to upload malicious local models at every
poisoning round. Then, these considerable malicious local
models exhibit high toxicity while maintaining undetectable
during the global aggregation process, thus notably altering
the benign behavior of the global model and diminishing its
prediction accuracy even though defenses are adopted. Be-
sides, using the same seed malicious model across multiple
global rounds would cause malicious local models to inherit
similar toxicity, consistently steering the global model toward
the seed model. This multi-round consistency has a cumula-
tive effect, increasingly misleading the global model.

Besides, it can be observed that in most cases, all base-
line attack methods exhibit extremely limited attack impact.
A common reason is that the randomly selected malicious
clients vary in processing power and speed and thus do not

participate in every round of global aggregation in SAFL.
This results in a reduced proportion of malicious clients that
exert attack influence during each round’s global aggregation,
thereby diluting their attack impact and making them easily
detectable. Additionally, these baseline attack methods either
do not account for potential defenses during design or only
consider defenses based on statistical similarity, thus failing to
demonstrate significant attack impact under the three typical
kinds of defenses.

One exception is that under FLARE, PoiSAFL is not top-
performing. It can be explained as follows. FLARE identifies
malicious models by examining parameter similarity in the
penultimate layer. The attack that best mimics benign models
in the penultimate layer could be harder to detect and exert
the strongest attack impact. While PoiSAFL and some base-
line attacks maintain overall similarity between malicious
and benign local model parameters, the penultimate layer’s
similarity of their crafted malicious models has a certain ran-
domness. This randomness explains why PoiSAFL sometimes
shows the highest impact under FLARE and sometimes does
not. Nevertheless, PoiSAFL consistently demonstrates strong
attack efficacy under FLARE, proving to be effective.

Attack performance comparison under different kinds
of defenses: Table 1, 2 and 3 show that our attack PoiSAFL
can effectively poison SAFL under all three kinds of
byzantine-resilient defenses, validating its effectiveness and
stealthiness. On the contrary, most existing attack methods
cause only negligible accuracy reduction under performance-
based and entropy-based defenses. This indicates that most
baseline methods can not evade the detection of these two
kinds of defenses. The performance-based and entropy-based
defenses are more effective against poisoning attacks since
they can obtain additional reference information for benign
local models by leveraging the server-hosted trusted dataset.
This enables more accurate identification of malicious local
models. In contrast, the similarity-based defenses rely solely
on comparing buffered local models to detect anomalies, thus
they may struggle to detect sophisticated attacks that mimic
benign behavior closely, especially in SAFL systems where
buffered local models naturally involve a certain level of sta-
tistical dissimilarity.

However, it is noteworthy that performance and entropy-
based defenses are predicated on the strong assumption, i.e.,
the server has access to additional trusted data for the learn-
ing task. This assumption is often impractical in real-world
scenarios. Our attack strategy demonstrates the capability to
circumvent even these strongly hypothesized defenses, high-
lighting that SAFL systems are vulnerable to poisoning risks
and existing defense methods offer a false sense of security.

5.2.2 Effects of the Proposed Mechanisms

To verify the effectiveness of the proposed Anti-Training-
based model Initialization mechanism (ATI), the Loss-Aware



Table 1: Attack performance comparison with FashionMNIST dataset. The following table reports the global model accuracy
when there is No Attack and the attack impact (%) on global model accuracy caused by baselines and PoiSAFL under kinds of
defenses. The best attack impacts are highlighted in bold. Under all settings, our attack outperforms baselines.

Dataset AGR No Attack LabelFlip SignFlip LIE MinSum LA Grad PoiSAFL

Fashion
MNIST

(IID)

Median 89.14 1.11 1.33 4.52 7.13 4.8 3.99 58.79
TriMean 89.94 1.13 2.09 4.39 11.79 7.89 10.53 36.16

NormClip 89.84 1.05 0.9 0.75 2.32 0.57 0.31 12.73
FLARE 89.21 21.78 0.93 13.06 21.28 7.44 13.52 22.94

AFLGuard 89.88 -0.61 -0.44 -0.17 0.1 -0.23 0.22 17.64
LFR 89.46 0.31 0.41 0.63 0.44 0.18 0.64 47.81

Efilter 89.34 4.94 0.2 3.46 4.22 0.05 4.22 48.36
Sageflow 89.44 0.86 0.21 0.48 0.47 0.28 0.19 28.23

Fashion
MNIST

(Non-IID)

Median 87.75 0.51 0.22 5.43 8.16 4.4 3.54 65.83
TriMean 88.51 3.18 1 10.36 13.59 22.23 17.15 22.28

NormClip 88.5 -0.21 -0.19 0.54 0.28 0.32 0.39 78.48
FLARE 87.12 9.26 -0.74 7.75 6.52 9.87 19.9 29.37

AFLGuard 89.17 0.26 -0.15 0.29 0.12 1.57 0.23 20.24
LFR 80.53 0.71 0.48 -0.26 0.02 0.12 1.66 51.18

Efilter 88.01 8.66 17.84 1.38 8.26 0.09 7.33 77.92
Sageflow 89.95 0.87 1.44 1.03 1.6 0.79 1.04 60.85

Table 2: Attack performance comparison with GTSRB dataset. The following table reports the global model accuracy when there
is No Attack and the attack impact (%) on global model accuracy caused by baselines and PoiSAFL under kinds of defenses.
The best attack impacts are highlighted in bold. Under all settings except FLARE, our attacks outperform baselines.

Dataset AGR No Attack LabelFlip SignFlip LIE MinSum LA Grad PoiSAFL

GTSRB
(IID)

Median 94.74 1.06 0.42 2.99 1 0.62 1.2 23.8
TriMean 94.85 1.56 0.42 2.92 0.42 0.5 0.34 16.83

NormClip 94.54 0.03 -0.19 -0.2 -0.19 9.05 -0.17 23.24
FLARE 94.77 10.75 -0.12 21.99 7.46 10.11 22.81 16.34

AFLGuard 95.11 0.43 0.33 0.32 0.33 0.34 0.39 15.7
LFR 94.91 0.16 0.15 0.06 0.15 0.18 0.17 10.97

Efilter 94.81 1.24 1.79 0.15 0.02 0.56 0.21 14.17
Sageflow 95.7 1.07 0.91 0.48 0.91 0.97 1.08 10.97

GTSRB
(Non-IID)

Median 85.35 3.16 2.33 5.94 3.54 4.47 2.95 17.39
TriMean 85.09 2.41 2.27 5.93 2.04 1.63 1.12 18.6

NormClip 81.62 0.42 0.08 0.25 0.28 0.55 0.51 11.59
FLARE 88.27 12.76 1.33 18.7 16.77 8.08 26.05 15.38

AFLGuard 84.96 0.17 0.24 8.06 2.54 0.11 2.5 8.18
LFR 86.74 0.5 0.04 0.4 0.04 4.69 0.1 12.23

Efilter 85.12 5.18 5.32 5.27 1.69 1.8 1.39 19.92
Sageflow 85.68 0.39 1.76 1.34 1.97 2.5 1.1 14.61

model Distillation mechanism (LAD), and the Distance-
Aware model Scaling mechanism (DAS), we conduct exper-
iments of PoiSAFL with and without ATI, LAD, and DAS
under different kinds of defenses on FashionMNIST, respec-
tively. Among them, PoiSAFL without ATI randomly initial-
izes a seed malicious model. PoiSAFL without LAD directly
aggregates the seed malicious model and the local model as
the malicious local model. PoiSAFL without DAS uploads
the crafted malicious local models without scaling. The per-
formance comparison results are shown in Figure 4.

We have the following observations: 1) When there is no

defense deployed on the server, each proposed mechanism can
successfully poison the global model. This demonstrates that
all the proposed mechanisms can effectively craft malicious
local models to destroy the system’s learning performance. 2)
The complete version of PoiSAFL causes a significant drop in
global model accuracy across various defenses. This demon-
strates that the combination of the three proposed mechanisms
effectively bypasses three typical defenses while successfully
launching a poisoning attack, further highlighting the effec-
tiveness of these proposed mechanisms. 3) Not performing
the ATI mechanism results in the drop of attack impact under



Table 3: Attack performance comparison with CIFAR10 dataset. The following table reports the global model accuracy when
there is No Attack and the attack impact (%) on global model accuracy caused by baselines and PoiSAFL under kinds of defenses.
The best attack impacts are highlighted in bold. Under all settings except FLARE, our attack outperforms baselines.

Dataset AGR No Attack LabelFlip SignFlip LIE MinSum LA Grad PoiSAFL

CIFAR10
(IID)

Median 78.01 1.28 14.78 1.14 0.93 0.5 0.62 56.66
TriMean 77.47 3.16 0.53 0.51 7.64 4.59 18.06 31.48

NormClip 77.45 3.52 0.06 0.23 1.92 13.73 0.16 15.43
FLARE 77.21 44.57 2.34 39.43 44.1 36.56 46.45 21.61

AFLGuard 77.51 4.06 0.39 0.47 3.7 7.65 0.48 14.06
LFR 77.23 0.01 -0.02 14.28 -0.06 15.16 18.66 30.13

Efilter 77.39 8.64 0.29 0.13 0.03 1.31 0.14 35.64
Sageflow 77.2 1.09 0.88 0.07 0.02 0.04 1.07 17.24

Table 4: Attack performance of PoiSAFL when the type of defenses adopted by the server is known. The following table reports
the Attack Impact (%) and (the increase in attack impact compared to when the adopted defense is unknown). It is shown that
PoiSAFL achieves a trade-off between stealthiness and effectiveness to cause more global model accuracy reduction while
bypassing the detection by selectively executing three modules according to the type of defense.

Dataset Median TriMean NormClip FLARE AFLGuard LFR Efilter Sageflow

Fasion MNIST (IID) 79.04 79.52 69.32 50.27 38.41 79.45 79.59 79.43

GTSRB (Non-IID) 59.61 65.12 65.83 60.59 49.32 70.76 78.52 78.19

CIFAR10 (IID) 67.99 67.19 22.68 65.25 24.69 64.71 67.39 27.49

all defenses. This is because randomly initialized the seed ma-
licious model does not always exhibit a high misclassification
rate, thus the derived malicious local models may not inherit
the desired harmful properties. In contrast, ATI initializes
the seed malicious model to ensure a high misclassification
probability, making derived malicious local models malicious
enough to mislead the global model. In conclusion, ATI is
an indispensable component for PoiSAFL to achieve signifi-
cant attack impact. 4) Under the statistical similarity-based
defense, e.g., AFLGuard, the attack impact of PoiSAFL with-
out DAS is low, indicating that PoiSAFL without DAS can
not bypass AFLGuard’s defenses. This observation highlights
the importance of the DAS mechanism in circumventing de-
fenses based on statistical similarity. Additionally, when LAD
is not executed, the attack impact of PoiSAFL increases. This
is because LAD limits the poisonousness of malicious local
models to bypass performance and entropy defenses, which is
not actually necessary under AFLGuard. 5) When the server
adopts performance-based and entropy-based defenses, i.e.,
LFR, Efilter, and Sageflow, PoiSAFL without LAD shows
negligible attack impact. This demonstrates that LAD mech-
anism plays a significant role in bypassing defenses based
on performance and entropy. Additionally, we can observe
that without executing the DAS mechanism, there is a greater
attack impact under both LFR, Efilter, and Sageflow. This is
because DAS restricts the norm of malicious local models to
circumvent statistical similarity-based defenses, thereby re-
ducing the scale of malicious local models and consequently
lessening their adverse impact on the global model.

We also evaluate the attack performance of PoiSAFL when
the type of defenses adopted by the server is known. In this
setting, PoiSAFL can selectively execute the proposed three
mechanisms to achieve the optimal attack impact while by-
passing defenses. For instance, when the server adopts a
performance-based defense like LFR, the adversary launches
PoiSAFL without DAS to poison the SAFL system. The at-
tack impact results on Fashion MNIST with IID data distribu-
tion are shown in Table. 4. We can observe that when the type
of adopted defenses is known to the adversary, the proposed
attack shows stronger attack impacts and causes more dam-
age to the global model under all defenses. This makes sense
because to bypass all three defenses at once, PoiSAFL limits
the degree to which malicious models can act maliciously
(i.e., the loss and statistical dissimilarity of malicious models
are limited with a benign range). However, when the type of
defense used is known, PoiSAFL only executes specific mod-
ules to bypass specific kinds of defenses, which reduces the
restriction on malicious behaviors of malicious local models,
thereby effectively enhancing the attack impact.

5.2.3 Effects of Parameters

Effect of the ratio of malicious clients. In Figure 5, we com-
pare the attack performance of PoiSAFL and baselines under
No Defense, TriMean, AFLGuard, LFR, and Sageflow when
the ratio of malicious clients changes. It shows the final over-
all accuracy of the global model after the attack. We can find
that 1) as the ratio of malicious clients increases, all attacks
show stronger attack impacts, leading to the global model’s de-
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Figure 4: Effect of the proposed mechanisms.
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Figure 5: Effect of the ratio of malicious clients.

creased accuracy. 2) PoiSAFL performs better than baselines
under different kinds of defenses regardless of the percentage
of malicious clients. This further demonstrates the effective-
ness and stealthiness of PoiSAFL. 3) Under AFLGuard, LFR,
and Sageflow, even with an attacker ratio as high as 40%,
attacks like LabelFlip, LIE, and Grad struggle to make strong
attack impacts. In contrast, PoiSAFL completely disrupts the
global model performance when the attacker ratio is high
under all defenses. This further demonstrates that PoiSAFL
effectively reduces global model performance while evading
detection by three kinds of typical defense methods while
other baseline attacks fail to bypass some kinds of defenses,
even with a high attacker ratio.

Effect of the non-IID degree. We investigate the attack
impacts of PoiSAFL and baselines with different Non-IID de-
grees under No Defense, TriMean, FLARE, AFLGurad, and
Sageflow and show the results in Figure 6. Note that a smaller
δ indicates a larger non-IID degree. We can observe that,
generally, the attack impacts of all methods increase with a
higher Non-IID degree under each tested defense. This occurs
because a higher non-IID degree of data distribution leads
to a greater inconsistency among buffered local models. In
this case, distinguishing between malicious and benign local
models becomes more challenging for defense mechanisms.
Malicious updates, therefore, have a higher chance of blend-
ing in with legitimate updates, allowing them to bypass the
detection and filtering of defense methods. This increased
evasion capability means more malicious updates can be inte-
grated into the global model during aggregation, leading to a
higher probability of misleading the global model and reduc-
ing its classification accuracy. Besides, it can be observed that
PoiSAFL consistently outperforms baseline attacks regardless

of the Non-IID degree.
Effect of the upper bound of staleness. Figure. 7 shows

the attack impacts of PoiSAFL with and without the knowl-
edge of the type of adopted defenses under TriMean, AFL-
Guard, LFR, Efilter, and Sageflow when the upper bounds of
staleness in the SAFL system changes. It can be observed that
whether the staleness upper bound is large or small, PoiSAFL
demonstrates significant attack impacts, especially when it
knows the defense type. Besides, the greater the upper bound
of staleness, the more significant the attack impact. A higher
upper bound of staleness indicates a greater diversity among
clients’ staleness, leading to higher local model inconsistency.
This provides the adversary with more room to inject mali-
cious behavior into the global model while mimicking benign
models to bypass detection, thus more significantly degrading
the global model performance. Furthermore, regardless of
the staleness upper bound, PoiSAFL performs better when
the type of defense adopted by the server is known. It fur-
ther demonstrates PoiSAFL’s capability to amplify its attack
impact by flexibly executing the three proposed modules.

6 Discussion

Scalability of PoiSAFL. PoiSAFL focuses on a constrained
optimization problem for malicious models and contains three
modules to approximately solve the problem. Particularly,
each module serves a specific purpose, e.g., making malicious
models satisfy a specific constraint to bypass a specific kind
of defense. Such a modular design allows flexible extension
of the constraint in the constrained optimization problem and
easy integration of new defense modules that address future
new kinds of defenses. For example, if a future defense relies
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Figure 6: Effect of the Non-IID degree.
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Figure 7: Effect of the upper bound of staleness.

on structural properties, a module can be added to tailor mali-
cious models accordingly while maintaining their malicious
traits. The flexibility to incorporate new modules makes this
framework highly scalable and future-proof, enabling it to
keep pace with the evolving security landscape in SAFL.

Potential adaptive defenses against PoiSAFL. PoiSAFL
reveals that existing defenses might offer a misleading sense
of security, much less they might rely on an impractical strong
assumption that the server can obtain an additional trusted
dataset to assist in detection. This underscores the importance
of developing more robust defenses to effectively counteract
such attacks and ensure the integrity of SAFL systems.

There are several potential adaptive defenses: 1) Parameter
Subset Similarity-Based Defense: PoiSAFL focuses on main-
taining the overall statistical similarity between malicious and
benign local model parameters. Therefore, defenses that com-
pare the similarity of parameter subsets may potentially de-
feat PoiSAFL. However, considering inherent inconsistencies
among benign local model parameters caused by staleness,
such methods might incorrectly identify benign models as
malicious. 2) Client Participation Controlling-based Defense:
The strong attack impact of PoiSAFL partly depends on mali-
cious clients uploading malicious local models in every global
round. Therefore, limiting the number of malicious clients
participating in global aggregation each round could help
defend against PoiSAFL. A straightforward approach might
involve the server randomly selecting a subset of buffered lo-
cal models of each staleness level to participate in the global
aggregation. However, this could significantly affect the per-
formance of the global model when there is no malicious
client.

7 Conclusion

In this paper, we fully explored the poisoning risk in SAFL
and revealed that current defenses give a false sense of secu-
rity. We proposed PoiSAFL, a novel stealth poisoning attack
framework for Byzantine-resilient SAFL systems. Consisting
of three major modules (i.e., anti-training-based model ini-
tialization, loss-aware model distillation, and distance-aware
model scaling), PoiSAFL performs constrained model train-
ing to craft malicious local models to degrade the global
model performance without being detected by three typical
kinds of defenses. Extensive experiments demonstrated the
effectiveness and stealthiness of PoiSAFL. It can bypass all
three typical kinds of defenses. Besides, it outperforms state-
of-the-art poisoning attacks and causes a more significant
reduction in global model performance in most cases.
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Appendices

A More Details about Experiments

In the following, we introduce more details about the experi-
ments.

A.1 Model architecture
The details of architecture CNN-2 and CNN-STN are shown
in Table 5 and Table. 6, respectively.

A.2 Effect of the hyperparameter β

β (β ≥ 1) relaxes the loss constraint for malicious model craft-
ing in Eq. (5). Figure. A.2 shows PoiSAFL’s attack impact
under Sageflow defense when changing β from 1 to 8. We can
observe the initial increase and subsequent decrease in the
attack impact as the value of β increases from 1 to 8. This can
be explained as follows. When the β value is small, the loss

Table 5: Model architecture of CNN-2.

Layer Type Parameters
Convolution + ReLU 3 x 3 x 128

Dropout 0.2
AvgPooling 2 x 2

Convolution + ReLU 3 x 3 x 256
Dropout 0.2

FC 2304 x 10

Table 6: Model architecture of CNN-STN.

Layer Type Parameters

STN
Layer

Localization Network Output 10 * 4 * 4
FC1 160 x 32
FC2 32 x 6

CNN
Layers

Convolution + BN + ReLU 3 x 5 x 100
MaxPooling 2 x 2

Convolution + BN + ReLU 100 x 3 x 150
MaxPooling 2 x 2

Convolution + BN + ReLU 150 x 3 x 250
MaxPooling 2 x 2

FC3 1000 x 350
FC4 350 x 43

constraint for malicious models becomes strict, i.e., the loss
of malicious models should be small, leading to a low mis-
classification probability. In this case, malicious models may
demonstrate weak poisonousness and cannot significantly de-
grade the global model performance. On the contrary, when
the value of β is large, the loss constraint becomes loose,
leading to poor performance of malicious models. Then, mali-
cious models become easily detectable for performance-based
defenses and cannot demonstrate a significant negative im-
pact on the global model as expected. In summary, when β is
too small or too large, i.e., the loss constraint is too tight or
too loose, it becomes challenging to train malicious model to
find a balance point between the negative impact and unde-
tectability within the maximum training rounds. Then, based
on our experimental results in Figure. A.2, we set β = 2.5 in
our experiments to achieve the trade-off between the attack
effectiveness and stealthiness.

A.3 Compared attacks
The details of the compared attacks are as follows.

• LabelFlip [36] is a typical data poisoning attack, which
flips the label of malicious clients’ local training data to
construct poisoned data.

• SignFlip [19] is a typical model poisoning attack that
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Figure 8: Effect of β on PoiSAFL’s attack impact when the
server deploys Sageflow defense.

flips the signs and enlarges the magnitudes of the param-
eters of all malicious clients’ local models.

• LIE [2] is a typical model poisoning attack, which adds
noise to the average of benign gradients to construct
malicious local updates.

• LA [10] seeks to create malicious model updates that
maximize the discrepancy between aggregated model up-
dates before and after the attack under various statistical
similarity-based defenses.

• MinSum [31] crafts malicious local updates to ensure
that the sum of distances between the malicious model
update and all benign model updates is no greater than
the sum of distances between any benign model update
and the other benign updates, thus evading statistical
similarity-based detection.

• Grad [31] offers a general FL poisoning framework by
crafting and sending optimal malicious gradients to com-
promise the global model while bypassing the detection
of some similarity-based defenses.

A.4 Defenses

The details of tested defenses are as follows.

• Median [44, 49] sorts values of each dimension in
buffered local model parameters and uses the median as
the aggregation result of this dimension.

• TriMean [44, 49] sorts all the values of each dimension
in buffered local models parameters, removes the largest
and smallest r among them, and then computes the aver-
age of the remaining values as the aggregated result of
this dimension. By default, r =C.

• NormClip [35] first clips each buffered local model to
a predetermined norm and then computes the average
of the clipped models as the aggregated result. The pre-
defined norm is set as the average norm of the buffered
model updates in each global round.

• FLARE [38] measures the discrepancies between penul-
timate layer representations (PLRs) of clients’ local mod-
els using Maximum Mean Discrepancy. It assigns a root
score to each client based on the divergence of its PLR
from the aggregated PLR of other clients and performs
the weighted aggregation based on the root scores.

• AFLGuard [11] first calculates a reference model update
based on a public trusted dataset, and rejects updates
whose deviation in direction and magnitude from the
reference update is beyond a predefined threshold when
performing the global aggregation.

• LFR [10] removes local models that have large adverse
impact on the global model’s loss on a public validation
dataset before executing the global aggregation.

• Efliter [29] is the entropy-based model filtering method.
It filters out local models with high prediction entropy
and aggregates the rest.

• Sageflow [29] considers both performance and entropy
to detect malicious local models. Relying on a trusted
public dataset, it first removes local models with high pre-
diction entropy. Then it performs weighted aggregation
among the rest of the local models based on their loss.
It is a combination of performance-based and entropy-
based detection.
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