ARTIFACT
EVALUATED
susenix

AVAILABLE

Fighting Fire with Fire:
Continuous Attack for Adversarial Android Malware Detection

Yinyuan Zhang'~#, Cuiying Gao®’*, Yueming Wu?; Shihan Dou*, Cong Wu?, Ying Zhang>®, Wei Yuan?,
Yang Liu?

ISchool of Computer Science, Peking University, Beijing, China
2Huazhong University of Science and Technology, China
3Nanyang Technological University, Singapore
4Fudan University, China
3Key Laboratory of High Confidence Software Technologys (Peking University), Ministry of Education, China
®National Engineering Research Center of Software Engineering, Peking University, China
7JD.com, China

Abstract

The pervasive adoption of Android as the leading operating
system, due to its open-source nature, has simultaneously
rendered it a prime target for malicious software attacks. In
response, various learning-based Android malware detectors
(AMDs) have been developed, achieving notable success in
malware identification. However, these detectors are increas-
ingly compromised by adversarial examples (AEs), which
are subtly modified inputs designed to evade detection while
maintaining malicious functionality. Recently, advanced ad-
versarial example generation tools have been introduced that
can reduce the efficacy of popular detectors to 1%. In this
background, to address the critical need for more resilient
AMDs, we propose a novel defense mechanism, Harnessing
Attack Generativity for Defense Enhancement, i.e., HagDe.
HagDe involves applying iterative perturbations in the di-
rection of gradient ascent to all samples, aiming to exploit
the high sensitivity of AEs to perturbations. This method en-
ables the detection of adversarial samples by observing the
disproportionate increase in the loss function following mi-
nor perturbations, distinguishing them from regular samples.
To evaluate HagDe, we conduct an extensive evaluation on
15,000 samples and 15 different attack patterns. Results show
that HagDe can achieve a defense effectiveness of 88.5% on
AdvDroidZero and 90.7% on BagAmmo, representing an in-
crease of 32.45% and 11.28%, respectively, compared to the
latest defense method KD _BU and LID.

1 Introduction

Due to its open-source nature, Android has become the
most popular operating system, yet it is also a prime tar-
get for malicious software attacks [14]. Currently, a variety
of learning-based Android malware detectors (AMDs) have
emerged [18] [34], achieving relatively good results in de-
tecting Android malware. For example, MaMaDroid [34],
Malscan [45] and Drebin [3] have all achieved high detec-
tion effectiveness in the ideal setting [17]. However, existing

*The first two authors contributed equally. Yueming Wu is the correspond-
ing author.

research reveals that learning-based malware detectors are
vulnerable to attacks by adversarial examples (AEs) [22,28].
As shown in Figure 1, AEs are inputs to learning-based mod-
els that have been intentionally designed or modified to cause
the model to make a mistake. In the field of computer vision,
AE:s are typically designed to be imperceptible to the human
eye [50], while in the domain of malware, AEs are crafted to
maintain their functionality [28].

Existing Model

Malicious
P--% =

I'I - |'| |'|

'H
l'l . \l'l . E\ ade
Input Samples [= [dcmnon
emgn

Target Model Enhanced by HagDe

__1

Detecte .[
r- 3)]
L L
'

i - l'l iy
"' M\)

Input Samples HagDe Benign

Malicious

2 Benign Malious Adversarial
'y sample 'I sample o example

Figure 1: How HagDe Enhances AMD Target Model

Currently, adversarial example tools targeting AMDs have
been proposed and possess significant disruptive potential
against AMDs. For example, BagAmmo [30] introduces an
adversarial multi-population co-evolution algorithm to attack
AMD methods based on Function Call Graphs (FCG). It
demonstrates an average attack success rate of over 99.9%
on detection methods including MaMaDroid. Moreover, Adv-
DroidZero [22] introduces a query-based adversarial attack
framework specifically designed for Android malware, operat-
ing under a zero-knowledge setting where the adversary lacks

information about the feature space, model parameters, and
training dataset. AdvDroidZero demonstrates a success rate
of approximately 90% against prominent learning-based An-
droid malware detection methods, including Drebin, Drebin-
DL, APIGraph, and MaMaDroid.

In this context, it is crucial to consider how to construct
robust AMDs that can withstand attacks from AEs. Currently,
various methods are proposed to enhance learning-based mal-
ware classifiers against adversarial attacks. In summary, these
methods can be categorized into two types based on the target
application of methods. The first way directly intervenes at
various stages of the malware classifier [28], including Data
Preprocessing, Feature Extraction, Classification, and Deci-
sion, to enhance the robustness of the malware classifier. For
example, Li et al. [30] propose a robust Android malware
detection framework, combining the Variational Autoencoder
(VAE) and the Multi-Layer Perceptron (MLP) to classify mal-
ware examples during the classification phase. The second
way involves enhancing the robustness of machine learning
models through adversarial example detection [35,50], adver-
sarial training [33], and randomization-based defense [49],
thereby aiding malware detectors in resisting adversarial at-
tacks. For example, Liu and Hsieh [32] developed the Rob-
GAN framework, which enhances discriminator robustness
by training the discriminator to distinguish between clean,
fake, and PGD-generated adversarial examples. In this pa-
per, we specifically focus on augmenting the resilience of
malware detectors against adversarial attacks via adversar-
ial example detection. As shown in Figure 1, in this paper,
we propose a novel defense mechanism, harnessing attack
generativity for defense enhancement, i.e., HagDe. For input
samples, HagDe preprocesses by filtering to identify adver-
sarial examples. Only the filtered samples are then fed into
the AMD for classification.

Currently, efforts to detect adversarial examples primar-
ily focus on implementing a variety of proactive strategies,
including network input regularization [37], output regulariza-
tion [23] and k-NN search [13], among others. However, these
defenses can still be circumvented by optimization-based at-
tacks [8]. Beyond these methods, feature squeezing [50] is a
classic approach that posits the input to deep neural networks
inherently contains many “redundant” features, which facil-
itates the creation of adversarial examples by attackers. By
comparing compressed and uncompressed inputs, adversarial
examples can be detected. Moreover, more works have focus
towards distinguishing features between adversarial exam-
ples and natural samples. Among these approaches, methods
aim to distinguish adversarial images from natural images by
leveraging features extracted from DNN layers or a learned en-
coder. Notable techniques include Kernel Density (KD) [15],
Bayesian Uncertainty (BU) features [15], and Local Intrinsic
Dimensionality (LID) [33], among others. However, these
specific approaches, designed for image data, perform poorly
in the domain of malware detection due to differences among

features.

In practice, we find that in the process of generating ad-
versarial examples for malware, attackers seek optimal per-
turbations to evade AMD detection more effectively. They
typically attack along the gradient descent direction and cease
perturbation once successful evasion is achieved. Given this
principle, adversarial examples are closer to the classifier’s
decision boundary compared to regular samples, exhibiting
higher sensitivity to perturbations, with their loss function
increasing more rapidly.

Leveraging this characteristic, we propose a novel defense
framework HagDe that proactively employs multi-stage iter-
ative perturbations in the direction of gradient ascent where
the attack likely generated from, to harvest multi-dimension
loss features for classifier training, thereby enhancing detec-
tion performance. The crux of this method lies in detecting
adversarial examples by increasing the sample’s loss function.
Specifically, minor perturbations are applied to each sample to
observe how these perturbations affect the model’s loss func-
tion. For adversarial examples, even very small perturbations
can lead to a significant increase in the loss function since
they are already near the decision boundary. By comparing
the change in the loss function before and after perturbation,
adversarial samples can be distinguished from regular sam-
ples. The advantage of this method is that it not only passively
compares the differences between adversarial and regular
samples on certain features but actively exploits the intrin-
sic characteristic of malware adversarial example generation
their high sensitivity to perturbations. Such an approach may
more effectively identify and defend against adversarial ex-
amples because it directly targets the key vulnerability in the
adversarial example generation process.

Through extensive experiments on over 15,000 Android
apps and 15 different attack patterns, HagDe has been proven
to defend against state-of-the-art (SOTA) attack methods.
Moreover, HagDe outperforms the SOTA adversarial detec-
tion method in the F1 score. Specifically, HagDe achieves de-
fense effectiveness of 88.5% on AdvDroidZero and 90.7% on
BagAmmo, representing an increase of 32.45% and 11.28%),
respectively, compared to the latest defense method KD_BU
[15] and LID [33].

In summary, our contributions are as follows:

* Method. We introduce a novel defense framework, HagDe,
which leverages the generativity of attacks to enhance de-
fense. This method preprocesses input samples to identify
adversarial examples before they are classified by the de-
tector.

« Insight. Our defense strategy capitalizes on a key character-
istic of the adversarial malware sample generation process:
high sensitivity to perturbations. By applying minor pertur-
bations to samples and observing how these perturbations
affect the model’s loss function, we can distinguish be-
tween adversarial and regular samples. This method does
not merely passively compare differences in certain fea-

tures between adversarial and regular samples but actively
utilizes the intrinsic property of adversarial malware exam-
ple generation—their high sensitivity to perturbations.

» Effectiveness. Through comprehensive experiments in-
volving over 15,000 Android applications and 15 differ-
ent attack combinations, HagDe has proven to be effec-
tive against SOTA attack methods. Specifically, HagDe
achieves a defense effectiveness of 88.5% against Adv-
DroidZero and 90.7% against BagAmmo, marking an in-
crease of 32.45% and 11.28%, respectively, compared to
the latest defense methods KD_BU and LID.

The remainder of this paper is organized as follows. Section
2 presents a preliminary analysis of our background, threat
model, and motivation. Section 3 describes our approach. Sec-
tion 4 evaluates our tool by conducting detailed experiments.
Section 5 discusses our work. Section 6 surveys our related
work. Section 7 concludes the present paper.

2 Preliminary Analysis

2.1 Background

Learning-based Android Malware Detection. APK (An-
droid Package Kit) files are used by the Android OS to dis-
tribute and install applications, containing essential elements
like core code, resources, and metadata. Typically, an APK in-
cludes components such as AndroidManifest.xml, classes.dex,
resources.arsc, and folders like res/, assets/, META-INF/, and
lib/. Specifically, AndroidManifest.xml and classes.dex are
crucial for the APK’s functionality. The AndroidManifest.xml
file contains detailed configuration details about the APK,
including permissions and definitions for Activities, Services,
and Broadcast Receivers. In contrast, classes.dex encapsulates
the application’s program semantics, storing the Dalvik byte-
code to be executed on the Android Runtime environment.
In recent years, many representative learning-based meth-
ods for detecting Android malware have been proposed
[4,5,7,11,17,44,46,51,54,56]. The fundamental steps in
constructing detectors include preprocessing, feature extrac-
tion, model training, and model testing. Methods constructing
detection features based on static analysis have been widely
advocated [3, 16,34,45] due to their ability to operate without
running the app, examples of which include Drebin [3], Ma-
MabDroid [34], APIGraph [53], and et al. The key steps in con-
structing detectors include feature extraction and model train-
ing. As depicted in Figure 2, program analysis tools [41] are
initially leveraged to analyze the configuration information
from AndroidManifest.xml and the behavior of applications
from classes.dex. The analysis results are subsequently used
to extract specific features for the machine learning phase.
Different learning-based AMD methods select features in dis-
tinct ways. For instance, Drebin targets static features like
permissions, while MaMaDroid focuses on dynamic features
such as function calls. After feature extraction, these extracted
features are then compiled into a feature vector. In the model

———

! I
Problem Spacei Feature Space i i Classifier |
. |
|
| | B P Se—
Android Apk }
|
|
|

} po |

BB —

Dex Codes

[Permission |
BE —»
Manifest Files Hardware

. 3
. m

Benign Malicious

|
|
|
e 1 . —

Figure 2: Learning-based Android Malware Detection

training phase, learning-based AMD methods use organized
feature vectors to train classifiers that can differentiate be-
tween benign and malicious applications, enabling the trained
model to identify malware. Recent studies indicate that un-
der ideal settings, these detectors can achieve high detection
efficacy [17]. Detailed learning-based AMD methods are in
Appendix A.

Adversary Examples. Adversarial examples [30] refer to
inputs subtly modified to cause erroneous outputs in machine
learning models. In Android malware detection, these specif-
ically involve meticulously crafted malware samples with
minor alterations, designed to bypass AMD detection systems
and remain undetected as malicious. Specifically, the adver-
sary seeks to apply a sequence of perturbations P* within the
perturbation space 2 to a malware sample in the problem
space, leading the target model M (learning-based AMD) to
misclassify it as benign. More importantly, the functionality
of the software remains unchanged. To minimize perturbation
costs, finding an adversarial perturbation could be formulated
as an optimization problem [22]:

P* = argmincost(P),
Pe® (1)
s.t. M(0(X+P*))=b, F(X)=FX+P")

where cost() represents the cost of generating perturbations
(e.g., runtime overheads, efforts), ¢() represents the feature
extraction, F() represents the malicious functionality verifica-
tion.

2.2 Threat Model

An adversary aims to launch covert and targeted attacks to
undermine the effectiveness of learning-based AMD against
malware. As illustrated in Figure 3, the adversary seeks to per-
turb the malicious APK through modifications P*, thereby in-
fluencing the feature vectors extrated by the machine learning-
based AMD, and misleading it into classifying the APK as
benign. The malicious APK is initially unpacked and decom-
piled into smali codes, manifest files, and other associated
resources (e.g., res/, assets/). The adversary manipulates the
smali codes or manifest files in accordance with the perturba-

.

T 1) Unpack&
! . Decompile |,
Malicious T ——

Apk ng

—» ® Malicious

- @ Benign
ML-based
AMD

Manipq‘lation
I

af Blg Perturbation

Adversary

Adversarial
Apk

Figure 3: Threat Model of Adversarial Android Attack

Table 1: Adversarial Android Attack

Approach ‘ Way of Generating Desired Perturbation

Optimization-based: employs a query-based

AdvDroidZero [22] . .
perturbation selection tree.

Optimization-based: utilizes a multi-population

BagA 28
agAmmo [28] co-evolution algorithm.

Gradient-based: utilizes the Jacobian-based
Saliency Map Approach (JSMA).

Gradient-based: applies the Carlini-Wagner
(CW) attack.

HIV-JSMA [9] ‘

HIV-CW [9] ‘

tion P*. Only the modified smali codes or manifest files that
successfully evades detection by learning-based AMD and
can be rebuilt into a new APK file is considered a valid attack.
Drawing from the knowledge setting defined in previous
work [22, 28], adversary lacks information about the target
model parameters, and the training dataset. However, the ad-
versary can query the target system and utilize the binary clas-
sification results (benign or malicious) to guide perturbation
generation. This process is iteratively refined until an effec-
tively evasive malware sample is produced. The generation of
perturbation strategies is critical in the aforementioned attack
process; however, current adversarial attack methods primar-
ily differ in their approaches to generating these perturbation
strategies, with each method employing distinct techniques.
As shown in Table |, both AdvDroidZero and BagAmmo
utilize optimization-based approaches for perturbation gener-
ation. AdvDroidZero introduces a perturbation tree, utilizing
paths from the root to the leaf nodes as perturbation path ways.
It continuously adjusts the weights of the nodes within the per-
turbation tree based on the target model’s responses to search
the optimal perturbation. In contrast, BagAmmo develops an
evolutionary algorithm named Apoem, which incrementally
discovers the desired perturbation through continuous refine-
ment. For gradient-based methods, HIV employs the CW and
JSMA algorithms, leveraging model gradients with respect
to the input to generate an optimal perturbation that most
significantly impacts the model’s output features.

2.3 Motivation

Adversarial example attacks pose significant practical
threats to AMD systems. Therefore, it is imperative to im-
plement robust detection mechanisms to ensure the security
and reliability of AMD systems. The essence of detecting

Normal begnin
example

. Normal malicious
example

A Adversial example
// Perturb

defense

7 /‘i Attack

1
~d /Perturb
v- defense
Perturb

w_~s defense

Decision Boundary

Figure 4: Attack and Defense of Android Malware

adversarial examples lies in distinguishing them from normal
samples. As illustrated in Figure 4, the generation of adversar-
ial examples involves shifting a Normal malicious example
from one side of the decision boundary (of the AMD classi-
fier) to the other. However, the implementation methods of
different attacks vary significantly, primarily in the generation
of the optimal perturbation, as discussed in Section 2.2. There-
fore, identifying adversarial examples based on the generation
of optimal perturbations might enable the design of detection
methods tailored to specific attacks. However, achieving a
general-purpose detection method remains challenging.
These attack methods share a common characteristic: seek-
ing the optimal perturbation P* while preserving the func-
tion’s integrity. To achieve this optimal perturbation, adver-
saries iteratively query the target model using the repackaged
APK’s labels, adjusting the perturbation accordingly. To ad-
here to the specified constraints, two notable findings can be
observed: (1) Adversaries cease further perturbation once an
adversarial example is successfully generated, thereby min-
imizing computational overhead. Consequently, adversarial
examples are closer to the decision boundary than regular
samples. (2) Adversaries update the perturbation in the di-
rection that most rapidly induces misclassification by the
classifier, demonstrating greater sensitivity to perturbations
near the decision boundary. To further elucidate finding 1,
Figure 5 demonstrates that the predicted labels of adversarial
samples are more readily flipped under the same perturbation
level, whereas regular samples exhibit a lower flip rate. To
validate finding 2, we use the model’s loss function value as
the evaluation metric. A loss below a certain threshold indi-
cates correct classification, while a value above this threshold
suggests misclassification. The higher the loss, the farther the
sample is from the decision boundary. We iteratively apply
perturbations of equal intensity to both normal and adversarial
samples and observe the loss values. Figure 6 shows that with
increasing perturbation steps, the loss for both sample types
rises. Notably, the increase is significantly more pronounced
for adversarial samples compared to normal samples. This
suggests that by iteratively applying reverse perturbations and
using the loss value as a metric for the position relative to

1.01 =

,,,,,,,,,,,,,,,,,,,, 5
»»»»»»»»»»»»»»»»»»»
———————

S el

o
©

<
S

Label Not Flip Rate
o
[e)]

—e— Adv sample
0.21 --*- Normal sample

0 2 4 6 8 10
Perturbation Steps

Figure 5: Label Not Flip Rate of Adversarial and Normal
Examples

5| —— Adv sample
————— Normal sample
o4
=
i
n 3
%]
Q
—
&2
o
$
<1
0

Perturbation Steps

Figure 6: Loss Comparison: Adversarial Samples vs. Normal
Samples with Increasing Perturbation Steps

the decision boundary, it is possible to distinguish between
adversarial and normal samples.

As illustrated in Figure 4 and inspired by the aforemen-
tioned findings, an interesting and straightforward idea is to
apply the same degree of perturbation to all samples (both ad-
versarial and normal). By evaluating the position of samples
relative to the decision boundary under varying perturbation
intensities (using loss as the metric), we can distinguish be-
tween adversarial and normal samples.

3 Methodology

In this section, we first present an overview of the adver-
sarial sample detection framework, HagDe, which comprises
three stages. We then detail the methodology of HagDe across
these stages.

3.1 Framework Overview

At a high-level overview, HagDe serves as a defense frame-
work designed to enhance the resilience of AMD tools against
adversarial sample attacks. The attack methods described in
Section 2.2 involve APK-level perturbations, such as insert-
ing code in APK, reverting to AMD-extracted features at
feature-level and evading detection, while ensuring APK re-
construction. Conversely, defense only needs to determine if
an APK is adversarial, allowing it to focus on feature-level
detection with AMD-extracted features, avoiding the need for
APK reconstruction. Shown as Figure 7, it operates through

three stages: (1) train substitute models, (2) multi-stage pertur-
bations, and (3) train classifier for detection. In the following,
we outline each stage, starting with an analysis of the reasons
for implementing this step and then detailing its implementa-
tion.

Train Substitute Model. AMD implementations currently
rely on classifiers like SVM and Random Forest, which do
not support gradient retrieval as neural network algorithms do.
Therefore, training a substitute model aims to simulate the
AMD classifier to obtain its gradients, enabling the calculation
of loss for multi-stage perturbations.

Multi-Stage Perturbations. Motivated by Section 2.3, ad-
versarial samples and normal samples differ in their position
relative to the classifier’s decision boundary and their sensi-
tivity to perturbations. Therefore, HagDe applies multi-stage
perturbations to APK feature iteratively, extracting features
that indicate their proximity to the decision boundary to dis-
tinguish adversarial samples from regular ones.

Train Classifier for Detection. HagDe employs an effective
classification algorithm to learn features related to multi-stage
perturbations. For unknown Android software, the trained
classification algorithm can directly predict whether it is an
adversarial Android sample.

3.2 Stagel: Train Substitute Model

The substitute model aims to simulate the target model, and
can evaluate an APK’s position relative to the decision bound-
ary. As illustrated in Figure 7, substitute model is trained using
the APK feature and predicted labels (benign or malicious)
generated by the target model (AMD).

To enable efficient training and inference of the substitute
model, we designed a simple model architecture. In addition
to standard fully connected layers and non-linear activation
functions, we employ Dropout [39] during the training of sub-
stitute models to randomly deactivate neurons and enhance
robust feature learning. This is because Dropout is a proven
regularization technique in neural networks that effectively
prevents overfitting and is widely used across various architec-
tures. Detailed structure of the substitute model is depicted
in Appendix C.

3.3 Stage2: Multi-Stage Perturbations

As discussed in Section 2.3, adversarial samples are closer
to the decision boundary than normal samples, making them
more sensitive to perturbations and more easily driven away
from the decision boundary. However, two problems arise
from utilizing the above findings to distinguish between ad-
versarial and normal samples: (1) how to represent the prox-
imity to the decision boundary, and (2) how to leverage the
perturbation sensitivity of adversarial samples.

For problem 1, the loss value naturally measures the confi-
dence in the model prediction y for the given original input
X, which is closely related to the distance from the decision
boundary. Consequently, we select the loss value as the key
metric to measure the position of a sample relative to the

Unlabeled Labeled

sample sample
r -y r Y
W iy _‘ﬁ.
=W —> —> .
L B oW

4

Substitute :

v Train
= Benign = Malious = | Adversarial
L sample " sample b i example

Prediction label after
perturbation

1
1
1
1
|| i
1
1
— = Vi 1 Normal
v : examples
—] | AR
I'Il'll'l
—>
— =11
yO Adversarial &k
— examples Adversarial
~ L detection examples

Original
prediction label

Figure 7: Framework of HagDe

decision boundary. When perturbations cause a sample to be
misclassified, a higher loss value typically indicates that the
sample is further from the decision boundary hence.

For problem 2, a straightforward and intuitive approach

is to add perturbations to adversarial Android software due
to its high sensitivity to such changes. However, the more
challenging aspects include determining the direction of the
perturbations, the perturbation way (i.e., the magnitude of
the perturbations, and when to stop the perturbation process).
Considering the aforementioned challenges, HagDe is de-
signed to be a more targeted and proactive detection frame-
work.
Perturbation Direction. Regarding the perturbation direc-
tion, our perturbations directly target the generation weak-
nesses of adversarial Android software. Since the genera-
tion of adversarial Android software typically aims to make
the target model predict incorrectly (originally malware is
incorrectly predicted as benign software), our perturbation
direction is designed to move in the direction of the attack
generation.

Given an input x, a substitute model M, and an initial
predicted value yo from the model M, we aim to perturb x
such that the loss value for yy with respect to MM ’s prediction
increases along the direction of gradient ascent. Let M (6,x)
represents the model prediction with model parameters 6 and
input x, and L be the loss value £L(M (8,x),yo). The gradient
of the loss function with respect to the input x is denoted as
Vi L(M(8,x),y0). Our goal is to find a perturbation J that
increases the loss value.

The perturbation & can be defined as:

d=¢-sign(VxL(M(6,x),y0)), (2)

where € is a small positive scalar that controls the magni-
tude of the perturbation. The perturbed input x’ is then given
by:

x =x+38. 3)

This ensures that the model %’s prediction on the per-

turbed input X’ moves in the direction of gradient ascent with
respect to the initial prediction yy.
Perturbation Way. In terms of the perturbation way, the main
influencing factors include the total number of perturbations,
denoted by A and the size of each perturbation, denoted by 7.
Unlike the conventional approach of applying a fixed perturba-
tion once, we adopt an iterative approach to perform multiple
perturbations. This is because the multi-stage perturbation
loss values obtained through multiple iterations can better
capture the varying rates of increase in response to perturba-
tions between adversarial and normal samples. Consequently,
it enhances robustness against various adversarial attacks for
learning-based AMD.

Detailed, the perturbation 8 is initialized as:

(0) . No Mo
8" < Uniform < 3 \/;Z) 4)
where N is a fixed parameter representing the initial per-
turbation size, set to 0.005 here, d is the dim of input feature
that are efficiently captured by AMD target model.
For the i-th iteration, where i represents the number of
perturbation steps, the perturbation is updated and the loss is
calculated as follows:

VsL(M(x+8"""),y)
[VsL(M (x+8""1),)]

§0) <_5(i*1)+n. fori>1
| 5)
Loss; = L(M (x+87),y9) fori=1,2,....,A (6)

Thus, the sequence of loss values after each perturbation
step is {Lossg, Loss,Lossy,...,Lossy }.

As depicted in Fig 7, we perform multi-stage perturbation
on all Android software, irrespective of whether the software
are adversarial or normal. We iteratively update d along the
direction of gradient ascent. After each perturbation, the loss
at that step is obtained, and then this step loss is further used
to update for obtaining next step loss.

-

L7 B NS

10

11
12
13
14
15

16
17

Algorithm 1 HagDe Algorithm Implementation

Input: Feature vector of training set Xiin, Target classi-
fiers predictions Label Yi.,in (predict whether is be-
nign or malicious), Normal and adversarial test set
Xtcst = {Xnormal_test7Xadv_test}-

Output: Predict whether it is an adversarial example Yies

Stage 1: Train substitute model

for Each sample (x,y) in Xyqin do
Use the following loss to train:

N 2

Cross-Entropy Loss = — Z Z yi2log(Pin)
i=1k=1

end

return substitute model M ;

Stage 2: Multi-Stage Perturbations
Initialize init_perturb_size 1o, perturb_size n,
perturb_steps A, and perturb_loss_list L
for Each sample x in X5 do

Initialize [

Y0, label, < getModelOutput(M, x)
loss_feature < cross_entropy(yo, labely)
l.add(loss_feature)

8 + randomlInitDelta(n)

for i in A do

if i == 0 then
‘ break

end

pred + getModelOutput(M, x +)
loss < cross_entropy(pred, label,)
loss.backward()
grad < calculateGradient(, loss)

0 + updateDelta(d, grad, n)

yi < getModelOutput(M, x + 8)
loss_feature < cross_entropy(y;, label,)
[.add(loss_feature)

end
L.add(/)
end
return L;
Stage 3: Train Classifier for Detection
for Each sample feature x in L do
trainClassifier(x, y) by 10-fold cross-validation
end

Specifically, the algorithm implementation is depicted as
shown in Algorithm 1. The function getModelOutput(#, x)
is utilized to obtain the model’s prediction logits y; and la-
bel label, for the sample x. The perturbation § is initialized
normal randomly with the size determined by the initial per-
turbation size 1 through the function randominitDelta(). For
iterate A times, obtaining the loss values at each step involves
obtaining the prediction logits y; for the perturbed sample
x+ O using getModelOutput(M, x + §) . Subsequently, the

cross-entropy loss between y; and label, is computed. The
gradient of the loss with respect to d are used to update & and
calculate the next loss. For each Android software sample,
a representative sequence of loss_feature values is obtained,
calculated at each attack stage.

3.4 Stage3: Train Classifier for Detection

To mitigate the high computational demands and costs as-
sociated with training intricate neural networks, we employ
machine learning models for the classification of adversar-
ial Android malware. Machine learning models are used in
our classification stage, employing a multi-dimensional loss
feature for predicting the final adversarial detection. Dur-
ing training, multi-dimensional loss feature from the test set,
which include both normal and adversarial Android software,
serve as input. The machine learning algorithm is trained
using these feature along with their corresponding labels, and
the resulting trained model is stored for inference. In the in-
ference phase, Android malware to be evaluated undergo the
same process by feature extraction of AMD and first two
stages by HagDe in order to generate feature vectors. These
loss value vectors are fed into the model to predict outcomes,
differentiating between normal (zero) and adversarial (one)
software. We select machine learning models for their robust
classification capabilities, leveraging algorithms such as 1-
nearest neighbor (INN), 3-nearest neighbor (3NN), random
forest (RF), and support vector machines (SVM).

In summary, HagDe offers several notable advantages:
Firstly, by leveraging the proximity of adversarial Android
software to the decision boundary, in conjunction with their
heightened sensitivity to perturbations, we are able to effec-
tively quantify the differences between adversarial and benign
software through the measurement of loss post-perturbation.
Secondly, taking advantage of the inherent characteristics of
the attack method, we mount counter-attacks oriented along
the trajectory of the Attack to AMD, which thereby signifi-
cantly accelerates convergence of feature differences. Finally,
through the proactive implementation of multi-stage pertur-
bations, we are able to capture a more comprehensive range
of loss characteristics, and thus provide a more accurate re-
flection of the acceleration trends in perturbation response
between adversarial and normal Android software.

4 Evaluation

4.1 Research Questions

We aim to answer the following research questions through
experiments and analyses.

RQ1: How does the detection performance vary with
different parameters, and different machine learning al-
gorithms?

RQ2: Can HagDe outperform other state-of-the-art
adversarial sample malware detectors?

RQ3: What is the runtime overhead during the process
of adversial android malware detection by HagDe?

RQ4: How effective is HagDe in enhancing malware
detection methods?

4.2 Experimental Settings
4.2.1 Attack Pattern

In the domain of attack on malware detection systems, the
attacker collaborates with the targeted model (specifically, the
AMD) to establish a distinct attack pattern.

AMD. In Section 2.1, we discuss existing Android mal-
ware detection systems. MaMabDroid, Drebin, and API-
Graph are recognized as SOTA AMD detectors due to
their high-performance detection capabilities, and they have
been widely utilized. Furthermore, MaMaDroid can be fur-
ther divided into two variants based on feature granularity:
MaMabDroid-Family and MaMaDroid-Package. Due to the
varying classification algorithms employed by each detec-
tor, this study focuses on selecting the classification algo-
rithms that yield the best detection results [22, 34] for the
AMD systems. Consequently, we choose the following SOTA
AMD detection methods for this research: MaMaDroid-
Family-RF (MaF), MaMaDroid-Family-APIGraph-RF (MaF-
Api), MaMaDroid-Package-RF (MaP), MaMaDroid-Package-
APIGraph-RF (MaP-Api), Drebin-SVM (Drebin), and Drebin-
APIGraph-SVM (APIGraph).

Attacker. We discuss existing attack methods targeting AMD
systems in Section 2.2. Currently, the mainstream attack
strategies are primarily categorized into optimization-based
attacks and gradient-based attacks. AdvDroidZero [22] and
BagAmmo [28] are recognized as SOTA optimization-based
attack methods due to their stealth and high success rates.
These attacks are capable of generating real attacked APK
files, with their real-world impact validated on the VirusTo-
tal detection platform. Meanwhile, HIV-CW [9] and HIV-
JSMA [9] are among the most established and currently SOTA
gradient-based attack methods. Therefore, conducting exper-
iments on these four representative and realistic attackers
provides a more robust validation of adversarial sample de-
tectors.

Combination of Attacker and AMD. An attacker that suc-
cessfully circumvents a specific AMD system can be clas-
sified as an attack pattern. This study’s attacker-AMD com-
binations draw on attack patterns from previous research.
BagAmmo, HIV-CW, and HIV-JSMA have effectively coun-
tered MaMaDroid and APIGraph, leading us to integrate
these attacks with the two AMD systems. Likewise, Ad-
vDroidZero has targeted MaMaDroid-Family, Drebin, and
Drebin-APIGraph in past studies, leading us to incorporate
this attack design as well.

4.2.2 Baseline

We compare our proposed detectors HagDe based on con-
tinuous attack with several strong baselines in adversarial
sample detection including FS [50], KD_BU [15], LID [33].

FS computes the feature squeezing of the input, extracts

its prediction, and compares it to the original prediction. The
further away they are, the more likely the input is adversarial.

KD_BU propose KD and BU for each class in the train-
ing data and then trained a binary classifier detector using
densities and uncertainties features of clean, noisy, and AEs.

LID characterize the dimensional properties of the adver-
sarial subspaces regions and proposed to use a property, called
Local Intrinsic Dimentionaloty (LID). For natural or adversar-
ial sample, this method calculated a LID score using extreme
value theory at every DNN layer, and then classifier model
was fitted on the LID features for adversarial detection.

4.2.3 Dataset and Metric

To assess adversarial sample detection in AMD, our exper-
iments primarily utilized the AMD dataset, which consists of
two parts: Data-MD and Data-AD.

Data-MD is a widely-used Malware detection set, collected
from Androzoo [2] and labeled on VirusTotal [42], spanning
the years 2016-2020. This dataset comprises 7,933 benign
applications and 7,423 malware samples, totaling 15,356 ap-
plications. For Data-MD, we randomly selected 80% of sam-
ples from each category as the training set to train substitute
models, and the remaining 20% as the testing set.

Data-AD is a adversial android malware sample made by
us according the attack algorithms mentioned in the paper.
Following the evaluation settings of BagAmmo and Adv-
DroidZero, which employ random sampling for evaluation,
we thus conducted attacks on 400 randomly sampled An-
droid malware instances that successfully evaded detection
by AMD, and then the successfully attacked samples were
then saved to form the final Data-AD dataset.

For the assessment of RQ1,RQ2, and RQ3, our evaluation
dataset was composed of half the data from DATA-MD, com-
plemented by an equal volume of normal samples randomly
drawn from the test set of Data-AD. In the evaluation of RQ4,
we selected a dataset of equivalent size from Data-MD and
Data-AD, but distinct from that used in RQ2 to serve as the
final detection sample.

To evaluate the performance of our Android adversarial
sample detection, we employ standard metrics: Precision
(P = 7755, Recall (R = 725), and F1 score (F1 = 328,
Here, T P denotes true positives (correctly identified adversar-
ial samples), F'P denotes false positives (incorrectly identified
adversarial samples), and F'N denotes false negatives (adver-
sarial samples missed by the detection).

4.3 RQ1: Parameters Selection

To illustrate the effectiveness of different classifier algo-
rithms, and different parameters in detecting adversial sample,
we set up comparison experiments in this subsection. In our
approach, two pivotal parameters are considered within multi-
stage perturbations, denoted as A for the perturbation step
count and 1 for the perturbation size. Both excessively low
and high values of these parameters can compromise the algo-
rithm’s performance or execution efficiency. Additionally, the

—e— AdvDroidZero_APIGraph

AdvDroidZero_Drebin
—o— AdvDroidZero_MaF
-e— Average

—e— BagAmmo_MaF

—e— BagAmmo_MaP

BagAmmo_MaF-Api

BagAmmo_MaP-Api

HIV_JSMA_MaF-Api

HIV_JSMA_MaF

HIV_JSMA_MaP-Api
—e— HIV_JSMA_MaP

HIV_CW_MaF-Api
—e— HIV_CW_MaF

HIV_CW_MaP-Api
—e— HIV_CW_MaP

1.0

)—“—"‘""- >

- o-9--0-0-0-0-0--0
054 /'); e e-aa-e- e

=

Average F1
I
(o=
)

°
<

0.6 1

Average F1

1.0

./o—o—.—of bd ~—t & $

—--0--0-9
1 —e-—0-0 -9 -0-0-0-—
0.9 .- —e-—e--—=

/W

o
3
s

e
~
N

0.6 1

0.5 T T T T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040

perturbation size

0.5 T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

perturbation steps

Figure 8: The Average F1 Score Assessment Across Parameters: Perturbation Step and Perturbation Size

Average F1 Score
o
0
o

ph
pi

HIV_CW_MaF

HIV_CW_MaP

HIV_JSMA_MaF

AdvDroidZero_Drebin
AdvDroidZero_MaF
BagAmmo_MaF
BagAmmo_MaF-Api
BagAmmo_MaP
BagAmmo_MaP-Api
HIV_CW_MaF-Api
HIV_CW_MaP-A
HIV_JSMA_MaF-Api
HIV_JSMA_MaP
HIV_JSMA_MaP-Api

AdvDroidZero_APIGra

Figure 9: The Average F1 Score Assessment Across Attack
Pattern

choice of classification algorithm impacts the utilization of
loss features derived from the perturbed data. To investigate
the impact of the aforementioned parameters and classifier
algorithms on adversarial Android malware detection perfor-
mance, we conducted extensive experiments across 15 types
of attack patterns. The parameter A was varied between 0
and 19, n was varied between 0 and 0.04 in increments of
0.002, and the classification algorithms was tested include
INN, 3NN, RF, and SVM.

Selection of Classifier. Initially, we examined the classifica-
tion algorithms, specifically INN, 3NN, RF, and SVM, un-
der 15 distinct attack patterns. In various attack scenarios,
across different perturbation frequencies and intensities, the
average F1 scores for INN, 3NN, RF, and SVM classifiers
were sequentially observed to be 0.901, 0.894, 0.904, 0.809,
respectively. Additionally, as illustrated in Figure 9, RF clas-
sification algorithm exhibits the most optimal performance

was observed with the highest frequency among the four, thus
selected as our default classifier algorithm.

Selection of Param 1. After determining the use of the RF
classification algorithm, we conducted an in-depth investiga-
tion into the impact of varying parameter values on perfor-
mance. As depicted in Figure 8, for parameter 1, a discernible
trend has been observed across all attack patterns, indicating
that the detection performance consistently improves with the
increase in perturbation size 1. This consistent performance
enhancement trend underscores the general applicability of
HagDe in defending against various Android adversarial at-
tacks. HagDe iteratively perturbs inputs to acquire multi-stage
loss values for classifier training, culminating in an average
F1 score surpassing 0.8 for detection performance. As indi-
cated by the black line, the average F1 performance across
the 15 attack mode exhibited a consistent upward trend with
gradually plateauing as the perturbation size increased. When
the perturbation size reached 0.032, the overall performance
enhancement slowed significantly, and in some attack pat-
terns, the detection F1 score even began to decline. Given that
higher perturbation size also incur greater time overhead, we
choose to fix this parameter at 0.032.

Selection of Param A. For parameter A, the detection perfor-
mance of the algorithm demonstrates an enhancement and
convergence trend as the number of perturbation steps in-
creases, similar to the parameter 1. When the perturbation
steps reach 15, the overall performance enhancement also
gradually decelerated. we fix this parameter at 15 under the
same performance and time overhead considerations. When
A is set to 0, no multi-perturbations are applied, and detection
relies solely on the init loss of adversarial and regular samples.
In gradient-based attack patterns like HIV_JSMA_MaP, a A

Table 2: Adversarial Android Malware Detection

AdvDroidZero

BagAmmo

HIV-CW

HIV-JSMA

Method \Memc\MaF Drebin Drebin-Api | MaF MaF-Api MaP MaP-Api | MaF MaF-Api MaP MaP-Api | MaF MaF-Api MaP MaP—Api\AVg'
Acc |57.1 55.6 567 |651 728 586 506 |609 79 533 623 |695 548 272 50 |582

Fl |69.1 65 62 724 725 403 656 |706 815 661 713 |67.6 49 5.8 0 57.3

ES P | 54 536 553 599 731 722 503 |566 727 519 575 |722 563 83 0 529
R [962 824 706 |91.5 72 28 943 |939 927 91 935 |635 434 45 0 67.8

Acc |76.7 768 797 659 852 43 552 929 759 519 616 | 88 895 495 585 |70.0

Fl |751 749 787 |68.5 844 391 539 (927 733 325 622 |87.1 8.5 32 615 |67.0

KD_BU| p | g 827 81.5 638 889 396 55 935 819 293 609 [935 90 565 572 |70.3
R |712 703 776 |749 81 439 589 923 669 39.1 651 | 82 893 235 67 |669

Acc |80.1 788 80.1 756 965 639 926 [89.6 902 928 694 [89.8 936 91 875 |848

Fl |80.7 77 787 759 96,6 634 925 [895 907 925 64 |84 937 906 834 |84.2

LID P |794 856 848 |749 953 657 939 |90.1 893 941 741 |92.1 922 943 837 [86.0
R |87 719 744 |774 98 636 919 894 926 916 572 | 8 954 875 94 |836

Acc | 894 90 865 [869 948 882 926 (952 969 952 965 | 94 954 962 962 |929

HagDe | F1 |898 89.6 861 (869 947 885 928 (953 969 951 964 | 94 952 962 962 |929
©urs) | P |867 917 886 (877 952 866 911 (944 971 967 969 |937 969 966 972 |93.1
R |935 888 84 864 945 912 956 |964 969 939 962 |945 938 96 955 |93.1

of 0 can achieve an F1 score over 0.95. However, multiple
perturbations further boost detection. For optimization-based
attacks, such as BagAmmo_MaP, the dependence on gradients
is less pronounced, resulting in an even greater improvement
from multiple perturbations.

Therefore, considering the increased computational cost
with larger perturbation sizes and step counts, and the ob-
served performance convergence, we determine A = 15 and 1
= 0.032 are the optimal parameters.

(Answer to RQ1: The detection results based on the RF
model demonstrated optimal average F1 scores across
various attack patterns. The detection performance of the
algorithm progressively improves with the increase in A
and | . On average, this enhancement gradually plateaued

\after A reaches 15 and m) reaches 0.032.

4.4 RQ2: Effectiveness

To conduct a more comprehensive evaluation of HagDe’s
adversarial detection performance, we focus on two main as-
pects. On the attack side, we employ SOTA attack methods
targeting target model, including AdvDroidZero, BagAmmo,
HIV-CW, and HIV-JSMA. On the detection side, we compare
HagDe with SOTA adversarial sample detection methods,
which have demonstrated outstanding detection performance.
Above these methods, HagDe, LID, and KD_BU respectively
acquire the loss value feature, local intrinsic dimensionality
feature, and kernel density combined with binary uncertainty
features of the samples. These features are then utilized to
train a classifier for the ultimate prediction. The distinguishing
factor is that FS employs a threshold-based detection method
by comparing the compressed features with the original fea-
tures. Consequently, the results for FS are derived directly

from the test set composed of normal and adversarial sam-
ples, whereas the outcomes for the other three methods are
obtained through 10-fold cross-validation on same dataset.

Table 2 shows the detection results including accuracy,
recall, precision and F1-score under various attack patterns.
HagDe achieved the highest F1 score across 14 attack patterns,
with the exception of the BagAmmo_MaF-Api attack pattern.
The average F1 metric demonstrates that our method outper-
forms KD_BU and LID by 38.7% and 10.3%, respectively.
Across 15 distinct attack patterns, our method consistently
achieved F1 detection values exceeding 85%, indicative of its
robustness against adversarial attacks.

For FS, its performance is relatively modest when con-
fronted with adversarial attacks on Android software. The
reason behind may be FS was originally proposed for de-
tecting adversarial samples in the image domain, where fea-
tures are continuous, unlike the discrete nature of Android
malware features, harder to detect. Consequently, the feature
compression-based method of FS proves ineffective under
many attack patterns, especially the attack pattern of HIV-
JSMA_MaP-Api. This finding highlights the discrete nature
of feature information in Android malware detection, render-
ing many methods potentially ineffective initially working
well in continuous spaces. Nonetheless, HagDe places greater
emphasis on the calculation of loss values, demonstrating
efficacy even within discrete data spaces. KD_BU exhibits
inconsistent performance. It performs well with Family-level
features (11 x 11), achieving an F1 score of 92.7% under the
HIV-CW_MaF attack pattern. However, its effectiveness di-
minishes significantly with Package-level features (368 x 368)
due to the finer granularity of features, where it frequently
fails, resulting in an F1 score below 50%. Among the three
baselines, LID demonstrates the most superior overall per-

formance. Its relatively generic features enable it to achieve
commendable detection results across most attack modalities,
particularly excelling against BagAmmo_MaF-Api, where it
attains the highest F1 score of 96.6. However, it exhibits
suboptimal performance when confronted with data charac-
terized by a higher dimensionality, yielding scores of 63.4
and 64 under the attack modalities of BagAmmo-MaP and
HIV-JSMA_MaP-Api, respectively.

Overall, HagDe, KD_BU and LID show significantly better
defense capabilities against HIV-CW and HIV-JSMA com-
pared to AdvDroidZero and BagAmmo. This may attributed
to the fact that HIV-CW and HIV-JSMA are designed to em-
ploy gradient-based attacks, rendering these features more
susceptible to detection by the employed defense mechanisms.
In contrast, AdvDroidZero employs a tree search algorithm to
navigate and optimize perturbations in the problem space, en-
suring that the perturbations are positioned to maximize their
impact. Meanwhile, BagAmmo employs genetic algorithms
to iteratively refine and select the most effective perturbations,
utilizing principles of natural selection and evolution for opti-
mal adversarial modifications. These perturbation-based at-
tack methods pose a greater challenge to defense mechanisms.
Consequently, HagDe exhibits robust detection capabilities
across a diverse array of attack patterns. Detailed false pos-
itives and false negatives analysis of HagDe are depicted in
Appendix D.

Answer to RQ2: The experimental results show that
HagDe can achieve a defense effectiveness of 88.5% on
AdvDroidZero and 90.7% on BagAmmo, representing an
increase of 32.45% and 11.28%, respectively, compared
to the latest defense method KD_BU and LID.

4.5 RQa3: Efficiency

In this section, we pay attention on the runtime overhead
of HagDe. For real-time detection systems, which encompass
both AMD and adversarial malware detection. Existing AMD
processes have implemented a relatively time-consuming fea-
ture extraction workflow from an Android APK (generating
APK feature). Thus, this experiment primarily concerns the
efficiency of adversarial malware detection based on APK
feature. The detection efficiency of adversarial malware de-
tection primarily depends on the size of the APK feature
(e.g., 11x11 for MaF, 368x368 for MaP, and over 180,000
for Drebin). Consequently, this section mainly explores the
efficiency of detection methods under these three different
types of feature: MaF, MaP, and Drebin.

Training Time Cost. During the training phase, the time con-
sumption for each method includes two components: training
the substitute model, core process and training the classifier.
As indicated by Table 3, the majority of training time is spent
on the substitute model, which is crucial for all detection
methods. However, the time required to train the substitute
model varies significantly depending on the type of feature

Table 3: Training Time Cost

Data feature | Method Train substitute Coref process
model and train classifier
FS 0.08s
KD_BU 5.1s
MaF LID 17.92s 1.52s
HagDe 1.64s(CPU) | 2.04s(GPU)
FS 2.23s
KD_BU 233.49s
MaP LID 172.19s 9.925
HagDe 13.04s(CPU) | 2.02s(GPU)
FS 1.7s
KD_BU 279.48s
Drebin LID 151.25s 10.01s
HagDe 12.96s(CPU) | 2.06s(GPU)

Table 4: Inference Time Cost

Data feature ‘ Method ‘ 10 samples ‘ 100 samples ‘ 1000 samples
FS 0.07s 0.07s 0.10s
KD_BU 5.14s 7.33s 22.20s
MaF LID 0.13s 0.13s 0.33s
HagDe(CPU) 0.12s 0.94s 9.12s
HagDe(GPU) 0.24s 2.01s 20.37s
FS 0.21s 0.63s 5.23s
KD_BU 236.78s 241.17s 332.67s
MaP LID 0.22s 2.95s 54.49s
HagDe(CPU) 3.16s 34.33s 332.32s
HagDe(GPU) 0.26s 2.34s 23.21s
FS 0.23s 0.76s 6.32s
KD_BU 274.52s 294.02s 360.82s
Drebin LID 0.24s 3.88s 64.87s
HagDe(CPU) 4.57s 46.87s 448.08s
HagDe(GPU) 0.3s 241s 25.08s

input. For example, training the substitute model for MaF
takes approximately 17.92 seconds, whereas for MaP, it takes
around 172.19 seconds. For the core process and classifier
training component, FS is the least time-consuming across
all data scales, due to the straightforwardness of feature com-
pression and the absence of classifier training. KD_BU takes
longer, mainly because Bayesian and Kernel Density Estima-
tion features require calculation based on the data distribution,
which can be time-consuming for high-dimensional data. LID
typically requires less time, but for high-dimensional features
like MaP and Drebin, its computational demands increase,
resulting in longer processing times. For HagDe, when using
CPU resources, the overall processing time is higher than that
of LID and also increases as the dimensionality of the data
features grows. When using GPU resources, the processing
time for MaF features is slightly higher than with CPU due
to the additional overhead from tensor transfers, given the
small dimensionality of the MaF data. However, when the
input features are MaP and Drebin, processing time signifi-
cantly decreases with GPU usage compared to CPU. This is
because HagDe primarily relies on gradient ascent perturba-
tion, involving gradient backpropagation. GPUs are designed
to accelerate neural network training, providing significant

0.8
0 0.6
2
o
%)
2]
— 0.4
[T
0.2 L
—e— Origin Detect Performance
fffff Enhanced Detect Performance
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Adversarial sample ratio

Figure 10: F1 Performance Enhancement Comparison with
vs without HagDe (Under The Attack Pattern of Adv-
DroidZero_MaF)

speedup for this process. Additionally, the time taken is nearly
the same as for MaF due to the GPU’s strong concurrency
support. In contrast, LID does not rely on computations in-
volving neural networks or similar operations, making it less
dependent on GPU resources.

Inference Time Cost. To clearly demonstrate the inference
time of each method across different data scales, we con-
ducted experiments with data sizes of 10, 100, and 1000. For
a fair comparison, each method process data serially. Overall,
similar trends to those in the training phase are observed from
Table 4: the runtime for LID increases with the dimensionality
of the input features, while HagDe relies heavily on the GPU
to enhance efficiency. Additionally, the processing time for
HagDe exhibits a linear relationship with increasing data size.
This is because, theoretically, it operates with a complexity of
O(\), where A represents the fixed number of perturbations,
set at A=15. All these methods can process large-scale data
more quickly through multithreading, although this requires
more computational resources. For example, increasing the
number of process threads to 10 can theoretically enhance the
inference speed nearly tenfold.

Answer to RQ3: HagDe relies on the GPU and concur-
rency to accelerate both training and inference processes.

4.6 RQ4: Enhanced Malware Detection

The primary aim of introducing our adversarial sample
detection framework is to enhanced AMD methods against
adversarial attacks. In this part, we primarily investigate the
performance of existing malware detection methods with and
without our adversarial sample detection framework to as-
sess the extent of enhancement provided by our framework.
Considering a more diverse and real-world scenarios, we ran-
domly selected an equal number of normal and adversarial
samples from a dataset different from RQ1 and RQ2, to con-
stitute our test environment.

As clearly depicted in Figure 10, at a ratio of 0, i.e., in the
absence of adversarial samples, the detection performance

of the malware itself slightly surpasses that of our enhanced
framework. This discrepancy arises from false positive pre-
dictions made by our adversarial sample detection frame-
work in non-adversarial scenarios. However, as the number
of adversarial samples continues to grow, we witness a sharp
decline in the detection performance of the malware itself.
Ultimately, when the ratio of adversarial to malware samples
reaches 1, it is unable to correctly identify a single malware
sample. Therefore, HagDe helps existing Android malware
detection methods maintain stable performance when faced
with adversarial samples in varying proportions. As the pro-
portion of adversarial samples increases from 10% to 90%,
HagDe demonstrates varying degrees of enhancement in the
F1 score of AMD systems, with improvement ratios ranging
from 0.79% to 474.4%.

Answer to RQ4: HagDe can enhance AMD against adver-
sarial attacks, with improvement ratios in the detection
F1 score ranging from 0.79% to 474.4% as the proportion
of adversarial samples increases from 10% to 90%.

5 Discussion and Limitation
5.1 Adaptive Attack

To ensure the long-term reliability of detection systems, it
is crucial to discuss the effectiveness of HagDe against adap-
tive adversaries. Previous works, such as AdvDroidZero and
BagAmmo tend to stop after a successful attack to minimize
exposure risk and reduce costs. In this context, we propose an
adaptive attack scenario where the attacker does not adhere
to the minimum attack cost but instead adopts a persistent
attack strategy to generate adversarial samples. Specifically,
we assume that after the initial successful attack, the attacker
iteratively perturbs the APK multiple times to produce the fi-
nal adversarial sample. However, despite employing adaptive
attack strategies, attackers still face significant challenges in
evading HagDe detection for the following reasons.

First, attackers encounter major difficulties in creating ad-
versarial samples far from the decision boundary through per-
sistent attacks. For attackers, seeking the optimal perturbation
is not arbitrary; instead, it is systematically adjusted based
on the response of AMD (e.g., MaMaDroid) regarding mal-
ware classification. For instance, AdvDroidZero continuously
refines the perturbation search by adjusting the weights of per-
turbation nodes in the search tree based on the target model’s
feedback, enabling the selection of the optimal perturbation
path. Consequently, once AdvDroidZero succeeds in the ini-
tial attack, it receives a response indicating a benign sample.
Even if the attacker continues to apply perturbations, the sub-
sequent responses are still likely to indicate a benign sample.
At this point, the response becomes nearly ineffective, making
it challenging for the attacker to identify the optimal pertur-
bation based on the feedback. This near-ineffective response
hinders the attacker from generating adversarial samples that

are far from the decision boundary, thereby making it difficult
to evade detection by HagDe.

Second, as attacks increase, the APK faces more perturba-
tion, raising the likelihood of APK corruption. Zhao et al. [55]
highlighted that feature-level attacks may not always result
in successful APK-level reversion, as changes to the APK’s
AndroidManifest.xml or DEX code can cause reconstruction
failures. AdvDroidZero also proposed that modifying APKs
with FlowDroid can lead to crashes. Thus, if attackers con-
tinue to apply perturbations after a successful initial attack,
they cannot avoid the issue of APK corruption during the
rebuild process.

Third, while attackers cannot significantly enhance the suc-
cess rate through the aforementioned adaptive attack strate-
gies, they still also likely to expose themselves through eas-
ily detectable features. Notably, each attack attempt involves
modifications to the AndroidManifest.xml or DEX code, while
ensuring that the original malicious functionality remains
unchanged. To achieve this, BagAmmo proposed inserting
multiple try-catch blocks into the DEX code to preserve func-
tionality. Consequently, continuous attacks would result in
a significant increase in the number of try-catch blocks, al-
lowing for the detection of such adversarial samples simply
by counting these blocks. AdvDroidZero uses FlowDroid
to perform code insertion by randomly generating extensive
meaningless code with disordered variable and method names.
Detecting these chaotic and meaningless features efficiently
identifies these adversarial samples.

5.2 Concept Drift

Concept drift in Android malware detection is the challenge
where models trained on historical data fail to recognize new
malware over time, due to factors like software updates and
evolving attacker techniques [17]. In this context, enhancing
the model’s detection performance is more urgent than de-
fending against adversarial samples, as there is little incentive
to attack a poorly performing detector. Existing methods to
counter concept drift primarily include model retraining [10],
continuous learning [10], and developing features [53] to re-
sist it. For instance, APIgraph [53] employed semantically
enriched graphs to enhance the detectors, e.g., Drebin, to ad-
dress concept drift. These methods offer potential approaches
for addressing the issue of concept drift.

5.3 Unbalanced Dataset

Building on previous research [17,19,43], we use a roughly
balanced dataset for detection, achieving SOTA detection re-
sults. However, achieving low false positives is challenging
with unbalanced datasets, as detectors need high precision
and recall rates. The maintenance of a detection F1 score
of approximately 0.9 on a balanced dataset inadequately ad-
dresses the issue of false positives prevalent in imbalanced
datasets. This presents a significant challenge for the current
detection system due to the complexity and threat posed by
existing attacks. Only by further improving the effectiveness

of existing detection systems can we fundamentally address
the issue of detection effectiveness in imbalanced datasets. As
mentioned above, ensemble-based approaches can enhance
the detection performance of HagDe. In future work, we will
enhance feature extraction and integration, and apply decision
integration methods to minimize false positives in unbalanced
datasets.

5.4 Mimicry Attack

In the field of malware detection, a distinct attack method
exists that imitates benign samples instead of persistently op-
timizing perturbations based on the target model’s response.
For example, EvadeDroid [6] employs problem-space trans-
formations from benign sources,which are then iteratively and
incrementally applied to morph malware into benign forms.
Overall, the effectiveness of HagDe in detecting mimicry at-
tacks depends on the mimicry degree attack achieved. The
less an attack sample mimics benign behavior, evidenced by
a lower confidence score classifying it as benign in AMD,
the closer it is to the decision boundary of AMD, making
it easier for HagDe to detect. Conversely, if AMD classifies
the sample with higher confidence as benign, it moves away
from the decision boundary, increasing the chance of mis-
classification by HagDe. However, This method of enhancing
mimicry degree by extensively transplanting benign code also
has its limitations. To realize this higher degree of mimicry,
it relies on specific semantic extraction techniques, leading
to significant overhead and easily detectable features, such as
an increased payload size [6]. We plan to enhance HagDe by
integrating more semantic-related and finer-grained overhead
features to better detect such attacks in the future.

6 Related Work
6.1 Attack to Android Malware Detection

Adversarial attack algorithms can be manipulated by mali-
cious entities to generate deceptive malware instances, thereby
bypass learning-based malware classifiers, that presents a
threat to defenders. Consequently, numerous fields have be-
gun to focus on adversarial example attacks, including image
classification [47,48], text classification [12,31], autonomous
driving [25]. In the context of Android malware detection,
many studies [1, 21,24, 27,29] focused on syntax features
oriented AE generation. Chen et al. [9] employ optimization
techniques (i.e., C&W, JSAM) to craft adversarial perturba-
tions within the feature space, and they propose a methodol-
ogy for integrating these optimal perturbations into APK files.
Zhao et al. [55] proposed a structural attack mapped from fea-
ture space to problem space based on reinforcement learning
to attack FCG-based AMD methods. Li et al. [27] explored
the application of ensemble learning algorithms to bolster the
detection and mitigation strategies for adversarial Android
malware. Subsequently, in a more recent study, Li et al. [28]
introduced an optimization method leveraging Apoem to gen-
erate adversarial Android malware against FCG-based AMD

methods without knowledge of the detection granularity. Re-
cently, He et al. [22] proposed a perturbation tree, rooted in
semantics at varying granularities for path planning to search
for the optimal perturbation, thereby generating adversarial
sample under zero knowledge set. These studies brought prac-
tical threats to AMD systems and thus prompted this paper to
investigate adversarial sample detection.

6.2 Defense of AEs

Adversarial attacks have demonstrated high success rates
in compromising learning-based classifiers, leading to their
malfunction. To counter this, methods have been developed to
strengthen classifiers, focusing either on enhancing learning-
based malware classifiers or enhancing learning models.

6.2.1 Enhancing Learning-based Malware Classifiers

In general, learning-based malware classification can be
divided into five phases, including data preprocessing, fea-
ture collection, feature extraction, classification, and decision
making. Methods that improve various stages of malware clas-
sification, except for the feature collection phase, are known
as enhancing learning-based malware classification. During
data preprocessing, Smutz and Stavrou [38] presented an en-
semble model that uses voting to integrate classifier predic-
tions, effectively diminishing the success of gradient descent
and KDE-based attacks. Zhang et al. [52] proposed a feature-
based defense employing reduced feature sets to improve the
robustness and generalization of learning-based malware clas-
sifiers. Li et al. [30] introduced a robust Android malware
detection framework that employs a VAE and an MLP for
effective classification and adversarial defense, eliminating
the need for adversarial example knowledge or instances. Ex-
periments demonstrate its improved adversarial robustness
against both white-box and black-box attacks. These meth-
ods, aiming to enhance different phases of malware classifiers
collectively underscore the diverse strategies employed to
enhance the resilience of learning-based malware classifiers.

6.2.2 Enhancing Learning Models

Unlike the way of enhancing learning-based malware clas-
sifiers, numerous methods have been proposed to enhance the
robustness of learning models, rather than directly augment-
ing the classifier’s process. These methods include adversarial
example detection, adversarial training, randomization-based
defense. To detect adversarial examples, researchers have
proposed a variety of proactive defense strategies. These in-
clude adversarial (re)training [20] [26] [40], distillation net-
works [36], feature squeezing [50], k-NN search [13], and
network input regularization [37]. However, those defenses
can be evaded by the optimization-based attack [8].

As a representative of feature compression techniques, the
method proposed by Xu [50] et al. stands out in the field
of adversarial example detection. This approach reduces the
feature space of input examples by squeezing color depth
and applying spatial smoothing. Adversarial examples can be

detected by comparing the differences between compressed
and uncompressed inputs. To identify distinguishing features
between adversarial examples and natural samples, an increas-
ing number of methods focus on distinguishing adversarial
images from normal images based on features extracted from
DNN layers or from a learned encoder. Among these, KD [15],
BU features [15], and LID [33], are the SOTA detection meth-
ods proven in previous studies.

Despite these advancements, it is noted that these methods
were primarily designed and applied in the image domain,
and their applicability to Android malware attacks may be
limited. The underlying reason is that, unlike the continuous
feature space in the image domain, the features in the malware
domain are discrete. Consequently, methods designed for
images often fail in the realm of adversarial malware detection.
In contrast, our approach, tailored to the nature of Android
malware generation, exhibits distinct loss characteristics and
enhanced interpretability by following the path of maximum
loss and halting immediately after a successful attack, making
it more effective in detecting adversarial Android malware.

7 Conclusion

In this paper, we introduce a novel defense mechanism,
Harnessing Attack Generativity for Defense Enhancement
(HagDe), aimed at addressing the challenge of malware at-
tacks on the Android malware detection system. By applying
iterative perturbations to all samples, HagDe exploits the high
sensitivity of adversarial examples to disturbances, effectively
distinguishing between malicious and benign inputs. Exten-
sive evaluation on 15,000 samples and 15 different attack
patterns demonstrated HagDe’s superior defense effective-
ness, with success rates of 88.5% against AdvDroidZero and
90.7% against BagAmmo, significantly outperforming ex-
isting SOTA defense methods. This achievement not only
enhances the resilience of Android malware detectors but also
lays a foundation for future research.

Acknowledgment

We thank the anonymous reviewers for their helpful and
informative feedback. This material was supported in part by
the China National Petroleum Corporation Science and Tech-
nology Project under grant No. 2024Z746-06; by the National
Research Foundation, Singapore, and DSO National Labora-
tories under the Al Singapore Programme (AISG Award No:
AISG2-GC-2023-008); by the National Research Foundation
Singapore and the Cyber Security Agency under the National
Cybersecurity R&D Programme (NCRP25-P04-TAICeN);
and by the National Research Foundation, Prime Minister’s
Office, Singapore under the Campus for Research Excellence
and Technological Enterprise (CREATE) programme. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
reflect the views of National Research Foundation, Singapore
and Cyber Security Agency of Singapore.

Ethics Considerations

We have carefully considered the ethical implications of
this study. We have ensured that all research activities were
conducted in accordance with established ethical guidelines
and principles. Specifically, we have considered the poten-
tial impacts of our findings on society, including the possible
misuse of our methods and results. We have also taken steps
to mitigate any negative consequences by designing our ex-
periments and reporting our results in a way that prioritizes
responsible use.

Open Science Policy

In accordance with the Open Science Policy, we com-
mit to making all artifacts related to this research avail-
able by the camera-ready deadline. Our artifacts is ac-
cessible through a publicly available repository (i.e.,
https://zenodo.org/records/14713949), and we provide de-
tailed documentation to facilitate their use by other re-
searchers.

References

[1] Abdullah Al-Dujaili, Alex Huang, Erik Hemberg, and
Una-May O’Reilly. Adversarial deep learning for robust
detection of binary encoded malware. In 2018 IEEE
Security and Privacy Workshops (SPW), pages 76—82.
IEEE, 2018.

[2] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein,
and Yves Le Traon. Androzoo: Collecting millions
of android apps for the research community. In Pro-
ceedings of the 13th International Conference on Min-
ing Software Repositories (MSR), pages 468—471, New
York, NY, USA, 2016.

[3] Daniel Arp, Michael Spreitzenbarth, Malte Hubner,
Hugo Gascon, Konrad Rieck, and CERT Siemens.
Drebin: Effective and explainable detection of android
malware in your pocket. In Proceedings of Symposium
on Network and Distributed System Security (NDSS),
volume 14, pages 23-26, 2014.

[4] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra
Gorla, Andreas Zeller, Steven Arzt, Siegfried Rasthofer,
and Eric Bodden. Mining apps for abnormal usage of
sensitive data. In Proceedings of the 2015 IEEE/ACM
37th IEEE International Conference on Software Engi-
neering (ICSE), volume 1, pages 426436, 2015.

[5] Yude Bai, Zhenchang Xing, Xiaohong Li, Zhiyong Feng,
and Duoyuan Ma. Unsuccessful story about few shot
malware family classification and siamese network to
the rescue. In Proceedings of the ACM/IEEE 42nd In-
ternational Conference on Software Engineering(ICSE),
pages 1560-1571. ACM/IEEE, 2020.

[6] Hamid Bostani and Veelasha Moonsamy. Evadedroid: A
practical evasion attack on machine learning for black-
box android malware detection. ArXiv, abs/2110.03301,
2021.

[71 Minghui Cai, Yuan Jiang, Cuiying Gao, Heng Li, and
Wei Yuan. Learning features from enhanced function
call graphs for android malware detection. Neurocom-
puting, 423:301-307, 2021.

[8] Nicholas Carlini and David Wagner. Adversarial ex-
amples are not easily detected: Bypassing ten detection
methods. In Proceedings of the 10th ACM workshop on
artificial intelligence and security, pages 3—14, 2017.

[9] Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun
Zhang, Surya Nepal, Yang Xiang, and Kui Ren. An-
droid hiv: A study of repackaging malware for evading
machine-learning detection. IEEE Transactions on In-
formation Forensics and Security, 15:987-1001, 2019.

[10] Yizheng Chen, Zhoujie Ding, and David Wagner. Con-
tinuous learning for android malware detection. In 32nd
USENIX Security Symposium (USENIX Security 23),
pages 1127-1144, 2023.

[11] Gao Cuiying, Yueming Wu, Heng Li, Wei Yuan, Haoyu
Jiang, Qidan He, and Yang Liu. Uncovering and mitigat-
ing the impact of code obfuscation on dataset annotation
with antivirus engines. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing
and Analysis, pages 553-565, 2024.

[12] Tianyu Du, Shouling Ji, Lujia Shen, Yao Zhang, Jin-
feng Li, Jie Shi, Chengfang Fang, Jianwei Yin, Raheem
Beyah, and Ting Wang. Cert-rnn: Towards certify-
ing the robustness of recurrent neural networks. CCS,
21(2021):15-19, 2021.

[13] Abhimanyu Dubey, Laurens van der Maaten, Zeki Yal-
niz, Yixuan Li, and Dhruv Mahajan. Defense against
adversarial images using web-scale nearest-neighbor
search. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 8767—
8776, 2019.

[14] Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou
Tian, Qinghua Zheng, and Ting Liu. Android malware
familial classification and representative sample selec-
tion via frequent subgraph analysis. IEEE Transac-
tions on Information Forensics and Security, 13(8):1890—

1905, 2018.

[15] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and
Andrew B Gardner. Detecting adversarial samples from
artifacts. arXiv preprint arXiv:1703.00410, 2017.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Cuiying Gao, Minghui Cai, Shuijun Yin, Gaozhun
Huang, Heng Li, Wei Yuan, and Xiapu Luo.
Obfuscation-resilient android malware analysis
based on complementary features. IEEE Transactions
on Information Forensics and Security, 18:5056-5068,
2023.

Cuiying Gao, Gaozhun Huang, Heng Li, Bang Wu,
Yueming Wu, and Wei Yuan. A comprehensive study
of learning-based android malware detectors under chal-
lenging environments. In Proceedings of the IEEE/ACM
46th International Conference on Software Engineering,
ICSE ’24, New York, NY, USA, 2024. Association for
Computing Machinery.

Song Gao, Ruxin Wang, Xiaoxuan Wang, Shui Yu, Yun-
yun Dong, Shaowen Yao, and Wei Zhou. Detecting
adversarial examples on deep neural networks with mu-
tual information neural estimation. /IEEE Transactions
on Dependable and Secure Computing, 2023.

Joshua Garcia, Mahmoud Hammad, and Sam Malek.
Lightweight, obfuscation-resilient detection and family
identification of android malware. ACM Transactions
on Software Engineering and Methodology (TOSEM),
26(3):1-29, 2018.

Tan J Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial exam-
ples. arXiv preprint arXiv:1412.6572, 2014.

Kathrin Grosse, Nicolas Papernot, Praveen Manoharan,
Michael Backes, and Patrick McDaniel. Adversarial
examples for malware detection. In Computer Security—
ESORICS 2017: 22nd European Symposium on Re-
search in Computer Security, Oslo, Norway, Septem-
ber 11-15, 2017, Proceedings, Part Il 22, pages 62—79.
Springer, 2017.

Ping He, Yifan Xia, Xuhong Zhang, and Shouling Ji.
Efficient query-based attack against ml-based android
malware detection under zero knowledge setting. In
Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, pages 90-104,
2023.

Matthias Hein and Maksym Andriushchenko. Formal
guarantees on the robustness of a classifier against ad-
versarial manipulation. Advances in neural information
processing systems, 30, 2017.

Weiwei Hu and Ying Tan. Generating adversarial mal-
ware examples for black-box attacks based on gan. In
International Conference on Data Mining and Big Data,
pages 409—423. Springer, 2022.

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

Pengfei Jing, Qiyi Tang, Yuefeng Du, Lei Xue, Xiapu
Luo, Ting Wang, Sen Nie, and Shi Wu. Too good to
be safe: Tricking lane detection in autonomous driving
with crafted perturbations. In 30th USENIX Security
Symposium (USENIX Security 21), pages 3237-3254,
2021.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016.

Deqiang Li and Qianmu Li. Adversarial deep ensem-
ble: Evasion attacks and defenses for malware detection.
IEEE Transactions on Information Forensics and Secu-

rity, 15:3886-3900, 2020.

Heng Li, Zhang Cheng, Bang Wu, Liheng Yuan, Cuiying
Gao, Wei Yuan, and Xiapu Luo. Black-box adversarial
example attack towards {FCG} based android malware
detection under incomplete feature information. In 32nd
USENIX Security Symposium (USENIX Security 23),
pages 1181-1198, 2023.

Heng Li, ShiYao Zhou, Wei Yuan, Jiahuan Li, and Henry
Leung. Adversarial-example attacks toward android
malware detection system. [EEE Systems Journal,
14(1):653-656, 2019.

Heng Li, Shiyao Zhou, Wei Yuan, Xiapu Luo, Cuiying
Gao, and Shuiyan Chen. Robust android malware detec-
tion against adversarial example attacks. In Proceedings
of the Web Conference 2021, pages 3603-3612, 2021.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and
Ting Wang. Textbugger: Generating adversarial
text against real-world applications. arXiv preprint
arXiv:1812.05271, 2018.

Xuanqging Liu and Cho-Jui Hsieh. Rob-gan: Generator,
discriminator, and adversarial attacker. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11234-11243, 2019.

Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Su-
danthi Wijewickrema, Grant Schoenebeck, Dawn Song,
Michael E Houle, and James Bailey. Characterizing ad-
versarial subspaces using local intrinsic dimensionality.
arXiv preprint arXiv:1801.02613, 2018.

Enrico Mariconti, Lucky Onwuzurike, Panagiotis An-
driotis, Emiliano De Cristofaro, Gordon J. Ross, and
Gianluca Stringhini. Mamadroid: Detecting android
malware by building markov chains of behavioral mod-
els. In Proceedings of the 24th Annual Network and
Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1,
2017,2017.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Dongyu Meng and Hao Chen. Magnet: a two-pronged
defense against adversarial examples. In Proceedings
of the 2017 ACM SIGSAC conference on computer and
communications security, pages 135-147, 2017.

Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh
Jha, and Ananthram Swami. Distillation as a defense to
adversarial perturbations against deep neural networks.
In 2016 IEEE symposium on security and privacy (SP),
pages 582-597. IEEE, 2016.

Andrew Ross and Finale Doshi-Velez. Improving the
adversarial robustness and interpretability of deep neu-
ral networks by regularizing their input gradients. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 32, 2018.

Charles Smutz and Angelos Stavrou. When a tree falls:
Using diversity in ensemble classifiers to identify eva-
sion in malware detectors. In NDSS, 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929—
1958, 2014.

Florian Tramer, Alexey Kurakin, Nicolas Papernot, Ian
Goodfellow, Dan Boneh, and Patrick McDaniel. Ensem-
ble adversarial training: Attacks and defenses. arXiv
preprint arXiv:1705.07204, 2017.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot:
A java bytecode optimization framework. In CASCON
First Decade High Impact Papers, pages 214-224.2010.

Virustotal. Virustotal., 2022.
virustotal.com/.

https://www.

Liu Wang, Haoyu Wang, Xiapu Luo, and Yulei Sui. Mal-
whiteout: Reducing label errors in android malware de-
tection. In Proceedings of the 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineering,
pages 1-13, 2022.

Yueming Wu, Shihan Dou, Deqing Zou, Wei Yang,
Weizhong Qiang, and Hai Jin. Contrastive learning
for robust android malware familial classification. /[EEE

Transactions on Dependable and Secure Computing,
2022.

Yueming Wu, Xiaodi Li, Deqing Zou, Wei Yang, Xin
Zhang, and Hai Jin. Malscan: Fast market-wide mobile
malware scanning by social-network centrality analysis.
In Proceedings of the 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
pages 139-150, 2019.

[46]

[47]

(48]

[49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

Yueming Wu, Deqing Zou, Wei Yang, Xiang Li, and Hai
Jin. Homdroid: detecting android covert malware by
social-network homophily analysis. In Proceedings of
the 30th acm sigsoft international symposium on soft-
ware testing and analysis, pages 216-229, 2021.

Pengfei Xia, Ziqgiang Li, Wei Zhang, and Bin Li.
Data-efficient backdoor attacks. arXiv preprint
arXiv:2204.12281, 2022.

Pengfei Xia, Hongjing Niu, Ziqiang Li, and Bin Li. En-
hancing backdoor attacks with multi-level mmd regular-
ization. IEEE Transactions on Dependable and Secure
Computing, 20(2):1675-1686, 2022.

Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren,
and Alan Yuille. Mitigating adversarial effects through
randomization. arXiv preprint arXiv:1711.01991, 2017.

Weilin Xu, David Evans, and Yanjun Qi. Feature squeez-
ing: Detecting adversarial examples in deep neural net-
works. arXiv preprint arXiv:1704.01155, 2017.

Wei Yuan, Yuan Jiang, Heng Li, and Minghui Cai. A
lightweight on-device detection method for android mal-
ware. [EEE Transactions on Systems, Man, and Cyber-
netics: Systems, 2019.

Fei Zhang, Patrick PK Chan, Battista Biggio, Daniel S
Yeung, and Fabio Roli. Adversarial feature selection
against evasion attacks. IEEE transactions on cybernet-
ics, 46(3):766-7717, 2015.

Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong
Ding, and Min Yang. Enhancing state-of-the-art classi-
fiers with api semantics to detect evolved android mal-
ware. In Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
2020.

Haojun Zhao, Yueming Wu, Deqing Zou, and Hai Jin.
An empirical study on android malware characteriza-
tion by social network analysis. IEEE Transactions on
Reliability, 2023.

Kaifa Zhao, Hao Zhou, Yulin Zhu, Xian Zhan, Kai Zhou,
Jianfeng Li, Le Yu, Wei Yuan, and Xiapu Luo. Structural
attack against graph based android malware detection.
In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, CCS *21, page
3218-3235, New York, NY, USA, 2021. Association for
Computing Machinery.

Deqing Zou, Yueming Wu, Siru Yang, Anki Chauhan,
Wei Yang, Jiangying Zhong, Shihan Dou, and Hai Jin.
Intdroid: Android malware detection based on api inti-
macy analysis. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 30(3):1-32, 2021.

https://www.virustotal.com/
https://www.virustotal.com/

A Learning-based AMD Methods

Drebin. In the study by Drebin [3], the methodology in-
volves pulling out characteristics from two primary sources
within Android applications: the Androidmanifest.xml and the
classes.dex files. These characteristics are then categorized
into eight distinct groups, covering areas like hardware com-
ponents and permissions that the application requests, and are
represented in the form of strings. Following this categoriza-
tion, these groups of features are transformed into a vector
space model, with each feature being assigned a binary value
of 0 or 1. Utilizing this model, Drebin proceeds to employ
a Support Vector Machine (SVM) classifier with the aim of
identifying malicious software.

MaMa-fml (MaF). As a variant of the MaMaDroid frame-
work [34], MaF processes smali files to retrieve API calls,
which it subsequently categorizes into a set of family calls.
This categorization encompasses 11 families, with 9 derived
from the official Android documentation and 2 being self-
defined and obfuscated. MaF proceeds to establish a Markov
chain reflecting the transition probabilities between these
families. This chain serves as the feature vector for training a
detection model.

MaMa-pkg (MaP). As an alternative model within the Ma-
MabDroid [34], MaP mirrors MaF in feature extraction from
smali files but diverges by abstracting API calls into pack-
age calls instead of family calls. It identifies 366 packages
based on the official Android documentation, supplemented
by 2 additional self-defined and obfuscated packages. Thus,
it represents an application through a feature vector with a
dimensionality of (368 x 368).

APIGraph. Introduced in [53], APIGraph is developed to
identify semantic similarities among Android APIs by con-
structing a relational graph from official documentation. Its
application extends to enhancing existing Android malware
classifiers. In our assessment, APIGraph is integrated with
both Drebin, MaF and MaP, resulting in the variants Drebin-
api, MaF-api and MaP-api, respectively.

B Implementation Details

HagDe is an automatic defense framework with three stages
to detect adversarial Android malware, that can be used to
enhance adversarial Android malware detection. On one hand,
based on previous research, we implemented a python-based
feature extraction pipeline from Android apps to feature vec-
tors. On the other hand, we handle the program logic of the
detection and defense in python, including training substitute
models, continuous perturbation in the direction of gradient
ascent, and detection based on loss features. We run all ex-
periments on a Ubuntu 20.04 server with 251G memory and
39G swap memory, 2 Intel(R) Xeon(R) Gold 6346 CPUs
and one NVIDIA RTX 3090 GPU. For the implementations
of FS, KD_BU, and LID, we adhered strictly to the default
parameters specified in the respective papers. However, to en-
sure a fair comparison, FS, KD_BU, and LID did not utilize

their original DNN models; instead, they employed substi-
tute models that were trained through the same process as
ours. Additionally, since both our method and FS, LID rely
on classifiers for detection, with the exception that FS does
not require this, FS was evaluated on the complete test set,
whereas the other methods were assessed based on results
from a 10-fold cross-validation.

C Substitute Model Architecture Details

Table 5: Substitute Model Architecture Details

Layer No. Layer Type Parameters
1 Flatten
2 Linear Input: AMD feature, Output: 128
3 ReLU -
4 Linear Input: 128, Output: 64
5 ReLU -
6 Dropout Dropout Rate: 0.5
7 Linear Input: 64, Output: 2

D False Positive & False Negative Analysis

False Positive Analysis. We analyze 40 false positives in
the experimental results and identify two main reasons. One
common issue is that False Positive APKs exhibit behavior
highly similar to that of malicious APKs, making it difficult
for AMD to confidently identify these APKs as benign. Con-
sequently, they often reside near AMD’s decision boundary.
Specifically, one category of benign APKs requests an ex-
cessive number of sensitive permissions commonly used by
malware. These benign APKs might be mistakenly identi-
fied as malicious. For instance, APK! belongs to the secu-
rity and antivirus category. It utilizes ActivityControlService
for managing app activities and ScanSchedulerReceiver for
scheduling antivirus scans. These functions necessitate re-
questing numerous permissions, totaling 45, including sen-
sitive ones like android.permission.READ_PHONE_STATE
and android.permission. WRITE_SETTINGS. This number far
exceeds the typical requests of benign APKs, leading to its
false categorization as adversarial by the detector. Another
type of behavioral similarity involves benign APKs perform-
ing sensitive file operations, such as deleting or writing shared
files. Malware often engages in similar activities. This resem-
blance can cause benign APKSs to be mistakenly classified as
malware due to their file behavior similarities. For instance,
APK? moves files to different disk locations, containing Linux
executables that can execute sensitive operations on the host
system and possibly cause malfunctions. This behavior’s sen-
sitivity leads the detector to mistakenly label the APK as ad-
versarial. To reduce false positives due to behavioral similari-
ties, incorporating detailed contextual semantic information

1 sha256:0AE39219FDC5BC37B16BB1298E8B315E18AA1CAACF7BDS9EFC37D74889050397

2 sha256::01EAE6B8120EA7FD059F 188 AOFDDDDB26EAF466A24DBBC85260A1D918162B30D

can help assess the legitimacy of high-risk operations. Each
APK, upon decompilation, contains rich semantic information
in its Dex code components (e.g., Service, Broadcast Receiver,
Content Provider) indicating the app’s category and function-
ality. Detailed categorization of permissions and behavioral
features mapped to the app’s function could reduce false posi-
tives. For example, a gaming app requesting sensitive permis-
sions such as READ_CONTACTS and WRITE_CONTACTS
might be flagged as malicious, whereas antivirus software,
identified by features like AntiVirusInfectionListActivity in
its Dex code, have greater permission flexibility.

A less common false positive occurs with APKs containing

extensive encrypted content. These APKs often require en-
hanced data protection or intellectual property security. Since
some malware employs advanced obfuscation for attacks, cur-
rent detectors may mistakenly link obfuscation traits with
malware, causing increased sensitivity to encrypted data. For
instance, APK® contains extensive encrypted code, which
causes a false positive detection by HagDe. To better elim-
inate this type of false positive, selecting features that are
resistant to obfuscation and analyzing encrypted content us-
ing semantic information such as the APK’s package name
could be a potential solution.
False Negative Analysis We also analyzed 40 false negatives,
and the causes for these misses can be categorized into three
types. The first type involves malicious APKs bypassing de-
tection through advanced code obfuscation techniques like
Control Flow Flattening and Call Indirection to disguise ma-
licious APKs, leading to false negatives by making the Dex
code hard to analyze and hiding harmful behavior. For exam-
ple, the APK* disperses high-risk API calls across multiple
intermediate functions, increasing the difficulty for detectors
to analyze and understand the code, allowing the malware to
evade detection. Currently, numerous studies are being con-
ducted to defend against obfuscation techniques that bypass
detection. Gao et al. [16] researched methods to detect obfus-
cation attacks and proposed a series of obfuscation-resistant
features for detection. In the future, we plan to incorporate
more obfuscation-resistant features and counter advanced
structural obfuscation to improve malware and adversarial
sample detection.

False negatives also happen when attackers add many dis-
guised normal network requests to an APK, dispersing mal-
ware detection capability, and repackaging it as an adversarial
APK. Through the analysis of false negative instances, var-
ious techniques are used to disguise network requests, such
as changing URLs, modifying request parameters, and alter-
nating between GET and POST methods. Attackers employ
these strategies to generate numerous requests that resem-
ble those of normal apps like Google, causing detectors to
overlook the malicious activities. Attack strategies similarly
involve integrating reliable third-party benign components

3 sha256:001FC290A2AFC87B67A77BIES 14DSE4DA15D9A7C28 AFB0488A625FSBC33A571D

sha256:0F5E2BB2B98FF13ADEB3048660BC7C826C39DCE38698715F15F85025A1009F2A

to deceive detectors into misclassifying the APK as benign.
To mitigate these attack threats, a two-fold strategy can be
implemented: Firstly, perform a detailed analysis of network
requests, including their parameters, URLs, proxies, and inte-
grated components to spot potential malicious requests, par-
ticularly when their patterns significantly differ from known
normal requests. Secondly, investigate the characteristics re-
vealed during the attacker’s repackaging process to effectively
identify malicious APKs. For instance, attackers might add
excessive redundant code, noticeably increasing the APK size.
Analyzing these traits enhances detection accuracy and mini-
mizes false negatives.

E Collaboration and Integration with LID

Table 2 shows that in certain attack patterns, current detec-
tion methods outperform HagDe in effectiveness. For exam-
ple, LID surpasses HagDe in the BagAmmo_MaF-Api attack
pattern by using advanced intrinsic dimensionality features
to identify adversarial samples. Therefore, when facing a
broader range of complex attack patterns, ensemble-based
approaches, integrating features or decisions from multiple
superior methods, is a highly promising solution.

1.00
—e— HagDe
—=— HagDe+LID

0.98
0.96
£0.94
o
o}
“0.92
—
0.90
0.88
0.86

§ £ ¥ % 3 &% 3 % 3 % 3 % 3T &% B
g 5§ 2 2 § 2 £ 2 £ 2 2 5 2 %
S & 995 Y% 25 25 s <&
z ol E E ZI E Z‘ UI Z‘ U‘ ZI E Z‘ % E‘
5 o o < <
e & 2 g 8 g 82z 3z 3 Y s 5%
g s & 2 E 2 £ T 2T Dz 3 2 &
N 5 8 & < &8 < 2 z S T
2 a 3 g g I I = =
< S < 8 8 I T
(=) o
> <
o
<

Attack Pattern

Figure 11: Collaboration and Integration with LID

To investigate the impact of integrating HagDe with LID on
detection results, we employ feature fusion. Specifically, we
concatenate the features derived from both HagDe and LID to
train a classifier for detecting adversarial samples. Figure 11
illustrates the detection F1 score of HagDe and the integrated
HagDe with LID across various attack patterns. Under multi-
ple attack patterns, the average F1 score of HagDe is 0.929,
while the integration of HagDe with LID achieves an aver-
age F1 score of 0.942, representing an overall improvement
of 1.4%. In most attack patterns, the integration of HagDe
with LID improves the detection F1 score compared to using
HagDe alone. Notably, under the BagAmmo_MaF-Api attack
pattern, the F1 score increases from 0.947 to 0.983. When the
attack patterns are HIV_CW_MaF-Api, HIV_CW_MaP and
HIV_JSMA_MaF-Api, the integration of LID with HagDe re-

sults in a slight decline in performance. This may be because
HagDe already achieves high detection results, and the direct
integration of LID features does not provide a consistent im-
provement. In future research, we will explore the selection
and integration of various features to further enhance overall
detection performance and robustness.

	Introduction
	Preliminary Analysis
	Background
	Threat Model
	Motivation

	Methodology
	Framework Overview
	Stage1: Train Substitute Model
	Stage2: Multi-Stage Perturbations
	Stage3: Train Classifier for Detection

	Evaluation
	Research Questions
	Experimental Settings
	Attack Pattern
	Baseline
	Dataset and Metric

	RQ1: Parameters Selection
	RQ2: Effectiveness
	RQ3: Efficiency
	RQ4: Enhanced Malware Detection

	Discussion and Limitation
	Adaptive Attack
	Concept Drift
	Unbalanced Dataset
	Mimicry Attack

	Related Work
	Attack to Android Malware Detection
	Defense of AEs
	Enhancing Learning-based Malware Classifiers
	Enhancing Learning Models

	Conclusion
	Learning-based AMD Methods
	Implementation Details
	Substitute Model Architecture Details
	False Positive & False Negative Analysis
	Collaboration and Integration with LID

