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Abstract
Pose-driven human image animation has achieved tremen-
dous progress, enabling the generation of vivid and realistic
human videos from just one single photo. However, it con-
versely exacerbates the risk of image misuse, as attackers may
use one available image to create videos involving politics,
violence, and other illegal content. To counter this threat,
we propose DORMANT, a novel protection approach tailored
to defend against pose-driven human image animation tech-
niques. DORMANT applies protective perturbation to one
human image, preserving the visual similarity to the original
but resulting in poor-quality video generation. The protective
perturbation is optimized to induce misextraction of appear-
ance features from the image and create incoherence among
the generated video frames. Our extensive evaluation across 8
animation methods and 4 datasets demonstrates the superior-
ity of DORMANT over 6 baseline protection methods, leading
to misaligned identities, visual distortions, noticeable artifacts,
and inconsistent frames in the generated videos. Moreover,
DORMANT shows effectiveness on 6 real-world commercial
services, even with fully black-box access.

Warning: This paper contains unfiltered images generated
by diffusion models that may be disturbing to some readers.

1 Introduction

Diffusion models such as Stable Diffusion [57], DALL·E [56],
and Imagen [61] series models, have demonstrated their un-
precedented capabilities in the field of image generation.
More recently, video diffusion models like Stable Video Diffu-
sion [7] and Sora [49], have also achieved significant advance-
ments, capable of producing movie-quality and professional-
grade videos. In particular, pose-driven human image anima-
tion methods have emerged [36], enabling the generation of
controllable and realistic human videos by animating refer-
ence images according to desired pose sequences. The result-
ing videos maintain the appearance of the original reference
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Figure 1: Illustration of defense against pose-driven human
image animation. Generated video from the protected image
displays mismatched identities and distorted backgrounds.

while accurately following the motion guidance provided by
the poses. This innovation holds considerable potential across
various applications, including social media, entertainment
videos, the movie industry, and virtual characters, etc.

While pose-driven human image animation methods have
revolutionized video generation, they also significantly lower
the barriers to creating deceptive and malicious human videos,
raising serious concerns about unauthorized image usage [15,
42, 52]. With just a single image of the victim, attackers can
generate countless human videos, depicting the individual
performing any action dictated by the pose input. For example,
attackers can create dancing videos of celebrities to post on
video platforms for commercial gains, fabricate fake videos of
politicians to incite social harm, or produce Not Safe for Work
(NSFW) videos that disrupt people’s normal lives. These
manipulated videos are easy and low-cost to generate, yet
they severely violate portrait and privacy rights and potentially
cause considerable harm to the unsuspecting individual.

Despite the severity of these hazards, there is a clear lack of
research specifically aimed at preventing the misuse of pose-
driven human image animation. To our knowledge, the most
relevant concurrent work is VGMShield [50], which is also
the only protection method designed to counteract malicious
image-to-video generation. VGMShield applies protective



perturbation to the image, leading to low-quality video gener-
ation by producing incorrect or bizarre frames. The protective
perturbation is optimized by targeting the encoding process
of Stable Video Diffusion (SVD) [7], deceiving both the im-
age and video encoders into misinterpreting the input image.
However, this deviation in the embedding space is not suffi-
cient to effectively disrupt the appearance features contained
in images, thus failing to adequately protect human portraits.
Furthermore, VGMShield demonstrates limited effectiveness
and transferability when defending against non-SVD-based
video generation methods, including various pose-driven hu-
man image animation techniques.

While few studies focus specifically on the misuse of
image-to-video generation, several protection methods exist
to defend against text/image-to-image generation [41, 62, 63,
68, 75, 84]. These methods typically optimize protective per-
turbations by targeting the fine-tuning process of customiza-
tion techniques [59], the encoding process of the Variational
AutoEncoder [19], or the reverse process of the denoising
UNet [26]. However, current protections against image gen-
eration are inadequate for defending against pose-driven hu-
man image animation, as they fail to effectively deceive the
advanced feature extractors used in animation methods to dis-
rupt appearance features and break the temporal consistency
across frames that is essential in video generation.

In this paper, we propose DORMANT (Defending against
Pose-driven Human Image Animation), to address this no-
table gap in effective protection methods that prevent unau-
thorized image usage in pose-driven human image animation,
thereby safeguarding portrait and privacy rights. As illustrated
in Figure 1, DORMANT applies protective perturbation to the
reference image, resulting in the protected image that ap-
pears visually similar to the original but leads to poor-quality
video generation when used, causing issues including mis-
matched appearances, distorted visuals, noticeable artifacts,
and incoherent frames. We assume that black-box access to
the animation methods and models that the potential attacker
might use, and employ a transfer-based strategy to optimize
the protective perturbation according to our proposed objec-
tive function, utilizing publicly available pre-trained models
as surrogates. The optimization objective includes: 1) feature
misextraction, which induces deviations in the latent rep-
resentation and comprehensively disrupts the semantic and
fine-grained appearance features of the reference image; and
2) frame incoherence, which targets the appearance alignment
and temporal consistency among the generated video frames.
We further adopt Learned Perceptual Image Patch Similarity
(LPIPS) [79], Expectation over Transformation (EoT) [5], and
Momentum [18] to enhance the imperceptibility, robustness,
and transferability of the protective perturbation, respectively.

We evaluate the protection performance of DORMANT on
8 cutting-edge pose-driven human image animation methods.
The experimental results across 6 image-level and video-level
generative metrics demonstrate the superior effectiveness of

DORMANT, compared to 6 baseline protections against image
and video generation. We conduct experiments on 4 datasets,
covering tasks such as human dance generation, fashion video
synthesis, and speech video generation. Results of human
and GPT-4o [48] studies further highlight the superiority of
DORMANT from the perspectives of human perception and
multimodal large language model. DORMANT also exhibits
remarkable robustness against 5 popular transformations and
6 advanced purifications. To further assess the transferability
of DORMANT, we conduct additional experiments on 4 image-
to-image techniques, 4 image-to-video techniques, and 6 real-
world commercial services, DORMANT effectively defends
against these various generative methods.
Contributions. We make the following contributions:

• We address the challenge of effectively preventing unautho-
rized image usage in pose-driven human image animation,
safeguarding individuals’ rights to portrait and privacy.

• We design novel objective functions to optimize the pro-
tective perturbation, inducing misextraction of appearance
features and incoherence among generated video frames.

• Extensive experiments conducted on 8 pose-driven human
image animation methods, 4 image-to-image methods, 4
image-to-video methods, and 6 commercial services high-
light the effectiveness and transferability of DORMANT.

2 Background

2.1 Latent Diffusion Model
Different from the Denoising Diffusion Probabilistic Model
(DDPM) [26] which directly operates in pixel space, to reduce
the computational demand of Diffusion Model (DM), the La-
tent Diffusion Model (LDM) [57] applies DM training and
sampling in the latent space, thus striking a balance between
image quality and throughout. LDM utilizes the Variational
AutoEncoder (VAE) [19] to provide the low-dimensional la-
tent space, which consists of an encoder E and a decoder D .
More precisely, given an image x, the encoder E maps it to
a latent representation: z = E(x), and then the decoder D
reconstructs it back to the pixel: x̃ = D(z) = D(E(x)).

LDM performs the diffusion process proposed in DDPM
within the latent space, where the forward process iteratively
adds Gaussian noise to the latent representation to make it
noisy, while the reverse process predicts and denoises applied
noise using a denoising UNet [58]. Specifically, given an
image x, during the forward process, its latent representation
z0 = E(x) is perturbed with Gaussian noise over T timesteps,
transforming z0 into a standard Gaussian noise zT :

q(z1:T |z0) =
T

∏
t=1

q(zt |zt−1),

q(zt |zt−1) = N (zt ;
√

1−βtzt−1,βt III),

(1)



where {βt ∈ (0,1)}T
t=1 is the variance schedule. By defining

αt = 1−βt and αt = ∏
t
i=1 αi, we can use the reparameteriza-

tion technique [34] to sample zt at timestep t as follows:

q(zt |z0) = N (zt ;
√

αtz0,(1−αt)III),

zt =
√

αtz0 +
√

1−αtεt , εt ∼N (0, III).
(2)

The reverse process aims to denoise the noisy latent rep-
resentation zT back to its original state with the following
transition starting at p(zT ) = N (zT ;0; III):

pθ(z0:T ) = p(zT )
T

∏
t=1

pθ(zt−1|zt),

pθ(zt−1|zt) = N (zt−1;µθ(zt ,c, t),Σθ(zt ,c, t)),

(3)

where c represents the embedding of conditional information
such as text embedding obtained from CLIP ViT-L/14 text
encoder [54], the mean µθ(zt ,c, t) and the variance Σθ(zt ,c, t)
are computed by the denoising UNet εθ parameterized by θ.
With Eq. (2), Ho et al. [26] simplify the learning objective of
the denoising UNet εθ in the ε-prediction form, where εθ is
trained to predict the added noise εt at timestep t:

LLDM = Ez0,c,εt∼N (0,1),t

[
∥εt − εθ(zt ,c, t)∥2

2

]
. (4)

Once trained, given z̃T sampled from the Gaussian dis-
tribution, the denoising UNet εθ can be utilized to predict
εT and computed z̃T−1 according to Eq. (3). Subsequently,
z̃T−2, z̃T−3, . . . , z̃1, z̃0 are progressively calculated, and finally
z̃0 is decoded by D to generate the image x̃ = D(z̃0).

2.2 LDM for Human Image Animation
Pose-driven human image animation [30, 36, 69, 71, 74, 86] is
an image-to-video task aimed at generating a human video
by animating a static human image based on a user-defined
pose sequence. As shown in Figure 1, the created video needs
to accurately align the appearance details from the reference
image while following the motion guidance from the pose
sequence, which can be produced by DWPose [76] or Dense-
Pose [22]. Recently, LDM-based animation methods have
demonstrated superior effectiveness in addressing challenges
in appearance alignment and pose guidance, enabling the
generation of realistic and coherent videos.

Using LDM as the backbone, Stable Diffusion (SD) has
achieved remarkable success in text/image-to-image gener-
ation tasks [57]. Pre-trained SD models effectively capture
high-quality content priors. However, their network archi-
tecture is inherently designed for image generation, lacking
the capability to handle the temporal dimension required for
video generation. To extend foundational text/image-to-image
models for image animation, many works [13, 30, 70, 74, 86]
have incorporated temporal layers [23] into the denoising
UNet for temporal modeling. Specifically, the feature map

X ∈ Rb× f×h×w×c is reshaped to X ∈ R(b×h×w)× f×c, after
which temporal attention is performed to capture the tem-
poral dependencies among frames. Recently, some stud-
ies [53, 69, 82] have also adopted Stable Video Diffusion [7]
as the backbone for image animation. SVD is an open-source
image-to-video LDM trained on a large-scale video dataset;
its strong motion-aware prior knowledge facilitates maintain-
ing temporal consistency in image animation.

While pose-driven human image animation has demon-
strated impressive capabilities in creating vivid and realistic
human videos, it also raises serious concerns about unautho-
rized image usage by malicious attackers. With just a single
photo of the victim, easily obtained from the web or social
media, the malicious attacker can generate an unlimited num-
ber of human videos, manipulating the victim to perform any
poses and thereby severely violating the individual’s rights
to publicity and privacy. These manipulated videos could be
used for commercial or political purposes, potentially inflict-
ing significant harm on the unsuspecting victim.

2.3 Protection Methods against LDM
While few studies addressing the issue of unauthorized image-
to-video generation, prior research has proposed various pro-
tection methods [41,62,63,68,75,84] against LDM to prevent
image misuse in text/image-to-image generation. In the con-
text of image generation, there are two primary LDM-based
image misuse scenarios: concept customization and image
manipulation. Existing protection methods mainly utilize Pro-
jected Gradient Descent (PGD) [45] to generate adversarial
examples for LDM, thereby safeguarding against malicious
image generation in both misuse scenarios. The defender
aims to introduce protective perturbation δ to the image x,
such that the protected image xp = x+δ can deceive the LDM,
resulting in poor-quality generation.
Defending against Concept Customization. Concept cus-
tomization techniques [29, 59] fine-tune a few parameters of
a pre-trained text-to-image model so that it quickly acquires a
new concept given only 3-5 images as reference. The training
loss of the most popular work DreamBooth [59] introduces a
prior preservation loss to LLDM in Eq. (4):

LDB = Ez0,c,εt ,ε
′
t′ ,t,t

′

[
∥εt − εθ(zt+1,c, t)∥2

2

+λ
∥∥ε
′
t ′ − εθ(z′t ′+1,cpr, t ′)

∥∥2
2

]
, (5)

where z′t ′+1 is the noisy latent representation of the class sam-
ple x′ generated from LDM with prior prompt cpr, λ controls
for the weight of the prior term, which prevents over-fitting
and text-shifting problems. Depending on the conceptual
properties, there are two variants: style mimicry [63] and sub-
ject recontextualization [3]. Style mimicry seeks to generate
paintings in an artist’s style without consent, while subject re-
contextualization aims to memorize a subject (e.g., a portrait



of a victim) and generate it in a new context. Protection meth-
ods [68, 84] mainly disrupt the learning process in Eq. (5) by
solving the bi-level optimization: δ = argmaxδLLDM(E(x+
δ),θ′),s.t.θ′ = argminθLDB(E(x+ δ),θ), aimed at finding
protective perturbation δ which degrades the personalization
generation ability of DreamBooth, thereby preventing unau-
thorized concept customization.
Defending against Image Manipulation. Image Manipu-
lation techniques [8, 9, 16, 46] leverage pre-trained image-
to-image models to directly manipulate a single image, al-
tering its appearance or transferring its style. Protection
methods aimed at defending against image manipulation fo-
cus on disrupting the encoding process (x −→ z0) [62, 63]
and the reverse process (zT −→ z0) [41, 75]. The protec-
tive perturbation δ is optimized by fooling the VAE δ =
argmaxδ ∥E(x+δ)−E(x)∥2

2 and the denoising UNet δ =
argmaxδLLDM(E(x+δ)), thus making the LDM to generate
images significantly deviating from original image x.

There are several differences between concept customiza-
tion, image manipulation, and pose-driven human image ani-
mation. First, concept customization and image manipulation
are image generation tasks, whereas human image animation
is categorized as image-to-video generation. Second, con-
cept customization requires multiple images (typically 3-5),
while the other two techniques operate on a single image.
Third, concept customization involves fine-tuning the LDM
to memorize and generate a new concept. In contrast, image
manipulation and human image animation leverage frozen
pre-trained LDM directly for image or video generation with-
out additional learning. Fourth, concept customization uses
images as training data for fine-tuning, image manipulation
directly edits the given image itself, while human image ani-
mation extracts appearance features from the reference image
to guide video generation, rather than using the image directly.

These various ways of using images necessitate the design
of specific objective functions for each case when optimizing
the protective perturbation. Existing protections against con-
cept customization and image manipulation mainly target the
fine-tuning process, or the encoding and reverse processes,
respectively. However, these methods are ineffective at dis-
rupting the appearance features contained in human images.
As shown in Figure 3 in Section 4.2, only DORMANT effec-
tively induces noticeable mismatches in identity appearance
between reference images and generated videos. The reason is
that protective perturbations optimized with current objectives
have a limited protective effect on various well-trained fea-
ture extractors used in animation methods. The ablation study
results in Figure 11 in Section 4.6 also emphasize the need
for specifically designed objective functions to induce feature
misextraction, which existing methods lack. Moreover, they
also neglect to break the temporal consistency across frames
specifically required in video generation. As a result, cur-
rent protections against image generation are insufficient for
defending against pose-driven human image animation.

While many protection methods exist to prevent unautho-
rized image usage in text/image-to-image generation, there is
a notable gap in defending against image-to-video generation.
To our knowledge, the only concurrent work addressing this
issue is VGMShield [50], which aims to prevent malicious
image-to-video generation using SVD [7] by generating ad-
versarial examples. More precisely, it attacks the encoding
process of SVD, aiming at deceiving the image encoder and
video encoder into misinterpreting the image. However, this
deviation specifically in the embedding space of SVD is insuf-
ficient to effectively disrupt the appearance features in human
images and shows limited effectiveness and transferability
when defending against non-SVD-based video generation
methods, including various pose-driven human image ani-
mation techniques. Overall, the ineffectiveness of existing
protections against image and video generation highlights the
need for novel protection methods specifically designed to
prevent malicious pose-driven human image animation.

3 Methodology

DORMANT prevents image misuse in pose-driven human
image animation by adding protective perturbation δ to the
human image x, resulting in the protected image xp = x+δ.
xp is visually similar to x but would lead to poor-quality video
generation if used, causing issues such as mismatched ap-
pearances, visual distortions, and frame inconsistencies. We
assume that a fully black-box setting for the animation meth-
ods and models that potential attackers might use and em-
ploy a transfer-based strategy to optimize δ according to our
proposed objective function LDORMANT, relying on some sur-
rogate pre-trained models (e.g., the publicly available CLIP
model [54]) to which the defender has white-box access. As
shown in Figure 2, LDORMANT contains: 1) Lvae and L f eature,
which aim to induce misextraction of appearance features
from the reference image; and 2) L f rame, which is designed to
cause incoherence among the generated video frames. Addi-
tionally, we adopt LPIPS [79], EoT [5], and Momentum [18],
to further enhance the imperceptibility, robustness, and trans-
ferability of δ, respectively. The protective perturbation is
optimized using PGD [45], which iteratively updates δ with a
step size γ under an L∞ norm constraint η as follows:

δi = δi−1 + γ · sign(∇δLDORMANT), s.t. ∥δ∥∞ ≤ η. (6)

3.1 Threat Model
Attacker. The attacker aims to generate human videos using
pose sequences based on images obtained without the owner’s
consent. These fabricated videos could be misused for com-
mercial or political purposes, violating the victim’s rights to
portrait and privacy. We assume that the attacker maliciously
acquires multiple images of the victim from the web or social
media. The attacker is aware of potential protections and can



Figure 2: Overview of DORMANT. Here, we present the four components of our proposed objective function LDORMANT, which
includes: Lvae and L f eature for feature misextraction, L f rame for frame incoherence, and Ll pips for visual similarity.

apply various countermeasures to these images to craft a suit-
able reference image for video generation. The attacker also
has access to various LDMs for pose-driven human image
animation, and significant computational power to run them.
Defender. We assume that the defender intends to apply pro-
tective perturbation to a human image before posting it on-
line or on social media, to prevent potential unauthorized
human video generation and thereby safeguard portrait and
privacy rights. The protected image appears visually similar
to the original image to human perception. However, any
videos generated using this protected image would display
mismatches in identity appearance and degraded quality, such
as distorted backgrounds, visible artifacts, and incoherent
frames, etc. To optimize the protective perturbation, the de-
fender has access to some publicly available feature extractors
and LDMs for pose-driven human image animation. However,
the defender is unaware of, and therefore unable to approx-
imate, the specific animation methods and models that the
attacker might use. The defender could be either the image
owner or a trustworthy third party with sufficient computing
resources to execute the protection method effectively.

3.2 Feature Misextraction
As mentioned in Section 2.3, the mainstream usage of the ref-
erence image in pose-driven human image animation involves
extracting its appearance features to guide video generation.
In this context, the objective of optimizing the protective per-
turbation δ is to disrupt these appearance features, causing
the feature extractor to extract incorrect features from the
protected image. As a result, videos generated with this faulty

guidance would differ from the reference image, thereby pre-
venting unauthorized usage in human video generation.
VAE Encoder. As mentioned in Section 2.1, to reduce compu-
tational demands, LDM first maps the input image to a latent
representation using the VAE encoder before performing the
diffusion process. Given this, an intuitive strategy for induc-
ing feature misextraction is to disrupt the encoding process,
causing the encoder E to map the protected image xp to a
“wrong” latent vector zp = E(x+δ) that deviates significantly
from the original latent z = E(x). Consequently, this misen-
coded latent zp would contain incorrect appearance features,
thus misleading the video generation process. The optimiza-
tion objective Lvae is to maximize the distance between x and
xp in the VAE latent space, as defined by:

argmax
∥δ∥∞≤η

Lvae = argmax
∥δ∥∞≤η

∥E(x+δ)−E(x)∥2
2 . (7)

We utilize the encoder E from sd-vae-ft-mse [1], a VAE
fine-tuned on an enriched dataset with images of humans to
improve the reconstruction of faces.

However, the deviation of the latent representation alone
is insufficient to induce a deep-level misextraction of the ap-
pearance features. This is because pose-driven human image
animation methods typically have stringent requirements for
appearance alignment and often use pre-trained or custom-
designed models for additional feature extraction. As a result,
the attack on the VAE encoder has only a limited effect on
these advanced feature extractors. To comprehensively dis-
rupt the appearance features of the image and thus improve the
transferability of the protective perturbation against various
unknown feature extractors, we further employ CLIP image



encoder for semantic feature extraction and ReferenceNet for
fine-grained feature extraction during the optimization of δ.
CLIP Image Encoder. The CLIP model [54] is trained on a
diverse set of text-image pairs, and its image encoder C can be
utilized to extract semantic features from the reference image
x, which can then be integrated into the Transformer Blocks of
the denoising UNet to guide video generation through cross-
attention [70]. To ensure that the protected image xp = x+δ

contains different semantic features from the original image x,
we further employ the CLIP image encoder C from sd-image-
variations [35] for feature extraction during the optimization
of δ. The objective is to maximize the distance between x and
xp in the CLIP embedding space, defined as follows:

argmax
∥δ∥∞≤η

∥C (x+δ)−C (x)∥2
2 . (8)

However, CLIP image encoder is known to be less effective
at capturing fine-grained details [30, 74]. There are two main
factors for this limitation. First, CLIP is trained to match se-
mantic features between text and images, which are typically
sparse and high-level, resulting in a deficit of detailed features.
Second, the CLIP image encoder only accepts low-resolution
(224×224) images as inputs, leading to a loss of fine-grained
information. Therefore, relying solely on the CLIP image
encoder for optimizing δ is insufficient, as it mainly extracts
semantic features while missing fine-grained details.
ReferenceNet. Inspired by the recent success of ReferenceNet
in detailed feature extraction [13,30,66,69,74,86], we further
utilize ReferenceNet R as the feature extractor to optimize
δ. ReferenceNet is a copy of the denoising UNet from SD
used in image generation1, designed to extract appearance fea-
tures particularly low-level details from the reference human
image. Specifically, the feature map X1 ∈ Rh×w×c from the
ReferenceNet is repeated by f times and concatenated with
the feature map X2 ∈ R f×h×w×c from the denoising UNet
along w dimension. Then spatial attention is performed to
transmit the appearance information from the reference im-
age spatially. ReferenceNet inherits weights from the original
SD and is further trained on human video frames, enabling
it to provide fine-grained and detailed features essential for
preserving the reference appearance in video generation.

In addition to using CLIP image encoder C to extract se-
mantic features and optimize the protective perturbation δ

according to Eq. (8), we also incorporate ReferenceNet R
into the optimization process to enhance fine-grained feature
extraction. To ensure that the protected image xp exhibits dis-
tinct detailed features from the perspective of ReferenceNet,
we maximize the distance between the corresponding ex-
tracted features R (E(x+ δ)) and R (E(x)). Moreover, to
further improve the transferability of the protective pertur-
bation, we optimize δ using an ensemble [18, 43] of K = 3

1ReferenceNet is identical to traditional denoising UNet used in image
generation, while denoising UNet for human image animation incorporates
additional temporal layers to generate video, as mentioned in Section 2.2.

different pre-trained ReferenceNets [13, 30, 74]. The objec-
tive L f eature for feature misextraction using the CLIP image
encoder and ReferenceNets is thus defined as follows:

argmax
∥δ∥∞≤η

L f eature = argmax
∥δ∥∞≤η

∥C (x+δ)−C (x)∥2
2

+
K

∑
k=1
∥Rk(E(x+δ))−Rk(E(x))∥2

2 .

(9)

3.3 Frame Incoherence
While feature misextraction mainly focuses on disrupting the
alignment of reference appearance, it is also crucial to con-
sider the requirement of maintaining temporal consistency
across frames in video generation when designing the opti-
mization objective. Based on this, we further propose L f rame,
which attacks the video generation process of the denois-
ing UNet to induce incoherence among the generated video
frames, thus enhancing the protective effect. This requires
the defender to provide both the reference image and the pose
sequence to simulate the attacker’s animation process. How-
ever, predicting the exact pose sequences the attacker might
use is challenging. To this end, we directly extract the corre-
sponding pose from the reference image and repeat it F times
as the pose sequence to guide video generation.

The protective perturbation δ can be optimized from two
perspectives: 1) maximizing the distance between each video
frame and reference image to disrupt appearance alignment;
and 2) maximizing the distance between each video frame
and others to disrupt video consistency. Since pose-driven
human image animation operates in the latent space, these
two objectives can be formulated as increasing the distance
between the latent vector of the reference image z = E(x) and
that of each generated video frame z̃ f

0 , or the distance between

the latent vectors of different frames z̃ f
0 and z̃ f ′

0 . The objective
L f rame for frame incoherence is defined as follows:

argmax
∥δ∥∞≤η

L f rame = argmax
∥δ∥∞≤η

1
F

F

∑
f=1

∥∥∥z̃ f
0 −E(x)

∥∥∥2

2

+
2

F(F−1)

F

∑
f=1

F

∑
f ′= f+1

∥∥∥z̃ f
0 − z̃ f ′

0

∥∥∥2

2
.

(10)

We set F = 5 by default. As mentioned in Section 2.1,
given the total inference steps T , we can sample z̃T from
the Gaussian distribution and compute z̃0 progressively from
timestep T to timestep 0 according to Eq. (3). However, this
would result in substantial GPU memory usage and increased
time costs. To improve efficiency, we directly estimate z̃0
using the reparameterization technique outlined in Eq. (2),
rather than computing it step by step. Specifically, given
a timestep t, z̃0 is estimated by z̃0 = (z̃t −

√
1−αtεt)/

√
αt ,

where αt = ∏
t
i=1(1− βi), {βt ∈ (0,1)}T

t=1 is the variance
schedule, εt is predicted by a pre-trained denoising UNet2,

2 https://github.com/MooreThreads/Moore-AnimateAnyone

https://github.com/MooreThreads/Moore-AnimateAnyone


and z̃t is sampled from the Gaussian distribution. In each
PGD iteration, we randomly sample one timestep t from the
last 10 timesteps of T and estimate the corresponding z̃0.

3.4 DORMANT

Overall, to optimize the protective perturbation δ for prevent-
ing unauthorized image usage in pose-driven human image
animation, we propose Lvae and L f eature for feature misex-
traction, L f rame for frame incoherence. We also apply several
techniques to further enhance the perturbation δ during opti-
mization, including LPIPS [79] for imperceptibility, EoT [5]
for robustness, and Momentum [18] for transferability.
LPIPS. In addition to constraining the protective perturbation
δ using the L∞ norm, we also incorporate LPIPS to further im-
prove the imperceptibility of δ. LPIPS utilizes deep features
from a pre-trained network to measure image distance, align-
ing more closely with human perception. Thus we use LPIPS
to ensure that the protected image xp remains visually similar
to the original image x. Specifically, we include the following
regularization term and minimize Ll pips during optimization:

Ll pips = max(LPIPS(x+δ,x)−ζ,0), (11)

where ζ denotes the budget of Ll pips, and we set ζ = 0.1 by
default. During the optimization of δ, if the perceptual dis-
tance between xp and x exceeds the bound ζ, Ll pips introduces
a penalty to maintain visual similarity; otherwise, Ll pips = 0.
EoT. To enhance the robustness of δ against various transfor-
mations, we adopt EoT into the PGD process. EoT introduces
a distribution of transformation functions to the input and op-
timizes the expectation of the objective function values over
these transformations. To reduce time and computational
costs, during each PGD step, we randomly sample one of
the following transformations and apply it to the protected
image xp: Gaussian blur, JPEG compression, Gaussian noise,
Random resize (resizing to a random resolution and then back
to the original size), or no transformation. These selected
transformations are commonly adopted as potential counter-
measures in prior studies and have been shown to weaken the
effect of protective perturbations [3, 27, 83].
Momentum. Momentum enhances the transferability of the
perturbation by accumulating a velocity vector in the gradient
direction of the loss function across iterations. The memoriza-
tion of previous gradients helps to stabilize updated directions
and escape from poor local maxima. We incorporate momen-
tum into the PGD process in Eq. (6) as follows:

gi = µ ·gi−1 +
∇δLDORMANT

mean(∥∇δLDORMANT∥)
,

δi = δi−1 + γ · sign(gi),

(12)

where gi denotes the accumulated velocity vector at PGD step
i, and µ is the decay factor controlling the impact of previous
gradients, set to 0.5 by default. In each iteration, the current

Algorithm 1 DORMANT

Input: A human image x, PGD iterations N, step size γ, bud-
get η, decay factor µ; pre-trained models to calculate
LDORMANT: VAE encoder E , CLIP image encoder C , en-
semble of ReferenceNets R1:K , and denoising UNet εθ

Output: The protected image xp
1: Initialize g0← 0 and δ0← uni f orm(−η,η)
2: for i = 1 to N do
3: Sample transformation T
4: Sample timestep t
5: Sample z̃1:F

t ∼N (0, III)
6: Calculate LDORMANT by Eq. (13)
7: gi← µ ·gi−1 +

∇δLDORMANT

mean(∥∇δLDORMANT∥)
8: δi← δi−1 + γ · sign(gi)
9: δi← clip(δi,−η,η)

10: end for
11: xp← x+δN
12: return xp

gradient is normalized using the mean of its absolute values
rather than the L1 distance used in the original paper [18].

The complete optimization objective of DORMANT is:

argmax
∥δ∥∞≤η

LDORMANT = argmax
∥δ∥∞≤η

λ1 ·Lvae +λ2 ·L f eature

+λ3 ·L f rame−λ4 ·Ll pips,
(13)

where λs control the weight of each loss term. By default, we
set these values as λ1 = 10, λ2 = 1003, λ3 = 1 and λ4 = 10.
The detailed optimization process is presented in Alg. 1.

4 Evaluation

4.1 Experimental Setup
Pose-driven Human Image Animation Methods. We com-
prehensively evaluate the effectiveness and transferability of
DORMANT on 8 cutting-edge and widely-used human image
animation methods, including Animate Anyone [30], Magi-
cAnimate [74], MagicPose [13], MusePose [66], Champ [86],
MuseV [73], UniAnimate [71], and ControlNeXt [53]. These
8 methods represent SOTA open-source animation techniques
within the last two years and cover all major types. Despite ad-
vances in controllability and realism, some methods have also
been implicated in generating dancing deepfakes on video
platforms, raising societal concerns [15, 42, 52].
Datasets. We conduct experiments on 4 datasets: TikTok [33],
Champ [86], UBC Fashion [78], and TED Talks [65]. For the
TikTok dataset, we follow the settings used in prior human im-
age animation works [13,70] and utilize their 10 TikTok-style

3For L f eature, we set λclip = 10 and λre f = λ2 = 100, as ReferenceNet has
demonstrated the ability to extract more dense and detailed features necessary
for appearance alignment compared to the CLIP image encoder [30, 74].



Figure 3: Qualitative comparisons with baseline protections against various pose-driven human image animation methods.

videos showing different people from the web for evaluation.
These videos contain between 248 and 690 frames. Specif-
ically, we use the first frame of each video as the reference
image and extract pose sequences from the remaining frames
using DWPose [76] or DensePose [22] to guide the video
generation. Additionally, we also sample 10 videos from the
Champ training set, and the UBC Fashion and TED Talks
test sets for evaluation, resulting in videos with 237-848, 303-
355, and 135-259 frames, respectively. All video frames are
resized to 512× 512, and we further conduct experiments
on other image resolutions, random reference images, and
jump-cut pose sequences in Appendix A.
Baseline Protections. We compare the protection perfor-
mance of DORMANT with 6 baseline methods defending
against text/image-to-image generation (SDS [75], Glaze
2.1 [63], Mistv2 [84], PhotoGuard [62], and AntiDB [68]) and
image-to-video generation (VGMShield [50]). For a fair com-
parison, we set the perturbation budget η = 16/255 and PGD
iterations N = 200 for all protection methods4. We evaluate
image similarity before and after protections in Appendix E.
Transformations and Purifications. We evaluate the robust-
ness of DORMANT against 5 popular image transformations:
JPEG compression, Gaussian blur, Gaussian noise, Median
blur, and Bit squeeze. Additionally, we further conduct ex-
periments on 6 advanced purification methods specifically de-

4Glaze is closed-source software whose perturbation budget cannot be
exactly set to 16/255, we set the intensity to High, the highest setting.

signed to purify the added protective perturbation, including
Impress [10], DiffPure [47], DDSPure [11], GrIDPure [83],
Diffshortcut [44], and Noisy Upscaling [27].
Metrics. We evaluate the quality of generated videos using
6 image- and video-wise generative metrics used in prior
human image animation methods [13,70]. For the assessment
of image-level quality, we report frame-wise LPIPS [79],
Fréchet Inception Distance (FID) [24], Peak Signal to Noise
Ratio (PSNR) [28], and Structural Similarity Index Measure
(SSIM) [72]; while for video-level evaluation, we concatenate
every consecutive 16 frames to form a sample and report FID-
VID [6] and Fréchet Video Distance (FVD) [67], respectively.
Platform. All our experiments are conducted on a server run-
ning a 64-bit Ubuntu 22.04.4 system with Intel(R) Xeon(R)
Gold 5218R CPU @ 2.10GHz, 512GB memory, and four
Nvidia A800 PCIe GPUs with 80GB memory.

4.2 Protection Performance
Overall Results. We evaluate the protection effectiveness and
transferability of DORMANT against eight pose-driven human
image animation methods on the TikTok dataset, with the
quantitative results shown in Table 1. Evaluation across six
metrics demonstrates significant degradation in the quality of
generated videos due to the protective effect of DORMANT on
all eight animation methods. Specifically, the average FID-
VID, FVD, LPIPS, and FID increase from 48.03, 382.04, 0.30,



Table 1: Quantitative comparisons with baseline protections against various pose-driven human image animation methods. ↑
indicates that a higher value of the metric signifies poorer video quality and thus better protection, while ↓ indicates the opposite.

Method Metric Clean SDS [75] Glaze [63] Mistv2 [84] VGMShield [50] PhotoGuard [62] AntiDB [68] DORMANT

Animate Anyone [30]

FID-VID↑ 41.61 108.40 109.98 59.49 53.95 112.98 84.75 162.87
FVD↑ 362.75 859.75 1301.96 678.56 625.83 994.84 1055.58 1364.00

LPIPS↑ 0.282 0.556 0.582 0.554 0.584 0.565 0.542 0.639
FID↑ 65.00 140.69 172.04 142.04 142.07 143.41 181.52 245.06

PSNR↓ 17.76 16.30 15.23 17.38 16.75 15.94 15.76 11.82
SSIM↓ 0.741 0.684 0.446 0.553 0.510 0.682 0.441 0.374

MagicAnimate [74]

FID-VID↑ 37.04 148.59 92.20 66.49 56.00 145.01 60.61 174.93
FVD↑ 374.99 1051.55 1002.92 616.33 409.64 1081.05 620.48 1174.52

LPIPS↑ 0.268 0.409 0.531 0.499 0.506 0.421 0.502 0.604
FID↑ 68.86 131.53 132.25 119.88 111.03 127.21 115.07 235.23

PSNR↓ 18.29 15.03 15.74 17.33 17.72 14.78 17.18 13.89
SSIM↓ 0.758 0.676 0.493 0.595 0.600 0.675 0.535 0.369

MagicPose [13]

FID-VID↑ 67.73 98.76 120.89 107.22 97.04 134.99 98.76 133.06
FVD↑ 431.39 902.56 1058.04 899.49 764.42 1013.40 902.56 1413.94

LPIPS↑ 0.291 0.523 0.525 0.505 0.517 0.434 0.523 0.575
FID↑ 55.06 132.95 130.18 119.35 105.56 116.43 132.95 176.29

PSNR↓ 17.24 16.06 15.67 16.21 16.46 15.58 16.06 13.77
SSIM↓ 0.745 0.506 0.510 0.534 0.550 0.681 0.506 0.432

MusePose [66]

FID-VID↑ 30.17 73.77 107.58 52.87 47.93 92.29 73.77 182.47
FVD↑ 343.91 840.79 1208.92 556.01 441.20 800.16 840.79 1265.38

LPIPS↑ 0.284 0.524 0.574 0.532 0.560 0.462 0.524 0.642
FID↑ 66.08 147.22 163.89 126.60 128.12 126.95 147.22 280.57

PSNR↓ 17.77 16.08 15.12 17.46 17.42 16.67 16.08 11.50
SSIM↓ 0.745 0.481 0.461 0.601 0.572 0.712 0.481 0.381

Champ [86]

FID-VID↑ 85.19 144.27 148.12 107.79 97.79 152.46 111.93 158.70
FVD↑ 498.01 1017.24 1291.57 806.41 779.76 1119.71 1062.11 1234.56

LPIPS↑ 0.394 0.498 0.632 0.605 0.625 0.510 0.600 0.655
FID↑ 71.66 126.57 153.60 123.60 130.77 130.89 167.54 233.61

PSNR↓ 13.29 13.68 11.79 13.03 12.62 13.63 12.00 11.57
SSIM↓ 0.642 0.625 0.391 0.496 0.470 0.621 0.415 0.349

MuseV [73]

FID-VID↑ 60.75 128.61 98.63 74.06 89.16 119.82 89.46 151.46
FVD↑ 430.96 820.45 987.90 601.51 603.88 852.04 622.80 1078.03

LPIPS↑ 0.310 0.563 0.543 0.533 0.539 0.512 0.407 0.607
FID↑ 82.19 127.12 139.48 115.29 117.65 115.89 136.73 240.82

PSNR↓ 16.11 15.79 15.22 16.32 15.78 15.98 15.36 14.48
SSIM↓ 0.721 0.665 0.563 0.649 0.644 0.681 0.675 0.526

UniAnimate [71]

FID-VID↑ 26.03 86.59 105.43 49.75 43.15 81.76 56.77 113.73
FVD↑ 277.02 704.07 1134.13 572.21 490.22 667.84 708.05 1031.22

LPIPS↑ 0.253 0.521 0.579 0.566 0.567 0.488 0.505 0.580
FID↑ 52.63 131.51 153.04 115.08 119.63 123.60 167.66 250.30

PSNR↓ 18.76 15.76 15.58 17.91 17.98 16.09 17.40 15.57
SSIM↓ 0.762 0.680 0.474 0.566 0.587 0.709 0.545 0.470

ControlNeXt [53]

FID-VID↑ 35.73 105.07 96.45 72.94 84.25 80.65 79.35 110.37
FVD↑ 337.31 1001.21 1134.70 764.49 862.51 775.46 839.82 1141.36

LPIPS↑ 0.301 0.478 0.501 0.494 0.541 0.428 0.492 0.538
FID↑ 62.87 130.81 126.56 106.19 140.87 112.98 138.89 163.06

PSNR↓ 16.88 11.95 13.88 14.44 13.92 13.55 14.85 13.19
SSIM↓ 0.734 0.529 0.505 0.547 0.485 0.617 0.532 0.441

and 65.54 to 148.45, 1212.88, 0.61 and 228.12, and the aver-
age PSNR and SSIM decrease from 17.01 and 0.731 to 13.22
and 0.418, respectively. We show non-cherry-picked gener-
ated video frames in Figure 3, which display mismatched
identities, distorted backgrounds, and visual artifacts. These
results highlight the effectiveness of DORMANT in preventing
unauthorized image usage in human video generation, thereby
safeguarding individuals’ rights to portrait and privacy.

We also compare DORMANT’s protection performance
with six baseline methods that defend against unauthorized
image and video generation. Quantitative results in Table 1
and qualitative results in Figure 3 demonstrate the superior
protection performance of DORMANT, showing the greatest
effectiveness in degrading the quality of generated videos.
While Dormant exhibits the strongest transferability and per-
forms effectively across all 8 animation techniques, baseline

protections show limited transferability and are only effective
for certain animation methods, yielding some better metrics
with different protective effects. Specifically, the concur-
rent work VGMShield achieves slightly higher LPIPS on the
SVD-based method ControlNeXt but lacks transferability to
other animation methods. SDS tends to lighten colors and
smooth out details, resulting in better PSNR on ControlNeXt.
PhotoGuard induces noticeable inconsistencies between adja-
cent frames, showing slightly higher FID-VID on MagicPose.
Glaze produces visual artifacts and intensifies colors in gener-
ated videos, leading to better FVD on Champ and UniAnimate.
Moreover, although these baseline protections may perform
better on some metrics for certain animation methods, DOR-
MANT still 1) shows a clear advantage in other metrics for the
corresponding animation method; and 2) outperforms them
across all other animation methods.



Figure 4: Qualitative results on various datasets.

Results on Various Datasets. Besides the TikTok dataset, we
also evaluate the protection performance of DORMANT on
three other datasets using Animate Anyone, including human
dance generation on the Champ dataset, fashion video synthe-
sis on the UBC Fashion dataset, and speech video generation
on the TED Talks dataset. Quantitative results in Table 2
demonstrate the remarkable performance of DORMANT in
defending against pose-driven human image animation, with
the average FID-VID, FVD, LPIPS and FID increasing from
53.78, 406.03, 0.22 and 60.81 to 166.28, 1288.20, 0.57 and
260.53, and the average PSNR and SSIM decreasing from
19.44 and 0.745 to 14.69 and 0.486, respectively. The poor-
quality video frames shown in Figure 4 also validate the
protection effectiveness of DORMANT.

4.3 Human and GPT-4o Studies

Human Study. To bridge the gap between quantitative met-
rics and human perception, as well as study whether DOR-
MANT outperforms baseline methods in protecting privacy
and portrait rights from the perspective of real-world audi-
ences, we conduct a survey study. Our questionnaire consists
of two parts: 1) demographic data collection, including five
questions on age, gender, education, expertise, and familiar-
ity; and 2) ten questions asking participants to select the video
that best protects portrait and privacy rights compared to the
reference, each question containing a reference video and five
videos generated from images protected by DORMANT and
four baseline methods (SDS, Glaze, VGMShield, and Pho-
toGuard). The videos used are the 10 videos in the TikTok
test set, derived from experiments conducted using Animate
Anyone, with the corresponding metrics provided in Table 1.
The detailed questionnaire can be found in Appendix F.1.

We distributed the questionnaire online and recruited partic-
ipants via social media, offering lottery-based compensation
upon completion. A total of 82 valid responses were col-
lected. The participants’ ages primarily ranged from 18 to
54, with the majority (63.41%) falling between 25 and 34.
Among the participants, 57.32% were male and 40.24% were

Table 2: Protection performance on various datasets.

Dataset FID-VID↑ FVD↑ PSNR↓ SSIM↓ LPIPS↑ FID↑

TikTok [33] Clean 41.61 362.75 17.76 0.741 0.282 65.00
Protect 162.87 1364.00 11.82 0.374 0.639 245.06

Champ [86] Clean 45.92 379.64 18.04 0.661 0.286 56.72
Protect 156.03 1465.48 13.72 0.397 0.597 252.03

UBC
Fashion [78]

Clean 38.04 329.28 20.39 0.876 0.086 33.74
Protect 78.67 780.96 18.38 0.692 0.432 164.99

TED Talks [65] Clean 89.54 552.45 21.56 0.701 0.233 87.78
Protect 267.54 1542.37 14.82 0.479 0.627 380.04

female; 80.48% held or were pursuing a bachelor’s degree or
higher; 39.02% had a background in computer-related fields;
and 70.73% had at least heard of image-to-video generation
or were more familiar with it. As shown in Table 3, DOR-
MANT achieved an overall pick rate of 74.27% (609/820), sig-
nificantly outperforming baseline protections. Detailed results
for each question are shown in Figure 15(a) in Appendix F.3.
Notably, 67 participants selected DORMANT for at least five
questions, including 29 with a computer-related background
(32 in total). 37 participants selected DORMANT for all ten
questions, while only 8 participants did not choose DOR-
MANT for any of the ten questions, with SDS being their
preferred method, yielding a pick rate of 72.50% (58/80). Of
these eight participants, only one had heard of image-to-video
generation, and the others were less familiar with it.

Table 3: Results of human and GPT-4o studies.

Metric SDS Glaze VGMShield PhotoGuard DORMANT

Human Pick Rate↑ 10.12% 9.51% 4.27% 1.83% 74.27%
GPT-4o Rank↓ 4.0 2.0 2.7 4.8 1.5

GPT-4o Study. As LLM-as-a-Judge is now widely adopted
in many complex tasks [21], we also use GPT-4o [48] to sim-
ulate the above human study. GPT-4o is a multimodal large
language model capable of understanding image semantics
and perceiving pixel-level differences. We input GPT-4o with
a reference and five generated frame sequences, asking it to
rank them based on their effectiveness in protecting portrait
and privacy rights, focusing mainly on factors such as appear-
ance mismatches and background changes that differentiate
the generated frames from the reference. GPT-4o is instructed
to analyze step by step and output both the ranking and its rea-
soning. Our prompt is detailed in Appendix F.2. We further
manually verify all outputs from GPT-4o to ensure there are
no hallucinations. As shown in Table 3, DORMANT achieves
the highest average ranking of 1.5, and is consistently ranked
first or second across all samples (see Figure 15(b) in Ap-
pendix F.3). While GPT-4o ranks DORMANT first, it notes
that this method “makes the individual unrecognizable and
drastically alters the background”. Glaze is preferred by GPT-
4o when DORMANT is ranked second, as it “incorporates
more prominent and deliberate texture patterns”.
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Figure 5: Protection robustness of DORMANT against various transformations under different parameter settings.

Figure 6: Qualitative results of transformations that most de-
grade the protection, with JPEG compression (quality=75),
Gaussian blur (sigma=3), Gaussian noise (scale=0.05), Me-
dian blur (kernel size=9) and Bit squeeze (depth=3).

4.4 Protection Robustness
Robustness against Transformations. We evaluate five trans-
formations commonly used in prior studies [17,27,83], includ-
ing three transformations applied in EoT (JPEG compression,
Gaussian blur, and Gaussian noise) and two unseen transfor-
mations (Median blur and Bit squeeze). We apply them with
different parameter settings to both the original and protected
images to investigate their impact on the quality of gener-
ated videos and the effectiveness of protection. As shown
in Figure 5 (with the red dotted line representing the results
of videos generated using the original image without trans-
formations), the results indicate that: 1) transformations can
only reduce the protection effect to some extent but cannot
completely remove the impact of the protective perturbation;
2) transformations also affect the quality of generated videos.
In particular, increasing the transformation parameters to min-
imize the protection effect would also noticeably degrade the
quality of the generated videos. Figure 6 presents the qualita-
tive results when various transformations most degrade the
protection effect. Even in these cases, the generated videos
still exhibit low quality due to residual protective perturba-
tion and the impact of excessive transformations, displaying
issues including distorted backgrounds, mismatched faces,
and visual artifacts. These results validate the robustness of
DORMANT against various transformations.

Figure 7: Qualitative results against various purifications.

Table 4: Quantitative results against various purifications.

Method FID-VID↑ FVD↑ PSNR↓ SSIM↓ LPIPS↑ FID↑

Impress [10] 171.49 1386.19 13.31 0.341 0.628 259.26
DiffPure [47] 54.43 490.63 17.57 0.712 0.337 94.23
DDSPure [11] 71.38 762.01 17.14 0.687 0.398 126.93
GrIDPure [83] 62.69 465.87 16.78 0.670 0.338 101.40

Diffshortcut [44] 73.48 605.54 16.11 0.545 0.514 152.60
Noisy Upscaling [27] 78.10 673.03 17.02 0.680 0.414 144.24

Clean 41.61 362.75 17.76 0.741 0.282 65.00

Robustness against Purifications. We evaluate the robust-
ness of DORMANT against six purification methods, and the
results are shown in Table 4. While the protective effect of
DORMANT is somewhat reduced by these purifications, there
still remains a noticeable quality gap between the resulting
videos and those generated from the original images. Qualita-
tive results are presented in Figure 7. Impress shows almost
no purifying effect. DiffPure and DDSPure would introduce
external strange patterns and light streaks into the generated
videos. GrIDPure and Noisy Upscaling fail to restore de-
tailed facial features. In contrast, while Diffshortcut utilizes
CodeFormer [85] to restore human faces (which are vivid but
differ from the reference), there are still noticeable artifacts in
other regions. As a result, videos generated using protected
images after purification cannot be used directly for malicious
purposes due to their low quality, and the individuals’ privacy
and portrait rights are still effectively safeguarded.

4.5 Protection Transferability
Results on Image-to-Video/Image. Besides human image
animation methods that use pose sequences to guide video



Figure 8: Qualitative results on image-to-video methods.

Figure 9: Qualitative results on image-to-image methods.

generation from the reference image, we conduct additional
experiments on four other types of image-to-video methods
that directly generate videos from the given image without
external guidance (SVD) and those that use text prompts for
guidance (PIA, I2VGen-XL, and AnimateDiff). Moreover,
we also consider the scenario of image manipulation and
evaluate the performance of DORMANT using four image-to-
image methods that use text prompts as conditions for image
editing. We utilize BLIP-2 [37] to generate captions corre-
sponding to the reference images, resulting in prompts such
as “A woman in a white dress”. To guide video generation,
we add the suffix “is dancing” to these captions. For image-
to-image methods, we use the original captions for SDEdit
and InstructPix2Pix, while for LEDITS++ and DiffEdit, we
generate variant prompts using GPT-4o, such as “A woman in
a blue dress”. Since FID-VID and FVD cannot be calculated
here, we employ two other metrics, CLIP-I and DINO, which
compute the average pairwise cosine similarity between CLIP
image embeddings [54] and ViT-S/16 DINO embeddings [12]
of generated and reference images, respectively.

As shown in Table 5, DORMANT demonstrates excellent
protection performance, resulting in significant degradation
in the quality of generated videos and images. For the four
image-to-video methods, the average CLIP-I, DINO, and
SSIM decrease from 0.771, 0.784, and 0.559 to 0.638, 0.418,
and 0.342, and the average LPIPS and FID increase from
0.501 and 136.57 to 0.677 and 294.09, respectively. While for
the four image-to-image methods, the average CLIP-I, DINO,
and SSIM decrease from 0.779, 0.827, and 0.684 to 0.655,
0.521, and 0.410, and the average LPIPS and FID increase

Figure 10: Qualitative results on commercial services.

Table 5: Quantitative results on various image-to-video and
image-to-image methods.

Task Method CLIP-I↓ DINO↓ SSIM↓ LPIPS↑ FID↑

Im
ag

e-
to

-V
id

eo PIA [81] Clean 0.752 0.768 0.573 0.519 142.69
Protect 0.655 0.464 0.409 0.693 275.74

I2VGen-XL [80] Clean 0.779 0.730 0.467 0.560 158.72
Protect 0.641 0.414 0.284 0.690 300.19

SVD [7] Clean 0.799 0.805 0.540 0.476 124.69
Protect 0.658 0.377 0.317 0.683 321.32

AnimateDiff [23] Clean 0.752 0.831 0.655 0.447 120.18
Protect 0.596 0.416 0.359 0.642 279.09

Im
ag

e-
to

-I
m

ag
e SDEdit [46] Clean 0.733 0.841 0.609 0.442 140.98

Protect 0.599 0.535 0.305 0.634 264.35

LEDITS++ [8] Clean 0.823 0.853 0.735 0.288 119.50
Protect 0.682 0.591 0.488 0.626 222.32

DiffEdit [16] Clean 0.788 0.843 0.738 0.267 180.22
Protect 0.665 0.430 0.428 0.649 375.78

InstructPix2Pix [9] Clean 0.773 0.772 0.653 0.391 156.13
Protect 0.675 0.529 0.420 0.686 275.54

from 0.347 and 149.21 to 0.649 and 284.50, respectively.
Visualization results are shown in Figure 8 and Figure 9,
where both the generated video frames and images exhibit
poor quality. These results further highlight the effectiveness
and transferability of DORMANT. The features contained in
the reference image are effectively and comprehensively dis-
rupted by the protective perturbation from the perspective of
various LDMs used in these generation methods, which utilize
different architectures and are trained on different datasets.
Results on Commercial Services. We further evaluate the
performance of DORMANT on six real-world commercial
services. To effectively defend against these closed-source
generative models in a black-box manner, we set the budget
η to 32/255 to generate protective perturbation. The results
are presented in Table 6. DORMANT significantly degrades
the quality of generated videos and images, with the average
CLIP-I, DINO, and SSIM decreasing from 0.804, 0.788, and
0.630 to 0.662, 0.521, and 0.475, and the average LPIPS and
FID increasing from 0.474 and 145.22 to 0.643 and 269.64,
respectively. As shown in Figure 10, generated videos and
images suffer from poor quality, such as mismatched human
appearance (Gen-2, DreaMoving, and Ying) and distorted
visuals (Viva, NovelAI, and Scenario). These results validate
that DORMANT effectively safeguards portrait and privacy
rights, showcasing its capability for real-world applications
in preventing human image misuse.



Table 6: Quantitative results on various commercial services.

Task Commercial Service CLIP-I↓ DINO↓ SSIM↓ LPIPS↑ FID↑

Im
ag

e-
to

-V
id

eo

Viva [25] Clean 0.880 0.888 0.717 0.359 82.94
Protect 0.652 0.486 0.418 0.642 308.24

Gen-2 [60] Clean 0.778 0.752 0.633 0.477 150.84
Protect 0.661 0.604 0.543 0.655 236.08

DreaMoving [20] Clean 0.805 0.764 0.539 0.551 138.50
Protect 0.664 0.563 0.470 0.661 215.73

Ying [2] Clean 0.847 0.729 0.535 0.605 170.39
Protect 0.677 0.472 0.407 0.681 278.24

Im
ag

e-
to

-
Im

ag
e NovelAI [4] Clean 0.710 0.724 0.654 0.493 186.74

Protect 0.652 0.532 0.518 0.591 243.71

Scenario [32] Clean 0.803 0.870 0.702 0.360 141.91
Protect 0.663 0.466 0.493 0.626 335.85

4.6 Ablation Study
Impact of Proposed Objectives. To study the impact of Lvae
and L f eature (feature misextraction), L f rame (frame incoher-
ence), we conduct experiments by removing each correspond-
ing loss while keeping the rest of LDORMANT unchanged. As
shown in Figure 11, the absence of any of these three losses
results in a degradation of the protection effect, highlighting
their essential roles in the overall effectiveness of the pro-
tection. Notably, L f eature has the most significant impact,
which is designed to induce misextraction of appearance fea-
tures from the reference image using CLIP and ReferenceNet.
This result aligns with our analysis in Section 2.3, where we
emphasize that the main usage of the reference image in pose-
driven human image animation is to extract its appearance
features to guide video generation. Consequently, as shown
in Table 1, existing protections, which lack specific designs
to effectively disrupt these features, exhibit limited efficacy.
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Figure 11: Ablation study on the proposed objectives.

We further study the impact of using other feature extrac-
tors in L f eature. As mentioned in Section 3.2, we use the CLIP
image encoder to extract semantic features and ReferenceNets
to capture fine-grained details from the image. We replace
our design of CLIP + ReferenceNets with DINO [12] + BLIP
image encoder [38], yielding FVD and FID values of 1080.09
and 153.55 for the generated videos. This result outperforms
most baseline protections (except Glaze) but falls short of
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Figure 12: Impact of budget η and iterations N.

DORMANT by a noticeable margin, further highlighting the
importance of inducing misextraction of appearance features
and also the superiority of our design for feature extractors.
Impact of Perturbation Budget η and PGD Iterations N.
We conduct experiments by varying η from 2/255 to 32/255
and N from 50 to 500, to investigate their impact on protection
performance. The results are presented in Figure 12. As the
perturbation budget η increases, the protection effect of DOR-
MANT becomes progressively stronger, and η = 8/255 can
already significantly degrade the quality of generated videos,
resulting in FVD and FID values of 1158.46 and 240.83, re-
spectively. This provides users with the flexibility to balance
invisibility and effectiveness according to their needs. The
increase in PGD iterations N initially causes the protection ef-
fect to decrease and then increase, possibly due to overfitting,
which leads the optimization to fall into poor local maxima
and then escape. Optimizing for 50 iterations is sufficient to
significantly degrade the quality of generated videos, with
FVD and FID being 1522.35 and 272.61, thereby further re-
ducing the time cost required for protection. Impact of pose
repeats F and decay factor µ is provided in Appendix C.

5 Discussion

Adaptive Attack. We propose an adaptive attack under the
assumption that the attacker has access to multiple protected
images of the victim. While animation methods typically
take a single reference image as input to generate videos, the
attacker can utilize these images to craft a refined reference.
Inspired by [51] which reveals Glaze’s vulnerability to lin-
ear interpolation and pixel averaging, we design a strategy
to create a purified image from multiple protected images.
Specifically, we apply linear interpolation to adjacent pairs
of five protected images spaced five frames apart, followed
by pixel averaging of the four interpolated results to produce
the final image for video generation, with the resulting FID-
FVD, FVD, LPIPS, FID, PSNR, and SSIM on the TikTok
dataset being 69.18, 728.89, 0.474, 162.50, 17.06, and 0.641,
respectively. While the protective effect is partially reduced,
the generated videos remain of noticeably low quality. More
adaptive attacks are provided in Appendix B.



Application Scenarios. DORMANT applies protective pertur-
bations to human images to prevent potential unauthorized
usage in pose-driven animation methods. It is primarily tar-
geted at users who: 1) may place human images in uncon-
trollable environments like social media or the web; and 2)
prioritize privacy and portrait rights and accept sacrificing a
bit of image quality for protection. DORMANT may not be di-
rectly suitable for legitimate use cases that involve processing
or editing original images for valid purposes, such as photo
retouching or authorized content creation.
Anomalous Cases. We examine cases where baseline protec-
tions outperform DORMANT across at least four animations
on the TikTok dataset. While DORMANT exhibits sufficient
effectiveness, these methods yield even better protective ef-
fects on certain samples. Specifically, Glaze performs better
on sample 002, producing highly exaggerated colors and visi-
ble speckles in the generated videos. PhotoGuard and SDS
perform better on sample 006 which features sharply contrast-
ing colors, by lightening the colors and blurring sharpness and
details in the generated videos. We present the FVD for ex-
periments on Animate Anyone and MagicPose as examples in
Figure 13, and qualitative results in Figure 15 in Appendix D.
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Figure 13: Results of experiments on Animate Anyone and
MagicPose, with red boxes marking samples where baseline
protections perform better across both animation methods.

We also examine failure cases where DORMANT performs
relatively poorly against the commercial service Gen-2 and
the latest Gen-3. As shown in Figure 16 in Appendix D,
DORMANT mainly induces identity mismatch but introduces
minimal distortion, and the generated videos remain realistic.
Image-to-video models applied in commercial services are
typically trained on larger, higher-quality datasets with more
parameters. Exploring how to get feedback from these ad-
vanced models via black-box access to improve DORMANT’s
transferability would be meaningful for future work.
Limitations and Future Works. A key limitation of DOR-
MANT is that its effectiveness is validated based on empiri-
cal evaluation, rather than being provably secure. Addition-
ally, DORMANT faces the challenge of being future-proof, as
image-to-video generation is continuously evolving. While
DORMANT has shown effectiveness and is expected to remain
effective against existing feature extractors used in current
open-source SOTA animation methods that are driven by pose,

its performance against future paradigms in feature extraction
and different video generation techniques guided by other
modal conditions requires ongoing validation and improve-
ments. Future work could explore the use of expert models to
specifically extract disentangled image features (e.g., human
face, body posture, and background) to induce feature misex-
traction, and integrate guidance from additional modalities to
create frame incoherence during optimization.

6 Related Work

LDM for Unauthorized Image Usage. Latent diffusion mod-
els [57] have demonstrated a remarkable capability to create
authentic-looking images, which also raises significant con-
cerns about unauthorized image usage. Malicious attackers
can easily mimic an artist’s style [29, 59] or edit images into
new contexts [8, 9, 16, 46] without consent. Beyond image
generation, unauthorized images can also be used to create
fabricated videos [7, 23, 80, 81]. In particular, pose-driven hu-
man image animation [13, 30, 36, 53, 66, 69–71, 73, 74, 82, 86]
can generate malicious videos by animating human images
using pose sequences as guidance.
Protection Methods and Countermeasures. Previous pro-
tection methods apply protective perturbations to images to
prevent unauthorized usage in DNN-based recognition [14,
39, 64] and GAN-based manipulation [31, 40, 77]. However,
these methods have shown limited effectiveness against ad-
vanced LDMs due to their distinct backbone networks [41,63].
To defend against LDM-based text/image-to-image gener-
ation, recent research has proposed protections targeting
customization techniques [68, 84], VAE [62, 63], and de-
noising UNet [41, 75]. The only concurrent work address-
ing unauthorized LDM-based image-to-video generation is
VGMShield [50], which targets the image and video encoders
of SVD. There also exists countermeasures [3, 10, 27, 44, 83]
that scrutinize the effectiveness and robustness of current pro-
tection methods, proposing various techniques to circumvent
them by purifying the added protective perturbation.

7 Conclusion

In this paper, we propose DORMANT, a novel approach de-
signed to prevent unauthorized image usage in pose-driven
human image animation. By applying the protective pertur-
bation to the human image, DORMANT effectively degrades
the quality of generated videos, resulting in mismatched ap-
pearances, visual distortions, and frame inconsistencies. To
optimize the protective perturbation, we develop specific ob-
jective functions aimed at inducing misextraction of appear-
ance features and causing incoherence among generated video
frames. Experimental results demonstrate the effectiveness,
transferability, and robustness of DORMANT, serving as a
powerful tool for safeguarding portrait and privacy rights.
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Ethics Considerations

DORMANT is a defense approach designed to prevent im-
age misuse in pose-driven human image animation meth-
ods, thereby safeguarding individuals’ rights to portrait and
privacy. To ensure fair and reproducible evaluations of the
performance of DORMANT, we conducted experiments on
commonly used public datasets, following the setups outlined
in prior animation methods [13, 70, 74, 86]. All experimental
data, including the fake videos generated during the experi-
ments, were stored on private, secure servers and are strictly
intended for academic research purposes only; they will not
be shared beyond their intended scope.

During the research process, three experiments posed poten-
tial risks of unauthorized exposure of generated fake videos:
the human study, the GPT-4o study, and experiments on com-
mercial services. These experiments used the TikTok test
set [33, 70], which permits research purposes. Although this
publicly available dataset is widely used in many studies, ob-
taining explicit consent from the individuals depicted in the
photos remains challenging. An alternative approach could
have involved collecting and using data from volunteers who
could explicitly consent. However, the terms of service for
video generation platforms typically allow the use of user
inputs and outputs for training and improving their AI mod-
els. While publicly available data may have already been
integrated into these platforms’ model training, uploading
newly collected images from consenting individuals would
introduce their data for the first time, potentially exposing
them to additional privacy risks due to uncontrolled usage. To
mitigate these risks and ensure fairness and reproducibility in
our evaluation, we chose to use publicly available data.

Meanwhile, we remained vigilant about the potential expo-
sure of generated fake videos and implemented precautionary
measures to minimize risks. All participants in the human
study were required to consent to not disseminate any content
from the questionnaire, which was accessible for a limited
time. Before uploading data to GPT-4o and video generation
websites, we configured our account privacy settings to the
strictest levels, including disabling “Chat History & Train-
ing” in GPT-4o, setting repositories to private, and upgrading
to memberships with enhanced privacy features, etc. During
the experiments, we documented the setups for reproducibil-
ity, downloaded and stored the generated results on private
servers, and cleared all data from the accounts upon comple-
tion. All activities were conducted in full compliance with
the usage rules and regulations of the respective platforms.

We conducted a human study to evaluate the performance
of DORMANT from the perspective of human perception. The
study was reviewed and received IRB approval at our institute.
Before providing consent, participants were fully informed
of the study’s purpose, procedures, potential risks and bene-
fits, and lottery-based compensation. They were also warned
that the questionnaire might include unfiltered videos that
could be disturbing, and were shown sample videos upon re-
quest if they expressed concern. Participants were allowed to
withdraw from the study at any point, with any data they pro-
vided excluded from the analysis. Additionally, participants
were required to consent to not disseminate any content from
the questionnaire. Explicit consent was obtained through a
digital agreement before participants gained access to the
questionnaire, which was available for a limited duration. All
participants remained anonymous. Demographic data, includ-
ing gender, age, education, expertise, and familiarity, were
collected solely for research purposes through single-choice
questions with generalized options, including a “prefer not
to say” option. No personally identifiable information was
collected, and all data were securely and privately stored.

Open Science

We are committed to the principles of open science and have
released our artifacts, including the source code of DOR-
MANT and the evaluated test data at https://zenodo.org
/records/14725876. The latest version of the code will be
maintained and updated at https://github.com/Manu21J
C/Dormant. While we primarily present visualizations of ex-
perimental results via figures in this paper, we do not plan to
provide public links to these generated fake videos to mitigate
potential risks of exposure and misuse, as discussed in Ethics
Considerations. These videos are available upon request for
research purposes only, with the condition that requestors
agree not to share the videos beyond their intended scope.
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Appendix

A Protection Generality

Results on Various Resolutions of Images. As mentioned
in Section 4.1, our experiments are mainly conducted on
512× 512 images. Here we investigate the protection per-
formance of DORMANT on four other resolutions: {256×
256,256×512,512×768,768×768}. As shown in Table 7,
DORMANT exhibits excellent protection performance across
all image resolutions, with the average FID-VID, FVD, LPIPS
and FID increasing from 53.83, 447.50, 0.31 and 81.01 to
215.96, 1628.55, 0.64 and 251.09, and the average PSNR and

Table 7: Quantitative results on various resolutions of images.

Resolution FID-VID↑ FVD↑ PSNR↓ SSIM↓ LPIPS↑ FID↑

256 ××× 256 Clean 56.23 462.36 16.04 0.625 0.304 94.07
Protect 260.26 2165.94 13.19 0.306 0.596 285.03

256 ××× 512 Clean 69.54 480.56 15.74 0.637 0.349 83.85
Protect 289.11 1769.24 12.06 0.322 0.640 292.09

512 ××× 512 Clean 41.61 362.75 17.76 0.741 0.282 65.00
Protect 162.87 1364.00 11.82 0.374 0.639 245.06

512 ××× 768 Clean 58.86 505.83 16.84 0.722 0.328 85.67
Protect 204.48 1419.64 11.62 0.403 0.653 243.46

768 ××× 768 Clean 42.93 425.98 17.89 0.779 0.284 76.45
Protect 163.07 1423.93 10.58 0.441 0.650 189.82

SSIM decreasing from 16.85 and 0.701 to 11.85 and 0.370,
respectively. These results highlight the applicability of DOR-
MANT for protecting human images of different resolutions.
Results on Random References and Jump-cut Poses. As
mentioned in Section 4.1, we use the first frame of each video
as the reference image and extract pose sequences from the
remaining frames for video generation. We further conduct
two additional experiments to examine whether altering these
settings would impact DORMANT’s effectiveness. First, we
randomly select a non-first frame from each video to serve
as the reference image, with the resulting FID-FVD, FVD,
LPIPS, FID, PSNR, and SSIM on the TikTok dataset being
162.83, 1352.56, 0.633, 225.50, 11.97, and 0.401, respectively.
Second, we simulate jump-cut pose sequences by combining
the first half of the pose sequence from one video with the
second half from another, yielding CLIP-I, DINO, SSIM,
LPIPS, and FID values of 0.609, 0.437, 0.404, 0.682, and
247.73, respectively. These results show that DORMANT’s
protection performance remains robust under both variations
in the reference image and pose sequence settings.

B More Adaptive Attacks

Robustness against Robust Fine-tuning. Inspired by [55]
which reveals that robust training with protected images and
their corresponding ground-truth labels could defeat protec-
tions against face recognition models [14, 64], we investigate
whether this strategy would affect DORMANT’s performance.
In the image-to-video generation setting, it is hard for the
attacker to robustly train a model from scratch due to the
substantial computational resources and high-quality data re-
quired. Therefore, we focus on studying the impact of model
fine-tuning on images protected by DORMANT. Specifically,
we fine-tune the models of Animate Anyone using 1,000 pro-
tected images (with corresponding original images as targets)
and 1,000 clean images from the TikTok dataset, yielding
FID-FVD, FVD, LPIPS, FID, PSNR, and SSIM values of
93.52, 810.11, 0.432, 109.23, 15.01, and 0.615, respectively.
While robust fine-tuning reduces DORMANT’s effectiveness
to some extent, the protective effect remains sufficient to
ensure that the generated videos maintain low quality.



Robustness against Targeted Removal. We assume that the
attacker has fully white-box access to DORMANT’s mecha-
nism, including the same pre-trained models and exact objec-
tive functions. Inspired by [3] which optimizes the purified
image by pushing it in the opposite direction of the protected
image and pulling it in the same direction of a visual refer-
ence, we implement this strategy in our proposed LDORMANT

and use purified images generated by DiffPure as visual ref-
erences during optimization. The resulting FID-FVD, FVD,
LPIPS, FID, PSNR, and SSIM values are 52.41, 485.01,
0.378, 97.73, 17.66, and 0.706, respectively. When com-
pared to DiffPure’s results presented in Table 4, we find that
white-box access does not lead to a noteworthy increase in the
purification effect. While DiffPure remains the most effective
among the evaluated purifications, future work could explore
ways to further improve DORMANT’s robustness against such
diffusion-based adversarial purification methods.

C More Ablation Study

Impact of Pose Repeats F and Decay Factor µ. F defines
the length of the pose sequence used in L f rame; µ controls the
influence of previous gradients during each PGD step. As
shown in Figure 14, both the increase in F and µ cause the
protection effect to first increase and then decline. While we
optimize the protective perturbation to induce frame inco-
herence by maximizing the distance between each generated
frame, increasing F leads to more pairs of distances to com-
pute, making the optimization more difficult and also increas-
ing GPU memory usage. For the decay factor µ, moderate
memorization of previous gradients helps stabilize update
directions and avoid poor local maxima, but excessive im-
pact from previous gradients with a large µ would hinder the
search for new update directions. We set the default values of
F and µ to 5 and 0.5, both within the sweet spot region.
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Figure 14: Impact of pose repeats F and decay factor µ.

D Visualized Results of Anomalies

As discussed in Section 5, we find that Glaze outperforms
DORMANT on sample 002, and PhotoGuard and SDS per-

Figure 15: Visualizations of cases where DORMANT does not
outperform baseline protections.

Figure 16: Visualizations of cases where DORMANT performs
relatively poorly.

form better on sample 006 of the TikTok dataset. Here we
present the visualizations of generated videos in Figure 15.
While DORMANT has demonstrated sufficient effectiveness in
these cases, these baseline protections perform even better on
certain samples. Figure 16 visualizes generated video frames
against commercial services Gen-2 and Gen-3, where DOR-
MANT performs relatively poorly, mainly inducing identity
mismatches without significant distortion.

E Image Similarity

We evaluate the similarity between the protected images and
their corresponding original images, and present the PSNR for
different protection methods in Figure 17. AntiDB, Mistv2,
and VGMShield offer better invisibility but with limited effec-
tiveness in Table 1; Glaze, PhotoGuard, and DORMANT ex-
hibit comparable invisibility; and SDS shows the lowest in-
visibility. While these similarities are computed under the
perturbation budget η of 16/255, users can customize η to
strike a balance between invisibility and protection effective-
ness based on their needs, as mentioned in Section 4.6.
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Figure 17: Image similarity before and after protections.



F Details of Human and GPT-4o studies

F.1 Questionnaire in Human Study
We detail our questionnaire used in the human study, which
is divided into two parts: demographics and video selection,
consisting of a total of 15 single-choice questions.

Part I - Demographics.
Q1: How old are you? [18-24], [25-34], [35-44], [45-54],

[55-64], [65+], [Prefer not to say]
Q2: What gender do you best identify with? [Male], [Fe-

male], [Non-binary], [Prefer not to say]
Q3: What is the highest level of education you have com-

pleted or are currently pursuing? [High school], [Bachelor’s],
[Master’s], [PhD], [Other], [Prefer not to say]

Q4: What is your field of expertise? [Computer Science],
[Engineering], [Business/Finance], [Arts/Humanities], [So-
cial Sciences], [Health Sciences], [Natural Sciences], [Other],
[Prefer not to say]

Q5: How familiar are you with the technique of image-to-
video generation? [Not familiar at all - I have never heard of
it], [Not very familiar - I have heard of it but don’t know much
about it], [Somewhat familiar - I know the basics], [Familiar
- I have a good understanding], [Very familiar - I am highly
knowledgeable], [Prefer not to say]

Part II - Video Selection.
Q6 - Q15: Please select the video (A, B, C, D, or E) that

you believe shows the most significant differences in facial
features compared to the reference video (labeled ‘REF’ in
the top left corner). Your choice should prioritize the video
that best ensures the protection of portrait rights and privacy.
(Note: These videos are in GIF format and can be played by
clicking.) [A], [B], [C], [D], [E]

Figure 18: Example of the video selection question.

F.2 Prompt in GPT-4o Study
We detail our query prompt used in the GPT-4o study. The
study is conducted on ChatGPT Web via a browser, using a
ChatGPT Plus account. Frame sequences are converted into
image grids in PNG format and uploaded via “Attach files”.

Query Prompt to GPT-4o

You will be given six frame sequences: A, B, C, D, E,
and a reference frame sequence (REF). Your goal is
to rank the quality of the five frame sequences (A, B,
C, D, E) from most to least different compared to the
reference frame sequence (REF). Base your ranking
on how effectively each frame sequence protects the
portrait and privacy rights of the individual.
To evaluate the effectiveness of portrait and privacy
protection, please consider factors that differentiate
each frame sequence from the reference, such as mis-
matches in the appearance of the human identity,
changes in the background, and any additional ob-
servable signs. Your evaluation should consider, but
not be limited to, these list factors provided merely
as examples. Try to explore and assess as many other
potential factors as possible.
Please analyze step by step and output your ranking
for the five sequences, along with the reasoning which
should detail how you evaluate each sequence. You
should avoid any potential bias in your evaluation, and
ensure that the order in which the frame sequences
are presented does not affect your judgment.

Output Format:
Rank: [ordered list from most to least effective]
Reason: [step-by-step analysis]

F.3 Detailed Results
Figure 19 presents detailed results for each question in the
human and GPT-4o studies. In the human study, DOR-
MANT achieves a pick rate of at least 67% across all samples,
with a maximum of 84.15%. Similarly, DORMANT is consis-
tently ranked first or second across all samples by GPT-4o.
These results highlight the superiority of DORMANT over
baseline protections from the perspectives of both human per-
ception and the advanced multimodal large language model.
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Figure 19: Detailed results of human and GPT-4o studies.
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