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Abstract
Steganography embeds confidential data within seemingly
innocuous communications. Provable security in steganog-
raphy, a long-sought goal, has become feasible with deep
generative models. However, existing methods face a critical
trade-off between security and efficiency. This paper intro-
duces SparSamp, an efficient provably secure steganography
method based on sparse sampling. SparSamp embeds mes-
sages by combining them with pseudo-random numbers to
obtain message-derived random numbers for sampling. It
enhances extraction accuracy and embedding capacity by
increasing the sampling intervals and making the sampling
process sparse. SparSamp preserves the original probability
distribution of the generative model, thus ensuring security. It
introduces only O(1) additional complexity per sampling step,
enabling the fastest embedding speed without compromising
generation speed. SparSamp is designed to be plug-and-play;
message embedding can be achieved by simply replacing the
sampling component of an existing generative model with
SparSamp. We implemented SparSamp in text, image, and
audio generation models. It can achieve embedding speeds
of up to 755 bits/second with GPT-2, 5046 bits/second with
DDPM, and 9,223 bits/second with WaveRNN.

1 Introduction

The vulnerability of digital communication to eavesdrop-
ping has been a persistent challenge since the advent of
electronic communications. While cryptography effectively
conceals message content, it fails to hide the act of trans-
mission itself, and disclosing this metadata can have lethal
consequences [12]. Besides, as governments’ suspicion of en-
crypted communication continues to grow around the world
(e.g., Kids Online Safety Act in the USA [13], Online Safety
Act in the UK [38] etc.), it is essential to adopt more covert
communication methods that can complement existing secure
communication technologies.
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Figure 1: A graphical depiction of steganography.

Steganography [45], the art and science of hiding confiden-
tial messages within seemingly innocuous objects. It enables
a sender to embed secret messages within ordinary content,
ensuring that the communication appears normal, as shown
in Figure 1. This technique can help evade even the most op-
pressive adversaries, as using encryption may raise suspicion.
Additionally, steganography facilitates digital “dead-drop” de-
ployments [5], where encoded messages are left on the public
internet, allowing the intended recipient to retrieve them with-
out leaving evidence of direct communication.

Traditional steganography typically embeds secret mes-
sages directly into existing content (such as images) in a mod-
ification manner. One of the most frequently utilized methods
in traditional steganography is Least Significant Bit embed-
ding. However, it can be statistically detected with ease [30].
To reduce the number of modifications and fortify the security
of steganography, researchers have introduced the matrix-
based steganography embedding technique [18, 57, 58]. By
considering the impact of modifications at different locations
on anti-detection performance, researchers have developed
a minimal distortion steganography framework, which has
become a seminal framework in the realm of image steganog-
raphy [17]. However, it is essential to note that the security
of these methods cannot be proven and remain susceptible to
detection by advanced steganalysis techniques [6].
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Although the concept of provably secure steganography
(PSS) has long been theoretically feasible [8, 25], achieving
this level of security in real-life human communications was
considered out of reach due to stringent requirements such as
the necessity of a perfect sampler [8, 24, 26, 32, 33]. However,
recent advancements in deep learning have led to powerful
generative models [20, 21, 31] that serve as samplers and are
capable of producing a wide array of artificial intelligence-
generated content (AIGC). Notable examples like ChatGPT
and DALL-E [43] have demonstrated impressive capabilities
in generating high-quality text and images. As AIGC gains
popularity across various industries, researchers have begun
exploring its potential for steganography, aiming to conceal
confidential information within generated content while evad-
ing censorship measures [10,14,16,28,53,59]. In this context,
steganographic schemes aim to make the stego content in-
distinguishable from regularly generated AI output, rather
than from natural training data. This shift in focus makes
generative models a valuable tool for implementing PSS.

Yang et al. [53] first introduced the PixelCNN for secure im-
age steganography. Chen et al. [9, 10] utilized text-to-speech
generative models for secure audio steganography. Ziegler
et al. [59] also proposed a linguistic steganography based
on language models. These methods used arithmetic cod-
ing (AC) for invertible transformations to embed and extract
messages. Kaptchuk et al. [28] highlight the “randomness
reuse” issue when directly employing AC, which may lead
to potential risk. Then, they proposed a PSS method called
Meteor [28], based on the ranged randomness recoverable
sampling scheme (RRRSS), a distinct form of AC. However,
all of the above methods slightly alter the original probability
distributions. Then, Ding et al. [16] proposed a PSS method
based on “distribution copies” called Discop. Witt et al. [14]
introduced an iterative minimum entropy coupling method
(iMEC) to achieve PSS. While these methods successfully
maintain the original distribution, their embedding capacity
is significantly lower than AC-based steganography’s, par-
ticularly in low entropy situations. In addition, Discop [16],
iMEC [14], and Meteor [28] introduce high computational
complexity, with embedding time consumption that is even
ten or hundreds of times longer than the inference time of the
model, which is unacceptable. In light of these observations,
this paper asks

How can we embed more message bits with lower com-
plexity without modifying the probability distribution of
model inference?

To achieve the above goal, We need to design a low-
complexity, high-embedding-rate steganographic algorithm
that is plug-and-play for the generative model. The trained
generative model, like the GPT series [7, 37, 41, 42], two
steps are usually repeated (as shown in Figure 2): first, it
predicts probability distributions for the next token based on
the context, and second, it samples from these distributions

to generate output. Throughout the generation process, the
time spent on sampling is negligible compared to the time
spent predicting probability distributions. A key component in
implementing PSS with generative models is steganographic
coding. Current PSS methods usually replace the sampling
process of generative models with steganographic coding
to embed messages. For the PSS, the primary goal is to en-
sure steganography security while maintaining the model’s
inference capability. Therefore, it is crucial not to alter the
probability distribution. Second, according to information
theory, the maximum expected number of bits that can be
embedded in a token equals the sum of the information en-
tropy of the probabilities. Therefore, steganographic coding
should effectively leverage these probability distributions, al-
lowing tokens with lower probability values to carry longer
messages. Thirdly, the embedding process should resemble
the original sampling to avoid impacting the generation speed.
Finally, different messages should result in distinct outputs
after embedding to guarantee accurate extraction. In this pa-
per, we combine messages with pseudo-random numbers for
sampling to achieve the above requirements.

We know that when we sample once using a random num-
ber from the probability distribution inferred by the model,
we generate a single token. By conducting multiple samplings
with different random numbers, we can produce multiple to-
kens. When the difference between two random numbers
is significant, the likelihood of sampling duplicate tokens
decreases. Leveraging this characteristic, we can combine dif-
ferent equal-length messages with a pseudo-random number
to get different message-derived random numbers (denoted
as MRNs) for sampling. In this way, we can preserve the
statistical properties of random sampling without altering the
model’s probability distribution.

We define the sampling interval as the difference between
adjacent MRNs. The number of MRNs, or the length of each
embedded message, determines this sampling interval. To
avoid different MRNs sampling the same result, we need to
sparsify the sampling, which will increase the difference be-
tween adjacent MRNs (the sampling interval). This ensures
that the result sampled by the MRN originating from the
message to be embedded (denoted as eMRN) will not over-
lap with the results sampled by other MRNs (referred to as
oMRNs).

In this paper, we determine the sampling interval based
on the number of MRNs that previously sampled the same
result. This way allows us to incrementally increase the sam-
pling interval and decrease the number of MRNs that sample
the same token until the result can be uniquely sampled by
eMRN. Therefore, we refer to this steganographic method as
SparSamp.

Through theoretical and experimental evidence, we have
demonstrated that SparSamp can embed messages of varying
lengths without altering the probability distribution predicted
by the generative model. The embedding rate achieved by



SparSamp, measured in bits per token, closely approximates
the information entropy of the probability distribution. Ad-
ditionally, the extra computational overhead introduced by
SparSamp during each sampling operation is minimal, with a
complexity of only O(1), ensuring that the original model’s
normal generation process remains unaffected, preserving
both speed and quality. Moreover, SparSamp adopts a plug-
and-play design; users can achieve message embedding by
simply replacing the sampling component in the generative
models. In this paper, SparSamp has been successfully imple-
mented in various models, including large language models
(LLMs) such as GPT-2 [42], Qwen-2.5 [51], Llama-3 [1].
It has also been used in image generation models like the
Denoising Diffusion Probabilistic Model (DDPM) [11] and
text-to-speech models like WaveRNN [27].

The main contributions of this paper can be summarized as
follows:

• A novel approach to embedding messages. We pro-
pose an innovative method for embedding messages by
transforming them into message-driven sampling. This
approach combines messages with pseudo-random num-
bers for sampling, eliminating the need to adjust prob-
ability distributions or sorting. As a result, our method
ensures steganography security while ensuring efficient
message embedding.

• Strategy for accurate decoding and improving em-
bedding rate. We employed a technique called “Sparse
Sampling” to achieve accurate decoding and a high em-
bedding rate. This technique involves determining the
number and interval of current samples based on how
many MRNs produced the same result in the previous
sampling step. This technique helps ensure that the sam-
pling results are not mistakenly attributed to multiple
MRNs while adaptively distributing the message across
consecutive sampling results.

• Achieving O(1) time complexity. The longer the mes-
sage length for each embedding in SparSamp, the denser
the sampling becomes, resulting in more MRNs sam-
pling the same outcome. This could potentially lead to
increased time complexity. In this paper, we address this
issue by achieving an O(1) time complexity through the
homogenization of sampling. Our approach requires only
two mathematical operations to determine the number
of MRNs sampled the same outcome. This effectively
reduces the impact on the generation speed of the model
when using SparSamp.

• Capability of detecting token ambiguity. Although the
tokens LLMs are not uniquely decodable, SparSamp can
detect token ambiguity before extracting a segment of
the message, aiding in correct parsing.

• Benchmarking and comparison. SparSamp is easy to
deploy. We have deployed it in three generative services,
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Figure 2: A generation process of LLM

including text, audio, and image generation, and com-
pared it with other methods, demonstrating its excellent
performance in speed, capacity, and security.

2 Background and Related Work

2.1 Deep Generative Models

Achieving PSS requires creating a perfect simulation of the
cover distribution. However, due to the complexity of digital
media such as traditional photographs and human-written
text, this level of perfection has been historically unattainable.
Nevertheless, recent advances in generative models for natural
languages [7, 41, 42], images [15, 44], and sounds [4, 46]
present promising opportunities for achieving perfect security
in real-world applications. These models utilize well-defined
sampling mechanisms to generate content that closely mimics
human-created output.

This paper will primarily use LLMs to illustrate our pro-
posed method. In recent years, significant advancements have
been made in the LLM, primarily due to the introduction of
the Transformer model [48] and the success of the GPT series
models [7, 37, 41, 42]. LLMs have demonstrated remarkable
capabilities in chatbot development, machine translation, and
code generation tasks.

The LLM employs a vocabulary V consisting of tokens
(which can be words or word fragments), typically containing
around 50,000 tokens or more [42]. For next-token (vi) pre-
diction, an LLM is represented as a neural network function
G that takes a sequence of known tokens v<i as input and
produces a probability distribution Pi = p(vi | v<i) = G(v<i)
over the vocabulary using a softmax function. Subsequently,
random sampling is often utilized to select a token based on
this probability distribution, as illustrated in Figure 2.

2.2 Information-theoretic Security of
Steganography

Information-theoretic security is highly valued in steganog-
raphy, as it offers robust protection against various forms
of detection [8]. Assuming that both communicating parties
have access to the exact distribution of the object x, security is
defined by the Kullback-Leibler divergence (KLD) between



Table 1: Comparison of different methods

Method
Computational

complexity
Probability
unchanged

AC-based [10, 47, 53, 59] O(N) ×
Meteor [28] O(N),O(2⌈H(P )⌉N) ×
ADG [56] O(N logN) ×

Discop [16] O(1),O(N) ✓
iMEC [14] O(N logN) ✓

SparSamp (proposed) O(1) ✓

the cover distribution Pc and the stego distribution Ps. This
divergence can be calculated using the following formula:

DKL (Pc∥Ps) = ∑
x∈C

Pc(x) log
Pc(x)
Ps(x)

. (1)

The KLD essentially measures how different two distribu-
tions are - the smaller the value, the more similar they are.
When it equals zero, the distributions are identical, making
it impossible to distinguish between cover and stego. Under
these conditions, a steganalyzer would have no advantage
over random guessing. Therefore, in PSS based on generative
models, it is essential to ensure both the invariance of the
model’s predictive probabilities and the randomness of the
sampling process.

2.3 Attempts to Provably Secure Steganogra-
phy in the AIGC Era

Several methods have been proposed for realizing PSS by
utilizing the probability distribution provided by generative
models. In the following, we will analyze the characteristics of
each method concerning computational complexity, security,
and embedding rate. The comparison of different methods is
shown in Table 1.

AC-based steganography: Arithmetic coding (AC) is a
data compression technique designed to encode sequences of
elements with known probability distributions. This method
is particularly effective for long sequences, as it can achieve
compression close to the information entropy value. Ross An-
derson [3] suggested that a steganography scheme can achieve
perfect security if there is a perfect compression scheme. Fol-
lowing this, Le et al. [47] developed coding schemes called
P-codes using AC. At that time, however, practical samplers
were not available. It was not until the advent of deep learn-
ing that researchers began to explore new AC-based stegano-
graphic schemes. Yang et al. [53] introduced an autoregres-
sive generative model, PixelCNN to create a secure image
steganography scheme. Chen et al. [10] extended this method
from image generation to text-to-speech applications. Addi-
tionally, Ziegler et al. [59] proposed a steganography method
based on AC that utilized LLMs.

AC-based steganography expresses messages through the
shared prefix of the sampled result interval. This approach
provides high embedding rates, approaching the information
entropy for long messages. However, it necessitates updat-
ing the probability intervals after each sampling step, which
leads to a time complexity of O(N), where N is the number
of candidate tokens. Moreover, precision limitations during
these updates can modify the original distribution, which may
compromise security.

Meteor: Kaptchuk et al. [28] pointed out an issue with
the AC-based scheme known as the reuse of randomness
problem. When a message is not re-encrypted each time it is
used for sampling, there is a risk of the stego being detected,
potentially leading to information leaks. To address this issue,
they introduced a new steganography scheme called Meteor.
However, we disagree with this perspective because the AC-
based steganography scheme updates the probability of the
next token to avoid the reuse of randomness (this falls outside
the scope of this paper).

Meteor embeds messages like AC-based steganography but
doesn’t update probability intervals, and the message is re-
encrypted before each sampling, thereby avoiding the reuse
of randomness. However, treating each sample independently
leads to shorter or no shared prefixes, resulting in lower em-
bedding rates. To improve this, Meteor reorders probabilities,
which introduces O(2⌈H(P )⌉N) complexity, where H(P ) is the
entropy in the distribution. Additionally, due to limitations in
calculation precision, Meteor truncates probabilities, which
may impact security.

ADG: Zhang et al. [56] proposed a steganography method
that utilizes adaptive dynamic grouping (ADG). ADG dynam-
ically groups the probability distribution of all tokens in the
vocabulary at each time step into 2r groups, with each group
having approximately the same total probability. Each group
represents message bits of length r, and all tokens within a
group are associated with the same message bits. To embed
a message, a random sample is taken from the normalized
distribution of the selected group to generate the next token.

ADG assumes that the message bits follow a uniform distri-
bution, meaning each group has an equal probability of being
selected. In theory, perfect security can be achieved only if the
grouping is perfectly balanced. However, given the discrete
nature of probability distributions, achieving this balanced
grouping is highly unlikely. Consequently, the actual distribu-
tion used for embedding messages is a balanced distribution,
which often deviates from the original distribution. Addition-
ally, the runtime for dynamic grouping is O(N logN), which
adds significant computational complexity to the process.

Discop: Ding et al. [16] proposed a steganography scheme
based on “distribution copies” named Discop. In this scheme,
several “distribution copies” are generated by rotating all in-
tervals by specific displacements. At each time step, the mes-
sage determines which “distribution copy” to sample from. To
enhance the embedding rate, Discop decomposes the multi-



variate distribution into multiple bivariate distributions using
a Huffman tree, constructing “distribution copies” for each
bivariate distribution recursively.

Discop strictly maintains the original distribution and thus
achieve PSS due to the probability of each token in different
“distribution copies” is equal. By constructing Huffman trees,
Discop can achieve high embedding rates. However, the com-
plexity of creating a Huffman tree is O(N), and the average
complexity of walking from the root node to a leaf node of
the tree is O(logN). Therefore, Discop incurs certain time
overhead.

iMEC: Witt et al. [14] analyzed information-theoretic
steganography using the concept of minimum entropy cou-
pling. They proved that perfect steganographic security is
equivalent to a coupling problem and that achieving maxi-
mum transmission efficiency in a perfectly secure system is
equivalent to a minimum entropy coupling problem. Their
proposed iMEC scheme fully leverages the properties of cou-
pling and minimum entropy coupling.

Similar to Discop, iMEC theoretically does not disrupt
the probability distribution and thus achieve PSS. However,
iMEC does have a certain bit error rate. To achieve minimum
entropy coupling and enhance the embedding rate, a con-
siderable amount of computational complexity, specifically
O(N logN), is necessary to couple the probabilities.

Based on the previous analysis, we can find that the in-
crease in computational complexity stems from operations
such as scaling [59], reordering [16, 28, 56], and coupling the
probability distribution [14]. The destruction of the probabil-
ity distribution is attributed to two factors: (1) truncation of
probabilities [56] and (2) limitations in computational pre-
cision [28, 59]. In this paper, we aim to design an efficient
message embedding scheme that can embed more message
bits with lower complexity without changing the probability
distribution of model inference.

3 SparSamp Methodology

In this section, we will first introduce a novel message em-
bedding method based on message-driven sampling. Our ap-
proach embeds message segments sequentially, enabling effi-
cient handling of arbitrary-length messages. We then demon-
strate how to achieve O(1) computational complexity per
sampling step, ensuring no degradation in model’s generation
speed. Finally, we will address the issue of token ambiguity
in LLMs.

3.1 Message Embedding via Message-Driven
Sampling

To achieve message-driven sampling without destroying the
distribution, we borrowed the idea of using pseudo-random
numbers from Discop [16] to perform random sampling. Let

ri ∼U [0,1) denote the initial pseudo-random number gener-
ated by a pseudo-random number generator (PRNG) at step i.
We define:

• V : the candidate vocabulary

• vi ∈ V : the sampled token at step i

• Pi: the probability distribution at step i, sorted according
to the model’s default order

The sampling of token vi based on Pi using ri is represented
by the following sampling function:

S(Pi,ri) = vi, (2)

And the corresponding algorithm is shown in Algorithm 1.

Algorithm 1: sample(Pi,ri): Sampling in the proba-
bility distribution of candidate tokens using a random
number

Input: The pseudo-random number ri, Probability
distribution Pi

1 cuml← 0, SEi← [0,0]
2 for k← 0 to |Pi|−1 do
3 cuml← cuml +Pi(k)
4 if cuml > ri then
5 vi← corresponding to the k-th token (in

default order);
6 SEi← [cuml−Pi(k),cuml];
7 break;
8 end
9 end

Output: Sampled token vi, Start and end positions of
the sampled token SEi

To combine the message with the pseudo-random number,
we transform a message m with the length of lm into a number
in the interval [0,1) using a function bin2num(), defined as:

bin2num(m) =
bin2dec(m)

2lm
, (3)

where bin2dec(m) is m’s decimal representation. We then use
modular addition to combine bin2num(m) with the pseudo-
random number ri, obtaining the “message-derived random
number (MRN)”, denoted as ri(m):

ri(m) = [ri +bin2num(m)] mod 1. (4)

We distinguish between two types of MRN:

• eMRN: The MRN of the actual message m to be em-
bedded

• oMRN: MRN of other messages m′ that have the same
length as the embedded message m



0.00 0.10 0.30 0.60 1.00

𝑟! 	 101 = 𝑟! +
5
8
mod	1 = 0.200 𝑟! 000 = 𝑟! +

0
8
mod	1 = 0.575

𝑟! 	 100

a b c d

𝑟! 	 110 𝑟! 	 111 𝑟! 	 001 𝑟! 	 010 𝑟! 	 011𝑟! 	 101 𝑟! 	 000

𝑟! = 0.575 Ambiguity Ambiguity

Figure 3: An example of sampling based on MRNs. The
initial pseudo-random number is ri = 0.575. The message
length lm to be embedded is 3, and the MRNs are ri(xxx).

We transform message embedding into message-driven
sampling by replacing pseudo-random numbers with eMRNs
for sampling. An example of this process is illustrated in
Figure 3. Let’s assume the pseudo-random number is ri =
0.575 and the message length to be embedded is lm = 3. We
can generate eight (2lm = 8) MRNs based on the length of
the message. For embedding the messages “100” or “101”,
tokens “a” or “b” can be sampled according to eMRN ri(100)
or ri(101), respectively. The receiver, who knows both the
message bit length and pseudo-random numbers, can decode
“100” or “101” based on the sampled tokens “a” or “b”. This
decoding is achievable because eMRN uniquely sampled
these specific tokens.

Decoding ambiguity However, the above embedding has
the problem of causing “ambiguity” in the decoding. We de-
fine “ambiguity” as the receiver’s inability to determine which
specific MRN led to the observed sampling result. This ambi-
guity arises because multiple MRNs can potentially sample
the same token. To illustrate this point, consider the sampling
indicated by the orange block in Figure 3. When embedding
the message “000”, sampling based on the eMRN ri(000)
produces “c”. However, sampling based on oMRNs ri(110)
and ri(111) also results in “c”. As a result, the receiver has no
way to know which MRN led to “c”, impeding the extraction
of the embedded message.

Conflict Our analysis reveals that successful message em-
bedding and extraction hinges on the uniqueness of the sam-
pling result caused by eMRN. To mitigate ambiguity, one
could reduce the message embedding length, but this approach
compromises the embedding rate. Figure 4 illustrates this
trade-off: 1) Shorter messages (e.g., 1-bit) create larger sam-
pling interval between adjacent MRNs, reducing ambiguity
rate. 2) Longer messages increase the probability of multiple
MRNs sampling the same token (indicated by red arrows).
This scenario underscores an inherent conflict between mes-
sage length and extraction accuracy.

To address this decoding ambiguity and enhance the embed-
ding length, we borrow the idea of scaling from the iMEC [14]
and the AC-based method [47, 59]. But instead of coupling
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Figure 4: Sampling based on different number/length (lm)
of MRNs/message. The red arrow represents sampling that
causes decoding ambiguity.

or scaling probabilities, which can increase complexity and
distort distributions, we scale the sampling interval by in-
creasing the distance between neighbouring MRNs. When
the interval between adjacent MRNs is sufficiently large, it
becomes highly improbable to sample the same token, ef-
fectively avoiding ambiguity. Therefore, ambiguity can be
avoided. Next, we will introduce which MRNs to choose to
increase the sampling interval.

3.2 Sparse Sampling
Our previous analysis demonstrated that multiple MRNs may
sample the same token, as illustrated in Figures 3 and 4. In
such cases, the receiver can only infer a range of possible
messages. To narrow this range, we record all MRNs that
sample the same token as the eMRN and use these recorded
MRNs for subsequent sampling steps. Consequently, we need
to update the transformation function bin2num() (Equation
(3)) for converting message into number as follows:

bin2num(m) = km/Nm (5)

where Nm is the number of candidate messages, and km de-
notes the index of the message to be embedded in the candi-
date messages, and km ∈ [0,Nm).

Message Embedding as Index Embedding Our embed-
ding process can be conceptualized as embedding an index
within a set of candidate messages. According to Equations
(3) and (5), the embedded message represents its index among
all possible candidates, which the receiver is also aware of.

Figure 5 illustrates this concept: when embedding the mes-
sage “111” in step i with the pseudo-random ri = 0.575,
we have km = 7, Nm = 8. The corresponding eMRN is
ri(111) = 0.450. Based on the sampled token “c”, the re-
ceiver can determine that the embedded message is one of
“110”, “111” or “000” at this step. To clarify to the receiver
which message we have embedded, we use these three candi-
date messages for sampling in the next step. Consequently, in
the next step i+1, the index of the message to be embedded
within the set of candidate messages is updated to km = 1 and
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Figure 5: An example of embedding based on Sparse Sampling.

Nm = 3. To avoid the repeated use of randomness, we use a
new pseudo-random number ri at each step. Using Equation
(4), we can derive the new eMRN, ri+1(111) = 0.087, for
sampling in step i+1. At this point, only the token “a” will
be sampled based on this eMRN, allowing the message “111”
to be uniquely decoded.

Our objective is to gradually narrow down the range of
candidate messages until the receiver can clearly identify
the embedded message (when Nm = 1). Initially, when Nm
is large, a fraction of oMRNs will sample the same token
as eMRN, which leads to a reduction in Nm in the subse-
quent round. This process effectively reduces the range of
possible embedded messages. As Nm decreases, the distance
between adjacent MRNs, given by 1

Nm
, increases. This results

in sparser sampling, thereby reducing decoding ambiguity.
Due to this characteristic, we name this approach SparSamp.

3.3 Achieving O(1) time complexity
The time required by SparSamp is mainly attributed to the up-
dates of Nm and km to get eMRN. When we update Nm and km
by comparing and counting, longer embedded messages lead
to an increased number of candidate messages that need to be
compared and counted. This results in higher time complexity,
which is not desirable. Therefore, based on the characteristic
of uniform sampling, Nm and km can be calculated using only
two computations.

As km represents the position of eMRN within MRNs that
sampled to the same token. Since the difference between ad-
jacent MRNs is 1

Nm
, as indicated in Equations (3)-(5), we can

obtain km and Nm by calculating the distance from eMRN

to the starting point SEi(0) and the end point SEi(1) of the
sampled token. The relevant calculations are presented in Al-
gorithm 2, which we refer to as Sparse. As a result, SparSamp
introduces only O(1) additional time complexity in each sam-
pling step.

Algorithm 2: sparse(SEi,Nm,km,ri): Sparse the num-
ber and interval of sampling by updating the param-
eters of the number of candidate messages and the
index of the message to be embedded

Input: Start and end positions of sampled token SEi,
The number of candidate messages Nm, The
index of the message to be embedded km, The
pseudo-random number ri

1 temp0 = ⌈(SEi(0)− ri)∗Nm⌉
2 temp1 = ⌈(SEi(1)− ri)∗Nm⌉
3 if km + ri ∗Nm >= Nm then
4 km = km−Nm− temp0
5 else
6 km = km− temp0
7 end
8 Nm = temp1− temp0

Output: The updated Nm and km

3.4 Overview of SparSamp
Figure 6 illustrates the overview of SparSamp. The sender
and receiver must share the same settings, which include the
initial context, the PRNG seed, and the generative model. This
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Figure 6: Overview of SparSamp. To ensure effective covert communication, both the sender and receiver need to have the same
generative model, context, pseudo-random number generator (PRNG), and key. The sender continuously samples the next token
with the message and pseudo-random number, until the entire message is embedded. Once the stego is created, it is sent to the
receiver. The receiver can then synchronize with the sender’s states and extract the message by using the reverse process.

synchronization ensures that both parties maintain consistent
states throughout the process. It is important to note that it is
unnecessary to transmit the model itself because many large
models are readily available to the public on platforms like
Hugging Face and GitHub. Therefore, both parties only need
to agree on which model to use and then load it separately.

Algorithm 3 demonstrates how SparSamp embeds mes-
sages during the model generation process. The whole mes-
sage is divided into equal chunks of size (lm) and embed-
ded sequentially. When the model samples the EOS (end-of-
sequence) token, any unembedded messages along with their
associated states (Nm,km) are carried over to the next conver-
sation round. Conversely, if the entire message is embedded
before the model terminates, the normal sampling continues
until termination occurs naturally. It’s important to note that
SparSamp does not alter the model’s generation process; it
only replaces the original sampling method without affecting
the model’s termination conditions. With SparSamp, once the
message and random number are determined, the correspond-
ing output of the model based on each message is fixed and
unique. The corresponding extracting process is shown in
Algorithm 4.

Advantages In summary, SparSamp offers the following
advantages.:

1. Preservation of Distribution: It maintains the original
probability distribution Pi, ensuring statistical consis-
tency.

2. Sampling Randomness: The method retains the inherent

randomness of the sampling process, which is crucial for
security.

3. Computational Efficiency: By eliminating the need for
sorting or combining probability distributions, it enables
rapid embedding and decoding.

4. Resumable embed and extract: Although SparSamp em-
beds and extracts messages in segments, if a segment of
the message is not fully embedded or extracted, it can be
resumed in the next stage. The variables in parentheses
shown in Algorithm 3 and 4, such as Nm and km, serve as
input and output parameters that facilitate this resumable
functionality.

3.5 Dealing with Token Ambiguity
For state-of-the-art PSS methods [14, 16, 28, 56, 59], includ-
ing SparSamp, successful decoding relies on the token path
generated by the sender and receiver matching precisely at
the encoding and decoding process. However, for LLMs such
as GPT-2, the vocabulary is not prefix-free due to the use
of byte-pair encoding (BPE) [19]. Consequently, token am-
biguity (TA) may occur. This ambiguity can be mitigated
by utilizing alternative tokenizers, such as word-based or
character-based tokenizers, or by employing disambiguat-
ing techniques [5, 36, 40, 50]. Given that token disambigua-
tion techniques are plug-and-play and generalizable, better
steganographic coding in combination with these token dis-
ambiguation techniques will also lead to better results.

Currently, only two disambiguating methods can be utilized
without compromising the probability distribution, namely,



Algorithm 3: The main loop of SparSamp’s message
embedding algorithm

Input: Context C , Generative Model G , PRNG,
message to embed M, Length of the message to
be embedded each time lm, (Nm,km)

1 v← “ ”, S ← “ ”, count← 0, (Nm← 1)
2 while v is not “EOS” do

// Terminate the embedding process
until the model samples the
end-of-sequence token (EOS)

3 r← PRNG.next()
4 P ← G(C ) // Model infers the

probability distribution based on the
context

5 if count× lm < |M| then
6 if Nm = 1 then
7 km← bin2dec(M[count× lm :

(count +1)× lm−1]) // Convert a
portion of the lm-bit binary
message in M to the decimal km

8 Nm← 2lm

9 count← count +1
10 end
11 rm←

(
km
Nm

+ r
)

mod 1;

12 v,SE← sample(P ,rm)
13 Nm,km← sparse(SE,Nm,km,r)
14 else
15 v← sample(P ,r) // Normal sampling
16 end
17 S ← S∥v // Update stego
18 C ← C∥v // Update context
19 end

Output: Stego S ,(Nm,km)

backtracking with checkpoints (BackCheck) [5] and SyncPool
[40]. Each of these methods has its pros and cons. SyncPool
does not affect the complexity of generation and decoding
but diminishes the embedding rate. In contrast, BackCheck
inserts checkpoints at each segment of the message, which
has a lesser impact on the embedding rate and does not alter
the generation process; however, it requires repeated back-
tracking to identify the correct token path during extraction,
thus increasing the complexity on the extraction side.

BackCheck was initially combined with the AC-based ap-
proach [5]. We believe that SparSamp is better suited to work
with BackCheck for several reasons. First, BackCheck does
not influence the embedding complexity and embedding rate.
Second, a sparser sample results in fewer tokens being se-
lected for the random number determination, which signifi-
cantly reduces the amount of backtracking needed. Finally,
when the token path used in SparSamp decoding is not consis-

Algorithm 4: The main loop of SparSamp’s message
extracting algorithm

Input: Context C , Stego S , Generative Model G ,
PRNG, Length of the message to be embedded
each time lm, (Nm, temparr

0 ,Narr
m )

1 M← “ ”, (Nm← 2lm , temparr
0 ,Narr

m ← [])
2 for v in S do
3 r← PRNG.next()
4 P ← G(C ) // Model infers the

probability distribution based on the
context

5 Get the SE of v based on P
6 C ← C∥v // Update context
7 temp0 = ⌈(SE(0)− r)∗Nm⌉
8 temp1 = ⌈(SE(1)− r)∗Nm⌉
9 temparr

0 .append(temp0)
10 Nm = temp1− temp0
11 Narr

m .append(Nm)
12 if Nm = 1 then
13 count = |temparr

0 |−2
14 km← temp0
15 while count ≥ 0 do
16 km← temparr

0 (count)+
((km +Narr

m (count)) mod Narr
m (count))

17 count← count−1
18 end
19 km← ((km +2lm) mod 2lm)

M = M∥dec2bin(km, lm) // Convert the
decimal km into an lm-bit binary
message and add it to M

20 Nm← 2lm

21 temparr
0 ,Narr

m ← []

22 end
23 end

Output: Message M, (Nm, temparr
0 ,Narr

m )

tent with the token path adopted in embedding, according to
Algorithm 4, there may be a situation where Nm = 0, which
means that the message cannot be extracted, and this situ-
ation will only occur after the TA has appeared, according
to which we can infer the approximate location of the TA’s
appearance ahead of time for backtracking, instead of needing
to backtrack after the message has been extracted.

3.6 Proof of Security

SparSamp ensures the security of steganography in two im-
portant ways, as outlined in Section 3.1. First, it preserves the
original probability distribution at each step for sampling. Sec-
ond, it maintains randomness in the sampling process within
this distribution throughout each step.



Theorem 1 For any polynomial-time distinguisher A , it is
computationally infeasible to distinguish between samples
drawn from Pi using ri and using ri(m).

Proof 1 We prove this theorem as follows.

1. Pseudo-random number generator: In this paper, we
use pseudo-random numbers for sampling. Let PRNG
be a deterministic polynomial-time algorithm such that
for any λ-bit input s ∈ {0,1}λ, the algorithm PRNG out-
puts a bit string of length ℓ(λ), where ℓ is a polynomial.
For all λ, it holds that ℓ(λ) > λ. For all probabilistic
polynomial-time distinguishers A , there exists a negli-
gible function negl such that the following inequality
holds:∣∣Pr[A(PRNG(s)) = 1]−Pr

[
A
(
s′
)
= 1

]∣∣≤ negl(λ)
(6)

Where the seed s is uniformly chosen from {0,1}λ, and
s′ is uniformly chosen from {0,1}ℓ(λ), both being true
random bit strings.

2. The precision of the pseudo-random number: In prac-
tice, the precision of the pseudo-random numbers we use
is consistent with the pseudo-random numbers used in
the model, which is actually the same PRNG. Assuming
the precision is h bits, at each time step i, consecutive
h bits bhi,bhi+1, . . . ,bhi+h−1 are sequentially taken from
PRNG(s), and by calculating a pseudo-random number

within the interval [0,1), ri =
∑

h−1
t=0 bhi+t×2t

2h . Thus, for all
a ∈

{
i×2−h

}
i=0,...,2h−1, there exists a negligible func-

tion ε with respect to the security parameter λ such that
the following inequality holds:∣∣∣Pr

[
r(t) = a

]
−2−h

∣∣∣≤ ε(λ)

2−h− ε(λ)≤ Pr
[
r(t) = a

]
≤ 2−h + ε(λ)

(7)

3. Computationally indistinguishable: Since km
Nm
∈ [0,1),

the sum ri +
km
Nm

lies in [0,2). Applying the modulo op-
eration ( mod 1) ensures that ri(m) remains in [0,1). Im-
portantly, for a ∈

{
t×2−h

}
t=0,...,2h−1, we have

∑
a
|Pr [ri(m) = a]−Pr [ri = a]|= 2h+1 · ε(λ) (8)

Since h is a constant independent of λ, there exists a
negligible function ε′(λ) = 2h+1 · ε(λ) with respect to λ

such that the following inequality holds:

∑
a∈{t×2−h}t=0,...,2h−1

|Pr [ri(m) = a]−Pr [ri = a]| ≤ ε
′(λ)

(9)

Given that the only difference between the stego and the cover
is the random variable used during the sampling process, and
the distributions of ri(m) and ri are computationally indistin-
guishable, it follows that the stego and cover distributions are
also computationally indistinguishable.

4 Evaluation

In this section, we will conduct experiments and compare
SparSamp with the previous steganography methods pursu-
ing provable security, namely AC-based [59], Meteor [28],
ADG [56], Discop [16], and iMEC [14].

4.1 Experimental Setup

Generative Models: In this study, we employ a diverse range
of generative models, including LLMs (GPT-2 [42], Qwen-
2.5 [51], Llama-3 [2]), image generation model (DDPM [11]),
and audio generation model (WaveRNN [27]). To enhance the
generation process, we implement two sampling techniques:

• Top-k sampling [23]: This method selects the next word
from the k most probable choices in the vocabulary. It
limits the selection to a fixed number of top candidates.

• Nucleus sampling (or top-p sampling) [22]: This is a
widely adopted technique in generation tasks that con-
strains the vocabulary size from which we sample. In-
stead of using a fixed number like top-k, it dynamically
selects from the smallest words whose cumulative prob-
ability exceeds the threshold p.

We utilize a range of truncation parameters to assess per-
formance across various scenarios: p = {0.80,0.95,1.00},
and k = [2 : 4 : 98]. This approach allows us to evaluate the
steganography performance under different levels of vocabu-
lary restriction.

Generative Tasks: We deploy the steganographic algo-
rithm across three generative tasks:

• Text generation. We employ three pre-trained LLMs:
GPT-2 version [42], Qwen-2.5 [51] and Llama-3 [2].
From the IMDB dataset [34], we randomly select 100
text samples and generate approximately 100 to 200
tokens based on the first three sentences of each sample.

• Image generation. We employ a learning-free method for
controlling the generation of unconditional DDPM [11],
which is trained on FFHQ dataset [29]. We quantize the
continuous probabilities from the last layer into discrete
probabilities that correspond to 256 pixel values for sam-
pling, which are then saved as 8-bit images based on
the StegaDDPM approach [39]. A total of 100 pairs of
images are generated for evaluation.



• Text-to-speech (TTS). Using pre-trained Tacotron [49]
and WaveRNN [27] models, we generate approximately
3-second speech segments corresponding to the first sen-
tence of 100 text samples from the IMDB dataset.

Token Ambiguity (TA): For a fair comparison, we first
evaluate performance using sentences that do not have TA in
subsections 4.3-4.5. We then address TA based on SynPool
[40] and BackCheck [5] in subsection 4.8.

All experiments were conducted using consistent hardware
configurations: an Intel Xeon Gold 6330 CPU (2.00GHz),
128GB RAM, and an NVIDIA GeForce RTX 4090 GPU.
To ensure uniformity, all model queries were executed on a
single GPU. We employ the default double-precision floats in
Python for our numerical computations.

4.2 Metrics
We evaluate the performance of SparSamp using metrics
that assess the efficiency of the steganography in terms of
time/speed, capacity, and security.

• Time/Speed: To measure the complexity and embedding
efficiency of different steganographic algorithms, we use
the following metrics:

– Average Token Sampling Time (ATST): The mean
time taken to sample each token during the sam-
pling phase.

– Sampling-to-Inference Time Ratio (SITR): The
ratio of sampling time to model inference time.

– Generation Speed: The number of tokens generated
per second.

– Embedding Speed: The number of bits embedded
per second.

– Decoding Speed: The number of bits decoded per
second.

• Capacity: We use two metrics to describe the capacity
of a steganography method:

– Embedding rate: The average number of bits of
information embedded in each generated token.

– Utilization rate of entropy (Utilization): Follow-
ing [16], we use this metric to measure embedding
ability. It is defined as the ratio of the total em-
bedded message length to the entropy sum over
all time steps, indicating how close the embedding
rate is to its theoretical limit.

• Security: We use two KLD metrics:

– Average KLD (Ave KLD): The mean KLD over all
time steps is calculated by dividing the cumulative
KLD by the total number of tokens. It indicates the

average extent to which the steganography method
alters the original distribution. Lower values are
better.

– Maximum KLD (Max KLD): The highest KLD
value across all time steps, indicating the most se-
vere alteration to the original distribution. Lower
values are better.

4.3 Evaluating SparSamp with Different lm

SparSamp embeds the whole message by dividing it into sub-
messages with length lm, as illustrated in Algorithm 3. We
evaluated varying lengths lm on GPT-2 using top-p sampling
(with p = 1.00). The results shown in Table 2 indicate that,
due to the limitations of double-precision calculations, the
maximum length lm can reach is 1023. As long as lm does
not exceed 1023, we can achieve a 100% decoding accuracy
without a TA. Generally, the longer the lm, the higher the
utilization. And when lm is greater than 32, the improvements
in both speed and utilization become less significant. For the
subsequent experiments, we set lm = 64.

4.4 Comparison of Time and Speed Across Dif-
ferent Steganographic Methods

In this section, we compare the sampling time and generation
speed of various steganographic methods based on the GPT-2
model under different sampling spaces (Top-p), as shown in
Table 3. As the p-value increases, we observe that the Aver-
age Token Sampling Time (ATST) increases for all stegano-
graphic algorithms except for AC [59], Meteor (w/o sort) [28]
and SparSamp. This increase in ATST can be attributed to
the significant rise in the number of candidate tokens as the
p-value grows. Methods that require sorting to achieve higher
embedding rates, such as the sorted versions of Meteor and
Discop [16], ADG, and iMEC [14], experience greater com-
putational complexity. In contrast, SparSamp demonstrates
the fastest sampling speed. When compared to normal gener-
ation (random sampling), it incurs only negligible additional
sampling time, further confirming its O(1) time complexity,
as discussed in Section 3.3.

Additionally, we analyzed the ratio of sampling time to
model inference time (SITR). In typical generation processes,
sampling time constitutes only a tiny fraction of the total time,
approximately 0.02 of the inference time. However, other
steganographic methods exhibit a significant increase in sam-
pling time as the candidate token space expands, sometimes
reaching tens (ADG [56] and Discop [16]) or even hundreds
(Meteor [28] and iMEC [14]) of times the inference time. In
contrast, SparSamp maintains a sampling time nearly identi-
cal to normal sampling.



Table 2: The performance of the SparSamp with different lm using GPT-2 under p = 1.00.
lm 2 4 8 16 32 64 128 256 512 1023 ≥ 1024

Utilization ↑ 27.5% 44.7% 64.5% 78.8% 87.3% 97.4% 98.0% 98.5% 98.7% 99.5% /
Embedding Speed ↑ (bits/s) 214.7 358.4 504.0 640.4 705.1 755.4 731.0 656.3 709.7 706.0 /
Decoding Speed ↑ (bits/s) 203.7 339.7 477.7 606.7 667.3 715.6 699.6 629.9 678.0 672.4 /

Decoding Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 0%

Table 3: Comparison of ATST, SITR, and generation speed for different steganographic methods

GPT-2 p
Random
Sampling

ADG [56] AC [59]
Meteor [28] Discop [16]

iMEC [14] SparSamp
sort w/o sort sort w/o sort

ATST ↓
(s/token)

0.80 1.31E-04 1.13E-03 1.78E-03 2.83E-02 1.67E-03 6.66E-04 3.96E-04 3.64E-03 1.53E-04
0.95 1.32E-04 8.91E-03 1.76E-03 2.86E-01 1.68E-03 5.71E-03 6.83E-04 1.46E-02 1.57E-04
1.00 6.41E-04 6.67E-01 2.41E-03 5.00E+00 2.26E-03 2.78E-01 1.04E-02 2.00E+00 7.21E-04

SITR ↓
0.80 0.02 0.15 0.23 3.71 0.22 0.09 0.05 0.48 0.02
0.95 0.02 1.19 0.24 38.12 0.22 0.76 0.09 1.94 0.02
1.00 0.09 97.41 0.35 730.57 0.33 40.59 1.52 292.23 0.11

Generation
Speed ↑

(tokens/s)

0.80 128.9 118.3 109.7 27.7 110.9 123.5 125.0 88.0 125.8
0.95 131.1 61.5 109.5 3.4 110.5 75.8 122.4 45.2 130.6
1.00 133.6 1.5 109.9 0.2 111.7 3.5 52.8 0.5 132.3

Table 4: Comparison of embedding capacity and speed for different steganographic methods

GPT-2 p
Random

(Entropy)
ADG [56] AC [59]

Meteor [28] Discop [16]
iMEC [14] SparSamp

sort w/o sort sort w/o sort

Embedding
Rate

(bits/token)

0.80 3.69 3.01 3.85 3.12 2.63 3.65 1.86 2.86 3.60
0.95 5.22 4.16 5.31 4.45 3.71 5.04 2.09 3.62 5.16
1.00 6.00 4.76 5.60 4.95 4.17 5.63 2.24 4.13 5.98

Utilization ↑
0.80 / 73.9% 99.3% 79.6% 63.8% 92.3% 47.5% 76.8% 95.3%
0.95 / 79.1% 99.4% 83.0% 70.4% 95.1% 40.9% 71.9% 94.9%
1.00 / 90.0% 99.6% 85.2% 71.8% 95.4% 37.5% 68.9% 97.4%

Embedding
Speed ↑
(bits/s)

0.80 / 341.9 410.3 81.7 279.5 422.4 223.8 251.7 461.7
0.95 / 258.3 567.2 15.1 410.0 370.7 259.5 163.6 628.2
1.00 / 7.6 647.3 1.1 512.7 19.8 120.4 2.1 755.4

Decoding
Speed ↑
(bits/s)

0.80 / 348.9 441.6 89.7 322.7 442.2 221.9 226.1 421.4
0.95 / 247.7 639.9 14.7 475.9 386.2 246.2 123.0 560.4
1.00 / 7.9 762.3 0.9 576.7 20.8 146.3 0.7 715.6

Table 5: Comparison of KLD for different steganographic methods using GPT-2 under various p-values

GPT-2 p ADG [56] AC [59] Meteor w/ sort [28] SparSamp

Ave / Max
KLD

(bit/token)

0.80 7.70E-03 / 5.58E-02 5.08E-02 / 9.29E+00 5.15E-02 / 6.68E+00 0 / 0
0.95 1.08E-02 / 5.22E-02 2.93E-03 / 2.52E+00 2.85E-03 / 1.80E+00 0 / 0
1.00 1.26E-02 / 5.38E-02 1.79E-04 / 2.21E-01 1.13E-06 / 1.62E-05 0 / 0
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Figure 7: Comparison of embedding rate and utilization for various steganographic methods in low-entropy environments using
GPT-2 with Top-k sampling

4.5 Comparison of Embedding Capacity and
the Speed of Embedding and Decoding
Across Different Steganographic Methods

This section compares the embedding capacity and speed
of various steganographic methods using the GPT-2 model
across different sampling spaces, as shown in Table 4. As
the p increases, the embedding rate for all steganographic
methods rises. This increase is attributed to the higher infor-
mation entropy of the token probability distribution Pi at each
generation step with higher p, as the random sampling shows.

However, the embedding rate alone does not accurately
reflect the embedding capacity, as the embedded messages
are random and the sampled tokens differ, leading to vary-
ing entropy levels at each step. Therefore, we also take into
account the entropy utilization rate. The AC method [59]
shows the highest entropy utilization, which aligns with its
performance in compression tasks. SparSamp generally has
the second-highest utilization, following AC.

In terms of embedding speed, SparSamp significantly out-
performs existing methods, achieving a embedding speed of
755.4 bits/s on GPT-2. This performance advantage stems
from its O(1) complexity, which eliminates the need for com-
putationally intensive operations like probability reordering
or interval scaling. Furthermore, SparSamp maintains a com-
parable decoding speed, ensuring rapid message extraction
without error.

In particular, we compared the embedding rate and utiliza-
tion in low-entropy environments. To create such an environ-
ment, we employed top-k sampling with GPT-2, setting the k
value range from 2 to 100. In this setting, each sampling step
had only k candidate tokens, resulting in significantly lower
entropy compared to top-p sampling. As shown in Figure
7, both SparSamp and AC [59] demonstrated high embed-
ding rates across different k values. For k values greater than
2, SparSamp’s utilization approached 1. In contrast, the uti-

lization of other methods (except for Discop w/o sort and
iMEC), gradually increased with higher k values, reaching a
maximum of only 0.9.

4.6 Comparison of Security

In this section, we compare the KLD induced by different
steganographic methods based on GPT-2 under various p-
values, as shown in Table 5. Notably, SparSamp maintains
zero average and maximum KLD due to its preservation of
distribution probabilities. In contrast, AC [59], Meteor [28],
and ADG [54] introduce varying degrees of KLD. Particularly,
the KLD of these three methods is significant, potentially
allowing adversaries to gain a non-negligible advantage in
detection.

To complement our theoretical security proof of SparSamp
and ensure a comprehensive evaluation, we conducted em-
pirical tests using various established steganalysis methods.
These tests aimed to distinguish between cover text generated
by random sampling and stego text produced by SparSamp.
We generated 10,000 pairs of cover and stego texts under
the truncation parameter p = 0.95. We employed three deep
learning-based steganalysis methods that have demonstrated
effectiveness in benchmark tests: FCN [55], R-BiLSTM-C
[35], BiLSTM-Dense [52]. Table 6 presents the results of our
analysis. Notably, the detection error rate PE for SparSamp ap-
proaches 50%. Since a bias of less than 0.5% can currently be
considered negligible in steganalysis, our experimental results
(<0.5%) can be considered indistinguishable. This indicates
that the steganalysis methods perform no better than random
guessing in identifying stego content generated by SparSamp,
thereby empirically confirming its security.



Table 6: Steganalysis results for SparSamp
Methods FCN [55] R-BiLSTM-C [35] BiLSTM-Dense [52]

PE 49.63% 50.09% 49.58%

Table 7: Performance of SparSamp across different models

Model
Embedding

Speed (bits/s)
Embedding

Rate (bits/token) Utilization

Qwen-2.5 117.2 3.31 95.8%
Llama-3 90.1 2.66 96.6%
DDPM 5046.8 2.33 98.5%

WaveRNN 9223.4 4.83 96.5%

4.7 Deployment on Different Generative Mod-
els

We deployed SparSamp on four additional models: the re-
cently open-sourced LLM Qwen-2.5 [51] and Llama-3 [2], the
image generation model DDPM [11], and the audio generation
model WaveRNN [27]. The implementation was straightfor-
ward, requiring only the replacement of the sampling compo-
nent in these models with SparSamp encoding.

Table 7 illustrates SparSamp’s performance across these
various models, with utilization consistently exceeding 95%
for all of them. The embedding speed achieved with the Wa-
veRNN model was particularly impressive, reaching 9,223
bits/s. This remarkable speed opens up the possibility for
real-time, high-capacity covert communication. Based on the
DDPM, the embedding rate we can achieve is 2.33 bits/token,
which means we can embed a 0.29 size of the secret image
in the stego image. Examples of stego texts and stego im-
ages generated with the LLM and DDPM can be found in
Appendix A.

4.8 Evaluating SparSamp in combination with
the Token Disambiguating Technique

In previous experiments, we demonstrated that with no TA,
the decoding accuracy of SparSamp reached 100%, and its
decoding speed was exceptionally fast. When there is TA,
existing steganographic coding [14, 16, 28, 56, 59] all face
the problem of being unable to decode accurately. However,
it can be resolved by the token disambiguating technique
without changing the probability distribution and sacrificing
the security [5, 40].

We first use BackCheck [5] to deal with the TA. We embed-
ded 64-bit messages at a time and generated 10,000 pairs of
stego texts based on different LLMs and steganography meth-
ods, and we counted the frequency of TA. As quantified in
Table 8, the TA occurrence rate per 64-bit embedding remains
exceptionally low—ranging from 0.67% to 3.81% depending

Table 8: Analyze the token ambiguity with BackCheck [5]

Model
Frequency

of TA
AC [59] / SparSamp

Frequency of
detecting TA

Average distance
from TA

GPT-2 2.49% 0% / 79.3% 5.5 / 3.6

Qwen-2.5 0.67% 0% / 73.2% 8.0 / 6.6

Llama-3 3.81% 0% / 65.4% 10.1 / 6.9

Table 9: Performance of SparSamp with SynPool [40]

Model (p = 0.8) GPT-2 Qwen-2.5 Llama-3

Embedding Rate 2.41 1.35 0.70
Utilization 72.8% 65.4% 70.2%

on the LLM architecture.
When BackCheck is used without considering checkpoints,

the AC-based method is unable to detect the presence of TA.
In contrast, SparSamp can identify the presence of TA with a
probability of 65% to 79%, i.e., Nm = 0 when extracted accord-
ing to Algorithm 4. This ability allows for shorter checkpoints
and enhances the embedding capacity according to [5]. In ad-
dition, we assess the distance from TA of a token encountered
with Nm = 0 during SparSamp extraction. Using SparSamp
reduces the number of queries for two tokens on average com-
pared to the number of queries needed to locate the TA after
the AC has extracted the message. Consequently, SparSamp
requires only about half the length of the checkpoint to detect
the location of the TA faster than AC, and it also reduces the
impact on the embedding capacity. We verified that for every
60-bit embedding, only 4 bits of the checkpoint are needed to
backtrack to the correct path thus enabling accurate extraction
based on SaprSamp.

We also use SynPool [40] to deal with the TA. The results
are shown in Table 9. SynPool is suitable for settings in LLM
with a low p value because a high p value reduces utilization
according to [40].

Finally, we would like to say that TA is not as bad as we
think, and we counted that most TA is caused by some spe-
cial symbols (e.g., “....”,“)...”), rather than words. And these
special symbols are relatively easy to find the correct parsing.

5 Conclusion

We propose SparSamp, a novel PSS that employs message-
driven sampling for embedding messages, achieving unam-
biguous message embedding and extraction with high embed-
ding rate. We demonstrate that SparSamp introduces minimal
computational overhead, with an added complexity of only
O(1). Crucially, SparSamp preserves the original probabil-
ity distribution, ensuring provable security. We demonstrate



the performance of the SparSamp through text, image and
speech generation tasks, and the experimental results show
that SparSamp offers high capacity, rapid decoding speed and
the fastest embedding speed among comparable methods. In
the future, we hope to further extend SparSamp to realize
robust PSS and build public-key PSS.
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6 Ethics Considerations

We used open-source models and datasets for research trans-
parency. SparSamp efficiently embeds messages while op-
timizing time and resources. Our ethical approach ensures
secure communication with minimal computational impact.
We aim to mitigate potential negative outcomes.

Steganography is a double-edged sword. It enables secure,
covert communication. However, it also raises ethical con-
cerns, as it can be misused for illegal activities or spreading
misinformation. Steganography complicates law enforcement
efforts by obscuring communication content and intent. While
valuable for clandestine communication, it poses risks that
require careful societal consideration.
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We hereby commit to full compliance with the open sci-
ence policy. We acknowledge the importance of transparency
and reproducibility in research. Our implementation ex-
clusively utilizes open-source models (GPT-2, Qwen-2.5,
Llama-3, DDPM, WaveRNN) and publicly available datasets
(IMDB, FFHQ) to ensure reproducibility. Our research ar-
tifacts related to the SparSamp are openly available at
https://doi.org/10.5281/zenodo.14736967. The artifact pro-
vides a Python implementation for encoding and decoding
messages using the SparSamp method based on the genera-
tive model. The core functionalities are encapsulated in the
encode_spar and decode_spar functions. We believe that
sharing our research artifacts will not only enhance the valid-
ity of our work but also foster collaboration and innovation in
the field of steganography.
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A Examples of Output of SparSamp

This appendix contains stego text and image outputs generated
by SparSamp using several different model types.

Table 10 gives examples of employing different LLMs to
perform secret message encoding and stego text generation.
We set the truncation p = 1. We first use the model itself to
encode the secret message into a bit string based on AC as
in [59]. Then, we embed the bit string by generating the stego
text using the same LLM with SparSamp. We can see that

LLMs such as Qwen-2.5 and Llama-3 generate a longer stego
text but more realistic content.

Figure 8 gives examples of employing DDPM [11] to per-
form image generation. The DDPM is pre-trained on the
FFHQ dataset. SparSamp integration in the final sampling
step of DDPM according to [39]. The size of the generated
image is 256×256. An average of 457,000 bits can be em-
bedded in each image. The embedding rate is 2.33 bits/token.
This means that we can losslessly embed an image of the
same type with 0.29 times the number of pixels of a stego
image.



Table 10: Stego text generated by different LLM with SparSamp

Secret message:
In a strategic military operation, soldiers were tasked with disrupting enemy supply lines by breaking a critical road with C4
explosives. Under cover of darkness, the soldiers approached the road, carefully placing the explosives at key points. With precision
timing, they detonated the C4, creating massive craters that rendered the road impassable. The explosion’s force was so great that
it could be heard for miles around. The operation was a success, cutting off enemy forces from vital resources and slowing their
advance. The soldiers withdrew safely, leaving behind a road turned into a wasteland of debris and destruction.

Length of bit string after encoding the secret message using GPT-2 with AC: 533
Prompt: Once upon a time,
Stego text generated by GPT-2 with SparSamp:
evidence here bearing against Los Angeles had accumulated, especially in evidence van Creussel went to the Lens in Los Angeles
for evidence covering his trial that fell onto the paper. We were looking for witnesses, not documents. This was the obvious case,
and he was acquitted. Given the having uncovered all this evidence, and also the claim– by Los Angeles law firm colleagues in
1980 that he was ordered to pay bribe when bribe gained confidence–that a certified deposition must form the basis for conviction
Length of bit string after encoding the secret message using Qwen-2.5 with AC: 360
Prompt: Give me a short introduction to large language model.
Stego text generated by Qwen-2.5 with SparSamp:
Large language models (LLMs) are a type of artificial intelligence designed to process and generate human-like language. These
models operate on vast amounts of text data, often exceeding the scope of the training dataset, achieving impressive natural
language understanding and generation performance. Key characteristics of these models include:
1. **Capacity for Knowledge Expansion**: LLMs continuously expand their domains of understanding, complemented by
continual pretraining. 2. **Enhanced Resource Use**: Unlike simpler models, LLMs can utilize larger corpora and more compute
resources to perform well across various tasks. 3. **Multi-Aspect Handling**: They can handle syntax, semantics, and pragmatic
components of language comprehensively. 4. **Task Adaptability**: Through fine-tuning, LLMs can be effectively retrained for
specific applications such as language translation, summarization, question-answering, and creative writing.
These models are foundational for achieving advanced functionalities in natural language applications.
Length of bit string after encoding the secret message using Llama-3 with AC: 336
Prompt: Why do dogs love to stick out their tongues in summer?
Stego text generated by Llama-3 with SparSamp:
Here are the possible reasons: 1. Cooling down: Dogs don’t have sweat glands all over their body like humans do, so they need to
find other ways to cool down. Licking their body, including their tongue, helps to regulate their body temperature. As they exhale,
their tongue picks up heat and dries out, making them feel cooler. 2. Hydration: Tongue-sticking and panting are two ways dogs
regulate their hydration levels. By sticking their tongue out, they help to dissipate excess heat and humidity. This also helps them
to rehydrate, as they lick their tongue and reabsorb moisture. 3. Social bonding: Sticking out their tongue, also known as ""flehmen
response,"" is a natural behavior that can be a sign of bonding and affection in dogs. They may use it to communicate with their
human family members or other pets. 4. Relaxation: Dogs often stick out their tongues when they’re feeling relaxed and at ease.
This could be due to the sensation of the tongue touching the air or the release of tension in their mouth. 5. Instinctual behavior: In
the wild, dogs used to stick out their tongues to inspect their surroundings, detect prey, and gather information. This behavior
has been passed down through generations, and even domesticated dogs exhibit it as a natural behavior. 6. Sensory experience:
Sticking out their tongue can be a sensory experience for dogs. The sensation of the tongue touching air, the movement of their
tongue, and the perception of their own breath may provide a calming or enjoyable sensation.

Figure 8: Stego image generated by DDPM with SparSamp
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