
Secure Caches for Compartmentalized Software

Kerem Arıkan1, Huaxin Tang1, Williams Zhang Cen1,
Yu David Liu1, Nael Abu-Ghazaleh2 and Dmitry Ponomarev1

1Binghamton University
2University of California, Riverside

Abstract
Compartmentalized software systems have been recently pro-
posed in response to security challenges with traditional
process-level isolation mechanisms. Compartments provide
logical isolation for mutually mistrusting software compo-
nents, even within the same address space. However, they do
not provide side-channel isolation, leaving them vulnerable to
side-channel attacks. In this paper, we take on the problem of
protecting compartmentalized software from hardware cache
side-channel attacks. We consider unique challenges that com-
partmentalized software poses in terms of securing caches,
which include performance implications, efficient and secure
data sharing, and avoiding leakage when shared libraries are
called by multiple callers. We propose SCC - a framework
that addresses these challenges by 1) multi-level cache par-
titioning including L1 caches with a series of optimizations
to minimize performance impact; 2) the concept of domain-
oriented partitioning where cache partitions are created per
memory domain, instead of per compartment; and 3) creating
a separate partition instance of a shared library code for each
caller. We formally prove the security of SCC using opera-
tional semantics and evaluate its performance using the gem5
simulator on a set of compartmentalized benchmarks.

1 Introduction

Modern programs are becoming increasingly complex soft-
ware systems that often integrate code developed by inde-
pendent and mutually untrusting parties. The interactions
between code components often take place using insecure in-
terfaces [7,16,26,34,50,53,63,65,72,75,82,84,85,90,97,104].
As an example, consider a browser that incorporates a just-
in-time compilation module that compiles and executes a
web application which is linked to a cryptographic library
storing secret keys. In this case, a malicious web applica-
tion can potentially compromise secrets held in the crypto-
graphic library, as well as the data of the compilation module
itself. Traditional process-centric isolation security models

are insufficient to protect systems and applications from such
vulnerabilities within the same address space.

In response to these emerging threats, several in-process
compartmentalization mechanisms have been developed to
provide intra-process memory isolation [2, 4, 19, 39, 40, 42,
66, 70]. In the above browser example, in-process isola-
tion can prevent the web application code from accessing
memory regions of the cryptographic library or the com-
pilation engine, creating isolated compartments in memory
within a single process. In-process compartmentalization solu-
tions come in various forms, including secure enclaves (such
as Intel SGX [1, 19]), page-based memory access control
schemes [75], or capability-based systems [90]. Regardless
of the implementation and security principles behind these
designs, current proposals are developed around protecting
memory accesses and ensuring computation integrity. Un-
fortunately, side-channel attacks through shared hardware
resources have remained outside the threat model these solu-
tions consider. At the same time, side-channel attacks, particu-
larly those exploiting shared caches, have been demonstrated
in diverse software environments that benefit from in-process
compartmentalization, including browsers [30, 64, 77], cloud
services [71], virtual machines [32, 44, 102], and graphics
frameworks [86].

In this paper, we propose new cache hierarchies that pro-
tect compartmentalized software from side-channel attacks;
to the best of our knowledge, this is the first paper that de-
fines and explores this problem. At a high level, our solu-
tion augments existing memory protection schemes with fine-
grain cache partitioning, where in-process compartments can
control the data that is isolated from other compartments in
the cache across multiple cache levels. Designing efficient
and secure partitioned caches supporting compartment isola-
tion requires solving several performance, functionality, and
security-related challenges, which we describe next.

First, applying fine-grain partitioning to L1 caches is expen-
sive because L1 caches are accessed frequently, have stringent
latency constraints, and are likely to be on the critical path of
execution. Previous work leverages flushing the L1 cache on a

context switch or a system call to avoid partitioning overheads
in traditional systems [3, 5, 11, 28, 73], while using partition-
ing for lower-level caches for security. However, flushing the
L1 cache on compartment switches is too expensive for in-
process compartments since compartment switches can occur
frequently (Section 3.1). Instead, we propose performance-
friendly partitioning of L1 caches, using locality-aware opti-
mizations. The new design supports leakage-free L1 caches
in compartment-based systems with only a modest impact on
performance.

Second, compartments of the same program often share
data with other compartments. From the standpoint of a parti-
tioned cache design, a naive compartment-oriented scheme
(where a partition is created for each compartment) will in-
troduce significant performance inefficiencies, security prob-
lems, and complications for cache coherence protocols. To ad-
dress these issues, we propose the concept of domain-oriented
partitioning, which shifts the partitioning boundaries to be
around secure memory regions (referred to as domains, Sec-
tion 3) rather than software compartments.

Third, for complete protection, we consider information
leakage caused by external code usage. For example, calling
commonly used libraries can leak secrets through cache side-
channels even when the attacker does not share common data
with the victim [33, 86, 95]. This threat is exacerbated for
compartmentalized software due to the crossing of compart-
ment boundaries. To this end, our design allows an instance
of a compartmentalized library to be maintained in the cache
for each of its callers, effectively preventing library call leak-
ages. In the rest of the paper, we refer to our design as Secure
Caches for Compartments (SCC).

We describe the hardware architecture of SCC, develop
a formal model based on operational semantics to prove its
security and evaluate its performance using the gem5 cycle-
accurate microarchitectural simulator. Our results show that
protection from cache side-channel attacks can be achieved
with 7% performance loss on average for compartmentaliza-
tion schemes that support coarse-grained memory protection.
SCC incurs area and power overhead below 1%.

2 Threat Model and Assumptions

We consider compartmentalized programs where compart-
ments are mutually mistrusting. Specific attacks that we
consider include the following code components vulnera-
ble to side-channels: browser clients [30, 64, 77], cloud ser-
vices [71], compromised shared libraries [32, 37, 86, 95],
APIs [30, 64], untrusted OS [12, 37, 61], virtual machines
[32,44,102], as well as enclaves in TEE systems such as Intel
SGX [12, 20, 29, 51, 61, 62, 100].

Figure 1 shows four recent cache-based attacks in multi-
component systems. Figure 1(a) shows a scenario where two
threads of a program run on a Simultaneous Multi-Threading
(SMT) core and leak sensitive information from the victim to

Threads
Attacker Thread

probe:

ld1

ld2

...

time = rdtscp();

...

Insecure Victim

Thread

L1 Cache

...

encrypt();

...

(a) Same-program threads
or code components leaking
through the L1 cache either
through parallel accesses or
subsequent calls [12].

Browser
Malicious

Third-Party

Website

cache_sweep:

...

occup_analysis:

...

Benign

Third-Party

Website

non_secure_proc:

...

Last-Level
Cache

(b) Browsers can execute ma-
licious client code that probes
cache occupancy to extract a fin-
gerprint [77].

Compromised

Third-Party

Graphics Library

non_secure_proc:

inst1

inst2

...

Victim Code

...

// keystrokes

non_secure_proc();

...

Attacker Code
clflush &inst1

clflush &inst2

...

non_secure_proc();

time = rdtscp();

inst1

inst2

...

Physical
Code

Segment Last-Level
Cache

(c) A library accessed by multiple callers
can cause collisions in the cache [86].

System
Untrusted

OS Kernel
prime();

single_step_int

probe();

Victim Program
work:

operation_0();

operation_1();

operation_2();

.

.

.

L1 Cache

(d) Adversarial OS probing high-
level caches [37].

Figure 1: Variations of cache side-channel attacks in multi-
component software environments.
the attacker in a TEE-based system [12]. Figure 1(b) shows a
cache occupancy attack where malicious client code probes
total cache occupancy, obtaining a fingerprint of the website
being accessed by the victim [77]. Figure 1(c) shows an attack
in which an attacker invokes functions in a graphics library
to infer timing information about other callers by probing
the time it takes to complete utility functions [86], inferring
their keystrokes. Finally, Figure 1(d) illustrates an attack in
which the untrusted OS utilizes single stepping to control the
victim workflow and probe each operation [37]. Even though
compartmentalization schemes take security measures against
an adversarial OS, none assumes an OS that exploits external
library dependencies for cache attacks. Therefore, we develop
systems to protect caches even under kernel interrupts.

We do not consider cross-compartment leakage that can
occur through program direct/indirect flows. For example,
if a secret value is used to control the access to data that is
shared between the victim and the malicious compartments,
the secret-dependent access patterns to shared data can be
established by the attacker without side channels. We assume
that it is the responsibility of the baseline compartmentalized
system to avoid such leakage either through programming or
compiler support [34, 59].

3 Mitigating Cache Side-Channel Attacks on
Compartments: SCC

Conventional programs perform arbitrary accesses to data
within their user-level address space without authorizing the
permissions of the code components, a model called ambient

compartment_0()

{

 start_compart(0);

 //...

 access D1;

 //...

 call D4;

 //...

 end_compart(0);

}

//...

compartment_1()

{

 start_compart(1);

 //...

 access D3;

 //...

 access D1;

 call D4;

 //...

 end_compart(1);

}

//...

Unified L2 Cache
Ways

S
ets

D0
D1
D2
D3

D0
D1
D2
D3

D0
D1
D3
D4

A
m

bient A
rea

HDT

DRT

ADR

Compartmentalized
Process Thread

(Running Compartment 0)

Cache
Partitions

Permission
Composition

of Compartments
Remapping
Logic of SCC
in L1 Data

Cache

TLBs

VA0 PA0

VA1 PA1

VA2 PA2

VA3 PA3

D1

Translations Dom.

D0

D1

D4

Core Layout

: Compartments and SCC logic

: Memory domains and partitions

: Baseline HW/SW and Ambient Logic

: Access Permissions

: HW/SW inherited from previous SC
 schemes

Logical View of
the Physical Memory

Compartmentalized
Program

C
o

m
p

a
rt

.
0

C
o

m
p

a
rt

.
1

Dom
ai

n
0

(C
od

e)

Dom
ai

n
1

Dom
ai

n
2

(C
od

e)

Dom
ai

n
4

(L
ib

ra
ry

)

Dom
ai

n
3

Am
bi

en
t

Pag
es

 VA PAD0

MMU
Permission Table

D0 D1 D2 D3

1 1 0 0

0 1 1 1

D4

1

1

Compar. 0

Compar. 1

Page Walker Logic

L1 Data
Cache

Ways

S
ets

A
m

bient A
rea

HDT

DRT

ADR

L1 Instruction
Cache

Ways

S
ets

A
m

bient A
rea

HDT

DRT

ADR

D1

D3

D1

D3

D0
D4
D2
D4

D0

D2

D0

Figure 2: SCC Overview: code compartments, memory domains, permissions, and cache partitions.

authority. However, the ambient authority model exposes the
program to potential attacks if any of its untrusted compo-
nents is compromised. Software Compartmentalization (SC)
is an emerging paradigm that is designed to mitigate secu-
rity issues of ambient authority by segregating privileges of
different code components by structurally modifying the pro-
gram [7,16,26,34,50,53,59,63,65,72,75,82,84,85,90,97,104].
The components of the program are disassembled into iso-
lated entities called compartments. To control access rights
of these compartments, memory is divided into subregions,
where each region is associated with a set of permissions
given to compartments. SC literature refers to these memory
regions using different terms; we use domains. SC systems
typically allow domains and ambient memory areas (areas
unprotected beyond traditional means) to coexist, assuring
compatibility with legacy code. Each domain is associated
with a set of permissions that define specific compartments
that are allowed to access data in that domain. This allows
domains to be exclusively allocated to specific compartments
while being isolated from other compartments. In this sec-
tion, we describe SCC - an architecture that augments SC
memory protection schemes with secure cache hierarchies
(based on cache partitioning) to thwart in-process cache-based
side-channel attacks.

Figure 2 depicts the high-level overview of SCC and the
relationship between compartments, domains, and cache par-
titions. This example considers a process with two compart-
ments and five domains. Domains D0 and D2 are exclusive
code domains belonging to compartments C0 and C1, respec-
tively. D1 is a data domain and is shared by C0 and C1. D3
is an exclusive domain that belongs to C1. D4 is an external
library code domain that is accessible by both compartments.
We also assume that the system allows ambient code to coexist
with protected compartments at runtime.

SCC partitions the cache space based on memory domains
rather than code components (i.e. compartments), an approach
detailed in Section 3.2. To support isolation of domains in
caches, SCC equips each cache with three hardware struc-

tures: 1) Domain Remapping Table (DRT) - the structure that
keeps the address remapping metadata (Section 3.1), 2) Ac-
tive Domain Register (ADR) - the structure that maintains a
single recently used entry from the DRT for optimization pur-
poses (Section 3.1), and 3) Horizontal Domain Table (HDT)
- the structure that enables horizontal compartmentalization
(Section 3.3). These structures are used in combination to
direct memory domain accesses to their respective cache par-
titions. SCC implements set-based partitioning for scalability,
where each partition is composed of several consecutive sets,
and the number of sets in a partition is a power of two.

The cache ways are statically divided into areas, one for
domain-specific data and the other for ambient data. For ex-
ample, in the L1 data cache, two partitions are designated for
domains D1 and D3 in ways 0 and 1, while ways 2 and 3 are
reserved for the ambient area. Allocating separate space for
the ambient area allows ambient accesses to be unimpacted
by the partitioning logic and preserves the performance of
program sections that rely on ambient authority.

SCC ensures seamless compartment switches by retaining
partitions in the cache. When a compartment is switched out,
its private domains are preserved in the cache for future use
as long as the cache capacity is not exceeded, avoiding un-
necessary cache evictions. In the scenario shown in Figure 2,
compartment C0 is currently running on the core, and the
private domain D3 (along with its associated data) is stored in
the cache. This allows low-overhead compartment switches
as compartment C1 does not have to reallocate its domains
and repopulate the cache once it starts executing.

The permission configuration for the domains is stored
in a permission table integrated into the MMU. This table
resembles the mechanisms used by other SC schemes with
some important differences [7, 16, 75, 85]. Permission tables
are typically used for boundary checks during page walks.
This implies that recently used domain permission metadata
is kept in some form of cache for performance reasons. These
caching mechanisms can be implemented in the form of dedi-
cated hardware structures [75], TLB extensions [7], or a com-

bination of both [85]. SCC uses a TLB-based approach, where
TLB entries are extended to contain domain metadata along
with address translation information (Section 3.1).

3.1 Latency-Aware Partitioned L1 Caches

Cross-compartment attacks primarily target the L1 caches, as
co-location is naturally established when both the attacker
and the victim operate within the same process. Since L1
caches are on the critical path of execution in modern proces-
sors, the timing impact of securing them must be low. One
simple and low-complexity mitigation strategy for protecting
L1 caches is to flush them during switches between mis-
trusting parties (compartments). While flushing L1 caches
is feasible for regular programs with monolithic threat mod-
els [3, 11, 28], it entails significant performance degradation
for compartmentalized programs. The reason is that frequent
cross-compartment calls result in severe underutilization of
the cache space (shown in Appendix 2) and low hit rates, due
to frequent cache flushes. Figure 18 (in Section 5.2) shows
the performance impact of flushing caches on compartments
for our benchmarks - on average, there is 60% performance
degradation.

To support secure L1 caches without relying on flushes, we
propose latency-aware partitioning. To implement this, the
original cache addresses have to be remapped to the addresses
within a targeted partition. To this end, SCC maintains a hard-
ware structure called Domain Remapping Table (DRT). Each
entry in the DRT consists of three fields: domain metadata,
partition ID, and partition mask. When a domain is accessed,
the DRT is consulted to determine its location in the cache.
Since the DRT access is needed to determine the partition set
index, it adds to the latency of L1 cache accesses.

Figure 3 shows the timeline of a cache access with
SCC compared to the traditional Virtually Indexed Physi-
cally Tagged (VIPT) L1 caches. In the baseline VIPT, cache
access is overlapped with a TLB access by using bits from
the virtual address directly to index the cache set (Baseline
VIPT in Figure 3). With domain-oriented partitioning of SCC,
determining which physical page (and thus, the domain ID)
is being accessed is only possible after the address translation
completes either through a TLB access or through a page
table walk. Therefore, the DRT access occurs only after the
TLB access is complete, and the cache access itself can only
start after the DRT access is complete (Unoptimized SCC in
Figure 3). The result here is sequential access to the TLB,
the DRT, and the cache, likely resulting in two additional cy-
cles to the L1 cache access compared to the baseline VIPT
cache. This has a significant performance impact. To address
this problem, we observe that domain accesses typically ex-
hibit a strong locality of references: the ID of the accessed
domain is very likely to match that of the previous access.
We can therefore predict that the same domain ID will be
used again and speculatively perform the access before the

Unoptimized
SCC

Cache Set
Access

TLB Access

Cache Tag
Matching

TLB Access DRT Access
Cache Set

Access
Cache Tag
Matching

Cache Set
Access With

ADR

TLB Access
ADR
Hit?

y
e
s

n
o

Cache Tag
Matching

DRT Access
Cache Set

Access
Cache Tag
Matching

Time

Baseline
VIPT

SCC With
ADR

Figure 3: Timeline of a cache access under different scenarios.

TLB translation is completed. To support such predictive ac-
cesses, SCC maintains a register that holds the most recently
accessed DRT entry. This register is called an Active Domain
Register (ADR). In case of domain mispredictions, the correct
DRT entry is retrieved and is recorded in ADR (SCC with
ADR in Figure 3). This optimization eliminates sequential
TLB→DRT→cache assesses and only adds two gates to the
critical path compared to VIPT caches.

Figure 5 shows the domain prediction accuracy with ADR
for L1 instruction (left plot) and data (right plot) caches.
The L1 instruction cache has above 90% prediction accu-
racy across all programs. However, the ADR hit rate of the
data cache is workload-dependent as domains are more fre-
quently switched in the data space. Indeed, workloads with a
high number of domains such as lame, jpeg, rijndael, and nab
exhibit higher misprediction rates: 31%, 30%, 68%, 32%, and
32% respectively. The increased latency introduced during in-
struction fetch (during L1 instruction cache accesses) is more
critical for performance due to the pipeline stalls. At the same
time, the extra cycles required for L1 data cache accesses
can often be hidden by out-of-order execution. Performance
results presented in Section 5.2 account for all these effects.

SCC inherits TLB entry extensions proposed by prior
work [7, 85]. The metadata kept in these additional fields
of the TLB entries are implementation-specific; these can be
details such as protection keys or capabilities depending on
the compartmentalization scheme. This is orthogonal to the
cache protection (the main goal of this work) but is needed
for the complete design to work.

Figure 4 depicts the cache access dataflow for a 4-way and
16-set L1 cache with four partitions. As shown in 1 , the VIPT
cache access starts at the same time as the TLB access. For the
set index to fit into a location within the partition boundary,
SCC transforms the set index into the effective set index
through a partition ID and a partition mask. Annotation 2
depicts the combinational logic used to remap accesses within
the partition. The higher bits of the set index are omitted
by using the active partition mask. This operation creates a
partition offset, which then gets prefixed by the partition ID
to generate the effective set index. This extension adds only
two simple gates to the logic. In Section 5.3, we demonstrate
how the latency of these two gates can be hidden behind the
banking and subarray access logic of a typical L1 cache.

L1 Cache
Ways

S
e
ts

Virtual Address

Physical Address

TLB

Tra
n
sla

tio
n
s

VA0 PA0

VA1 PA1

VA2 PA2

VA3 PA3

D0

D1

D2

D3

D1

Translations Dom.

D0

D2

D3

Active
Domain

Metadata

Active
Partition

ID
D1 0100

Active
Partition

Mask

VA1 PA1 D1 =?

Virtual Tag set idx

0011

Physical Tag set idx

D0

D1

D2

D3

Tag
Matching

Domain
Metadata

Partition
ID

D1 0001
D0 0000

D2 0010
D3 0011

Domain
Remapping Table

1

2

4

3

A
m

b
ie

n
t A

re
a

0011
0011

0011
0011

Partition
Mask

Active Domain
Register

Figure 4: L1 Cache Access Flow in SCC.

la
m

e
jp

eg
su

sa
n

di
jk

st
ra FF
T

rij
nd

ae
l

sh
a

Co
re

M
ar

k
gs

m
m

cf
lb

m
na

b xz

Benchmark

0
10
20
30
40
50
60
70
80
90

100

AD
R

H
it

 R
at

e
(%

)

L1 Instruction Cache ADR Hit Rate

la
m

e
jp

eg
su

sa
n

di
jk

st
ra FF
T

rij
nd

ae
l

sh
a

Co
re

M
ar

k
gs

m
m

cf
lb

m
na

b xz
Benchmark

0
10
20
30
40
50
60
70
80
90

100

AD
R

H
it

 R
at

e
(%

)

L1 Data Cache ADR Hit Rate

ADR Hit ADR Miss

Figure 5: ADR hit rate for L1 caches.

After the set index remapping operation completes, the
new index now points to the appropriate partition. Note that
ambient accesses go through the traditional set indexing logic
and do not incur any additional access latency. Since cache
partitions have fewer sets than the entire cache, larger tags
are required in combination with smaller indexes to avoid tag
aliasing. This is common to all set-based cache partitioning
schemes [3, 73, 81]. We evaluate the area overhead incurred
by additional tag bits in Section 5.3.

The correctness of the domain prediction must be verified
after the TLB entry is accessed, as shown in 3 . If the domain
metadata field within the TLB does not match the ADR, then
the access has to be aborted and repeated for the correct do-
main. In this case, the DRT is accessed to retrieve the actual
domain’s partition ID to be placed in the ADR as shown in
4 . ADR mispredictions impact performance, but they do not
occur frequently.

ADR speculations do not cause leakage across domains
since cache accesses through the ADR do not fetch data into
a register until the domain security check is complete. ADR
accesses only target a speculated cache block, and the ac-
cess is invisible to software until the value is written to a
register. However, it is possible to infer the last accessed do-
main by probing the access latency differences caused by the
ADR. Therefore, the ADR must be flushed upon compartment
switches to prevent cross-compartment leakage.

3.2 Domain-Oriented Cache Partitioning

Isolation schemes that target monolithic software typically
assume that page sharing between programs is minimal or non-
existent. This allows such systems to tolerate the infrequent
delegation overhead when data sharing is needed [60, 98].
However, with our threat model, compartments access com-
mon pages through varying sets of permissions and continu-

C1 C2 C3

Execution Timeline

L1
 C

a
ch

e

Part-C1
x

Part-C2 Part-C3

L2
 C

a
ch

e

Part-C1
x

Part-C2 Part-C3

store1 load4

x x

writeback2

evict3

(a) Subsequent compartments
will use common data lines,
which renders partitioning on a
compartment level infeasible.

C1 C2 C3

Execution Timeline

L1
 C

a
ch

e

Part-P1 Part-P2 Part-P3

L2
 C

a
ch

e

Part-P1 Part-P2 Part-P3

store1

Part-P1

Part-P0

x

x

load2

(b) When partitions are estab-
lished, data lines are mapped to the
same boundary regardless of com-
partment.

Figure 6: Compartment-oriented partitioning vs DOP.

ously interact with one another (after all, they are part of the
same process). This means that SCC should allow flexible
sharing among compartments while complying with permis-
sion composition. Compartments may have exclusive and
shared partitions coexisting in the cache as separate domains.

Figure 6(a) shows the leakage and performance inefficien-
cies caused by having a single domain per compartment. In
this example, compartments C1, C2, and C3 all have permis-
sion to line X and are executed in that order. C1 writes to X
and then gets switched by C2, which loads line X again. Since
all compartments have access to X, X should be written to
all partitions of other compartments, introducing both perfor-
mance and security issues. From a performance standpoint,
multiple lines must be written back to multiple partition do-
mains, increasing cache pressure. From a security perspective,
write-backs may evict lines from exclusive pages, creating
opportunities for attackers to extract cross-domain eviction
sets.

In response, we introduce the notion of Domain-Oriented
Partitioning (DOP). As opposed to compartment-oriented
partitioning, DOP ensures that caches provision partitions that
are allocated per domain rather than per compartment. Figure
6(b) shows an example of DOP, where four partitions with
different permissions coexist in the cache: P0 is a partition
shared by all compartments, and P1, P2, and P3 are private
partitions for compartments C1, C2, and C3 respectively. If
X is written to the shared partition P0, it does not evict X
from any private partitions, as evictions are limited only to
partitions with the same permission composition.

When a new domain is introduced to the system, the parti-
tion layout of caches has to be dynamically readjusted. While
each introduction (or deletion) of a domain results in flush-
ing of some part of the domain area of the cache to make
space, other permission operations such as permission grants,
revocations, transfers, and page allocations do not affect the
partition layout.

To integrate a new partition into the cache, SCC shrinks
the size of the largest currently allocated partition by half and
allocates the new partition to the newly freed-up area. If all
partitions have the same size, SCC shrinks the oldest allocated

partition. Since the partition size only depends on the current
layout configuration, it does not leak any secret-dependent
information.

We illustrate the partition layout reorganization process in
SCC in Figure 7, where domains are progressively introduced
to a cache with 16 sets. During the allocation of a new par-
tition, only the bottom half of the victim partition has to be
flushed and the rest of the cache remains intact. For example,
when D1 is allocated, the lines in sets 8 to 15 are evicted and
invalidated, while sets 0 to 7 continue to retain data from par-
tition D0; those lines do not need to be evicted or reallocated
in the cache because their addressing does not change. All
changes occurring during layout reorganization are reflected
in the DRT to maintain consistency.

While the partition allocation process may leak informa-
tion, this leakage is coarse-grained and not dependent on
secret data, as established in Section 2. Furthermore, the leak-
age is bounded by the number of domains that are maximally
created for a given application. For example, if only 8 do-
mains are used, then only 8 layout adjustments will be made,
most likely in the initial stages of the execution. Once all
domains are allocated, they will remain in the cache without
further reorganization throughout the rest of the execution.
Although the resizing-induced leakage is small and difficult
to exploit, it can be mitigated by various techniques such as
decoupling the timing of partition allocation decision from
actual allocation [103] or even pre-allocating partitions ahead
of time.

SCC can be integrated with several specific SC implemen-
tations. Table 1 summarizes these schemes. SCC supports
page, range, and VMA-level granularity schemes. Prior works
on process-level cache isolation [3, 5, 21] demonstrated effec-
tive schemes for managing cache partitions across multiple
cache levels. We discuss how SCC can be integrated with
multi-level cache isolation schemes in Section 3.4. Current
SC schemes typically impose a hardware limit on the number
of memory domains. For example, the maximum number of
domains supported by Intel MPK [42] (also the same as ARM
Memory Domains [4]) and IBM Power [40] are 16 and 32
respectively. Our current implementation also imposes similar
limits on the number of cache partitions (we assume the limit
of 64 in our evaluations).

In multi-threaded executions, the same compartment—a
code entity—could potentially be called from different threads
with multiple concurrent instances. If they happen to inter-
leave, race conditions would occur for DRT maintenance. To
address this, SCC seals (i.e., locks) the compartment upon its
entry and unseals (i.e., unlocks) the compartment upon its exit.
This is implemented by extending the domain metadata with
a seal bit. Sealing/unsealing ensures correctness for SCC, and
interestingly, pays a minimal price in performance. The latter
is due to the fact that it SCC, if a compartment is meant to be
called from multiple threads, horizontal compartmentalization
is used, as we shall see next.

Ways

S
e
ts

A
m

b
ie

n
t A

re
a

Domain
Metadata

Partition
ID

D0 0000

DRT

1111

Partition
Mask

D0

Ways

S
e
ts

A
m

b
ie

n
t A

re
a

Domain
Metadata

Partition
ID

D1 1000
D0 0000

DRT

0111
0111

Partition
Mask

D0

Ways

S
e
ts

A
m

b
ie

n
t A

re
a

Domain
Metadata

Partition
ID

D1 1000
D0 0000

D2 0100

DRT

0111
0011

0011

Partition
Mask

D1 D1

D0

D2

Ways

S
e
ts

A
m

b
ie

n
t A

re
a

Domain
Metadata

Partition
ID

D1 1000
D0 0000

D2 0100
D3 1100

DRT

0011
0011

0011
0011

Partition
Mask

D0

D2

D3

D1

Figure 7: Partition layout reorganization when four domains
are created sequentially.

SC System Granularity Dom. Management Design Space
CODOMs [85] Range/Page* Hardware Capability/MMU

Donky [75] Page OS/Hardware MPK/MMU
LOTRx86 [53] Page OS/Hardware MPK/MPX/MMU

MemSentry [50] Page/Byte** Compiler/ Hardware MPK/MPX/MMU
Nested Enclaves [65] Page Hardware SGX/MMU

SecureCells [7] VMA Hardware MMU
Shreds [16] Range OS/Compiler MMU

*Hybrid granularity. **Depends on the configuration.
Table 1: SC mechanisms compatible with SCC.

3.3 Horizontal Compartments in Caches

Programs that utilize shared libraries (or call common code)
can leak sensitive information through caches even when the
two callers share no pages. [33,86,95]. We illustrate this issue
in Figure 1(c) in Section 2, where two caller compartments
invoke the same function in a shared library. Depending on
the victim code’s function arguments, different instructions
from the library are executed (and therefore brought into
the instruction cache). By measuring the timing of its own
subsequent call to this common function, the attacker can
deduce which input-dependent instructions have been fetched
into the cache by the victim code [86]. This leakage may
also be possible through two objects from the same class
invoking the same member function. Furthermore, library call
leakage persists even when compartmentalization and cache
partitioning are deployed since partitions assigned to a library
code still maintain the same code instance for all callers.

To mitigate this problem, we propose to create a separate
partition in the instruction caches for each caller. The general
concept is known as horizontal compartmentalization in the
SC literature [34]. We extend this notion to cache partitions
to mitigate library call leakages at the cache level. SCC sup-
ports manual annotation for publicly used code areas (such as
libraries or APIs) to be horizontally compartmentalized.

We call each compartment with this feature en-
abled HComp. We extend the baseline ISA to include
horiz_compart operation. This instruction allows the pro-
grammer to annotate necessary address boundaries within
the code segment as an HComp. This instruction also noti-
fies the cache subsystem to treat accesses from HComps to
map to different domains called HDoms. Access to HDoms
is determined by the caller’s identity. HDoms are entirely
managed by the SCC hardware and are not defined by the
compartmentalization framework or the rest of the system.
Due to the possibility of a diverse range of callers, SCC has a
hard limit on the number of co-existing HDoms for a single

Cache

HDom-1

HDom-2

0x63:compart_callee(*args){
 start_horiz();
 // ...
0x94: end();
 }
 // ...
0xba:caller_1()
 {
 //...
0xbf: compart_callee(...);
 //...
 }
0xd7:caller_2()
 {
 //...
0xf3: compart_callee(...);
 //...
 }

ca
ll

HDom Table

HDom1
HDom2

0xf3

...

...

0xbf

Dom. X

DRT

...

...

...

...

H
C

o
m

Active
Domain

Metadata

Active
Partition

ID
Dom. X 0001

Caller
PAddr
0xf3

(replace)

Domain X
0000
0001

0001
(replace)

...

Dom. X
Dom. X

Caller
PAddr

Horiz.
Domain ID

Partition
ID

Domain
Metadata

ADR

Figure 8: Horizontal compartmentalization of an HComp
library in the cache.

domain. This may require occasional flushes in caches.
Figure 8 depicts how common code invocations from differ-

ent callers are remapped into separate partitions. In the figure,
there are two callers to the code compart_callee, which has
two HDoms allocated for it. Here, caller_2 makes the call
before caller_1. Therefore, the ADR contains an outdated
metadata. To avoid access collision, we include the physical
address of the caller instruction in the ADR to indicate the
caller’s identity. Upon being called, the HComp at address
0x63 accesses an additional hardware called the HDom Ta-
ble (HDT). The HDT maintains the caller’s physical address,
HDom ID, partition ID, and domain metadata in each entry
to verify access validity. In the example, Domain X has two
HDoms since there are two callers to the callee. Accesses to
HDoms are redirected to the HDT first rather than the DRT.
After the HDT entry is read, the DRT and ADR are updated
with the correct partition ID. This process enables caches to
divert subsequent accesses within HDom without additional
latency. If the HComp has not previously allocated a domain
for the caller compartment, it allocates a new entry (thereby a
new HDom) in the HDT. Caches flushes are not incurred as
long as the HDom cap is not reached. Note that the ADR was
augmented with the caller’s physical address as a new field.

This mechanism is applicable exclusively to read-only
cache lines, where aliasing and data coherence do not present
problems. However, write requests to any horizontal partition
trigger a full flush of other partitions of the corresponding
HDom. This guarantees that dirty and outdated instances of a
cache line are not simultaneously retained in the cache.

3.4 Integration with Shared Caches
SCC can be seamlessly integrated with secure shared
caches [3,5,21]. In this case, domain-level partitions is nested
within traditional process-level partitions (PLPs) that isolate
processes from each other. This approach enforces both inter-
process and intra-process permission compositions while
maintaining isolation within the cache hierarchy.

This approach is illustrated in Figure 9, which shows two
compartmentalized processes running on separate cores that
share a last-level cache (LLC). Each isolated process is as-
signed a PLP, containing multiple domain-level partitions. To

PLP-1

Last Level Cache
PLP-0PRTs

(per core)

PLP-0
Metadata

PLP-1
Metadata

Domain A0

Domain B0

Domain C0

Domain D0
DRTs

(per core)

Process 0
Core 0

Compart.
Compart.

Compart.

Private Cache

Domain A0

Domain B0

Domain C0

Domain D0

Domain A1

Domain B1

Domain C1

Domain D1

Core 1
Process 1

Compart.
Compart.

Compart.

Private Cache

Domain A1

Domain B1

Domain C1

Domain D1

Figure 9: Integration of SCC with shared caches

enforce PLP boundaries, the LLC maintains per-core PLP
metadata (remapping tables). In SCC, these tables are only
used during the allocation of domain-level partitions to ensure
that they are confined within the corresponding PLP. Once a
domain-level partition within a PLP is allocated, the existing
structures of SCC (DRTs and ADRs) are used to perform
cache accesses without going through PLP metadata struc-
tures. SCC inherently addresses cache coherence for shared
memory, since partitions are created per memory domain, in-
stead of per compartment, thus avoiding multiple copies of
shared memory locations in the same cache. Other consis-
tency and scalability issues associated with partitioned private
and shared caches can be addressed using mechanisms de-
scribed in TEE-SHirT [3]. SCC does not introduce any new
challenges in this respect.

4 A Formal Security Analysis
We now rigorously establish the security guarantees provided
by SCC. Similar to prior work [3], our approach is to define
the essential cache-aware program behavior through small-
step operational semantics. We present an outline of the for-
mal model here, with a focus on unique aspects of SCC. The
full model is included in the Appendix.

4.1 Definitions
Common Notations Notation xm represents the sequence of
[x1, . . . ,xm] for some m ≥ 0. When the length of a sequence
does not matter, we also shorthand xm as x. We use /0 to
represent an empty sequence and comma (,) as the binary
operator for sequence concatenation. We also call a special
form of sequences, x 7→ x′, a mapping when the elements in
x are distinct. For any mapping M, we use notations M[x 7→
x′], M\x, dom(M), ran(M) to refer to the update, restriction,
domain, and range of M with standard definitions. We say a
sequence X is a non-contiguous subsequence of X ′, denoted
as X ⊑ X ′ iff there exist sequences X1, . . .Xm,Xm+1 such that
X ′ = X1,x1,X2,x2, . . . ,Xm,xm,Xm+1 where X = xm for some
m ≥ 0.

Compartments, Domains, and Permissions We use
metavariable χ ∈ COMPART for compartment labels, ∆ ∈

DOMAIN for domain labels. We define permissions Φ ∈
PERM as a function COMPART⇀ P (DOMAIN). In other
words, Φ represents the entries in the permission table with
value 1. Set COMPART contains a special value ⊥ for am-
bient code. Set DOMAIN contains an (overloaded) value ⊥
for the “ambient domain”, i.e., memory locations accessible
by all compartments, including the ambient code.

SCC Cache Our formal model models the cache hierar-
chy κ by relating single-level cache units ψ. To simplify
formalization, we associate identifiers to single-level cache
units (λ ∈ CU) and CPU cores (q ∈ CORE). Following prior
work [3], a cache hierarchy is captured by a static mapping
H : CU∪CORE→ CU∪{⊤}, which maps a “child” cache
unit in the cache hierarchy to its “parent” cache unit, where a
“child” cache unit is closer to the CPU core than its “parent”.
For completeness, we use ⊤ to represent the “imaginary” par-
ent of the physical cache unit at the root of the cache hierarchy.
H is a total and surjective function, and the relation it defines
forms a poset. The definitions in this paper are implicitly
parameterized by H.

Each single-level cache is defined as a tuple ⟨F ;V ;C;R⟩,
where R is the metadata support for cache replacement, a struc-
ture deferred to the Appendix. A standard way-set cache C is
a mapping WAY×SET→ STATUS×TAG×DBLOCK.
We use metavariables w,s,vb, t,D to represent the elements
in the 5 sets, and use C to represent the cache. We further call
⟨w;s⟩ a cache block index, and use metavariable c to repre-
sent it. Sets WAY, SET, TAG are subsets of NAT. Status
set STATUS= {VC,VD, IC, ID} contains 4 labels, denoting
the cache block as valid-clean, valid-dirty, invalid-clean, and
invalid-dirty, respectively. Metadata V and F , will be elab-
orated in the next two subsections. Given ψ = ⟨F ;V ;C;R⟩,
and C(c) = ⟨vb; t;D⟩, we define the following convenience
functions for updating various components of the cache:

ψ{c 7→ vb′} △
= ⟨F ;V ;C[c 7→ ⟨vb′; t;D];R⟩

ψ{c 7→ D′} △
= ⟨F ;V ;C[c 7→ ⟨vb; t;D′];R⟩

ψ{c,δ 7→ v} △
= ⟨F ;V ;C[c 7→ ⟨vb; t;D[δ 7→ v]];R⟩

ψ{s 7→ T} △
= ⟨F ;V ;C;R[s 7→ T]⟩

Constant AMBIENT is defined as the lowest way index as-
signed for ambient computations. We define the operator
of invalidation C ≀ c as C[c 7→ ⟨IC; t;D⟩] if C(c) = ⟨VC; t;D⟩,
as C[c 7→ ⟨ID; t;D⟩] if C(c) = ⟨VD; t;D⟩, and C otherwise.
We further define flush(C,s,n) as flushing all n sets of non-
ambient cache, starting from set index s. It is defined as
C ≀ ⟨s;0⟩ ≀ ⟨s;1⟩ . . . ≀ ⟨s;AMBIENT− 1⟩ . . . ≀ ⟨s + n − 1;0⟩ ≀ ⟨s +
n−1;1⟩ . . . ≀ ⟨s+n−1;AMBIENT−1⟩.

Memory Memory µ ∈ BLOCKID → DOMAIN ×
DBLOCK is block-based. Note that each memory block is
associated with a domain ID (DOMAIN). Structurally, a data
block D ∈ DBLOCK maps the offset δ ∈ OFFSET to the
instruction ι ∈ INST (“code segment”), or a piece of data
n ∈NUM (“data segment”). Sets BLOCKID, OFFSET, and
NUM are subsets of NAT.

Given a memory address l ∈ ADDR, we define a bijective
function α : ADDR⇌ BLOCKID×DOMAIN×OFFSET
to compute its block index, domain, and offset. Given a b ∈
BLOCKID, we define a bijective function β : BLOCKID⇌
SET×TAG to compute its set index s and the tage value
t. We use µ{l} for D(δ) where µ(b) = ⟨∆;D⟩ and α(l) =
⟨b;∆;δ⟩. We use µ{l 7→ n} for µ[b 7→ D′] and D′ = D[δ 7→ n]
where α(l) = ⟨b;∆;δ⟩.

4.2 Domain-Based Access with Permissions
We first formalize our DOP design in the cache, followed by
a rigorous definition of permission-based access.

Domain Remapping and DRT DRT plays a central role in
domain-based cache partitioning. We define a DRT (denoted
as V) as DOMAIN → SET×NAT, where s ∈ SET is the
remapped set index for a memory block that would have been
cached to set 0, and n ∈NAT is the size of the cache partition
for the domain is allocated to. The two components have a
one-on-one correspondence with the hardware DRT columns
but are more friendly for formalization.

Example 4.1. Assuming 16 sets, the DRT in the third sub-
figure of Fig. 7 can be defined as [∆D0 7→ ⟨0;4⟩,∆D1 7→
⟨8;8⟩,∆D2 7→ ⟨4;4⟩].

Two key functions are defined over the DRT:

• [DRT Lookup] Function remapped(V, l) computes the
set index (after remapping) and tag for a memory loca-
tion l according to DRT V , defined as ⟨s0+(s mod n); t⟩
where α(l) = ⟨b;∆;δ⟩, β(b) = ⟨s; t⟩, V (∆) = ⟨s0;n⟩.

• [DRT Update] Function updateDRT(V,∆) computes the
DRT after a new domain ∆ requests partitions. The func-
tion computes to V if ∆ ∈ dom(V). Otherwise, it com-
putes to V [∆ 7→ ⟨s;n⟩,∆′ 7→ ⟨s+ n;n⟩] where V (∆′) =
⟨s;n′⟩ and for any ∆′′ ̸= ∆′, V (∆′′) = ⟨s′′;n′′⟩ and n′′ ≤ n′,
and n = n′/2 and n ≥ 1 and n′ mod 2 = 0.

Sealing/Unsealing Metadata F ∈ COMPART is used for
sealing (when it is not ⊥) and unsealing (when it is ⊥).
When sealed, it keeps the ID of the compartment currently
in execution. We define seal(⟨F ;V ;C;R⟩,χ) as ⟨χ;V ;C;R⟩
iff F = ⊥. The function is undefined otherwise. We define
unseal(⟨F ;V ;C;R⟩) as ⟨⊥;V ;C;R⟩.

Cache Access with Permissions At the core of domain-
based access is how a location is accessed through the memory
hierarchy, as regulated by permissions. To use a location
access descriptor τ to capture the intention of access, as a
tuple ⟨l;a;Φ⟩: l is the memory address to access, a is the
mode of access, and Φ is the permissions. The access mode
can be either read (R) or write (W).

Location access through the memory hierarchy is formally
defined in Fig. 10, through the ψ♢τ operator, which says a

τ = ⟨l;a;Φ⟩ ∆ = domain(l)
ψ = ⟨F ;V ;C;R⟩ permissible(∆,Φ,F) remapped(V, l) = ⟨s; t⟩

c = ⟨w;s⟩ C(c) = ⟨vb; t;D⟩ vb = VC or VD T = update(R(s),w,∆)

ψ♢τ
△
= (c,δ,vb,D,ψ{s 7→ T})

τ = ⟨l;a;Φ⟩ ∆ = domain(l)
ψ = ⟨F ;V ;C;R⟩ permissible(∆,Φ,F) remapped(V, l) = ⟨s; t⟩

c = ⟨w;s⟩ C(c) = ⟨vb′; t;D⟩ vb′ = IC or ID w′ = replace(R(s),∆)
c = ⟨w′;s⟩ C(c) = ⟨vb; t ′′;D′′⟩ for some t ′′ and D′′ T = update(R(s),w′,∆)

ψ♢τ
△
= (c,δ,vb, /0,ψ{s 7→ T})

τ = ⟨l;a;Φ⟩ ∆ = domain(l)
ψ = ⟨F ;V ;C;R⟩ permissible(∆,Φ,F) remapped(V, l) = ⟨s; t⟩

∀w ∈ [0..AMBIENT).t ̸= t ′ where C(⟨w;s⟩) = ⟨vb′; t ′;D′⟩ w′ = replace(R(s),∆)
c = ⟨w′;s⟩ C(c) = ⟨vb; t ′′;D′′⟩ for some t ′′ and D′′ T = update(R(s),w′,∆)

ψ♢τ
△
= (c,δ,vb, /0,ψ{s 7→ T})

Figure 10: Permission-based Location-Cache Lookup

cache level ψ in the memory hierarchy is accessed for loca-
tion access descriptor τ. It computes a 5-tuple (c,δ,vb,D,ψ′),
where c is the accessed cache way/set (within the level), δ

is the offset being accessed within the cache data block, vb
is the validity bit after access, D is the data block after the
access, and ψ’ is the cache level itself after access. This 5-
tuple result is consistent with our understanding that when a
cache level is accessed, a particular way/set/offset is where
the access indeed happens, and the access may alter the va-
lidity bit (vb), the data block itself (D), and metadata related
to replacement logic (ψ′). The first subcase of Fig. 10 speci-
fies the cache behavior when the accessed way/set has valid
data (with validity bit being VC or VD); the second subcase
is defined when the accessed way/set has invalid data (with
validity bit being IC or ID); the third subcase is defined for the
scenario where the data is no longer available (tag does not
match). Functions replace and update are related to replace-
ment logic, which we defer to the appendix. Note that in all
3 cases, the remapped function we defined earlier for DRT
lookup plays an important role in cache lookup.

To see domain-based access at work, note that all Fig. 10
cases check permissions before granting access. This is
supported: (1) function domain(l) is defined as ∆ where
α(l) = ⟨b;∆;δ⟩. (2) function permissible(∆,Φ,F) is defined
as ∆ ∈ Φ(F) if F ̸=⊥, or ∆ =⊥ if F =⊥. The latter show-
cases the essence of domain-based access, which we now
illustrate through examples.

Example 4.2 (In-Compartment Access to Domains with Per-
missions). Imagine the execution reaches a state where a com-
partment χ3 is active whose permission Φ is χ3 7→ {∆2,∆5}.
Predicate permissible(∆2,Φ,χ3) is true, i.e., access to ∆2 is
granted. Predicate permissible(∆4,Φ,χ3) is false, i.e., access
to ∆4 is not granted.

Example 4.3 (Ambient Access). Imagine another execu-
tion currently outside compartments (running ambient code).
Predicate permissible(∆,Φ,⊥) holds iff ∆ =⊥, aligned with
our intuition that only the public domain (⊥) is accessible.

cache behavior
(definition in
Appendix)

κ,µ ↪
λ,v,τ−−→

T
κ′,µ′ cache κ and memory µ transitions

to κ′ and µ′ respectively with trace
T, when cache unit λ subjects to ac-
cess defined by access descriptor τ.
v computes the read/write data

intra-threaded
behavior

(definition in
Fig. 11)

κ,µ,ρ,Φ, ι
T−→

q,n

κ′,µ′,ρ′,Φ′

cache κ, memory µ, registers ρ, per-
missions Φ transitions to κ′, µ′, ρ′,
Φ′ respectively while executing in-
struction ι at CPU core q, producing
single-threaded trace T and program
counter offset n

multi-threaded
behavior

(definition in
Fig. 12)

Σ
Ω
=⇒ Σ′ runtime state Σ reduces to Σ′ with

multi-threaded trace Ω

Table 2: Relations

4.3 SCC Operational Semantics
Table 2 summarizes the key relations used to define the op-
erational semantics. The relation in the first row defines the
access behavior of the multi-level memory hierarchy, i.e., the
access propagates through different cache levels. This defini-
tion is standard, except that for SCC, all access is regulated
through domains and permissions through the use of the ♢
operator (§ 4.2). The relations in the second/third rows de-
fine the intra-thread and multi-threaded behavior respectively,
which we detail next.

Runtime State The runtime state (Σ) consists of the cache
hierarchy (κ), the memory (µ), the register file (ρ), and the
thread store (π). The register file maps the register names r ∈
REG to the values n. The program store π :TID→ (ADDR×
CORE×PERM) maps thread IDs (p) to program counters,
the residing CPU cores (q), and the permissions.

Traces We define a trace T as a sequence of trace elements
tr. Each trace element can be a data flow event fe, a branching
event be, a domain allocation event de, or an observable event
(or shorthanded as observation) oe. Given a data store ID
ds ∈ ADDR∪REG, a data flow event ds1 <: ds2 denotes a
piece of data flows from (memory or register) store ds1 to
ds2. A branching event, in the form of ?r, denotes the value
of a register r used as the condition for branching. A domain
allocation event, in the form of ◦∆, denotes that a domain ∆

is allocated in the cache. All these three forms of events are
only used for meta-theory development.

Finally, we define an observation oe as a tuple ⟨ot;c;λ⟩. It
says c residing in cache unit λ is accessed with observation
type ot ∈ {R,W,M}. The identifiers correspond to a hit-read, a
hit-write, and a miss, respectively. To capture multi-threading,
we use the notation tr@p to denote a multi-thread trace el-
ement, where p is the thread where the trace element tr is
incurred. A multi-threaded trace Ω is a sequence of multi-
threaded trace elements. To compute a single-threaded trace
(of thread p) from the multi-threaded one Ω, we define con-
venience function Ω|p as the longest sequence trm where
[tr1@p, . . . , trm@p]⊑ Ω. To compute a multi-threaded trace
from the single-threaded one T of thread p, we define T@p
as [tr1@p, . . . , trn@p] where T = [tr1, . . . trn] for some n ≥ 0.

Reduction Rules Instruction-specific behavior is defined

[CBEGIN]
ρ(r) = χ ρ(r) = ∆

n

κ = λ 7→ ψ
m ⇑∆n ...⇑∆1

ψi = ψ
′
i for i = 1..m κ

′ = λ 7→ seal(ψ′,χ)
m

κ,µ,ρ,Φ,CBEGIN r r ◦∆−→
q,1

κ
′,µ,ρ,Φ[χ 7→ ∆

n
]

[HCBEGIN]
ρ(r) = χ ρ(r′) = ct ρ(r) = ∆

n
η(⟨ct;∆i) = ∆

′
i for i = 1..n

κ = λ 7→ ψ
m ⇑

∆′n ...
⇑

∆′1
ψi = ψ

′
i for i = 1..m κ

′ = λ 7→ seal(ψ′,χ)
m

κ,µ,ρ,Φ,HCBEGIN r r′ r ◦∆−→
q,1

κ
′,µ,ρ,Φ[χ 7→ ∆

n
]

[CEND]
ρ(r) = χ κ = λ 7→ ψ

m
κ
′ = λ 7→ unseal(ψ)

m

κ,µ,ρ,Φ,CEND r /0−→
q,1

κ
′,µ,ρ,Φ\χ

[LOAD]
τ = ⟨l;R;Φ⟩ κ,µ ↪

H(q),v,τ−−−−→
T

κ
′,µ′

κ,µ,ρ,Φ,LOAD l r
T∪{l<:r}−−−−−→

q,1
κ
′,µ′,ρ[r 7→ v],Φ

[STORE]
τ = ⟨l;W;Φ⟩ κ,µ ↪

H(q),ρ(r),τ−−−−−−→
T

κ
′,µ′

κ,µ,ρ,Φ,STORE r l
T∪{r<:l}−−−−−→

q,1
κ
′,µ′,ρ,Φ

[BRTRUE]
ρ(r) ̸= 0

κ,µ,ρ,Φ,BR r r′
{?r}−−−→

q,ρ(r′)
κ,µ,ρ,Φ

[BRFALSE]
ρ(r) = 0

κ,µ,ρ,Φ,BR r r′
{?r}−−→
q,1

κ,µ,ρ,Φ

[WB]
κ,µ →wb κ

′,µ′

κ,µ,ρ,Φ,NOP
/0−→

q,0
κ
′,µ′,ρ,Φ

[NOP]

κ,µ,ρ,Φ,NOP
/0−→

q,0
κ,µ,ρ,Φ

Figure 11: Intra-Thread Reduction Rules

[MULTI]
κ,µ,ρ,Φ,µ(l) T−→

q,n
κ
′,µ′,ρ′,Φ′ µ(l +n) = ι for some ι

κ,µ,ρ,π[p 7→ ⟨l;q;Φ⟩] T@p
===⇒ κ

′,µ′,ρ′,π[p 7→ ⟨l +n,q;Φ
′⟩]

[CONTEXTSWITCH]
q ̸= q′

κ,µ,ρ,π[p 7→ ⟨l;q;Φ⟩] /0
=⇒ κ,µ,ρ,π[p 7→ ⟨l;q′;Φ⟩]]

Figure 12: Multi-Threaded Reduction Rules

V ′ = updateDRT(V,∆) C′ = flush(C,V ′(∆)) if V ′ ̸=V

⇑∆ ⟨⊥;V ;C;R⟩ △
= ⟨⊥;V ′;C′;R⟩

Figure 13: Allocation in a Single-Level Cache

in Fig. 11. Our formal system defines the behavior of the
compartment access ([CBEGIN] for its entry and [CEND] for its
exit), memory/cache access ([LOAD] and [STORE]), and control
flow ([BR]). Unconditional jump can be encoded through [BR].
[HCBEGIN] is a variant of compartment entry, for horizontal
compartments. For convenience, we further include a “no-
op” instruction [NOP], purely to facilitate (modular) formal
development: with it, the moment of write-back does not
have to be tethered to another instruction (such as [LOAD] or
[STORE]), but as a separate rule [WB], i.e., whenever [NOP] is
allowed and a dirty cache data block is available. The behavior
of write-back is specified through the →wb relation, whose

predictable definition is deferred to the appendix.
The most interesting instructions are related to compart-

ment access. In [CBEGIN], note that the operator for domain-
based cache allocation is defined in Fig. 13. It updates the
DRT if the domain is not already allocated, and flushes the
newly allocated sets. The function is only defined when the
cache is unsealed. Entering a horizontal compartment, as
shown in [HCBEGIN], is similar to [CBEGIN], except that its sec-
ond argument now carries the context ct ∈ CONTEXT, as a
generalization of the caller address. Operationally, the key dif-
ference here is that domain identifiers are “refreshed” through
a function η : CONTEXT×DOMAIN → DOMAIN. The
definition of η does not matter so long as it is injective. The
[LOAD] and [STORE] instructions rely on the cache behavior
relation we described in Table. 2. The most relevant fact to
the discussion here is that location access is regulated with
domains and permissions as described in § 4.2.

The multi-threaded behavior is defined over the intra-
threaded semantics, with details in Fig. 12, through relation
=⇒. We further use =⇒∗ to represent the reflexive and transitive

closure of =⇒. Rigorously: (1) If Σ
Ω
=⇒ Σ′, then Σ

Ω
=⇒

∗
Σ′. (2) If

Σ
Ω
=⇒ Σ′ and Σ′ Ω′

=⇒
∗

Σ′′, then Σ
Ω,Ω′
===⇒

∗
Σ′′. Here, rule [MULTI]

says the (global) configuration takes a step of reduction if any
of the threads takes a step. Observe that the program counter
is updated. [CONTEXTSWITCH] is a simple rule to capture a
realistic behavior in systems: the scheduler may migrate a
thread from one core to another.

4.4 Metatheory

Definition 4.1 (Trace Realizability). Predicate Σ ⊢p T says
that T is a possible per-thread trace with initial state Σ. It

holds iff there exists Σ′ such that Σ
Ω
=⇒

∗
Σ′ and T = Ω|p.

Definition 4.2 (Accessibility). We say thread p can access
the domain ∆ with initial state Σ iff there exists some T such
that Σ ⊢p T and (◦∆) ∈ T.

Next, let us introduce the notion of a guardian. The intu-
ition behind it is that the value such a memory location holds
may flow to the condition of a branching instruction (?r as
trace element), which subsequently guards whether domains
are dynamically allocated (◦∆ trace element). Here, observe
that we consider the general case where the data flow and
branching may span multiple threads (p0, . . . , pn+2):

Definition 4.3 (Guardian). We say location l is a guardian
(for some domain allocation) with initial state Σ iff there

exist Σ′, Ω s.t. Σ
Ω
=⇒

∗
Σ′ and [(l <: fe1)@p0,(fe1 <:

fe2)@p1, . . . ,(fen <: r)@pn,?r@pn+1,(◦∆)@pn+2]⊑ Ω for
some fe1, . . . , fen, p0, . . . , pn+2, r, ∆, and n ≥ 0.

For the following theorem, we define convenience operator
Σ[l 7→ n] for memory update in the runtime state as ⟨κ;µ{l 7→
n};ρ;π⟩ where Σ = ⟨κ;µ;ρ;π⟩.

Theorem 4.1 (Immunity to Side-Channel Attacks). Given
Σ = ⟨κ;µ;ρ;π⟩ and some l where α(l) = ⟨b;∆;δ⟩, and p that
cannot access ∆ with initial state Σ, then the two are equiva-
lent for any n1 ̸= n2 if l is not a guardian: (1) Σ[l 7→ n1] ⊢p T;
(2) Σ[l 7→ n2] ⊢p T.

The property here is defined through trace indistinguishabil-
ity: for any “secret” data in location l that the (attacker) thread
p does not have permission to access, the attacker cannot rely
on the difference in traces — including the observations of
cache hit and cache miss, or read or write — to infer the secret
value. Note that this result is general in that it considers the
possibility of non-determinism: it subsumes that from one
initial state, more than one trace is possible, a norm in multi-
threaded shared-memory programming. Furthermore, it does
not require terminism in thread execution: T can be in infinite
length.

5 SCC Evaluation: Methodology and Results

We implemented SCC in gem5 cycle-accurate architectural
simulator [8]. We manually compartmentalized a number
of benchmarks: four from the SPEC2017 suite [15] (all the
ones written in C, except for gcc, which has over 1 million
lines of code [79]), eight from MiBench [36] suite and Core-
Mark [27] benchmark. The MiBench and CoreMark bench-
marks were run to completion. We fast-forwarded SPEC 2017
benchmarks for 100 billion instructions and then performed
cycle-accurate simulation for the next one billion instruc-
tions. Caches were also warmed up during the fast-forwarding
phase.

Figure 14 illustrates our experimental methodology, which
involves four steps. We used the LLVM-based [52] SOAAP
framework [34] to annotate security-critical variables in these
applications (Step-1). For each variable, SOAAP generates
a list of functions that use it (Step-2), and these functions
are then encapsulated in a compartment using gem5 pseudo-
instructions (Step-3). Specifically, we added three pseudo-
instructions to gem5: start_compart, end_compart, and
horiz_compart. Start/end instructions take a compartment
ID value, and horizontal compartmentalization instructions
take a virtual address as their arguments. The virtual address is
translated at runtime before the corresponding page is marked
as a common callee by the hardware. Appendix describes the
rationale and specifications (in Table 1) for compartmentaliz-
ing our target benchmarks in detail.

Our methodology involves two separate runs for each
benchmark: the first run generates the permission table, while
the second run executes a compartmentalized application man-
aged by the extracted permission table (Step-4). Permission
table generation is accomplished by tracing memory pages

Hardware Parameters
Core 2GHz x86 ISA (extended with compartmentalization instruc-

tions) Out-of-Order core modeled after Skylake µarch
Cache

Hierarchy
Snooping-based MOESI coherence policy, inclusive write-
back caches

L1I/D Caches 32KB total size, 8-ways, 2-cycle access and response latency
(4-cycle roundtrip)

L2 Cache 1MB total size 16-ways, 12-cycle access and response latency
(24-cycle roundtrip)

DRAM 32GB size, 4GB channel capacity, DDR4-2400 x64 channel,
4 devices per rank, 1 rank per channel, 1GB per device (50ns
average roundtrip latency)

Table 3: Simulation parameters.

Permission Table
D0 D1 D2 D3

1 1 0 0

0 1 1 1

D4

1

1

Compar. 0

Compar. 1

S
t
e
p
-
4

Step-1

S
t
e
p
-
2

Step-3

Figure 14: SCC Experimental Methodology.

accessed by each compartment. Pages sharing the same per-
mission composition are then grouped into the same domain
in the permission table, which is used by the second run. The
configuration of our simulated processor is shown in Table 3.
We simulate a single core with its microarchitectural configu-
ration modeled after Skylake SP server [25].

We compare system and cache performance metrics for
six cache management schemes: 1) Baseline – an insecure
monolithic program without compartmentalization and SCC,
2) Proportional – an allocation scheme where the size of each
partition is proportional to its domain’s page count (this is
not implementable in a real system and is calculated ahead of
time for this experiment), 3) SCC, 4) Static-16 – 16 statically
allocated uniformly sized partitions that are created regardless
of the number of domains used by the program, 5) Static-32
– same as Static-16, but with 32 partitions allocated, and 6)
FoCS – Flush on Compartment Switch, where the entire cache
hierarchy is flushed upon compartment switches and system
calls.

5.1 Security Evaluation

We evaluated SCC against two side-channels: the occupancy
channel [77], and the library loading channel [86]. We imple-
mented proof-of-concept (PoC) attacks involving two com-
partments - the benign compartment and the attacker compart-
ment.
Cache Occupancy Attacks: In this experiment, the victim
program is either accessing a page-size buffer and loads it into
the cache, or it does not, depending on the input. Following the
victim compartment’s execution, the attacker compartment
accesses the entire L1 cache and measures the total access
time. Figure 15 shows the results of this experiment. The

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Probe Index

180000

190000

200000

210000

Bu
ff

er
 L

oa
di

ng
Ti

m
e

(C
yc

le
s)

Attacker's Buffer Loading Timings After Victim' Operations
(Leaky vs Partitioning)

Leaky
Ours
Occupate
No Occupate

Figure 15: PoC cache occupancy attack and its mitigation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Probe Index

200

400

600

800

Ca
ll

Ti
m

e
(C

yc
le

s)

Attacker's Call Timings Through Regular Domains vs. HDoms

Leaky
HComp
Victim Input = 0
Victim Input = 1
Victim Input = 2

Figure 16: PoC attack using function calls and its mitigation

background colors represent the execution periods where the
victim either accesses the cache (yellow) or not (orange). The
red plot represents the access timings of the insecure baseline.
A noticeable correlation exists between the timings recorded
by the attacker and the dataflow of the victim. Specifically,
when the victim loads the buffer, the attacker experiences a
visibly longer delay in reloading its buffer. SCC eliminates
this leakage by ensuring that the attacker’s timing measure-
ments are independent of the victim’s operation.
Attacks Using Shared Function Calls: To evaluate the ef-
ficacy of SCC against attacks using calls to shared library
functions, we performed an experiment to demonstrate the
attack and its mitigation with HComps. In our PoC attack, the
attacker first flushed the common function from the cache,
waits for the victim compartment to call the function, and
then calls it again and times the execution. Depending on the
victim’s secret input, the call by the attacker takes a different
amount of time to complete due to the correlation between the
number of instructions fetched into the cache by the attacker
and the input.

The results are shown in Figure 16, where each data point
represents the time it takes for the attacker to call the common
function. The background colors represent different inputs of
the victim compartment to emphasize the secret-dependent
access times in the leaky scenario. Note that in the leaky
scenario, regular SCC protections are still in place, but without
HComps. Indeed, even when SCC without HComps is used,
the attacker can reliably extract the victim’s access pattern
through a partitioned instruction cache.

In contrast, HComp ensures that accesses from two callers
are served from separate cache partitions. Aside from the
occasional partitioning-induced cache misses, no pattern is
observable from the attacker side. The HComp accesses take
almost twice the time compared to the leaky scenario. This
is caused by the attacker flushing only its instance of the
function, therefore missing every cache request for each call.

5.2 Performance Evaluation

Figure 18 shows the IPC (Instructions per Cycle) values for
SCC, FoCS and a scheme we only flush the L1 caches on a
compartment switch and deploy SCC on other cache levels
(referred to as FL1oCS). Next to each benchmark name, we
show (in parenthesis) the number of compartment switches
per million instructions. The performance results are normal-
ized to the insecure Baseline. On average, FoCS and FL1oCS
result in 60% and 32% performance degradation, while SCC
degrades performance by 6%. The primary factor of this over-
head for FoCS is frequent and prolonged invalidation and
writeback procedures. Since both instruction and data L1
caches are blocked from any access until all writeback re-
quests are completed, the entire pipeline is stalled until the
execution switches to the next compartment. The same argu-
ment applies to FL1oCS, but to a lesser extent because the
content of lower-level caches is retained and writebacks to the
main memory are not initiated. While for some benchmarks
that feature low frequency of compartment switches (susan,
FFT, and gsm), FL1oCS performs on par or even better than
SCC, on the average SCC still outperforms FL1oCS by 26%.

Figure 17 compares performance and cache miss rates for
all schemes, excluding FoCS, which was discussed above.
Figure 17(a) shows the normalized IPC values for compart-
mentalized benchmarks, while Figure 17(b) shows cache miss
rate distribution for all configurations and cache levels. We
omit susan from Static-16 experiments, as it has 17 domains
and can only be statically supported by Static-32 scheme. Pro-
portional shows the most significant performance degradation
for FFT, mcf, nab, and xz at 21%, 56%, 37%, and 86%. This
pattern is caused by the non-uniformity of domain sizes for
these benchmarks. For instance, mcf generates a domain with
a size of approximately 49KB. Although the domain size is
larger than the L1 cache, Proportional allocates only 2 sets
to this domain in the cache due to the high memory demand
of other domains. Under the Baseline configuration, when
this domain is accessed, it utilizes the entire L1 data cache.
However, with Proportional, the domain can occupy only 768
bytes (2 sets and 6 ways allocated for partitions) of the L1
cache at any given time, increasing the cache pressure for the
given domain. This is depicted in Figure 17(b) by elevated
L1 cache miss rates. Note that Proportional design can also
result in cache underutilization which is also demonstrated in
Appendix.

SCC results in performance improvement. rijndael, FFT,
and nab exhibit slowdowns of 12%, 22%, and 26% respec-
tively; all other benchmarks experience slowdowns of less
than 10%. The slowdown in rijndael and nab is primarily
due to smaller partitions for domains, while mcf experiences
a higher ADR miss rate for the L1 instruction cache (10%
while others are 1% in Figure 5 in Section 3.1). Note that
while longer access times in L1 data caches can typically be
masked by out-of-order execution, ADR misses in L1 instruc-

MiBench CoreMark SPEC2017
lame jpeg susan dijkstra FFT rijndael sha gsm CoreMark mcf lbm nab xz Average

Benchmark

0.45
0.55
0.65
0.75
0.85
0.95

N
or

m
al

iz
ed

IP
C

Normalized IPC Values of Cache Isolation Configurations
Baseline Proportional SCC Static-32 Static-16

(a) Performance impact of different cache management schemes on compartmentalized benchmarks in terms of normalized IPC. Note that the minimum value
represented on the graph is 0.45.

L1 Data Cache
0.00
0.15
0.30
0.45

M
is

s
Ra

te

L1 Instruction Cache
0.000.150.300.450.60

Miss Rate Distribution of Security Configurations Accross Different Cache Levels

L2 Shared Cache
0.00
0.25
0.50
0.75

Baseline Proportional SCC Static-32 Static-16 FoCS

(b) Violin graphs of cache miss rates across different cache levels under security configurations. Each distribution includes every benchmark we evaluate. White
dots indicate the median value of each distribution. Black stripes denote the data between the first and third quarterlies.

Figure 17: Performance and miss rate evaluation results.

lam
e

(2
8.7

3)
jpe

g
(1
2.5

3)
su
sa
n

(0
.13

)
dij
ks
tra

(3
77
.12

)
FF
T

(0
.01

)
rijn

da
el

(7
10
.02

)
sh
a

(3
77
.04

)
gs
m

(0
.06

)
Co
re
Ma

rk
(5
12
.24

)
mc

f
(1
.66

)
lbm

(0
.01

)
na
b

(0
.01

)
xz

(3
1.8

8)
Av
er
ag
e

Benchmarks

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

IP
C

Normalized IPC Values of SCC, FoCS, and FL1oCS Configurations
SCC FoCS FL1oCS

Figure 18: Performance impact of SCC, FoCS and FL1oCS.
Values shown here are normalized by the baseline IPC. we
show the number of compartment switches per million in-
structions in parentheses after the names of benchmarks.

tion cache lead to fetch stalls. This demonstrates that SCC’s
uniform partitioning approach yields more favorable results
than Proportional, especially when domain sizes exhibit sig-
nificant diversity within a single address space. Alternatively,
allocating partitions statically for the maximum number of
domains not only impedes scalability but also increases cache
pressure. Specifically, benchmarks such as dijkstra, FFT, rijn-
dael, CoreMark, and nab encounter significant miss rates in
the L1 data cache, reaching up to 20%. The same effect is also
present in the L1 instruction cache for most benchmarks. This
has a detrimental impact on the performance of programs with
Static schemes - up to 50% performance loss was observed.

Results summary and takeaway: On average, Propor-
tional, SCC, Static-16, Static-32, and FoCS result in 18%, 7%,
28%, 20%, and 28% performance degradation respectively
compared to the insecure baseline. In environments where
the number of domains is limited to a modest number (such
as in page-based or range-based SC schemes), SCC provides
security from cache attacks with a modest performance im-
pact of only 7%, which is comparable to the slowdown of
the Proportional scheme. These results also demonstrate the
infeasibility of flushing the cache hierarchy on compartment
switches. Employing FoCS incurs high L2 cache miss rates
of up to 99% on several benchmarks.

Component Area (mm2) Peak Dynamic (W) RT Dynamic (W)
Baseline Core 16.242 (100%) 36.615 (100%) 36.615 (100%)
ADR <0.001 (<0.001%) <0.001 (<0.001%) <0.001 (+0.002%)
DRT (L1i/d) <0.001 (+0.002%) 0.003 (+0.009%) 0.009 (+0.027%)
DRT (L2) 0.001 (+0.007%) 0.008 (+0.022%) 0.026 (+0.070%)
DRTs (Total) 0.002 (+0.011%) 0.015 (+0.039%) 0.046 (+0.124%)
Extra Tag Bits 0.101 (+0.62%) 0.212 (+0.29%) 0.113 (+0.33%)
Total 0.103 (+0.63%) 0.224 (+0.61%) 0.155 (+0.42%)

Table 4: Area/Power estimates for SCC components.

5.3 Timing, Area, and Power Analysis
To estimate the timing, area, and power impact of SCC, we
used McPAT (and its submodule CACTI [93]) tool, assuming
cache parameters in Table 3 under 22 nm technology.

Timing Impact: To hide the delay of two extra gates used
by SCC, we leverage the cache banking logic. We assume 8
banks for L1 caches, as implemented in Intel Sandy Bridge
and Ivy Bridge processors [43]. In this case, 64-byte cache
lines are divided into eight 8-byte lines, one per bank [69].
Each bank contains 4 subarrays mapped by the least signif-
icant bits of the set index [99]. Most significant bits of the
byte offset are used to determine the bank to assure interleav-
ing [17].

The integration of the SCC logic with cache banking and
subarray layout is shown in Figure 19. There are two possi-
ble additions to the critical path: the bank decoder and the
global subarray decoder. SCC’s masking and partition ID
concatenation operations are hidden behind these decoders
respectively. A 3×8 decoder’s critical path is composed of
two inverters and a 3-input NAND gate, which accounts for
0.36 ns of delay [99]. The NAND gate and the inverter used
in the masking operation have a smaller critical path than
the banking decoder – 0.24 ns. Similarly, the global decoder
within the cache bank has a delay of 0.32 ns. The partition ID
concatenation process (a NOR gate and an inverter) can also
be hidden behind this delay – 0.26 ns. Lower-level caches ac-
commodate even larger decoders, while the remapping logic
remains unchanged; no additional delays are introduced for
these caches as well.

Area and Power Impact: We modeled DRT and ADR
structures for each private cache. We assume that the system

Set
IndexTag

Banking
Critical
path Global

Activation
To other banks...

PID mask

Byte
Offset

S
u

b
a
rr

a
y

...

3x8

8

Cache Bank

2x4

4x16

6 5 011

ADR

S
u

b
a
rr

a
y

3

Figure 19: Hiding delays of SCC logic

supports up to 16 domains, with 16 13-bit and 18-bit entries
allocated for DRTs in L1 and L2 caches, respectively. We also
estimated the area overhead from the extended tags required
for set indexing logic, with tags extended by 4 bits (for 16
domains). As shown in Table 4, the total area, peak power,
and runtime dynamic power of a core are increased by 0.63%,
0.38%, and 0.42% respectively.

6 Related Work

Compartmentalized Software: Different SC designs pro-
pose domains at different levels of granularity, including ob-
jects [63, 90], bytes [16], pages [75], and Virtual Memory
Areas (VMA) [7]. In hardware-supported compartmentaliza-
tion, access privileges of compartments are maintained using
either: capabilities (object or range-based) [63,90] or Memory
Management Unit (MMU) [7,16,65,75,104]. Hybrid schemes
were also proposed [85]. There is a trade-off associated with
domain granularity: object-level granularity necessitates mod-
ifications across multiple layers of abstraction, including the
Instruction Set Architecture (ISA), compilers, OS, and hard-
ware. In contrast, MMU-based schemes are coarser-grained,
typically with page and VMA-level granularity, but provide
higher performance and simpler implementations. Enclave-
based compartmentalization [1, 2, 19, 65, 98] is also a variant
of SC, with memory permissions controlled at enclave granu-
larity. SCC design can be applied to secure cache hierarchies
for any of these schemes.

Cache Side-Channels and Defenses: Cache-based side-
channel attacks [13, 14, 18, 20, 29, 31–33, 35, 38, 45, 49, 55, 56,
58, 61, 62, 64, 77, 78, 83, 86, 92, 94–96, 100–102] have been
a subject of active research in recent years. Many forms of
attacks have been demonstrated, leaking secrets at various
granularities from traditional systems and secure enclaves.
The key idea of these attacks is to observe the behavior of the
victim in terms of its access to the shared caches and correlate
the victim’s cache usage (or even the overall performance
impact on the attacker) with secret information used to infer
a victim’s data-dependent access pattern.

In terms of defenses, partitioning [3,5,11,21,24,48,57,68,
73,80,81,87,88] and randomization [9,10,23,67,68,74,89,91]
emerged as two main approaches. SCC is a cache parti-
tioning solution tailored to SC systems. Previous cache
partitioning schemes considered either process-based isola-
tion [21, 24, 73] or enclave-based isolation with minimal in-

Mechanism Partition Code Levels Perf. Area
BCE [73] Set Process L3 -1.3% +1.8%
CURE [5] Way Enclave L3 -10% +1.8%

CATalyst [41, 57] Way Process L3 -0.5% 0%
NoMo [24] Set Process L1 -10% ?

ChunkedCache [22] Set Enclave L3 ? +2.7%
MI6 [11] Set Enclave L3 -16% +2%

DAWG [48] Way Process All -5% ?
SecDCP [87] Way Process L3 +10% ?

HybCache [21] Way Enclave All -5% +0.07%
CC [81] Set/Way Enclave L3 -5% +0.84%

TEE-SHirT [3] Set/Way Enclave All -10% +6.2%
SCC Set/Way Compartment All -7% +0.63%

Table 5: SCC’s comparison against other cache partitioning
mechanisms. Columns indicate partitioning/code granularity,
protected caches, performance, and hardware overhead.

teraction between enclaves [3, 5, 81]. As a result, previous
designs resulted in reasonable partitioning schemes for shared
last-level caches [24, 48, 81], but propose L1 flushing on con-
text switches (including enclave switching) and system calls
to avoid expensive partitioning of L1 caches [3, 11, 28, 73].
In an SC environment where fine-grain mutually mistrusting
in-process compartments can frequently interact, L1 flush-
ing would be needed frequently leading to substantial perfor-
mance degradation. We compare our scheme to prior works
in terms of different aspects in Table 5.

Another major difference from prior works is that exist-
ing hardware-based cache partitioning schemes provide parti-
tions per processes/enclaves where sharing between parties
is minimal or non-existent. In the world of compartmental-
ized software, this partitioning philosophy would translate
to partition-per-compartment design. With this approach, it
would be very challenging to support intensive sharing of
memory pages between compartments of a process, since
compartments are typically tightly integrated pieces of code.
Therefore, this paper advocates partition-per-memory-domain
approach, and all cache partitioning solutions at all levels have
to be reassessed under this framework.

Page coloring [6, 46, 54] is a software-based technique that
can be used to mitigate collisions in caches and thus side-
channels. [47,76]. However, assigning colors to every domain
of every process would require too many colors, making it
impossible to align differently-colored pages to sets without
collisions. Furthermore, even if the scalability was not a con-
cern, the OS must have a detailed information about the cache
hashing and slicing logic to properly map differently colored
pages into different cache sets [57].

7 Concluding Remarks
We demonstrated that compartmentalized software is vulnera-
ble to cross-compartment cache side-channel attacks in vari-
ous forms. We proposed SCC - a framework to augment com-
partmentalized systems with leakage-free cache hierarchies
in a performance-friendly manner. SCC uses a novel DOP
approach, where cache partitions are created for memory do-
mains, instead of individual compartments, allowing efficient
and secure data sharing. SCC also extends cache partitioning

to L1 caches with a modest impact on their performance and
complexity. Finally, SCC incorporates protection from attacks
exploiting code routines used by multiple callers.

8 Acknowledgments

We would like to thank anonymous reviewers and the shep-
herd for their insightful feedback. This research was supported
in part by NSF Awards CNS-2053391 and CNS-2053383.

9 Ethics Considerations

We confirm that our research complies with the ethics policies.
This work does not lead to tangible harm and does not violate
human rights. All of the code and contents of this paper were
conceived by the authors of the paper and were not plagiarized
from other works.

10 Open Science

We attest that our work complies with the open science policy.
Our source code and compartmentalized MiBench bench-
marks are public and available at: https://zenodo.org/
records/14736160. The appendices referred to in the pa-
per can be found in https://www.cs.binghamton.edu/
~karikan1/SCC_USENIX25_Appendix.pdf.

References

[1] Intel Software Guard Extensions SDK Developer Ref-
erence for Linux OS, 2016.

[2] Ittai Anati, Shay Gueron, Simon Johnson, and Vin-
cent Scarlata. Innovative technology for CPU based
attestation and sealing. In Proceedings of the 2nd in-
ternational workshop on hardware and architectural
support for security and privacy, volume 13. ACM
New York, NY, USA, 2013.

[3] Kerem Arıkan, Abraham Farrell, Willams Zhang Cen,
Jack McMahon, Barry Williams, Yu David Liu, Nael
Abu-Ghazaleh, and Dmitry Ponomarev. TEE-SHirT:
Scalable Leakage-Free Cache Hierarchies for TEEs.
San Diego, CA, USA, 2024. The Internet Society.

[4] ARM. ARM Developer Suite Developer Guide. 2001.

[5] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky,
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza
Sadeghi, and Emmanuel Stapf. CURE: A Security Ar-
chitecture with CUstomizable and Resilient Enclaves.
In 30th USENIX Security Symposium (USENIX Secu-
rity 21), 2021.

[6] Brian N. Bershad, Dennis Lee, Theodore H. Romer,
and J. Bradley Chen. Avoiding conflict misses dynam-
ically in large direct-mapped caches. In Proceedings
of the Sixth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS VI, page 158–170, New York, NY,
USA, 1994. Association for Computing Machinery.

[7] A. Bhattacharyya, F. Hofhammer, Y. Li, S. Gupta,
A. Sanchez, B. Falsafi, and M. Payer. SecureCells:
A Secure Compartmentalized Architecture. In 2023
2023 IEEE Symposium on Security and Privacy (SP)
(SP), pages 2921–2939, Los Alamitos, CA, USA, may
2023. IEEE Computer Society.

[8] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. The gem5 simulator. ACM SIGARCH
computer architecture news, 39(2):1–7, 2011.

[9] Rahul Bodduna, Vinod Ganesan, Patanjali Slpsk,
Chester Rebeiro, and V Kamakoti. BRUTUS: Refuting
the Security Claims of the Cache Timing Randomiza-
tion Countermeasure proposed in CEASER. IEEE
Computer Architecture Letters, 2020.

[10] Thomas Bourgeat, Jules Drean, Yuheng Yang, Lil-
lian Tsai, Joel Emer, and Mengjia Yan. CaSA: End-
to-end Quantitative Security Analysis of Randomly
Mapped Caches. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MI-
CRO), pages 1110–1123, 2020.

[11] Thomas Bourgeat, Ilia Lebedev, Andrew Wright,
Sizhuo Zhang, Srinivas Devadas, et al. MI6: Secure
enclaves in a speculative out-of-order processor. In
Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 42–56.
ACM, 2019.

[12] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software Grand Exposure: SGX Cache
Attacks Are Practical. In Proceedings of the
11th USENIX Conference on Offensive Technologies,
WOOT’17, page 11, USA, 2017. USENIX Associa-
tion.

[13] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software Grand Exposure: SGX Cache At-
tacks Are Practical. In 11th USENIX Workshop on
Offensive Technologies (WOOT 17), Vancouver, BC,
August 2017. USENIX Association.

https://zenodo.org/records/14736160
https://zenodo.org/records/14736160
https://www.cs.binghamton.edu/~karikan1/SCC_USENIX25_Appendix.pdf
https://www.cs.binghamton.edu/~karikan1/SCC_USENIX25_Appendix.pdf

[14] Samira Briongos, Pedro Malagón, José M Moya, and
Thomas Eisenbarth. RELOAD+ REFRESH: Abus-
ing Cache Replacement Policies to Perform Stealthy
Cache Attacks. In 29th USENIX Security Symposium (
USENIX Security 20), 2020.

[15] James Bucek, Klaus-Dieter Lange, and Jóakim V
Kistowski. SPEC CPU2017: Next-Generation Com-
pute Benchmark. ICPE: ACM/SPEC International
Conference on Performance Engineering, pages 41–
42, 2018.

[16] Yaohui Chen, Sebassujeen Reymondjohnson,
Zhichuang Sun, and Long Lu. Shreds: Fine-Grained
Execution Units with Private Memory. In 2016 IEEE
Symposium on Security and Privacy (SP), pages
56–71, 2016.

[17] Sangyeun Cho. I-cache multi-banking and vertical
interleaving. In Proceedings of the 17th ACM Great
Lakes Symposium on VLSI, GLSVLSI ’07, page 14–19,
New York, NY, USA, 2007. Association for Computing
Machinery.

[18] Jack Cook, Jules Drean, Jonathan Behrens, and
Mengjia Yan. There’s Always a Bigger Fish: A Clari-
fying Analysis of a Machine-Learning-Assisted Side-
Channel Attack. In Proceedings of the 49th Annual
International Symposium on Computer Architecture,
ISCA ’22, page 204–217, New York, NY, USA, 2022.
Association for Computing Machinery.

[19] Victor Costan and Srinivas Devadas. Intel sgx ex-
plained, 2016.

[20] Fergus Dall, Gabrielle De Micheli, Thomas Eisen-
barth, Daniel Genkin, Nadia Heninger, Ahmad
Moghimi, and Yuval Yarom. CacheQuote:
Efficiently Recovering Long-term Secrets of
SGX EPID via Cache Attacks, volume=2018,
url=https://tches.iacr.org/index.php/TCHES/article/view/879,
doi=10.13154/tches.v2018.i2.171-191, number=2.
IACR Transactions on Cryptographic Hardware and
Embedded Systems, page 171–191, May 2018.

[21] Ghada Dessouky, Tommaso Frassetto, and Ahmad-
Reza Sadeghi. HybCache: Hybrid Side-Channel-
Resilient Caches for Trusted Execution Environments.
In 29th USENIX Security Symposium (USENIX Secu-
rity 20), pages 451–468. USENIX Association, August
2020.

[22] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody,
Ahmad-Reza Sadeghi, and Emmanuel Stapf. Chunked-
Cache: On-Demand and Scalable Cache Isolation for
Security Architectures. The Network and Distributed
Systems Security Symposium, 2022.

[23] Peter W. Deutsch, Weon Taek Na, Thomas Bourgeat,
Joel S. Emer, and Mengjia Yan. Metior: A Compre-
hensive Model to Evaluate Obfuscating Side-Channel
Defense Schemes. ISCA ’23, New York, NY, USA,
2023. Association for Computing Machinery.

[24] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael
Abu-Ghazaleh, and Dmitry Ponomarev. Non-
monopolizable caches: Low-complexity mitigation of
cache side channel attacks. ACM Transactions on Ar-
chitecture and Code Optimization (TACO), 8(4):35,
2012.

[25] Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius
Mandelblat, Anirudha Rahatekar, Lihu Rappoport,
Efraim Rotem, Ahmad Yasin, and Adi Yoaz. Inside 6th-
Generation Intel Core: New Microarchitecture Code-
Named Skylake. IEEE Micro, 37(2):52–62, 2017.

[26] Dong Du, Zhichao Hua, Yubin Xia, Binyu Zang, and
Haibo Chen. XPC: Architectural Support for Secure
and Efficient Cross Process Call. In 2019 ACM/IEEE
46th Annual International Symposium on Computer
Architecture (ISCA), pages 671–684, 2019.

[27] Shay Gal-On and Markus Levy. Exploring coremark
a benchmark maximizing simplicity and efficacy. The
Embedded Microprocessor Benchmark Consortium,
2012.

[28] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot
Heiser. Time Protection: The Missing OS Abstrac-
tion. In Proceedings of the Fourteenth EuroSys Confer-
ence 2019, EuroSys ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[29] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache Attacks on Intel SGX. In
Proceedings of the 10th European Workshop on Sys-
tems Security, EuroSec’17, New York, NY, USA, 2017.
Association for Computing Machinery.

[30] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos,
and Cristiano Giuffrida. ASLR on the Line: Practical
Cache Attacks on the MMU. In NDSS, February 2017.
Pwnie Award for Most Innovative Research, DCSR
Paper Award.

[31] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos,
and Cristiano Giuffrida. ASLR on the line: Prac-
tical cache attacks on the MMU. In 24th Annual
Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February 26
- March 1, 2017. The Internet Society, 2017.

[32] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache Template Attacks: Automating Attacks on In-
clusive Last-Level Caches. In 24th USENIX Secu-
rity Symposium (USENIX Security 15), pages 897–912,
Washington, D.C., August 2015. USENIX Association.

[33] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache Template Attacks: Automating Attacks on In-
clusive Last-Level Caches. In 24th USENIX Secu-
rity Symposium (USENIX Security 15), pages 897–912,
Washington, D.C., August 2015. USENIX Association.

[34] Khilan Gudka, Robert N.M. Watson, Jonathan Ander-
son, David Chisnall, Brooks Davis, Ben Laurie, Ilias
Marinos, Peter G. Neumann, and Alex Richardson.
Clean Application Compartmentalization with SOAAP.
In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, CCS ’15,
page 1016–1031, New York, NY, USA, 2015. Associa-
tion for Computing Machinery.

[35] David Gullasch, Endre Bangerter, and Stephan Krenn.
Cache games–Bringing access-based cache attacks on
AES to practice. In Security and Privacy (SP), 2011
IEEE Symposium on, pages 490–505. IEEE, 2011.

[36] M. Guthaus, T. Austin, D. Ernst, R. Brown, T. Mudge,
and J. Ringenberg. MiBench: A free, commercially rep-
resentative embedded benchmark suite. In Workload
Characterization, Annual IEEE International Work-
shop, pages 3–14, Los Alamitos, CA, USA, dec 2001.
IEEE Computer Society.

[37] Marcus Hähnel, Weidong Cui, and Marcus Peinado.
High-Resolution Side Channels for Untrusted Oper-
ating Systems. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 299–312, Santa
Clara, CA, July 2017. USENIX Association.

[38] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan,
Vinay Phegade, and Juan Del Cuvillo. Using innovative
instructions to create trustworthy software solutions.
HASP@ ISCA, 11, 2013.

[39] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan,
Carlos Rozas, Vinay Phegade, and Juan del Cuvillo.
Using innovative instructions to create trustworthy soft-
ware solutions. Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for
Security and Privacy, HASP, 2013.

[40] IBM Corporation. Power ISA version 3.0b. 2017.

[41] CAT Intel. Improving Real-Time Performance by Uti-
lizing Cache Allocation Technology. Intel Corporation,
April, 2015.

[42] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developers Manual. 2019.

[43] Intel Corporation. Intel® 64 and ia-32 archi-
tectures optimization reference manual vol-
ume 1. https://www.intel.com/content/
www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.
html, 2020. Accessed: 2024-12-26.

[44] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
S$A: A Shared Cache Attack That Works across Cores
and Defies VM Sandboxing – and Its Application to
AES. In 2015 IEEE Symposium on Security and Pri-
vacy, pages 591–604, 2015.

[45] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Pono-
marev, and Aamer Jaleel. A high-resolution side-
channel attack on last-level cache. In Proceedings
of the 53rd Annual Design Automation Conference,
page 72. ACM, 2016.

[46] Richard E. Kessler and Mark D. Hill. Page placement
algorithms for large real-indexed caches. ACM Trans.
Comput. Syst., 10:338–359, 1992.

[47] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz.
STEALTHMEM: System-Level protection against
Cache-Based side channel attacks in the cloud. In 21st
USENIX Security Symposium (USENIX Security 12),
pages 189–204, Bellevue, WA, August 2012. USENIX
Association.

[48] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe,
Srinivas Devadas, and Joel Emer. DAWG: A Defense
Against Cache Timing Attacks in Speculative Exe-
cution Processors. Proceedings of the 51st Annual
IEEE/ACM International Symposium on Microarchi-
tecture, 2018.

[49] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom.
Spectre Attacks: Exploiting Speculative Execution.
arXiv preprint arXiv:1801.01203, 2018.

[50] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuf-
frida, and Elias Athanasopoulos. No Need to Hide:
Protecting Safe Regions on Commodity Hardware. In
Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys ’17, page 437–452, New
York, NY, USA, 2017. Association for Computing Ma-
chinery.

[51] Zili Kou, Wenjian He, Sharad Sinha, and Wei Zhang.
Load-Step: A Precise TrustZone Execution Control
Framework for Exploring New Side-channel Attacks

https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html

Like Flush+Evict. In 2021 58th ACM/IEEE Design
Automation Conference (DAC), pages 979–984, 2021.

[52] Chris Lattner and Vikram Adve. LLVM: A compi-
lation framework for lifelong program analysis and
transformation. pages 75–88, San Jose, CA, USA, Mar
2004.

[53] Hojoon Lee, Chihyun Song, and Brent Byunghoon
Kang. Lord of the X86 Rings: A Portable User Mode
Privilege Separation Architecture on X86. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’18, page
1441–1454, New York, NY, USA, 2018. Association
for Computing Machinery.

[54] J. Liedtke, H. Hartig, and M. Hohmuth. Os-controlled
cache predictability for real-time systems. In Proceed-
ings Third IEEE Real-Time Technology and Applica-
tions Symposium, pages 213–224, 1997.

[55] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémen-
tine Maurice, and Stefan Mangard. ARMageddon:
Cache Attacks on Mobile Devices. In 25th USENIX
Security Symposium (USENIX Security 16), pages 549–
564, Austin, TX, August 2016. USENIX Association.

[56] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, et al. Melt-
down: Reading kernel memory from user space. In
27th USENIX Security Symposium (USENIX Security
18), pages 973–990, 2018.

[57] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen,
Carlos Rozas, Gernot Heiser, and Ruby B Lee. Cat-
alyst: Defeating last-level cache side channel attacks
in cloud computing. In High Performance Computer
Architecture (HPCA), 2016 IEEE International Sympo-
sium on, pages 406–418. IEEE, 2016.

[58] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser,
and Ruby B Lee. Last-level cache side-channel attacks
are practical. In 2015 IEEE Symposium on Security
and Privacy, pages 605–622, 2015.

[59] Shen Liu, Gang Tan, and Trent Jaeger. PtrSplit: Sup-
porting General Pointers in Automatic Program Par-
titioning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Secu-
rity, CCS ’17, page 2359–2371, New York, NY, USA,
2017. Association for Computing Machinery.

[60] Marcela S Melara, Michael J Freedman, and Mic Bow-
man. EnclaveDom: Privilege separation for large-TCB
applications in trusted execution environments. arXiv
preprint arXiv:1907.13245, 2019.

[61] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. Cachezoom: How SGX amplifies the power of
cache attacks. In International Conference on Cryp-
tographic Hardware and Embedded Systems, pages
69–90. Springer, 2017.

[62] Ahmad Moghimi, Jan Wichelmann, Thomas Eisen-
barth, and Berk Sunar. Memjam: A false depen-
dency attack against constant-time crypto implementa-
tions. International Journal of Parallel Programming,
47:538–570, 2019.

[63] Myoung Jin Nam, Periklis Akritidis, and David J
Greaves. FRAMER: A Tagged-Pointer Capability Sys-
tem with Memory Safety Applications. In Proceedings
of the 35th Annual Computer Security Applications
Conference, ACSAC ’19, page 612–626, New York,
NY, USA, 2019. Association for Computing Machin-
ery.

[64] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumad-
havan, and Angelos D. Keromytis. The Spy in the
Sandbox: Practical Cache Attacks in JavaScript and
Their Implications. CCS ’15, page 1406–1418, New
York, NY, USA, 2015. Association for Computing Ma-
chinery.

[65] Joongun Park, Naegyeong Kang, Taehoon Kim,
Youngjin Kwon, and Jaehyuk Huh. Nested Enclave:
Supporting Fine-grained Hierarchical Isolation with
SGX. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages
776–789, 2020.

[66] Niels Provos, Markus Friedl, and Peter Honeyman. Pre-
venting Privilege Escalation. In 12th USENIX Security
Symposium (USENIX Security 03), Washington, D.C.,
August 2003. USENIX Association.

[67] Antoon Purnal, Giner Lukas, Daniel Gruss, and Ingrid
Verbauwhede. Systematic Analysis of Randomization-
based Protected Cache Architectures. In IEEE Sympo-
sium on Security and Privacy, pages 469–486, 2021.

[68] Moinuddin K. Qureshi. New Attacks and Defense for
Encrypted-address Cache. In Proceedings of the 46th
International Symposium on Computer Architecture,
ISCA ’19, pages 360–371, New York, NY, USA, 2019.
ACM.

[69] Paul Racunas and Yale N. Patt. Partitioned first-level
cache design for clustered microarchitectures. In Pro-
ceedings of the 17th Annual International Conference
on Supercomputing, ICS ’03, page 22–31, New York,
NY, USA, 2003. Association for Computing Machin-
ery.

[70] Charles Reis and Steven D. Gribble. Isolating Web
Programs in Modern Browser Architectures. In Pro-
ceedings of the 4th ACM European Conference on
Computer Systems, EuroSys ’09, page 219–232, New
York, NY, USA, 2009. Association for Computing Ma-
chinery.

[71] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, You, Get off of My Cloud: Ex-
ploring Information Leakage in Third-Party Compute
Clouds. In Proceedings of the 16th ACM Conference
on Computer and Communications Security, CCS ’09,
page 199–212, New York, NY, USA, 2009. Association
for Computing Machinery.

[72] Nick Roessler, Lucas Atayde, Imani Palmer, Derrick
McKee, Jai Pandey, Vasileios P Kemerlis, Mathias
Payer, Adam Bates, Jonathan M Smith, Andre DeHon,
et al. µSCOPE: A Methodology for Analyzing Least-
Privilege Compartmentalization in Large Software Ar-
tifacts. In Proceedings of the 24th International Sympo-
sium on Research in Attacks, Intrusions and Defenses,
pages 296–311, 2021.

[73] Gururaj Saileshwar, Sanjay Kariyappa, and Moinuddin
Qureshi. Bespoke Cache Enclaves: Fine-Grained and
Scalable Isolation from Cache Side-Channels via Flex-
ible Set-Partitioning. In 2021 International Symposium
on Secure and Private Execution Environment Design
(SEED), pages 37–49. IEEE, 2021.

[74] Gururaj Saileshwar and Moinuddin Qureshi. MIRAGE:
Mitigating Conflict-Based Cache Attacks with a Practi-
cal Fully-Associative Design. In 30th USENIX Security
Symposium (USENIX Security 21), pages 1379–1396.
USENIX Association, August 2021.

[75] David Schrammel, Samuel Weiser, Stefan Steinegger,
Martin Schwarzl, Michael Schwarz, Stefan Mangard,
and Daniel Gruss. Donky: Domain Keys – Efficient
In-Process Isolation for RISC-V and x86. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 1677–1694. USENIX Association, August 2020.

[76] Jicheng Shi, Xiang Song, Haibo Chen, and Binyu Zang.
Limiting Cache-based Side-channel in Multi-tenant
Cloud Using Dynamic Page Coloring. In Proceed-
ings of the 2011 IEEE/IFIP 41st International Confer-
ence on Dependable Systems and Networks Workshops,
DSNW ’11, pages 194–199, Washington, DC, USA,
2011. IEEE Computer Society.

[77] Anatoly Shusterman, Lachlan Kang, Yarden Haskal,
Yosef Meltser, Prateek Mittal, Yossef Oren, and Yu-
val Yarom. Robust website fingerprinting through the
cache occupancy channel. In USENIX Security Sympo-
sium, 2019.

[78] Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao
Wang, and Peng Liu. Randomized last-level caches are
still vulnerable to cache side-channel attacks! But we
can fix it. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 955–969. IEEE, 2021.

[79] Standard Performance Evaluation Corpora-
tion. SPEC CPU 2017: Benchmarks Overview.
https://www.spec.org/cpu2017/Docs/
overview.html#benchmarks, 2017. Accessed:
2024-08-27.

[80] Mohammadkazem Taram, Xida Ren, Ashish Venkat,
and Dean Tullsen. SecSMT: Securing SMT Processors
against Contention-Based Covert Channels. In 31st
USENIX Security Symposium (USENIX Security 22),
pages 3165–3182, Boston, MA, August 2022. USENIX
Association.

[81] Daniel Townley, Kerem Arıkan, Yu David Liu, Dmitry
Ponomarev, and Oguz Ergin. Composable Cachelets:
Protecting Enclaves from Cache Side-Channel Attacks.
In 2022 USENIX Security Symposium, 2022.

[82] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O.
Duarte, Michael Sammler, Peter Druschel, and Deepak
Garg. ERIM: Secure, efficient in-process isolation
with protection keys (MPK). In 28th USENIX Security
Symposium (USENIX Security 19), pages 1221–1238,
Santa Clara, CA, August 2019. USENIX Association.

[83] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Thomas F Wenisch, Yuval Yarom, and Raoul
Strackx. Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execu-
tion. In 27th USENIX Security Symposium (USENIX
Security 18), pages 991–1008, 2018.

[84] Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan
Dautenhahn, André DeHon, and Jonathan M Smith.
BreakApp: Automated, Flexible Application Compart-
mentalization. In NDSS, 2018.

[85] Lluis Vilanova, Muli Ben-Yehuda, Nacho Navarro,
Yoav Etsion, and Mateo Valero. CODOMs: Protecting
software with Code-centric memory Domains. pages
469–480, 06 2014.

[86] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael B.
Abu-Ghazaleh, Srikanth V. Krishnamurthy, Edward
J. M. Colbert, and Paul L. Yu. Unveiling your
keystrokes: A Cache-based Side-channel Attack on
Graphics Libraries. Proceedings 2019 Network and
Distributed System Security Symposium, 2019.

https://www.spec.org/cpu2017/Docs/overview.html#benchmarks
https://www.spec.org/cpu2017/Docs/overview.html#benchmarks

[87] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, An-
drew C. Myers, and G. Edward Suh. SecDCP: Se-
cure Dynamic Cache Partitioning for Efficient Timing
Channel Protection. In Proceedings of the 53rd An-
nual Design Automation Conference, DAC ’16, pages
74:1–74:6, New York, NY, USA, 2016. ACM.

[88] Zhenghong Wang and Ruby B Lee. New cache de-
signs for thwarting software cache-based side channel
attacks. In ACM SIGARCH Computer Architecture
News, volume 35, pages 494–505. ACM, 2007.

[89] Zhenghong Wang and Ruby B Lee. A novel cache
architecture with enhanced performance and security.
In Proceedings of the 41st annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 83–93.
IEEE Computer Society, 2008.

[90] Robert N.M. Watson, Jonathan Woodruff, Peter G.
Neumann, Simon W. Moore, Jonathan Anderson,
David Chisnall, Nirav Dave, Brooks Davis, Khilan
Gudka, Ben Laurie, Steven J. Murdoch, Robert Norton,
Michael Roe, Stacey Son, and Munraj Vadera. CHERI:
A Hybrid Capability-System Architecture for Scalable
Software Compartmentalization. In 2015 IEEE Sym-
posium on Security and Privacy, pages 20–37, 2015.

[91] Mario Werner, Thomas Unterluggauer, Lukas Giner,
Michael Schwarz, Daniel Gruss, and Stefan Mangard.
ScatterCache: thwarting cache attacks via cache set
randomization. In 28th USENIX Security Symposium (
USENIX Security 19), pages 675–692, 2019.

[92] Johannes Wikner and Kaveh Razavi. RETBLEED:
Arbitrary Speculative Code Execution with Return
Instructions. In 31st USENIX Security Symposium
(USENIX Security 22), pages 3825–3842, Boston, MA,
August 2022. USENIX Association.

[93] S.J.E. Wilton and N.P. Jouppi. Cacti: an enhanced
cache access and cycle time model. IEEE Journal of
Solid-State Circuits, 31(5):677–688, 1996.

[94] Mengjia Yan, Read Sprabery, Bhargava Gopireddy,
Christopher Fletcher, Roy Campbell, and Josep Tor-
rellas. Attack directories, not caches: side-channel at-
tacks in a non-inclusive world. In Proceedings of IEEE
Symposium on Security and Privacy. IEEE, 2019.

[95] Yuval Yarom and Katrina Falkner. FLUSH+ RELOAD:
A High Resolution, Low Noise, L3 Cache Side-
Channel Attack. In USENIX Security Symposium,
pages 719–732, 2014.

[96] Yuval Yarom, Daniel Genkin, and Nadia Heninger.
CacheBleed: a timing attack on OpenSSL constant-

time RSA. Journal of Cryptographic Engineering,
7:99–112, 2017.

[97] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native Client: A
Sandbox for Portable, Untrusted x86 Native Code. In
2009 30th IEEE Symposium on Security and Privacy,
pages 79–93, 2009.

[98] Jason Zhijingcheng Yu, Shweta Shinde, Trevor E Carl-
son, and Prateek Saxena. Elasticlave: An efficient
memory model for enclaves. In 31st USENIX Security
Symposium (USENIX Security 22), pages 4111–4128,
2022.

[99] Chuanjun Zhang. Balanced Cache: Reducing Con-
flict Misses of Direct-Mapped Caches. In 33rd
International Symposium on Computer Architecture
(ISCA’06), pages 155–166, 2006.

[100] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou,
and Y Thomas Hou. Truspy: Cache side-channel infor-
mation leakage from the secure world on arm devices.
Cryptology ePrint Archive, 2016.

[101] Ruiyi Zhang, Lukas Gerlach, Daniel Weber, Lorenz
Hetterich, Youheng Lü, Andreas Kogler, and Michael
Schwarz. CacheWarp: Software-based Fault Injection
using Selective State Reset. In 33rd USENIX Security
Symposium (USENIX Security 24), 2024.

[102] Yinqian Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Cross-VM Side Channels and
Their Use to Extract Private Keys. In Proceedings of
the 2012 ACM Conference on Computer and Commu-
nications Security, CCS ’12, page 305–316, New York,
NY, USA, 2012.

[103] Zirui Neil Zhao, Adam Morrison, Christopher W.
Fletcher, and Josep Torrellas. Untangle: A Prin-
cipled Framework to Design Low-Leakage, High-
Performance Dynamic Partitioning Schemes. In Pro-
ceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 3, ASPLOS 2023, page
771–788, New York, NY, USA, 2023. Association for
Computing Machinery.

[104] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi
Wang. ARMlock: Hardware-Based Fault Isolation for
ARM. In Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security,
CCS ’14, page 558–569, New York, NY, USA, 2014.
Association for Computing Machinery.

	Introduction
	Threat Model and Assumptions
	Mitigating Cache Side-Channel Attacks on Compartments: SCC
	Latency-Aware Partitioned L1 Caches
	Domain-Oriented Cache Partitioning
	Horizontal Compartments in Caches
	Integration with Shared Caches

	A Formal Security Analysis
	Definitions
	Domain-Based Access with Permissions
	SCC Operational Semantics
	Metatheory

	SCC Evaluation: Methodology and Results
	Security Evaluation
	Performance Evaluation
	Timing, Area, and Power Analysis

	Related Work
	Concluding Remarks
	Acknowledgments
	Ethics Considerations
	Open Science

