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Abstract
As Augmented and Virtual Reality (AR/VR) adoption

grows across sectors, auditing systems are needed to en-
able provenance analysis of AR/VR attacks. However, tra-
ditional auditing systems often generate inaccurate and in-
complete provenance graphs, or fail to work due to opera-
tional restrictions in AR/VR devices. This paper presents
REALITYCHECK, a provenance-based auditing system de-
signed to support accurate root cause analysis and impact
assessments of complex AR/VR attacks. Our system first
enhances the W3C PROV data model with additional on-
tology to capture AR/VR-specific entities and causal rela-
tionships. Then, we employ a novel adaptation of natural
language processing and feature-based log correlation tech-
niques to transparently extract entities and relationships from
dispersed, unstructured AR/VR logs into provenance graphs.
Finally, we introduce an AR/VR-aware execution partitioning
technique to filter out forensically irrelevant data and false
causal relationships from these provenance graphs, improv-
ing analysis accuracy and investigation speed. We built a
REALITYCHECK prototype for Meta Quest 2 and evaluated
it against 25 real-world AR/VR attacks. The results show that
REALITYCHECK generates accurate provenance graphs for
all AR/VR attacks and incurs low runtime overhead across
benchmarked applications. Notably, our execution partition-
ing approach drastically reduces the size of the graph without
sacrificing essential investigation details. Our system oper-
ates non-intrusively, requires no additional installation, and is
generalizable across various AR/VR devices.

1 Introduction

The rising popularity of Virtual and Augmented Reality
(AR/VR) technologies across various sectors introduces
unique cybersecurity challenges and risks, including Ad-
vanced Persistent Threats (APTs) [97, 99]. Adversaries ex-
ploit AR/VR headsets to manipulate perception [103], steal
sensitive data [98, 99], and alter device configurations to dis-
tort visual experiences [55, 56]. This exploitation underscores

the need for a specialized auditing system capable of con-
ducting causal analysis, such as pinpointing root causes and
assessing the impacts of unique AR/VR attacks. Recognizing
the inherent cybersecurity risks of AR/VR’s immersive nature,
regulations and policymakers [44] also emphasize the urgent
need for auditing systems to safeguard their potential.

Data provenance provides a comprehensive account of data
entity transformations, making it an ideal technique for au-
diting AR/VR devices. In a provenance-aware system, audit
logs (also known as system logs) are parsed into a provenance
graph that encapsulates the entire history of the system’s oper-
ation [69, 76, 80, 87, 90, 105]. In this graph, vertices represent
system entities (e.g., files and processes) while the edges re-
flect causal relationships between these entities. Given an
attack symptom (threat alert), users can leverage this graph to
perform causal analysis.

Unfortunately, traditional android auditing systems [63,
106, 108, 111] and AR/VR network logging framework [102]
struggle to perform accurate causal analysis of AR/VR at-
tacks as outlined in Table 1. Existing methods require root
access to log syscalls, which is increasingly infeasible for
most AR/VR devices as Android diminishes the provision
of root [26]. Dependent on the strace utility and system
file modifications, these methods are ineffective without root
access. This challenge arises from the closed-system archi-
tectures of AR/VR devices; unlike Android phones where
syscall tracing is widely available [4], AR/VR platforms re-
strict privileged access to syscalls and employ customized
security measures that hinder the direct use of traditional mo-
bile auditing methods.

Second, as existing systems rely on system-layer audit
logs (e.g., syscalls), they overlook critical AR/VR-specific
attributes prevalent in higher layers of the AR/VR software
stack, such as spatial boundaries, head movement data, and
perceptual manipulations. Incorporating these attributes into
provenance graphs is pivotal for understanding subtle attack
vectors. For instance, Casey et al. highlight the significance
of understanding unauthorized modifications to users’ virtual
environments [55]. While OVRseen [102] audits the Ocu-



Table 1: Limitations of existing systems in investigating AR/VR
attacks. DF. stands for DroidForensics.

.
Properties Dagger

[108]
DF.

[111]
AppAudit

[106]
OVRSeen

[102]
Our

System
Runs without root access ✗ ✗ ✓∗ ✓∗ ✓

Supports closed-source apps ✓ ✓ ✗ ✓ ✓

Integrates unique AR/VR attributes ✗ ✗ ✗ ✗ ✓

Multi-layer causal analysis ✗ ✗ ✗ ✗ ✓

AR/VR-aware execution partitioning ✗ ✗ ✗ ✗ ✓

*Demands complex dynamic analysis: infeasible on end-user devices.

lus VR SDK, its focus is limited to network-layer audit logs,
leading to incomplete attack reconstructions. Furthermore,
OVRseen requires dynamic analysis expertise and targets the
now-deprecated OVR SDK from Meta.

Third, another key challenge in auditing AR/VR systems
is the lack of publicly available labeled datasets for AR/VR-
specific entities. This absence hinders the accurate identifica-
tion and correlation of AR/VR-specific entities, such as spatial
boundaries, virtual objects, controller feedback, and endpoint
transfers within the unstructured logs generated by AR/VR
systems. Additionally, the lack of mechanisms to correlate
logs across different layers of AR/VR further complicates
tracking AR/VR entities and their interactions.

Finally, existing auditing systems suffer from the depen-
dence explosion problem [76, 80]. For a long-running process,
an output event (e.g., creating a malicious file) is assumed
to be causally related to all the preceding input events (e.g.,
network receive). This conservative assumption creates false
causal relations and large provenance graphs. Although re-
searchers have put forward execution partitioning techniques
as solutions [78, 80, 86], these techniques fail to address the
unique execution patterns of AR/VR applications. Such tech-
niques target Windows/Linux hosts and rely on traditional
event-handing loops often absent in AR/VR applications [34].

To address the aforementioned limitations, we introduce
REALITYCHECK, a provenance-based auditing system that
empowers investigators to effectively analyze the root causes
and impacts of AR/VR attacks. Our system is informed by a
comprehensive study of AR/VR attacks [1, 13, 21, 55, 56, 83,
88, 91, 98, 100, 101, 103, 104, 113]. These attacks are meticu-
lously crafted and published in top-tier academic conferences
and journals, revealing vulnerabilities and threat models criti-
cal to current AR/VR systems. To the best of our knowledge,
our work is the first in the literature to systematically catego-
rize AR/VR attacks as per the MITRE ATT&CK [18] frame-
work and offer a comprehensive auditing system for AR/VR
ecosystem. The attacks and the corresponding proposed Tac-
tics, Techniques, and Procedures (TTPs) are summarized in
Tables 2 and 9, respectively. Further details on the novelty of
our attack categorization are discussed in §8.

Our Contributions.

Attack Modelling. First, through studying existing attacks on
hybrid AR/VR devices1, we identified eight AR/VR-specific

1Hybrid AR/VR devices operate independently but provide additional

attributes that are necessary to understand AR/VR attack be-
haviors. With a comprehensive understanding of these at-
tributes, we augmented the W3C PROV-DM specification [49]
by encoding additional ontology. This enhancement enables
us to construct provenance graphs that capture pivotal AR/VR
entities and causal relationships.
Log Analysis & MPG Generation. Building on our AR/VR-
centric PROV-DM model, we first collect and unify logs
across the AR/VR software stack (application, SDK, plat-
form, endpoint), even when they lack a consistent schema or
explicit identifiers. To handle the inherent unstructured na-
ture of these logs, REALITYCHECK introduces a specialized
NLP pipeline – combining Named Entity Recognition (NER)
and Part-of-Speech (POS) tagging – that recognizes and la-
bels domain-specific AR/VR entities, along with their who-
did-what relationships. This domain-adaptive parsing is key
to capturing higher-level AR/VR events (e.g., forced bound-
ary adjustments or rapid flicker toggles) that traditional audit
systems miss. Further, our custom feature selection method
extracts and correlates logs across the various layers of the
AR/VR software stack, resulting in the creation of a Multi-
layer Provenance Graph (MPG).
AR/VR-Aware EP. Third, to mitigate the dependence ex-
plosion in AR/VR applications, we implemented a novel Ex-
ecution Partitioning (EP) technique based on the OpenXR
application lifecycle model [31]. Our key insight is to leverage
OpenXR’s session state transitions and event polling mech-
anism to accurately partition the application execution and
user interactions into discrete execution units. By retaining
causal dependencies strictly within these units, we eliminate
false dependencies in AR/VR provenance graphs.
MPG Pruning. Fourth, we design an automated graph prun-
ing mechanism to further improve the accuracy of graphs
generated by REALITYCHECK. Our pruning strategy is based
on Direct Forensic Connection (DFC) and Indirect Foren-
sic Connection (IFC) principles, which identify and remove
forensically irrelevant vertices and edges from the AR/VR
provenance graph.

We implemented a REALITYCHECK prototype for Meta
Quest 2, which holds over 90% of the market share [15], and
thoroughly evaluated its efficacy and performance against a
set of 25 known AR/VR attacks detailed in Table 2. Notably,
we injected malicious code into real AR/VR applications
(from the Quest and SideQuest stores) to replicate attacker
tactics. We then augmented these tests with an APT-style
approach using MITRE Caldera, demonstrating full attack
chains that commence with phishing on a Windows endpoint
and proceed to malicious sideloading on the headset. These
attacks represent real-world scenarios; for instance, Luo et
al. propose an eavesdropping attack [83] and Cheng et al.
introduce immersive visual deception attacks [57], which ex-
emplify the type of real-world threats included in our evalua-

features when connected to endpoints like a Windows PC.
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Figure 1: The AR/VR ecosystem comprises five system layers.

tion of REALITYCHECK. An in-depth analysis of the criteria
used to select the attacks and applications, underscoring their
applicability to real-world scenarios, is provided in §9.

Our results show that REALITYCHECK-generated prove-
nance graphs enable more accurate AR/VR attack investiga-
tions than OVRseen [102], effectively capturing the root cause
and impacts of AR/VR attacks. REALITYCHECK incurs mini-
mal runtime overhead of less than 6% and uses lifecycle-based
partitioning and graph pruning techniques, reducing graph
size by up to 76% without losing critical investigation details.
The average query times for impact analysis is 2.25 secs per
attack, and the average query times for root cause analysis
is 2.12 secs. Additionally, through an ablation study of our
NLP components, we confirm that combining our POS tag-
ging and fuzzy entity resolution significantly boosts precision
and recall (up to 98%), while also reducing extraneous graph
data. We validate the system’s efficacy through two AR/VR
attack case studies, highlighting its capacity for precise causal
analysis (§3, §7). Further, our system is generalizable to other
AR/VR devices like HTC Vive XR Elite [47] and adaptable
to emerging AR/VR threats (§B.2, §B.1).

Availability. Our code and data is available at https://
anonymous.4open.science/r/RealityCheck-Paper168/.

2 AR/VR Attack Modelling & Logging

AR/VR technologies introduce unique cybersecurity risks,
as manipulating immersive content can lead to data theft,
physical harm, or psychological distress. Traditional security
attributes, like file or network activity, cannot capture these
multidimensional threats. For example, altering virtual bound-
aries exploits system vulnerabilities and user perception, po-
tentially causing physical collisions or confusion. Modeling
AR/VR attacks requires analyzing AR/VR-specific attributes
rooted in device software, sensory pipelines, and virtual envi-
ronment design. We identified eight novel attributes encapsu-
lating AR/VR threats. These attacks are detailed in Table 2,
with selection methodology in Appendix F and systematiza-
tion following MITRE TTPs [18] in Appendix E.
A1 User Gesture/Input Manipulation: Adversaries can in-

terfere with user actions, such as intercepting or falsifying
controller inputs or hand gestures [55]. Example: A mali-
cious app invisibly overlays a button to trick the user into
revealing sensitive information.

Table 2: AR/VR attacks overview. Layer numbers in Figure 1 show
potential (bracketed) and definite (non-bracketed) manifestations.
See Table 9 in Appendix E for attack procedures and artifacts/tools
that were used to simulate the attacks. The last row provides ref-
erences for the real open-source apps used to inject the payloads
and run attacks. Disc.: discovery, VE: Virtual Environment, HMD:
head-mounted (AR/VR) device.

No. Attack Name Unique
Attributes Layers Real

Apps.
1 Overlay partial screen [103]

A3, A4 1, 2, 3, 4, (5) [50, 51]2 Overlay entire screen [103]
3 Object-in-the-middle attack [57]
4 Object erasure attack [57]
5 Alter VE coordinates [55] A1, A3, A46 Alter VE sensitivity [55]
7 Software disc. [13]

A6, A8 1, (2), 3, 4, (5) [2, 11]8 System info. disc. [13]
9 System service disc. [13]
10 Network config. disc. [89]
11 Foreground data access [83, 99] A1, A2, A7, A8

1, (2), 3, 4, 5
[27, 39]

12 Immersive browsing hijack [37] A1, A3, A6
13 Collect clipboard data [89] A2, A6, A7
14 Automated exfiltration [13, 37] A1, A2 1, (2), 3, 4
15 Exfiltration via endpoint [91] A6 1, (2), 3, 5
16 Cyber-sickness: dizziness [104]

A3, A5

1, (2), 3, 4, (5) [7, 40]

17 Force play audio [29]
18 Cyber-sickness: epilepsy [104]
19 Input capture [83] A1, A2, A620 Credential access [57]
21 File deletion [71, 89]

A622 Delete user data [89]
23 Service stop [29]
24 Account access removal [29]
25 HMD shutdown [37, 71] A3, A6 1, (2), 3, 4, 5 [48]

A2 Head Movement Data Access/Manipulation: Unautho-
rized monitoring or alteration of head tracking data [91,
98, 99]. In AR/VR, the head pose is integral to user per-
spective, so capturing subtle changes can reveal private
information like passcodes typed via head rotation.

A3 Perceptual/Visual Deception: Injecting deceptive visu-
als, illusions, or overlays that alter the user’s real-time
perception of the virtual environment (VE) [56]. Exam-
ple: The “Object-In-The-Middle” (OITM) attack [57]
places an invisible collider over a password entry field,
stealing keystrokes undetected.

A4 Spatial Boundary Manipulation: Changing virtual
boundaries or “Guardian” limits to mislead or disorient
the user [55, 91, 103]. One example is the “Chaperone
Attack,” which quietly shifts walls in the virtual environ-
ment so the user walks into physical obstacles.

A5 Physical Harm: Triggering motion sickness, nausea, or
even epileptic seizures by exploiting the immersive senso-
rial feedback of AR/VR devices [55, 103, 104]. Example:
Rapidly flashing lights or forcibly generating intense hap-
tic signals can cause physiological discomfort.

A6 Immersive Session Integrity Compromise via End-
point Access: Gaining unauthorized entry to the VR ses-
sion by targeting an external endpoint (often a tethered
Windows PC) [91]. For instance, an attacker compro-
mises a user’s PC and then deploys malicious payloads
onto the headset to hijack its immersive session.

A7 6DoF Data Access/Manipulation: Extracting or modify-

https://anonymous.4open.science/r/RealityCheck-Paper168/
https://anonymous.4open.science/r/RealityCheck-Paper168/


ing six degrees of freedom (6DoF) tracking data (i.e., x, y,
z positions and yaw, pitch, roll) [98, 99]. If stolen, it may
reveal user movement patterns or be used for biometric
inferences.

A8 Background App Access Compromise: Exploiting
background processes in AR/VR OS environments to
snoop on user data or manipulate running apps. This
phenomenon is rarer in standard Android but becomes
critical in AR/VR, where background apps can still track
real-time sensor streams [113].

Our motivation for modeling attacks is to understand po-
tential threats on AR/VR devices, guide our log collection
strategy, and evaluate REALITYCHECK against these attacks.
This aids in optimizing our data collection and maximizing its
research relevance. We conducted a comprehensive study of
academic papers, CVE databases, and relevant GitHub repos-
itories from the past five years, using relevant keywords (de-
tailed in Appendix F). This study yielded 25 distinct attacks
targeting various aspects of major hybrid AR/VR devices [15]
such as the Meta Quest (2 and Pro) [20, 22], HTC Vive [47],
and the Valve Index [45]. Table 2 lists the identified attacks,
their unique attributes, and the likely impacted AR/VR sys-
tem layers. This attack model forms the basis of our AR/VR
auditing system. As outlined in Table 2, each attack targets
specific AR/VR device layers. For instance, the OITM attack
(#3) uses A3 (Perceptual/Visual Deception) and A4 (Spatial
Boundary Manipulation), whereas the Chaperone Attack (#5,
#6) manipulates VE coordinates and VE sensitivity, empha-
sizing the cognitive dimension (A1, A3, A4). Some attacks
(e.g., #16 to #18) aim to cause dizziness or epilepsy in the
user by exploiting the immersive nature of AR/VR (A3, A5).
Meanwhile, attacks like #7 to #9 focus on endpoint-based
entry (A6, A8), reflecting a multi-layer infiltration approach.

Figure 1 illustrates how AR/VR devices typically involve
five layers: (1) platform layer, which provides system event
data like method calls and stack traces, (2) SDK layer, show-
casing device-specific events, (3) API layer, capturing API
function invocations, (4) application layer, where applications
run, and (5) endpoint layer. Attacks may manifest in one or
more of these layers. For example, a device driver compro-
mise at the SDK layer may grant direct access to raw motion
sensor data (A2, A7) while an endpoint layer exploit may
allow attackers to push malicious apps into a closed HMD
system (A6).

In §5, we identify six main log sources for tracing AR/VR
attacks: Logcat logs, Perfetto logs, Application logs, Device
logs, Windows Event logs, and OpenXR API logs. Logcat
logs [14] offer a system overview, Perfetto [36] logs provide
common keys for system-app interactions, Application logs
monitor user actions, Device logs [30, 46] outline AR/VR
device-PC interactions, Windows Event logs [43] record end-
point activities, and OpenXR API logs [31] detail chronicle
unique application lifecycle events. These logs are crucial for
lifecycle-based execution partitioning and app state identifi-

cation as discussed in §5.4. Users can access this information
without installing new tools on their AR/VR device as logs
can be collected via the existing Android toolkit, making our
approach accessible.

3 Motivating AR/VR Attack Example

Attack Scenario. In the depicted scenario, an attacker ex-
ploits a Windows PC, to drop a malicious payload on an
AR/VR headset. One potential outcome is a Human Joystick
Attack, where the attacker quietly alters the headset’s spa-
tial boundaries (the invisible “walls” defining the user’s safe
area). As a result, the user may be misled into moving dan-
gerously close to physical objects, risking collision or injury.
Meanwhile, the attacker also eavesdrops on user inputs (e.g.,
gesture or controller data) to steal sensitive information. In
this attack scenario, the underlying intrusion detection system
raises an alert upon detecting an unusual boundary collision.
Existing Tools’ Limitations. In Figure 2(a), we see an
AR/VR provenance graph that is incomplete. Although ex-
isting forensic tools can reconstruct the Windows side of the
attack (e.g., how the PC was breached), they fail to cover
AR/VR-specific events such as altering a spatial boundary.
The missing connections stem from AR/VR logs being un-
structured, incomplete, and lacking crucial causal details.
Identifying how these logs should be collected at each layer of
the AR/VR software stack (provided in §2) is also non-trivial,
which contributes to the fragmented view of the attack.
Intermediate Provenance Graph. Figure 2(b) shows an
intermediate step, where we apply AR/VR-focused tech-
niques—our provenance model (§5), NLP for unstructured
logs (§5.1), and multi-layer feature correlation (§5.2). The
resulting graph covers both the Windows PC and the head-
set, but is still very large and cluttered with irrelevant details,
suffering from the dependency explosion problem and from
benign activities and system maintanance logs, a unique chal-
lenge we observed when using off-the-shelf logs, not handled
by existing log garbage collection tools [68, 79]. We further
explain why existing tools to solve the dependency explosion
problem are not applicable to the novel AR/VR execution
model [31] in §5.4.
Investigation with REALITYCHECK. Figure 2(c) shows
the refined provenance graph produced by REALITYCHECK
after integrating lifecycle-based partitioning (§5.4) and graph
pruning (§5.5). These steps remove spurious dependencies
and extra logs, yielding a concise attack narrative: (1) the
attacker compromises a Windows PC ( 1 – 80 ), (2) mod-
ifies AR/VR boundaries ( 81 – 95 ), and (3) eavesdrops on
user inputs ( 104 – 123 ). When the intrusion detection system

flags a suspicious boundary collision (edge 103 ), analysts
can backtrack using REALITYCHECK to trace the root cause
back to IP 172.20.16.93, where mal.exe was downloaded
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(Immersive Session Integrity Compromise via Endpoint
Access). This payload triggers additional AR/VR reconfigura-
tions ( 81 – 95 ) demonstrating Spatial Boundary Manipula-
tion. Meanwhile, HeadsetCollisionTracker logs collisions
( 97 – 103 ), and edges 104 – 123 reveal a background eaves-
dropping attack [98, 99] via adbd (Background App Access
Compromise). Accessing accelerometer/gyroscope data in-
dicates Head Movement Data Access/Manipulation and
6DoF No Permission Sensory Data Access/Manipulation,
enabling key-logging by tracking head movements and leak-
ing sensitive information to IP 172.20.16.97. Overall, this ex-
ample illustrates the range of AR/VR-specific threats—from
perceptual deception to boundary manipulation—that conven-
tional auditing systems overlook, underscoring the need for
specialized AR/VR-focused auditing.

4 Threat Model and Assumptions

REALITYCHECK is designed to enable security analysts to
recover attack stories within the AR/VR ecosystem. In our
threat model, we consider attacks that either directly target
the AR/VR devices, or indirectly target them through a con-
nected Windows PC2. Attackers could employ various meth-
ods such as exploiting software vulnerabilities or using social
engineering tactics to deceive users into installing malicious

2AR/VR devices primarily use Windows PCs (see §5.2). With Linux
unsupported, we target Windows OS for our endpoint layer.

apps on their AR/VR headsets. These attacks can lead to nu-
merous threats, ranging from discovering sensitive system
information and data exfiltration to compromising the device
to manipulate the user’s perception through visual or auditory
alterations. Furthermore, it’s important to clarify that not all
attacks originate from the AR/VR device alone. An attacker
may compromise a Windows PC through techniques such
as privilege escalation or exploiting system vulnerabilities.
With such access, an attacker could use Android toolkits like
Fastboot and ADB to launch complex attacks on the AR/VR
device connected to the PC via USB or TCP connections.

We exclude attackers who have obtained root access to de-
vices and who exploit vulnerabilities in AR/VR hardware, as
we assume device integrity. Securing the device is a problem
orthogonal to our work. This assumption aligns with related
prior work [102]. Additionally, we make several assumptions
for REALITYCHECK in line with existing data provenance
works [69, 76, 80, 87, 90, 105]. We assume the logging sys-
tem components are part of a trusted computing base, ensuring
the integrity of logs collected at various vantage points. Addi-
tionally, we assume attacks commence only after our system
begins monitoring victim devices and that collected logs re-
main uncompromised. To safeguard log integrity, existing
tamper-evident logging solutions can be employed [52, 90].
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5 Design

Our system leverages OpenXR–the unifying API for AR/VR
platforms–to achieve device-agnostic development, cross-
platform compatibility, and seamless app integration [33].
Because major arvr manufacturers are converging on OpenXR
for core runtime functionalities, REALITYCHECK inherits a
naturally broad scope, offering adaptability across heteroge-
neous headsets. Furthermore, most standalone AR/VR de-
vices, including the Meta Quest 2 and HTC Vive XR Elite,
run customized Android distributions, so our platform-layer
logs (e.g., Perfetto logs, Android logging) are present across
devices. Meanwhile, SDK logs from Oculus (Quest) [30]
or SteamVR (Vive/Index) [46], together with standard app
logs [5], ensure REALITYCHECK can capture forensically rel-
evant AR/VR events without device-specific root-level access.
As demonstrated in §B.2, this framework generalizes across
diverse headsets and software stacks.

Although REALITYCHECK bases its provenance graph on
the W3C PROV-DM specification [49], AR/VR attacks require
additional concepts to capture spatial boundaries, continuous
sensor data, and immersive user interactions. Figure 4 shows
our AR/VR-centric ontology overlaying the standard PROV
model: we introduce AR/VR-specific entities (e.g., Spatial-
Boundary, GuardianSystem) on top of traditional system ver-
tices (e.g., Process, File), along with new relationships e.g.,
those describing user sensory data, spatial boundary manipu-
lation. This structured graph allows REALITYCHECK to trace
both conventional system activity and unique AR/VR events
within a single, coherent provenance view, enhancing attack
investigations within the AR/VR ecosystem.

5.1 Unstructured Log Analysis

Unstructured logs from Platform, Application, and SDK
layers (§2), each with unique textual layouts, pose signifi-
cant challenges for extracting entities and relationships for
provenance-graph construction. Owing to the closed-source
nature of AR/VR devices like the Meta Quest 2 and HTC Vive
XR Elite [3], simple regex-based log parsing is inadequate.
Instead, Algorithm 1 details our NLP pipeline, which lever-
ages named-entity recognition (NER), part-of-speech (POS)
tagging, and dependency parsing to automate the extraction
of AR/VR-relevant entities and edges.
Overall Pipeline and Motivation. Algorithm 1 proceeds
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Figure 4: Novel classification of AR/VR specific vertices and edges
in the provenance graphs generated by REALITYCHECK.

in two stages: (1) Training, where we fine-tune a custom
NER model on an annotated AR/VR log dataset, and (2) Run-
time, where we apply the model to new, unstructured logs.
Our main motivation is that AR/VR logs (e.g., from Logcat,
Oculus logs, or Perfetto) lack standardized tokens or a fixed
schema; even the same device can generate logs with different
fields or formats across OS updates. Hence, a robust NLP-
based approach can learn from user-labeled domain examples,
generalize to previously unseen logs, and automatically infer
relationships (e.g., did the device ‘create’/‘read’/‘connect’ to
some resource?) without requiring root access.
Step 1: Dataset and Labeling. Our dataset spans 25 real-
world AR/VR applications, with a total of 100 hours of us-
age logs. AR/VR logs lack publicly-available labeled cor-
pora or ontologies, we therefore annotated logs using the
ontology of AR/VR-specific entities (e.g., GuardianSystem,
SpatialBoundary) from Figure 4. Each of the 11 entities in
our system was labeled across about 5 logs, yielding a bal-
anced dataset. We separated the training logs from those used
in actual attacks.
Step 2: Text Preprocessing. We be-
gin by tokenizing each log entry (e.g.,
["GuardianSystem:","HMD","collision","Detected"]),
then apply POS tagging to assign grammatical roles (HMD
and collision as nouns, Detected as a verb), and fi-
nally use lemmatization to reduce variants ("Detected"
→ "Detect"). By mapping text to subject-verb-object
relationships, we can accurately identify entities and
their interactions. For instance, “GuardianSystem: HMD
collision Detected” reveals that GuardianSystem is the
subject (an Agent) performing the Detect action on the HMD
collision object (an Entity).
Step 3: NER Model (CNN-based) and Customization.
We fine-tuned the spaCy en_core_web_sm model, which
employs a CNN under the hood. To adapt it for our
AR/VR ontology, we introduced custom entity labels (e.g.,
SpatialBoundary) and trained for 200 epochs using a com-



Algorithm 1: NLP PIPELINE

/* (Step 1) Train a domain-specific NER model on annotated logs */
1 Training Phase: Input: Annotated Logs; Output: Custom NER Model.
2 Model← FINETUNENERMODEL(training_dataset)
3 SAVEMODEL(Model)

/* (Step 2) Parse logs at runtime to build the provenance graph */
4 Runtime Phase: Input: Unstructured Logs; Output: Vertices, Edges.
5 Model← LOADMODEL(); Vertices, Edges← /0, /0

6 foreach log in logs do
/* (Step 2a) Text preprocessing: tokenize, POS-tag, etc. */

7 Tokens, POS, Deps, Lemmas← SPACYPREPROCESS(log)
8 FilteredTokens← FILTERTOKENS(Lemmas)

/* (Step 3) Named Entity Extraction & Fuzzy Matching (if any) */
9 Entities← ExtractEntities (FilteredTokens)

10 foreach entity in Entities do
11 entity← RESOLVEENTITY(entity, Entities)

/* (Step 5) Identify syntactic relationships from the log */
12 Relationships← /0; DomainDep.← /0; NewVertices, NewEdges← /0, /0

13 doc← NLP(log); verb← FINDFIRSTVERB(doc)
14 direction← None
15 foreach child in verb.children do
16 if child.dep ∈ {dobj,pobj} then
17 direction← incoming
18 else if child.dep ∈ {nsubj,nsubjpass} then
19 direction← outgoing

20 if direction then
21 rel← CREATERELATIONSHIP(direction, doc, Entities)
22 Relationships← Relationships ∪ rel

/* (Step 6) Annotate domain-specific AR/VR dependencies */
23 foreach rel in Relationships do
24 dep← ANNOTATEDEPENDENCY(rel, Entities)
25 DomainDep.← DomainDep. ∪ dep

/* (Step 7) Convert extracted data into graph vertices/edges */
26 foreach entity in Entities do
27 NewVertices← NewVertices ∪ CREATEVERTEX(entity)

28 foreach dep in DomainDep. do
29 src← FINDSOURCEVERTEX(dep, Vertex)
30 dst← FINDDESTINATIONVERTICES(dep, Vertices)
31 NewEdges← NewEdges ∪ CREATEEDGE(dep, src, dst)

32 Vertices← Vertices ∪ NewVertices; Edges← Edges ∪ NewEdges
/* (Step 7 continued) Pass structured logs to feature selection */

33 PASSVERTICESANDEDGESTOFEATURESELECTION(Vertices, Edges)

34 Function ExtractEntities(FilteredTokens):
/* (Step 3) Use custom NER labels to extract AR/VR entities */

35 Entities← []
36 foreach token in FilteredTokens do
37 if token.label ∈ CustomNamedEntityLabels then
38 Entities.append(token)

39 return Entities

pounding batch size from 4 to 32. A dropout rate of 0.35
helped mitigate overfitting, while spaCy’s internal optimiza-
tion adjusted the learning rate dynamically. This process
ensures the model can recognize key AR/VR entities (e.g.,
HeadMovementData, VEConfigChanges) even in logs with
inconsistent formatting.
Step 4: Fuzzy String Matching. After extracting candidate
entities, we employ Levenshtein distance with a 90% similar-
ity threshold to unify multiple references to the same object.
For example, VE config vs. VE configurations or Guardian-
Sys vs. GuardianSystem become merged, preventing spurious
duplications in the final provenance graph.
Step 5: Analyzing Syntactic Relations. To determine how
entities interact (e.g., who created what?), we parse each
log’s syntactic dependency tree. If the log indicates Agent-

verb-Object (e.g., Process spawns File), we model it as a
directed edge from Agent to Entity in the provenance. Con-
versely, if an object is the data source (e.g., File read by
Process), we record an incoming edge.
Step 6: Dependency Annotation. In alignment with the
W3C PROV model, “Agent” refers to the actor performing an
action, “Activity” denotes the action itself (e.g., haptics
override), and “Entity” is the object of the action (e.g.,
VE boundary). By identifying which tokens correspond to
Agent vs. Entity, our pipeline can capture the direction and
semantics of each event accurately.
Step 7: Structured Data Conversion. Finally, we convert
extracted entities and relationships into graph vertices and
edges, passing them to the Feature Selection module (§5.2).

We overcome the lack of publicly available AR/VR log cor-
pora by systematically curating unstructured logs from multi-
ple AR/VR devices and identifying domain-specific entities
(e.g., SpatialBoundary, HeadMovementData). This label-
ing yields a balanced dataset of 11 entity classes, with about
4–5 logs per class, providing a balanced and comprehensive
coverage for accurate entity extraction. We then fine-tune
a pre-trained NER model (en_core_web_sm [9]) on these
domain-relevant examples, ensuring that REALITYCHECK
can detect forensically pertinent objects under diverse AR/VR
logging practices. As shown in §6.1 and §6.2, our method gen-
eralizes effectively to new attacks without further re-training.
Model Training. We employ Stochastic Gradient Descent
(SGD) with cross-entropy (Eq. (1)) to optimize the NER
model’s weights. Leveraging minibatch sampling and com-
pounding techniques reduces overfitting and accelerates con-
vergence for our domain-specific corpus. This fine-tuning
strategy culminates in a robust, AR/VR-oriented NER model
capable of extracting key entities and relationships at scale.

L =− 1
N

N

∑
i=1

[yi log(ŷi)+(1− yi) log(1− ŷi)] (1)

where N is the total number of training examples, y is the
actual label, and ŷ is the predicted label.

5.2 Feature-based Log Correlation

Creating a comprehensive provenance graph for AR/VR de-
vices requires systematically correlating events across five
diverse system layers. While the broader provenance litera-
ture [69, 109, 110] provides well-tested causality rules (e.g.,
parent-child processes, file activity, network connections),
these rules must be adapted to the AR/VR domain, where
logs are fragmented, unstructured, and often lack the typical
syscall traces found on desktop or mobile systems. To ad-
dress these challenges, we construct a multi-dimensional edge
framework, capturing both standard host-based relationships
(e.g., parent-child processes) and AR/VR-specific cues (e.g.,
device IDs or API-level events from Perfetto and OpenXR).



Log Type Source

L1: ADB Logcat Logs Logcat Utility

L2:Windows Logs Sysmon

L3: Perfetto Logs Pftrace Utility

L4: Device Logs Steam/Oculus Logs

L5: API Logs OpenXR API

L6: Application Logs (Instrumented) App

Attribute Present In

C1: timestamp L1 - L6

C2: HMD_PID L1, L5, L6

C3: HMD_TID L1, L5, L6

C4: prev_PID L3

C5: next_PID L3

C6: sysmon_PID L2

C7: sysmon_PPID L2

C8: sysmon_event_type L2

C9: process_command_line L2

C10: process_details L1 - L6

C11: package_name L1, L2

C12: device_ID L1, L2, L4

C13: device_event_type L4

Edge Features

F1 isCorrelatedThroughPID(u, v) : u.C2 = v.C2
& u.C2 = u.C3 & v.C2 = v.C3

F2 isCorrelatedThroughTID(u, v) : u.C3 = v.C3
& (u.C2 ≠ u.C3)

F3 matchPIDtoPID(u, v) : u.C4 = v.C2 & u.C5
= v.C2 & Δ(u.C1, v.C1 < t)

F4 matchPIDtoTID(u, v) : u.C4 = v.C2 & u.C5
= v.C3 & Δ(u.C1, v.C1 < t)

F5 matchTIDtoPID(u, v) : u.C4 = v.C3 & u.C5
= v.C2 & Δ(u.C1, v.C1 < t)

F6 matchTIDtoTID(u, v) : u.C4 = v.C3 & u.C5
= v.C3 & Δ(u.C1, v.C1 < t)

F7 isParent(u, v) : u.C7 ≠ 0 → u.C6 = (v.C6 ==
u.C7)

F8 sysmonFileCreate(u, v) : u.C6 = v.C6 &
u.C8 = 11

F9 sysmonNetworkConnection(u, v) : u.C8 = 3
& u.C6 = v.C6

F10 rawAccesReadSysmon(u, v) : : u.C8 = 9 &
u.C6 = v.C6

F11 similarPackageName(u, v) : u.C10∈ v.C9
& Δ (u.C1, v.C1 < t)

F12 sysmonCommandMatch(u, v) : u.C9∈
v.C10 & Δ (u.C1, v.C1 < t)

F13 matchSysmonToLogcat(u, v) : u.C8 = v.C9
& Δ(u.C1, v.C1 < t) & u.C12 = v.C12

F14 joinOculusLogs(u, v) : u.C12∈ v.C10 &
u.C13∈ v.C10 Δ (u.C1, v.C1 < t)

F15 matchDataTransferIndicator(u, v) : u.C10∈
v.C10 & u.C12 = v.C12 & Δ(u.C1, v.C1 < t)

Figure 5: Attributes and features for determining causal relationships
between different logs.

Our approach uses a 15-dimensional feature vector v⃗ =
[F1, . . . ,F15], shown in Figure 5, where each dimension Fk
encodes a specific relationship. The presence of a k-th type
connection is denoted by Rk, with Rk = 1 if valid and Rk = 0
otherwise. We began by reviewing how prior provenance
systems [69, 109, 110] track events and data flows across
distinct layers (e.g., OS kernel vs. user space). Building on
those insights, we designed new correlation features suitable
for AR/VR constraints:
• F1 and F2 model the correlation between log entries from

HMD (Logcat, OpenXR, and Application) logs that share
the same PID or TID. These features capture explicit corre-
lations between the creation and operation of processes.

• F3 to F6 identify associations between Perfetto trace logs
and HMD logs. By comparing the previous and subsequent
PIDs or TIDs in Perfetto logs with PIDs or TIDs in other
logs, these features facilitate the establishment of connec-
tions between HMD logs.

• F7 to F10 represent correlations in Sysmon records per-
taining to parent-child process relationships, file creation,
network connections, and file manipulation events.

• F11 to F15 connect Windows Event logs and HMD logs by
satisfying multiple dimensions. These capabilities enable a
more comprehensive view of events involving multiple log
sources, and are further explained below.
F1-F10 capture straightforward relationships such as shared

PID/TID among HMD logs (Logcat/OpenXR/App logs),
Perfetto-based “prev/next” transitions, and Sysmon’s parent-

child processes or file/network events. They align with con-
ventional provenance logic but must be ported to AR/VR,
where root privileges and system-call tracing are unavailable.
Because AR/VR logs often omit unique process IDs or rely
on ephemeral device IDs, we added compound correlations
described below comprising F11-F15 (e.g., package name +
device ID + timestamp) to associate events across different
logs. These features detect subtle connections—like matching
command lines in Sysmon with partial tokens in AR/VR logs
or linking data transfers across Windows Event logs and Ocu-
lus logs. Without these multi-faceted rules, many essential
cross-layer edges would remain undiscovered.
• F11 and F13: Match package name, event types, and device

IDs between Sysmon and HMD logs.
• F11 and F14: Connect Logcat and Oculus logs by matching

package name, device IDs, and Oculus event types.
• F12 and F15: Match command lines in Sysmon and HMD

logs; link HMD and Oculus logs via data transfer indicators
and device IDs.

• F13 and F14: Match the event types and device IDs between
Sysmon and HMD logs, as well as between HMD logs and
Oculus logs.

5.3 Multi-Layer Provenance Graph (MPG)
Utilizing NLP techniques (§5.1), REALITYCHECK first pro-
cesses unstructured logs to extract key entities and their re-
lationships. These extracted details, combined with struc-
tured logs, are then subjected to our feature selection
technique (§5.2). This comprehensive approach enables
REALITYCHECK to construct a Multi-layer Provenance
Graph (MPG) that represents the intricate relationships and
sequences of an attack. The MPG provides a holistic visual-
ization, mapping out the entities (vertices) and their interde-
pendencies (edges) in the context of the attack. However, the
MPG is not yet free of the dependency explosion problem
and contains irrelevant entities, which we address in §5.4 and
§5.5, respectively.

5.4 AR/VR-Aware Execution Partitioning
Traditional auditing systems often assume that each output
event depends on all preceding input events [69, 76, 80, 87,
90, 105], leading to a dependence explosion [79, 80, 85, 86].
This is particularly problematic for AR/VR applications that
run continuously and generate high-frequency logs (e.g., sen-
sor updates). To address this, prior work introduced execution
partitioning on event-handling loops [80, 84]. This technique
identifies event-handling loops in Windows and Linux ap-
plications and creates execution units for each loop iteration.
Each unit only contains causally related events, reducing false
dependencies. However, the unique nature of the AR/VR
programming paradigm involving OpenXR session states re-
quires us to take a different approach. Unlike typical desktop



1 static XrSessionState g_sessionState = XR_SESSION_STATE_UNKNOWN;
2 static std::thread::id g_inputThreadID, g_renderThreadID;
3 void OnSessionStateChanged(XrSessionState newState) {
4 if (newState == XR_SESSION_STATE_RUNNING) return;
5 g_sessionState = newState;
6 std::cout << "[Partition] sessionState-> " << int(g_sessionState)
7 << " (new Execution Unit via TIDs)\n";}
8 void InputThreadLoop() {
9 g_inputThreadID = std::this_thread::get_id();

10 while(true){std::this_thread::sleep_for(std::chrono::seconds(3));
11 if (g_sessionState == XR_SESSION_STATE_FOCUSED) {
12 std::cout << "[Input] TID=" << g_inputThreadID
13 << " -> user action in FOCUSED.\n";}}}
14 void RenderThreadLoop() {
15 g_renderThreadID = std::this_thread::get_id();
16 while(true){std::this_thread::sleep_for(std::chrono::ms(500));
17 if (g_sessionState == XR_SESSION_STATE_VISIBLE
18 || g_sessionState == XR_SESSION_STATE_FOCUSED) {
19 std::cout << "[Render] TID=" << g_renderThreadID
20 << " -> drawing scene.\n";}}}

Listing 1: Condensed excerpt of an OpenXR app from Khronos [32].
We create “execution units” on transitions (READY, FOCUSED,
STOPPING), skipping per-frame RUNNING. Two threads (input vs.
rendering) remain distinct via TIDs.

software, OpenXR haandles application flow through session
states (e.g., READY, VISIBLE, FOCUSED, STOPPING), not dis-
crete handleEvent() calls. These session transitions reflect
meaningful changes in user engagement—when the user ac-
tually enters or exits immersive rendering—rather than the
ephemeral, high-frequency iterations seen in normal event
loops. Hence, partitioning exclusively on conventional “per-
event” or “per-iteration” loops fails to capture the unique,
high-frequency concurrency of AR/VR systems. Instead, as
we demonstrate, leveraging OpenXR session-state transitions
at higher-level boundaries (e.g., READY→FOCUSED) provides
a more coherent partitioning scheme that reduces false de-
pendencies while capturing the application’s truly distinct
operational phases.
Skipping Single-Invocation and Per-Frame States. In
typical OpenXR development, calls like xrCreateInstance

or xrCreateSession occur only once during an appli-
cation execution lifecycle, offering coarse partitions
that blur many unrelated events together. Conversely,
XR_SESSION_STATE_RUNNING fires on every frame, creating
thousands of micro-partitions. Hence, we concentrate
on session transitions such as XR_SESSION_STATE_READY,
XR_SESSION_STATE_VISIBLE, XR_SESSION_STATE_FOCUSED,
and XR_SESSION_STATE_STOPPING. Each transition naturally
encapsulates a coherent phase of user activity or system state
change, eliminating extraneous dependencies.

Listing 1 shows a simplified excerpt from a real “Color
Cube” OpenXR application in the official Khronos develop-
ment guide [32]. This app lets the user spawn, recolor, and
move cubes by pressing controller buttons. It cycles through
session states from READY to FOCUSED to STOPPING, skipping
RUNNING frame-by-frame loops to avoid overly fine partitions.
We highlight two threads: an “input” thread (polling or ran-
domizing events) and a “render” thread. Instead of tracking ev-
ery xrWaitFrame/xrEndFrame iteration, we only partition logs
on transitions like READY→VISIBLE, VISIBLE→FOCUSED,
and FOCUSED→STOPPING, each of which signals a logical
jump in user engagement. This avoids an explosion of micro-

partitions while still isolating distinct phases. Moreover, mul-
tiple threads remain separated by their thread IDs (TIDs),
preventing concurrency from merging unrelated I/O events
into a single execution unit. This way, each execution unit
corresponds to a meaningful slice of user interaction.
Execution Model Analysis for App State Identification.
We further distinguish foreground activities (e.g., the user ac-
tively manipulating cubes while FOCUSED) from background
or idle states, restricting logs that are relevant to an attack sce-
nario. For example, a malicious “re-bind” of the color-change
action (leading to data exfiltration) would appear only during
FOCUSED, not lost among the thousands of RUNNING frames.
Cross-partition Attack. By focusing on meaningful session-
state transitions (e.g., READY→FOCUSED) instead of per-frame
boundaries, REALITYCHECK mitigates false dependencies
without fragmenting the attack storyline. As illustrated in
§3 and Figure 2(b)–(c), our partitioning preserves essential
causal edges while discarding spurious connections (shown
as black arrows) in (b), ensuring that graph segments remain
inherently connected yet free of dependency explosions.

5.4.1 Non-OpenXR Application Instrumentation

OpenXR API [16], as discussed in §5, is adopted by most
AR/VR applications and manufacturers. However, AR/VR
devices also support non-OpenXR API applications, often
sourced from third-party stores like SideQuest [42]. These
applications’ logs typically lack detailed function invoca-
tions and their arguments, as seen in OpenXR API logs.3

To address this challenge, we use an instrumentation-based
approach, leveraging Soot, to enhance the granularity of non-
OpenXR app logs akin to OpenXR ones. Soot can instrument
an Android app’s Java bytecode, making it suitable for both
open- and closed-source apps, provided the SDK is identifi-
able through the app’s manifest or bytecode.

The challenge then becomes pinpointing which functions
in non-OpenXR apps to instrument. Adapting the lifecycle-
based partitioning from §5.4, we selectively instrument
lifecycle-related functions. For native Android SDK apps,
we focus on functions analogous to OpenXR’s xrPollEvent,
like Android’s onResume and onPause. For Unity and Unreal
SDK apps, we target functions linked to game engine events,
as detailed in Appendix D. This mirrors the OpenXR API’s
partitioning approach.

Our approach processes Android application files by tar-
geting specific functions. For each method identified in the
bytecode, we extract its method body, referred to as the unit
chain U . We then create a new unit chain U ′, which includes
augmented units. As we traverse each unit in U , we check for
invocations of the target methods. When such invocations are
detected, we insert logging statements into U ′. This new unit

3Our study indicates that eighteen of the top thirty AR/VR apps on Side-
Quest [42] utilize native or mixed Android SDK.



chain, consisting of both original and augmented units, re-
places the original to preserve the application’s functionality.
After modifying all relevant methods, we validate the altered
method bodies to ensure the integrity of the instrumented app
file. This process allows for precise bytecode modification,
focusing solely on key functions to facilitate lifecycle-based
partitioning in non-OpenXR SDKs. The pesudocode for our
algorithm is provided in Appendix D. We also discuss the use
of native library instrumentation in §6 and Appendix A.

5.5 MPG Pruning

REALITYCHECK uses an automated graph pruning (GP)
mechanism to remove forensically irrelevant vertices and
edges from AR/VR multi-layer provenance graphs. Our ap-
proach, based on the Direct Forensic Connection (DFC) and
Indirect Forensic Connection (IFC) principles, retains crucial
evidence while discarding extraneous details.

DFC. We first mark all components directly linked to the
detection point as critical. The detection point is the abnormal
vertex flagged by the intrusion detection system. Any element
bearing an immediate connection to the investigation’s focal
vertex remains exempt from pruning.

IFC. Next, we analyze remaining graph elements and keep
those that: (i) act as intermediaries for data flow between
critical vertices, or (ii) link two critical vertices. These indirect
connections are needed for reconstructing event causality.

Following the principles of DFC and IFC, the GP process
applies the rules described below to prune the graph. Rule
1 (Regular Frequency Vertices): AR/VR devices log rou-
tine metrics at fixed intervals (e.g., battery usage every 15s).
Such logs do not impact user interactions or attacks. Rule 2
(Standalone Operational Vertices): Vertices denoting system
maintenance tasks lack outgoing edges and do not influence
user or attack processes. Rule 3 (Irrelevant Process/Object
Vertices): Inspired by RapSheet [68], a vertex P or O is pruned
if (i) its backward-tracing graph has no link to the detection
point and (ii) no event edges with P or O involve the detection
point. Rule 4 (Repetitive Entities): AR/VR logs often repeat
processes (e.g., repeated DownloadManager entries). Only the
final completion entry matters (e.g., download completed);
hence, we merge repeated operations into a single vertex.

6 Evaluation

We rigorously evaluated our REALITYCHECK prototype
across six critical metrics: (1) the effectiveness of attack recon-
struction, (2) the accuracy and efficiency of the NLP approach,
(3) runtime, storage, and query response overheads, and (4)
generalizability across a wide range of popular AR/VR de-
vices and adaptability to future threats.
Generalizability. In terms of generalizability to emerging
threats, we utilized our system without modification for recent

attacks that emerged after 2023 and show that it was able to
provide accurate MPGs. As shown in Table 3, the investiga-
tion effectiveness for attacks in 2024 is comparable to those
prior to 2023. Finally, in terms of generalizability to other
hybrid AR/VR devices, we performed our MPG effectiveness
analysis on HTC Vive XR Elite [47], which revelead that
REALITYCHECK can generalize to other AR/VR devices be-
sides Meta Quest 2, perform near-perfect investigation. These
results are discussed in detail in Appendix B.

Selected Device. We developed our system prototype on the
Meta Quest 2, which holds over 90% of the AR/VR market
share [15]. This prevalent device was chosen for its repre-
sentative architecture. Our evaluation was conducted on the
Meta Quest 2 with Android OS build 333700.3370.0, using a
machine with an Intel Core i5-10400F Hexa-Core Processor
(2.9 GHz), 16.0 GB RAM, and running Windows 11.

Implementation. We built a REALITYCHECK prototype
in Python 3.9.12 and Java 1.8.0u341 (for instrumentation
via Soot), totaling 7K lines of code. During runtime, au-
tomated scripts use the Android Debug Bridge to gather
device and PC logs. Once an attack occurs, the evalua-
tion phase processes these logs into an MPG using Net-
workX [23] and PyVis [38] for visualization. We use spaCy’s
en_core_web_sm model [9] for custom NER and syntactic
relationships, and NLTK [25] for POS tagging and lemma-
tization. Our NER model was trained on annotated AR/VR
logs split into 70% training, 10% validation, and 20% testing,
running 200 iterations with a dynamically increasing batch
size. The learning rate was managed by spaCy’s optimization,
while our POS tagging is unsupervised.

Native-library Instrumentation. While our initial plan was
to instrument native (C/C++) libraries by modifying the An-
droid system at the root level, the closed Android-based OS on
AR/VR devices limited root privileges and made conventional
system-wide DLL instrumentation unworkable [26, 102].
Consequently, we employed a user-space hooking method
with the Frida toolkit, dynamically intercepting and logging
function calls in each target DLL. In particular, we introduced
lightweight hooks for lifecycle and I/O-related functions (e.g.,
file/network handling, sensor operations, and configuration
updates). We used open-source AR/VR apps from our dataset
(apps #9–15) to identify function names and signatures for
accurate Frida script injection. At runtime, Frida loaded these
hooking scripts into the app’s process without altering the
firmware or requiring root access, thereby capturing syscall-
like data from native libraries under a root-free setup. How-
ever, as shown in Appendix A, this approach imposes sub-
stantial overhead without improving investigation efficacy, a
trade-off we discuss further in that section.

Datasets & App Choice Criteria. Our evaluation uses
two types of datasets: attack datasets and application bench-
marks. The attack datasets were curated to test the effective-
ness of our methodology for investigating AR/VR-specific



attacks. Due to the lack of open-source AR/VR attack datasets,
we generated these by simulating a variety of attacks using
real AR/VR apps (Table 2), following the procedures in Ap-
pendix E and Table 9. We employed APT scenarios from
MITRE Caldera [8], adversary emulation tools [13, 17, 37],
and GitHub exploit repositories [1, 21], and replicated attack
techniques detailed in prior research [55, 71, 98, 103]. This ap-
proach generated realistic, complex attack scenarios, enabling
a comprehensive assessment of REALITYCHECK’s investiga-
tive capabilities. In contrast, the application benchmarks were
selected to evaluate REALITYCHECK’s performance and log-
ging overhead. We systematically chose 15 applications from
the Meta Quest Store and SideQuest, prioritizing those that
employ OpenXR APIs or come pre-installed on the device.
To showcase the versatility of our Soot-based instrumenta-
tion with non-OpenXR apps (given that the Meta Quest Store
mostly offers OpenXR-only applications), we also included
top downloaded opens-source apps from the SideQuest store.

Comparison with Existing Systems. Although some attacks
(e.g., data exfiltration) also occur on conventional Android de-
vices, existing Android-centric auditing tools cannot be used
on AR/VR headsets due to device-level restrictions. Most
AR/VR platforms do not allow the root privileges or syscall
tracing that systems like Dagger [108], DroidForensics [111],
or AppAudit [106] rely on, as detailed in §1. In addition, com-
mercial AR/VR devices lack the open firmware environments
needed to install kernel hooks or run system-call loggers.
Hence, even attacks that appear on both Android phones and
AR/VR headsets remain beyond the reach of these tools be-
cause the latter cannot run at all (or cannot access low-level
logs) on closed AR/VR systems. OVRSeen [102] is the only
feasible option under these constraints and was therefore cho-
sen as a baseline for our evaluations in Table 6.1. However, its
reliance on complex dynamic analysis limits its practicality
on end-user AR/VR devices. Finally, the proprietary nature
of many AR/VR apps further restricts solutions like AppAu-
dit [106], which requires source code access for instrumenta-
tion. In contrast, our approach is device-aware, sidestepping
the need for root access and capturing multi-layer logs without
modifying the closed firmware or kernel.

Ground Truth MPGs. Given the lack of pre-existing ground
truth provenance graphs for AR/VR attacks, we manually
generated these graphs based on detailed ground truth doc-
uments that accompanied the attacks, which thoroughly de-
scribed the attack behaviors. Our manual approach aligns
with established practices in attack provenance graph la-
belling [67, 73, 74, 93, 105]. To further validate the correct-
ness of our ground truth graphs, two independent authors
carefully reviewed the manually generated provenance graphs.
They assessed whether these graphs accurately represented
the root causes and impacts of each AR/VR attack scenario.
The high inter-rater reliability achieved in this review process
confirms the robustness and correctness of our approach.

Table 3: Effectiveness of OVRSeen vs REALITYCHECK in tracing
the provenance of different attack scenarios. G.T.: Ground Truth; RC:
REALITYCHECK; EP: Execution Partitioning; GP : Graph Pruning;
V: Vertices; E: Edges; Cov.: Coverage; TP: True Positives; FP: False
Positives; FN: False Negatives; Prec.: Precision; Rec.: Recall. Each
row also includes V/E numbers from the APT portion of the attack.

Investigation Effectiveness NLP Effectiveness
GT OVRSeen RC RC + EP & GP TP/FP/

FN Prec. Rec. F1V/E V/E Cov. V/E V/E Cov.
1 98/109 - - 152/162 98/108 1.00 36/2/1 0.95 0.97 0.96
2 90/101 - - 125/139 90/100 0.99 21/1/0 0.95 1.00 0.98
3* 112/127 1/0 0.00 194/252 112/127 1.00 69/3/0 0.96 1.00 0.98
4* 111/126 1/0 0.00 188/224 111/126 1.00 67/2/0 0.97 1.00 0.99
5 107/118 1/0 0.00 183/197 107/118 1.00 55/0/0 1.00 1.00 1.00
6 106/117 1/0 0.00 177/188 106/117 1.00 53/0/0 1.00 1.00 1.00
7 98/109 1/0 0.01 147/161 97/109 1.00 36/2/1 0.95 0.97 0.96
8 102/113 1/0 0.01 157/172 102/113 1.00 45/3/0 0.94 1.00 0.97
9 98/109 1/0 0.01 149/164 98/109 1.00 37/2/0 0.95 1.00 0.97
10 98/109 1/0 0.01 142/155 98/109 1.00 37/1/0 0.97 1.00 0.99
11 104/115 1/0 0.00 177/191 103/115 1.00 48/3/1 0.94 0.98 0.96
12 93/104 2/0 0.01 133/145 93/104 1.00 27/1/0 0.96 1.00 0.98
13 92/102 1/0 0.01 136/147 91/102 0.99 23/2/1 0.92 0.96 0.94
14 101/112 2/0 0.01 143/159 101/112 1.00 43/2/0 0.96 1.00 0.98
15 101/113 2/0 0.01 136/151 101/113 1.00 44/3/0 0.94 1.00 0.97
16 98/109 - - 148/159 97/108 0.99 35/1/2 0.97 0.95 0.96
17 91/102 1/0 0.01 138/152 91/101 0.99 22/1/1 0.96 0.96 0.96
18 98/109 - - 144/159 97/109 1.00 36/1/0 0.97 1.00 0.99

19* 96/106 1/0 0.00 133/145 96/106 1.00 32/1/0 0.97 1.00 0.98
20 98/109 2/0 0.01 137/148 97/108 0.99 35/1/2 0.97 0.95 0.96
21 93/103 2/0 0.01 128/143 92/103 0.99 25/1/1 0.96 0.96 0.96
22 95/105 1/0 0.01 141/153 95/105 1.00 30/2/0 0.94 1.00 0.97
23 91/102 1/0 0.01 123/134 91/102 1.00 23/0/0 1.00 1.00 1.00
24 104/115 1/0 0.00 151/163 103/115 1.00 48/2/1 0.96 0.98 0.97
25 92/102 1/0 0.01 136/148 92/102 1.00 24/0/0 1.00 1.00 1.00

Note: Rows marked with * indicate attacks that emerged after 2023. The
results show generalizability of REALITYCHECK when adapting to future
attacks since our labelling was performed before these attacks emerged.

6.1 Investigation Effectiveness

To evaluate the effectiveness of REALITYCHECK against
OVRSeen4 in tracing attack provenance, we used real ad-
vanced persistent threat (APT) scenarios. Specifically, we
used MITRE Caldera [8] to simulate a realistic multi-stage
APT, incorporating the following steps: (1) Initial Access,
Privilege Escalation, and Presistence: compromising a Win-
dows PC connected to the headset to establish foothold,
(2) Device Discovery: identifying the tethered AR/VR device
from the PC to facilitate lateral movement, (3) Lateral Move-
ment Execution: deploying custom payloads via mal.exe
to install/modify AR/VR apps on the headset, (4) System
Manipulation: optionally altering device configurations to
maintain access or prepare for cognitive attacks, (5) Data
Collection: gathering sensitive AR/VR data such as user in-
teractions and logs, and (6) Data Exfiltration: utilizing the
compromised PC and the headset to exfiltrate information.

We launch the 25 AR/VR attacks (Table 2) on the compro-
mised device using real AR/VR apps provided in the corre-
sponding table, mirroring the multi-step intrusions seen in
the wild. Because the APT steps add additional vertices and

4Although most attacks can be run across multiple SDKs, dashed entries
for OVRSeen represent attacks untestable on the OVR SDK due to API
deprecation



Table 4: Ablation study showing NLP’s contribution to investigation
efficacy. RC: REALITYCHECK. RC without ER, POS uses edge
dictionary method like existing works [62, 95] for edge extraction.

Configuration Precision Recall F1 Graph Size
Red. (%)

RC w/o ER, POS 0.79 0.64 0.71 57.1
RC + ER only 0.79 0.64 0.71 70.8
RC + POS only 0.96 0.99 0.98 57.1
RC (all) 0.96 0.99 0.98 70.8

edges in MPGs for each attack beyond just the AR/VR de-
vice footprint, our ground truth graphs expand accordingly.
These attacks were analyzed using REALITYCHECK to gen-
erate MPGs, summarized in Table 3. Coverage is calculated
as Vc+Ec

Vg+Eg
, where Vc and Ec are the correctly identified ver-

tices and edges, respectively, and Vg and Eg are the vertices
and edges in the Ground Truth. REALITYCHECK consistently
achieved near-perfect coverage, indicating successful capture
of all vertices and edges related to the attack. When cover-
age fell to 0.99, it was typically due to REALITYCHECK’s
conservative use of double-sided edges in response to ambigu-
ous verbs like “accessing,” whereas Ground Truths specified
stricter edge directions. This conservative approach, aligned
with literature on edge inference from texts [62, 81, 95], en-
sures no potential interactions are missed.

As established in [69, 80], attack provenance graphs
must demonstrate Soundness and Completeness for reliable
forensic analysis. Soundness ensures the graph respects the
“happens-before” relationship for accurate querying, while
Completeness ensures all necessary details for determin-
ing root causes and attack ramifications are included. Our
REALITYCHECK-generated MPGs for all attacks were both
sound and complete, accurately reflecting happens-before re-
lations and root causes when compared to the ground truth5.

6.2 Effectiveness of the NLP Approach
We evaluated the NLP approach of REALITYCHECK, which
extracts entities and relationships from unstructured logs, us-
ing precision, recall, and F1 score. The datasets were split into
testing and training sets for validation. Metrics like true posi-
tives, false positives, and false negatives gauged the system’s
representation accuracy of the original log activities. Table 3
showcases high scores across attack scenarios, underscoring
the NLP approach’s efficacy. Given the challenge of quantify-
ing true negatives, accuracy is not a primary metric. Instead,
we emphasize precision, recall, and F1 score, aligning with
other studies [62, 95]. A few false positives and false nega-
tives stem from our method of creating bi-directional edges
when logs contain ambiguous verbs, as discussed in §6.1 and
not missed vertices or edges in MPGs. Hence, these minor

5Soundness is ensured by tracing PID/TID and synchronizing log times-
tamps. Completeness is achieved by integrating logs from all system layers
using our log correlation techniques detailed in §5. Even when coverage is
not 1.0, Completeness is preserved through conservative use of double-sided
edges to retain all relevant data.

Table 5: Logging overhead using REALITYCHECK. We removed the
prefix “com." from each package name for readability. EP: Execution
Partitioning; GP: Graph Pruning.

App
Number

Package
Name

Log
Size (Kb)

# Logcat / API /
Perfetto logs

Total
Logs

# Logs after
EP and GP

1 oculus.browser 18321 2871 / 62 / 8456 11389 3419
2 beatgames.beatsaber 18172 2738 / 55 / 8432 11225 3031
3 facebook.horizon 13454 2863 / 58 / 7964 10885 2983
4 oculus.explore 13102 3243 / 71 / 8327 11641 2797
5 oculus.vrshell.home 12875 2987 / 68 / 7551 10606 2831
6 oculus.systemutilities 12240 2801 / 47 / 7762 10610 2630
7 transcendxr.reality 16331 3235 / 71 / 9242 12548 3663
8 bigscreenvr.bigscreen 18100 2732 / 93 / 8298 11123 3078
9 qcxr.qcxr 20313 3612 / 79 / 9827 13518 4271
10 arda.computer.arda 21240 3774 / 82 / 10356 14212 4547

11 homeassistant.
companion.android 9482 2007 / 36 / 5872 7915 2380

12 xrstream.ovr 12446 3090 / 67 / 7634 10791 3173
13 activitywatch.android 7410 1380 / 21 / 5490 6891 2342

14 questapp
versionswitcher 7552 1334 / 23 / 5674 7031 2420

15 justmedafaq.
questnotifier 3568 637 / 14 / 2917 3568 1377
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Figure 6: Runtime overheads associated with REALITYCHECK.

discrepancies are considered trivial as they do not impact the
overall validity, soundless and completeness of the generated
MPGs.
Ablation Study. Table 4 shows how varying different com-
ponents of our NLP pipeline affects the NLP efficacy of our
approach. When both ER and POS are omitted, precision and
recall drop to 0.79 and 0.64 (F1=0.71), while adding only ER
retains the same F1 but increases graph size reduction from
57.1% to 70.8%. Using only POS yields precision 0.96 and re-
call 0.99 (F1=0.98), though graph reduction reverts to 57.1%.
Combining ER and POS achieves F1=0.98 and the highest
graph size reduction (70.8%), indicating both components are
vital for extracting relationships in unstructured AR/VR logs.

6.3 Performance Evaluation

Storage Overhead. We used Monkey [19], integrated into
Meta’s Android framework, for stress testing and to evaluate
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Figure 7: Query performance of REALITYCHECK.

logging overheads. Table 5 shows the logging overhead for
various applications tested with Monkey over 10,000 events.
This table includes log sizes, entries from Logcat, API, Per-
fetto logs, average logs per event, and logs post our system’s
pruning and partitioning. Different applications exhibit varied
logging overheads due to their unique resource requirements,
but our system consistently filters out irrelevant entries. Logs
were reduced by 61.39% to 76.00% across apps, with an av-
erage reduction of 70.79%. In Appendix C, we also provide
the storage growth of REALITYCHECK over time, which we
argue is minimal, as the storage growth per 24 hours is just
12MB when logs are compressed.
Runtime Overheads. We employed the OVR Metrics
Tool [35] under both normal and stress-test workloads. Fig-
ure 6a shows overheads ranging from 0.4% to 2.2% (aver-
aging 1.3%) in normal operation and 1.1% to 5.7% (2.9%
on average) under stress tests. Correspondingly, frame-rate
(FR) drops vary between 0.0% and 3.6% (avg. 1.8%) for
normal usage, and rise as high as 6.3% (avg. 3.3%) in stress
testing. Figure 6b further indicates that our selective instru-
mentation remains below 2.5% overhead, with the highest
observed overhead at 5.7%. Prior work [53, 94] suggests this
level of overhead is acceptable for traditional Android-based
systems, though we acknowledge the absence of a user study
and leave that as a future direction.
Graph Query Response Times. To comprehensively ana-
lyze the consequences and root causes of all 25 documented
attacks, we performed both forward and backward provenance
queries, alongside assessing the longest hop paths within our
system. The query response times, presented in Figure 7a,
show REALITYCHECK’s efficiency, with all vertices queried
in 2.83 ms, enabling rapid graph generation for threat investi-
gation. Response times for forward and backward provenance
queries were smaller, averaging in milliseconds, with max-
ima of 2.57 ms and 2.37 ms respectively (Figure 7b). The
improved efficiency, relative to the 2.83 ms for all vertices, is
because the detection points are at varying graph positions,
not just at the end of the longest hop paths.

7 Attack Case Study: Photosensitive Epilepsy

Scenario. An APT29 actor [6] first compromises a Windows
PC by leveraging a phishing email within Outlook.exe, later
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Figure 8: A concise form of the MPG generated by REALITYCHECK

for the APT29 attack engagement [6] + Photosensitive epilepsy [55].

pivoting through cmd.exe, runas.exe, and powershell.exe

to escalate privileges (see Figure 8). Ultimately, the
attacker launches mal_haptics.exe, which leverages An-
droid debugging utilities to sideload a malicious AR/VR
app org.mozilla.vrbrowser, which is actually the Fire-
fox browser with injected malicious code [104]. This app
stealthily overrides user preferences for disabled haptics, re-
peatedly invoking calls like xrApplyHapticFeedback at higher
amplitudes (e.g., intensity=0.1, 0.7 0.9) despite the user’s
“OFF” setting (intensity=0.0). Simultaneously, it changes re-
fresh rates from 72 Hz to 120 Hz and introduces fast strobe
flickers, risking photosensitive seizures and severe discom-
fort. By conflating haptic surges with rapid frame updates, the
attacker effectively launches a cognitive attack, rendering the
user disoriented and at physical risk.
Investigation. When suspicious boundary collisions trigger
an anomaly, REALITYCHECK correlates the Windows-based
APT portion with repeated calls to xrApplyHapticFeedback
that override the user’s preference. The provenance graph
(Figure 8) links mal_haptics.exe to suspicious AR/VR ses-
sion calls at amplitude ≥ 0.8, as well as “Refresh Rate →
120Hz (UserSet = 72Hz)” updates, indicating a sudden spike
in display flicker beyond the user’s default setting. Addition-
ally, REALITYCHECK detects org.mozilla.vrbrowser in-
voking xrApplyHapticFeedback at times that coincide with
higher haptic amplitudes, even though the user had disabled
haptics due to sensitivity. Once the logs show a strobe fre-
quency above normal and forced haptic amplitude, result-
ing in collisions with Guardian boundaries, the underly-
ing threat detection system raises an alert, labeling these
events as abnormal. Through these cross-layer relationships,
REALITYCHECK reveals how a cognitively targeted attack,
orchestrated by APT29, manipulates the AR/VR environment
to induce severe sensory overload—ultimately triggering a
Threat Alert due to abnormal haptic usage and forced display
configuration in a real APT-style AR/VR attack scenario.

8 Related work

In §1 and §3 we described the challenges with existing prove-
nance trackers for mobile systems that REALITYCHECK ad-
dresses, and complement the discussion on related work here.
Provenance Graph Applications & Graph Pruning. Prove-



nance has been applied to network troubleshooting [54] au-
diting [66], and IoT forensics [105]. Tools like Hercule [92],
OmegaLog [69], and ALchemist [110] correlate logs on end-
points (e.g., Windows hosts). By contrast, REALITYCHECK
integrates logs across the AR/VR stack for accurate MPGs.
Existing systems [70, 72, 74, 107] reduce endpoint graph
size but do not address AR/VR complexities discussed in
§5.5. REALITYCHECK employs pruning tailored to AR/VR
contexts, retaining crucial attack details. Future work may
integrate these prior methods to further refine log reduction
for AR/VR investigations.
Provenance Tracing in Android. TaintDroid [61] tracks
sensitive data leaks. In contrast, VetDroid [112] checks app
permission use. Dagger [108] uses provenance for Android
app vetting. We describe the limitation of these existing sys-
tems for AR/VR auditing in §3.
AR/VR Attack Categorization. Kulal et al. [77], Giaretta
et al. [64], and De Luca et al. [58] survey AR/VR attacks but
lack the structure of MITRE ATT&CK framework [18]. They
also omit new tactics from Luo et al. [83], Slocum et al. [99],
and Cheng et al. [56, 57]. Our MITRE-based classification
covers these techniques comprehensively.
NLP for Unstructured Log Analysis. CTI-based NLP
approaches [62, 81, 95] differ from AR/VR logs, which
have domain-specific terms and lack syscall references.
REALITYCHECK handles logs like “HeadsetCollision-
Tracker: HMD Collision Notification” which do not fit neatly
into the finite vocabularies of syscall dictionaries [62, 95]. Un-
like prior systems [59, 60, 65, 114], REALITYCHECK tailors
NLP to AR/VR logs for precise provenance generation.

9 Discussion and Limitations

In this section, we discuss the limitations and possible exten-
sions of our system through a series of questions.

What are the limitations of REALITYCHECK’s static in-
strumentation? Static instrumentation in REALITYCHECK
is lightweight, capturing key AR/VR lifecycle transitions, but
it can miss dynamically loaded code. Malicious logic may also
bypass static hooks. Nevertheless, monitoring only critical
lifecycle points keeps overhead low and our of–the-shelf-logs
still collect syscall-like data (e.g., file/socket events) reflect-
ing potential dynamic payloads. We also tested native-library
instrumentation (via Frida), which raised overhead to 45.49%
under stress tests yet yielded no added forensic insights be-
yond the static-level hooks and multi-layer logs.

What are the usability impacts of instrumentation is
REALITYCHECK? We evaluated runtime and frame-rate
(FR) overhead but did not conduct a formal user study. Un-
der normal conditions, FR drop remains below 3.6%, peak-
ing around 6% in stress tests. Since many AR/VR apps run
above 120 Hz, even a 6% decrease keeps them well above the
72 Hz threshold for Meta Quest store app acceptance [41];

some works suggest rates of 90 Hz or more help avoid motion
sickness, and our overhead measurements confirm that the
tested apps maintain frame rates above this threshold. Still,
performance-sensitive scenarios could be affected, motivating
future studies on user-perceived latency.

How is REALITYCHECK able to investigate cognitive
attacks? REALITYCHECK models immersive attributes (e.g.,
boundary states, sensory data) to detect manipulations that
endanger user perception or well-being. By correlating logs
on boundary adjustments, haptic feedback, and visual config-
uration changes, REALITYCHECK identifies scenarios that
might physically or psychologically harm users – for in-
stance, shifting guardian walls or bombarding them with high-
amplitude haptics. These disruptions often appear as sudden
boundary collisions or flickering refresh-rate toggles, which
REALITYCHECK logs and adds to its provenance graphs.

Does REALITYCHECK perform attack detection?
REALITYCHECK is designed for investigation, not direct
threat detection. Following the guidance of standards like
NIST SP800-61r2 [24] on the importance of root cause anal-
ysis, REALITYCHECK operates once an existing alert (threat
symptom) arises. Once a threat is flagged by an underlying
system [60, 96, 114], REALITYCHECK can reconstruct and
analyze the attack path, much like other forensic-focused re-
search [67, 69, 74, 75, 82, 86, 92, 105].

How does REALITYCHECK address privacy concerns
in data provenance systems? Data provenance systems,
such as REALITYCHECK, handle sensitive user information
in logs, where privacy is a critical concern. Securing log stor-
age to protect user privacy, while crucial, is orthogonal to our
core work. Integrating privacy-preserving mechanisms in our
system is an area we plan to explore in future work.

Who are the users of the REALITYCHECK system?
REALITYCHECK’ users include security analysts, digital
forensics experts, AR/VR developers, IT administrators, and
enterprise security vendors. They leverage REALITYCHECK
for root cause analysis and impact assessments, generating
detailed provenance graphs of AR/VR attacks that inform
enhanced threat prevention, refined detection signatures, and
stronger AR/VR security frameworks.

10 Conclusion

We present REALITYCHECK, an end-to-end auditing system
designed for effective investigation of AR/VR attacks using
provenance graphs. REALITYCHECK introduces novel NLP
techniques, a feature-based log correlation approach, AR/VR-
aware execution partitioning strategies, and graph pruning
methodologies to generate accurate provenance graphs for
AR/VR attacks. We developed a prototype for Meta Quest
2 and evaluated it against various AR/VR attacks. The re-
sults demonstrate that REALITYCHECK is generalizable, non-
intrusive, and facilitates precise attack investigations.
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A DLL Instrumentation

Although our multi-layer logging already captures the most
essential forensic events, we also evaluated the performance

impact of native DLL instrumentation on seven open-source
AR/VR applications (apps #9–15). In these experiments, we
instrumented selected lifecycle and I/O-related functions (e.g.,
process creation, file/network I/O) deemed forensically rele-
vant. Appendix A presents the overhead and frame rate drop
under both normal and stress-test workloads6 for each app.
From Table 6, we observe that the normal workload over-
head averages 29.12%, rising to 45.49% under stress-test
conditions. Similarly, the average frame rate drop is 27.84%
in normal usage and 55.79% in stress tests. No new nodes
were identified against ground truths, and hence, these find-
ings indicate that DLL instrumentation provides negligible
investigative gains at a substantial performance cost, primarily
because we already capture syscall-like data from other layers
via less invasive application instrumentation, and off-the-shelf
logs. Consequently, we advise users of REALITYCHECK to
carefully balance the marginal forensic benefits against the
notable impact on runtime overhead and user experience, es-
pecially in latency-sensitive AR/VR settings.

Table 6: Native DLL instrumentation overhead and frame rate (F.R.)
drop for open-source apps under normal and stress-test workloads.

App # Overhead (%) F.R. Drop (%)
Normal Stress Normal Stress

9 28.61 51.00 29.12 60.03
10 25.54 39.43 25.87 55.25
11 27.51 41.28 28.45 55.22
12 31.82 46.72 28.84 58.95
13 29.90 45.92 26.50 47.13
14 34.08 50.11 31.12 59.87
15 26.42 43.95 24.98 54.08

Avg 29.13 45.49 27.84 55.79

B Generalizability

B.1 Adaptability to Emerging Attacks
REALITYCHECK demonstrates exceptional adaptability to
emerging AR/VR threats through its novel five-layered model,
specifically designed for flexibility to trace system-wide foot-
print of emerging attacks. The only thing that the user needs
to do is that, should a new entity emerge (as shown in Fig-
ure 4), they need to annotate unstructured logs and simply fine-
tune the NER model, as REALITYCHECK’s design facilitates
the integration of novel attack attributes with these minimal
adjustments. More importantly, the REALITYCHECK’s core
mechanisms, including edge recovery, execution partitioning,
and graph pruning techniques, are inherently designed to be
generalizable to new threats without necessitating modifica-
tions since these methods are unsupervised and do not require
training. As shown in §6.1, Attacks 3-4 and 19 emerged in
2024, after we prototyped REALITYCHECK for Meta Quest 2.

6Stress testing was performed using the monkey toolkit [19].
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Figure 9: Storage consumed by REALITYCHECK over time.

Table 7: Effectiveness of REALITYCHECK in tracing the provenance
of different attack scenarios when tested on HTC Vive [47]. G.T.:
Ground Truth; RC: REALITYCHECK; EP: Execution Partitioning;
GP : Graph Pruning; V: Vertices; E: Edges; Cov.: Coverage.

Investigation Effectiveness NLP Effectiveness
GT RC RC + EP & GP TP/FP/

FN Prec. Rec. F1
V/E V/E V/E Cov.

3 32/37 104/122 32/36 0.99 68/2/0 0.97 1.0 0.99
4 31/36 98/120 31/36 1.0 67/3/0 0.96 1.0 0.98
19 16/16 57/59 16/16 1.0 32/1/0 0.97 1.0 0.98

Table 8: Compatibility of REALITYCHECK across devices in com-
parison to the baseline Meta Quest 2. • represents same logs, ◦
represents different logs. The last column shows device compatibil-
ity with REALITYCHECK.

Device Layer Compatibility1 2 3 4 5
Meta Quest Pro [22] • • • • • ✓

HTC Vive [47] • • ◦ • • ✓

Valve Index [45] • • ◦ • • ✓

Table 3 shows that REALITYCHECK was able to effectively
investigate these attacks, all with perfect coverage of 1.0. This
proves REALITYCHECK’s adaptability to emerging threats.

B.2 Generalizability to Other AR/VR Devices
The generalizability of REALITYCHECK to other AR/VR de-
vices depends on the presence of log sources within the
device layers illustrated in Figure 1. As seen in Table 8,
REALITYCHECK has been verified to be compatible with
multiple popular devices, including HTC Vive and Valve In-
dex (with minor adjustments for Steam Logs), and a detailed
mapping is provided in the Appendix (§D.0.1). Additionally,
REALITYCHECK was tested on the HTC Vive XR Elite [47]
to validate its effectiveness against three newly emerged 2024
attacks. Only the parser for SDK Layer logs needed modifi-
cation (D.0.1), without requiring extra data labeling for the
NLP component. Table 7 reports near-perfect coverage, preci-
sion, recall, and F1-scores, demonstrating REALITYCHECK
’s capacity to work with AR/VR devices beyond Meta Quest
2.

C Storage Overhead

In this appendix, we provide additional results that showcase
the storage growth associated with REALITYCHECK. Fig-
ure 9 shows storage growth over time from hourly automated
scripts simulating use when REALITYCHECK is deployed on

Meta Quest 2. Over 24 hours, raw logs were 432MB. With
partitioning and pruning, this was reduced to 134MB (12MB
compressed). We optimized Perfetto logs by extracting only
essential sched_switch info (§5) and purging surplus logs
every 10 minutes. Given an average monthly headset use of 6
hours [12], our system’s overhead is minimal for users.

D Detailed Algorithm for Bytecode Instrumen-
tation

The BYTECODEINSTRUMENTOR algorithm (Algorithm 2)
plays a crucial role in enhancing our AR/VR-aware execution
partitioning technique by instrumenting specific functions
within an application file, which are needed for identifying
execution units effectively. How these functions are identi-
fied is explained in §5.4. Given an application file and the
list LFunctions, the algorithm proceeds by iterating over each
method m in the application’s bytecode. For each method, it
checks whether the method is included in LFunctions. If so, the
body b of method m is retrieved, and the unit chain U—which
represents sequences of bytecode instructions—is extracted
from b. The algorithm then initializes a new unit chain U ′,
where it will store modified (instrumented) units. For each
unit u in U , the algorithm checks if u is an invoke statement
and if the invoked method is within LFunctions. If both condi-
tions are met, it generates and appends logging statements to
U ′, which capture method invocations and their arguments,
thereby preparing a detailed logging message. After process-
ing all units in U , the instrumented unit chain U ′ replaces
the original U in b. Following the modification, the bytecode
is validated to ensure it remains executable and conforms to
bytecode standards. The instrumented application is then con-
structed by running transformation packs via a transformer
module, which applies the bytecode modifications across the
entire application file.

1 public static void OnApplicationPause(boolean):
2 paused = @parameter0: boolean
3 // The added logging statements:
4 $r2 = <java.lang.System: java.io.PrintStream out>
5 argLocal_0 = paused
6 $r4 = virtualinvoke argLocal_0.<java.lang.Boolean: java.lang.String toString()
7 $r5 = "Beginning of method OnApplicationPause with arguments [" + $r4 + "]"
8 virtualinvoke $r2.<java.io.PrintStream: void println(java.lang.String)>($r5)

Figure 10: Jimple code after instrumentation for the
OnApplicationPause method.

Unity and Unreal Engine provide lifecycle manage-
ment methods—such as Unity’s OnApplicationPause,
OnApplicationFocus, OnApplicationQuit, and Un-
real’s ApplicationWillEnterBackgroundDelegate,
ApplicationHasEnteredForegroundDelegate,
ApplicationWillTerminateDelegate—that mirror the
functionality of OpenXR’s xrPollEvent and Android’s
onPause/onResume. By instrumenting these methods, devel-
opers can log and analyze key lifecycle transitions similar



Algorithm 2: BYTECODEINSTRUMENTOR
Inputs :Application file, List of target functions to instrument LFunctions.
Output :Instrumented Application file.

1 foreach method m in the Application bytecode file do
2 if m ∈ LFunctions then
3 Retrieve method body b of m and extract unit chain U from b;
4 Initialize new unit chain U ′ for instrumented units (or statements);
5 foreach unit u ∈U do
6 if u is an invoke statement and InvokedMethod(u) ∈ LFunctions

then
7 logStmts← GenerateLogStmts(u);
8 Extract method name and arguments from u;
9 Prepare logging message;

10 U ′.add(logStmts);

11 U ′.add(u);

12 Replace U in b with U ′;
13 Validate b;

14 Trans f ormer.v().runPacks();
15 Trans f ormer.v().writeOut put();
16 return InstrumentedApplication

to how they might with OpenXR. This approach ensures a
detailed and consistent view of application behavior across
different engines and SDKs, as demonstrated by the Jimple
code example for Unity’s OnApplicationPause method
(Figure 10).

D.0.1 Generalizability: Mapping Oculus and Steam logs

The generalizability of REALITYCHECK across different
AR/VR devices is crucial. While the prototype focuses on the
Meta Quest 2 (using Oculus logs), it can be adapted for de-
vices that rely on Steam logs, such as HTC Vive XR Elite [47]
and Valve Index [45]. As noted in §B.2, the only significant
variation lies in the SDK-layer logs for these popular hybrid
AR/VR devices. This appendix details a mapping for these
logs, highlighting key characteristics from Figure 5: process
details (C10), device id (C12), and device event type (C13)7.
Process Details (C10). In Oculus logs, process details are
typically captured under the tag [Process] with entries de-
tailing the process name, PID, and other relevant metadata.
In Steam logs, the equivalent information can be found under
the tag [AppProcess].
Device ID (C12). Oculus logs identify devices using a unique
identifier under the tag [Device_ID]. Steam logs, on the
other hand, use the tag [HardwareID] to capture the same
information.
Device Event Type (C13). For Oculus logs, device events
such as connection or disconnection are logged under the
tag [ETW_USB_EVENT] or [ETW_TCP_EVENT]. In Steam logs,
similar events are captured under the tag [DeviceEvent].

The mapping provided above showcases the similarities be-
tween Oculus and Steam logs, emphasizing that the adaptation
of REALITYCHECK from one platform to another is straight-
forward. By understanding the structure and tags used in each

7The Steam logs were collected from HTC Vive XR Elite [47]. They are
similar in nature to what we observed with Valve Index [45].

logging system, we can easily extend REALITYCHECK’s ca-
pabilities to cater to a broader range of AR/VR devices.

E Existing AR/VR Attacks

Eavesdropping attacks involve malicious apps installed on
the victim’s AR/VR device, capturing motion sensor data and
transmitting it to a remote attacker to reconstruct sensitive
user information, such as passwords [98]. Human Joystick
attacks occur when a malicious application alters the user’s
perception and boundary details to manipulate the user into
a predefined area by changing the device’s configuration set-
tings [103]. Chaperone attacks involve malicious applications
that modify AR/VR borders by altering device configura-
tions, causing virtual areas to appear larger or smaller to the
immersed user [55]. Overlay attacks superimpose unwanted
images, videos, or content onto a user’s AR/VR view via a
malicious background application [55]. Cybersickness attacks
induce dizziness and disorientation in the user through de-
vice haptics or digital objects thrown at the user, potentially
triggering epilepsy via malicious applications installed on
the AR/VR device [104]. Key-logging Interface attacks in-
troduce malware onto the victim’s AR/VR headset, allowing
the attacker to access the victim’s hand-tracking data through
the headset’s API [88]. Camera Stream and Tracking Exfil-
tration attacks leverage background applications running on
the AR/VR device, enabling a malicious program to retrieve
camera streams and tracking details without displaying an
image or requiring a specific scene [55, 98].

We further map these AR/VR attacks according to MITRE
TTPs [18] in Table 9. This taxonomy presents a compre-
hensive attack matrix, classifying these attacks and offering
valuable insights into the AR/VR threat landscape.

F AR/VR Attack Literature Review

For our attack modelling, we embarked on an extensive re-
view of academic literature using DBLP and Google Scholar,
pertinent open-source projects hosted on GitHub [1, 13] and
CVE databases [10, 28], spanning the previous five years.
Our research was underpinned by a carefully selected set of
keywords including but not limited to "AR/VR security", "XR
security", "AR/VR exploits", "AR/VR exploits", "AR/VR vul-
nerabilities", "XR vulnerabilities", "AR/VR attacks", "XR
attacks", "immersive attacks", "AR/VR device configuration
attacks", "XR device configuration attacks", "user percep-
tion manipulation", and "mixed reality attacks". This in-depth
investigation led to the identification of 23 distinct attacks
targeting various facets of hybrid AR/VR devices like the
Meta Quest, HTC Vive, and Valve Index. With these iden-
tified attack vectors in mind, we tailored our log collection
strategy to capture evidence of these specific threats, ensuring
a relevant, comprehensive, and efficient data acquisition for
our analysis.



Table 9: Attack matrix for the AR/VR ecosystem.

Attack Name Tactics Techniques Procedures

Perception Manipulation
Overlay

Overlay partial screen with digital ob-
ject [55, 103]

Use a malicious application to overlay a small and invisible digital object onto
the screen. The attack was simulated using the code provided by the authors.

Overlay entire screen with digital ob-
ject [55, 103]

Use a malicious application to overlay an invisible digital object onto the entire
screen. The attack was simulated using the code provided by the authors.

Object-in-the-middle attack [57] Overlay an invisible object on top of a visible virtual object, such as a keyboard,
to record user input without their knowledge. The attack was simulated using
the Unity assets provided by the authors.

Object erasure attack [57] Employ fully transparent meshes to render targeted AR content invisible, thereby
distorting the user’s reality by erasing vital information. The attack was simu-
lated using the Unity assets provided by the authors.

Human Joystick
Attack

Alter virtual boundary coordinates [55,
103]

Alter the HMD headset’s device configurations through a remote access trojan
on an infected PC, and then flas the configurations via an android toolkit to
distract/disorient the victim.

Chaperone Attack Alter virtual boundary sensitivity [55,
103]

Modify the headset’s VE sensitivity using an android toolkit by setting it to
a low value casing collision with the VE boundary. The attack was simulated
using the techniques described in the paper since no official source code was
available.

Eavesdropping Attack

Discovery

Software discovery [13] Use Metasploit to identify the software installed on the target device. The
repository providing setup for this attack is cited.

System information discovery [13] Use malicious payload to scan the target device for system information. The
repository providing setup for this attack is cited.

System service discovery [13] Use a remote access payload to connect to the headset and enumerate running
services. The repository providing setup for this attack is cited.

Network configuration discovery [89] Use PC connected to the headset to retrieve its network configuration via Nmap.
The attack was simulated using the techniques described in the paper since no
official source code was available.

Collection
Access data from/using foreground ap-
plications [83, 99]

Use side-channels to access and exfiltrate data from the HMD device. The attack
was simulated using the techniques described in the paper since no official
source code was available.

Immersive browser session hijack-
ing [37]

Use malicious payload to pull browser cookies from the HMD device and use
them to hijack a browser session.

Clipboard data [89] Use a remote access payload to capture and exfiltrate clipboard data from the
target device, or use an android toolkit to exfiltrate this data via the connected
PC. The attack was simulated using the techniques described in the paper since
no official source code was available.

Exfiltration Automated exfiltration [13, 37] Use Metasploit post-exploitation module reverse_tcp to install backdoor and
exfiltrate data from the target device. The repository providing setup for this
attack is cited.

Exfiltration via endpoint system [91] The attack utilized dumpsys to transfer data from an HMD device to a PC via
an Android toolkit, followed by exfiltration through the connected PC. The
simulation was conducted using techniques from the referenced presentation,
due to the unavailability of official source code. The tactic, named by us and
pertaining to endpoint data exfiltration, draws inspiration from the cited work
as outlined on Page 11 of the source.

Physical Harm Cybersickness
Dizziness [104] Send excessive haptic events via an application installed on the headset or via

the connect PC through an android toolkit. The attack was simulated using the
techniques described in the paper since no official source code was available.

Force play audio [29] Use malicious payload to force play audio in the background. The potentially
malicious app to run the attack is cited.

Photosensitive epilepsy [104] Install an app on the HMD that includes flashing or strobing lights or toggle
brightness via an android toolkit. The attack was simulated using the techniques
described in the paper since no official source code was available.

Key-logging Interface Attack Credential Access Input capture [83] Use a malicious app to record user input, such as controller coordinates. The
attack was simulated using the techniques described in the paper since no official
source code was available.

Retrieve credentials [57] Retrieve unsecured credentials from the device, such as plain text password files
via the connected PC or through a malicious payload on the HMD that overlays
a digital object over a user’s keyboard. The attack was simulated using the code
provided by the authors.

Defense Evasion File Deletion Delete files and applications with write
acces [71, 89]

Use file deletion techniques to remove files and applications on the headset that
have read/write access. The attack was simulated using the techniques described
in the paper since no official source code was available.

Data Destruction Permanently delete user data [89] Use data destruction techniques to permanently delete user data on the headset
via malicious payload or through the connected PC via an android toolkit. The
attack was simulated using the techniques described in the paper since no official
source code was available.

AR/VR Device Exploitation Device Impact Service stop [29]
Disable Facebook services on the headset via malicious application on the HMD.
The potentially malicious app to run the attack is cited.
Disable device telemetry services via malicious application on the HMD. The
potentially malicious app to run the attack is cited.
Force stop or disable updates via malicious application on the HMD. The
potentially malicious app to run the attack is cited.

Account access removal [29] Remove Facebook Accounts from Device via malicious application on the
HMD. The potentially malicious app to run the attack is cited.

Force shutdown / reboot [37, 71] Execute force shutdown intent via the connected PC. The toolkit used to run the
attack is cited.
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