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Abstract

Fully Homomorphic Encryption (FHE) enables operations
on encrypted data, making it extremely useful for privacy-
preserving applications, especially in cloud computing en-
vironments. In such contexts, operations like ranking, order
statistics, and sorting are fundamental functionalities often
required for database queries or as building blocks of larger
protocols. However, the high computational overhead and lim-
ited native operations of FHE pose significant challenges for
an efficient implementation of these tasks. These challenges
are exacerbated by the fact that all these functionalities are
based on comparing elements, which is a severely expensive
operation under encryption.

Previous solutions have typically based their designs on
swap-based techniques, where two elements are conditionally
swapped based on the results of their comparison. These meth-
ods aim to reduce the primary computational bottleneck: the
comparison depth, which is the number of non-parallelizable
homomorphic comparisons in the algorithm. The current state
of the art solutions for sorting by Lu et al. (IEEE S&P’21)
and Hong et al. (IEEE TIFS 2021), for instance, achieve a
comparison depth of log2 N and k log2

k N, respectively.

In this paper, we address the challenge of reducing the com-
parison depth by shifting away from the swap-based paradigm.
We present solutions for ranking, order statistics, and sorting,
that achieve a comparison depth of up to 2 (constant), making
our approach highly parallelizable and suitable for hardware
acceleration. Leveraging the SIMD capabilities of the CKKS
FHE scheme, our approach re-encodes the input vector under
encryption to allow for simultaneous comparisons of all ele-
ments with each other. The homomorphic re-encoding incurs
a minimal computational overhead of O(logN) rotations. Ex-
perimental results show that our approach ranks a 128-element
vector in approximately 5.76s, computes its argmin/argmax
in 12.83s, and sorts it in 78.64s.

1 Introduction

Fully Homomorphic Encryption (FHE) is a cryptographic
primitive that enables performing unbounded operations on
encrypted data, without decrypting them first. It is a funda-
mental building block for designing non-interactive proto-
cols in privacy-preserving applications, and can be used to
maintain the confidentiality of data stored in the cloud, while
enabling outsourced computations on it. Despite the effort of
recent developments to make this technology more efficient
and closer to be usable in real-world applications [5–7, 25],
computing under FHE is still problematic due to both its se-
rious computational overhead and limited native operations.
In particular, it is challenging to realize even fundamental
functions efficiently, like ranking, computing order statistics,
and sorting, which are frequently required database opera-
tions. These functionalities also find applications in diverse
fields, for instance in privacy-preserving machine learning,
where they can be used to evaluate max-pooling layers and
the argmax output layer in neural networks [19, 27], or to
perform private inference of decision trees [24, 26].

Several works in the literature have attempted to implement
these functionalities efficiently (see Table 1). Many studies
have focused on sorting under both the Smart-Vercauteren
(SV) scheme [25] and the Cheon-Kim-Kim-Song scheme
(CKKS), which is particularly relevant as it enables floating-
point arithmetic on vectors of data in a Single Instruc-
tion Multiple Data (SIMD) fashion. These approaches typ-
ically implement swap-based sorting methods, where at
each round two elements are compared and conditionally
swapped [8, 9, 16, 18, 22]. Similarly, other works have fo-
cused on computing the argmax of a vector of elements en-
crypted in a CKKS ciphertext, also relying on swap-based
techniques [19, 27]. However, comparing two values under
encryption is significantly expensive, resulting in the bot-

1 Precisely, in terms of multiplicative depth, ranking requires up to DC +4
levels, while the extraction of k-statistics and sorting require up to DC +
DI +4 and DC +DI +6 levels, respectively. Here, DC and DI represent the
multiplicative depth of the comparison and indicator circuits (see Section 3).



Table 1: Summary of related work.

Paper Function
Comp.
Depth

Comput.
Complexity

FHE
Scheme Remarks

Chatterjee et al. [8]
(Indocrypt 2013)

Bubble Sort,
Insertion Sort

N2

N2
O(N2)
O(N2)

SV
SV

Tested up to 40 elements,
for which it runs in around
359.42 minutes (Bubble Sort)
and 362.62 minutes (Insertion
Sort).

Chatterjee et al. [9]
(IEEE TSC 2017)

Quick Sort N2 O(N2) SV Tested up to 40 elements,
for which it runs in around
779.28 minutes.

Emmadi et al. [16]
(ICCCRI 2015)

Bitonic Sort,
Odd-Even Merge Sort

log2 N
log2 N

O(N log2 N)

O(N log2 N)

SV
SV

Tested up to 64 elements, for
which it runs in around 52.63
minutes (Bitonic Sort) and
42.65 minutes (Odd-Even
Merge Sort).

Lu et al. [22]
(IEEE S&P 2021)

Bitonic Sort
(switching to FHEW)

log2 N O(N log2 N) CKKS Tested up to 64 elements, for
which it runs in 409.09s in a
4-thread setting (without tak-
ing into account the scheme
switching cost).

Hong et al. [18]
(IEEE TIFS 2021)

k-Way Sorting Networks k log2
k N O(Nk log2

k N) CKKS It takes around 87.35 minutes
to sort 625 elements.

Jovanovic et al. [19]
(ACM CCS 2022)

Argmax N O(N) CKKS It computes the argmax of
128 elements in approxi-
mately 92.31 minutes.

Zhang et al. [27]
(NDSS 2025)

Argmax logN +1 O(logN) CKKS It computes the argmax of
128 elements in approxi-
mately 5.05 minutes.

Our work Ranking
k-Statistics (incl. Argmax)
Sorting

11

21

21

O(L2)
O(L2)
O(L2)
with L = N/B
B ∈ {128,256}

CKKS
CKKS
CKKS

Tested up to 16384 elements.
It ranks 128 elements in
5.76s, computes their argmin/
argmax in 12.83s, and sorts
them in 78.64s.



tleneck of these methods being the comparison depth. The
comparison depth refers to the number of comparisons that
must be executed in series, and hence cannot be parallelized.
Consequently, the main problem lies in designing algo-
rithms capable of achieving a low comparison depth. This
task is made particularly challenging by the fact that any
swap-based algorithm will have worst case complexity under
encryption [16].

In this paper, we design and implement novel algorithms
for the aforementioned functionalities which, for the first time,
require a constant comparison depth of 2 only. To overcome
the limitations of previous solutions, we avoid relying on
the strategy of swapping elements under encryption. Our ap-
proach heavily exploits the SIMD capabilities of CKKS. The
core idea is to use suitable homomorphic rotations and mask-
ing to re-encode the encrypted elements in such a way that
allows us to compare all elements against each other simul-
taneously. By aggregating the outcome of this comparison,
we compute the rank of each element within the vector. Then,
by leveraging appropriate indicator functions, it is possible
to use the computed ranks to extract any order statistic and
their position, including minimum, maximum, and median
(or any percentile). Finally, we show how to parallelize this
extraction process to implement a sorting functionality.

By employing only recursive rotation-based operations,
we make sure that the re-encoding under encryption requires
only O(logN) rotations, where N is the vector length, thus
causing minimal computational overhead. Moreover, the low
comparison depth makes our solution highly parallelizable,
thus suitable for potential hardware acceleration, such as on
GPUs. While we leave this direction to future research, in our
present work we show how to further optimize our solution
algorithmically in multithreaded environments. Importantly,
our approach is agnostic to the specific implementation of the
comparison function. Even with a basic implementation, our
approach can rank a vector of 128 elements in approximately
5.76s, compute its argmin/argmax in 12.83s, and sort it in
78.64s.

2 Preliminaries

We provide background information and notation regarding
CKKS, along with an overview of the homomorphic function-
alities upon which our design is constructed.

2.1 CKKS Scheme
CKKS [11] is a fully homomorphic encryption scheme based
on the RLWE problem. It works with residual polynomial
rings of the form Rq = Zq[x]/(xn +1), where the ring dimen-
sion n is a power of two. Messages from Cn/2 are encoded
into plaintexts, which can embed vectors of up to n/2 slots.
The scheme operates with floating-point values. The encryp-
tion and homomorphic operations (see below) introduce noise

on the underlying plaintexts, which is blended with the noise
inherent in floating-point arithmetic, making the scheme in-
trinsically approximate.

CKKS natively supports three homomorphic operations on
ciphertexts:

• addition (X +Y ) corresponds to the component-wise
addition of the underlying plaintext vectors;

• multiplication (X ·Y ) corresponds to the component-
wise multiplication of the underlying plaintext vectors;

• rotation (X ≪ k) and (X ≫ k) correspond to the left and
right rotations of the underlying plaintext vector by a
plaintext index k.

The component-wise operations allow processing many inputs
concurrently, which makes this encryption scheme suitable
for SIMD. Moreover, additions and multiplications can also
be performed between a ciphertext and a plaintext. Among
all these operations, ciphertext-ciphertext multiplications and
rotations are computationally the most expensive.

2.2 Evaluating Non-Polynomial Functions
By combining additions and multiplications it is possible to
evaluate any polynomial under encryption. Evaluating non-
polynomial functions, such as the comparison operation, is
not trivial under CKKS. The usual solution consists of ap-
proximating the function by a polynomial. However, a good
approximation usually requires a high-degree polynomial,
which leads to a deep multiplicative circuit to be evaluated
and high computational cost. Thus, this paper focuses on de-
signing algorithms in which the number of non-polynomial
evaluations is minimized.

In our design, we use two non-polynomial functions: the
comparison function and the indicator function, defined as

Cmp(x,y) =


1 if x > y

0.5 if x = y

0 if x < y
, (1)

IndA(x) =

{
1 if x ∈ A

0 if x /∈ A
. (2)

We approximate both using Chebyshev polynomials, which
assure uniform convergence to the original function. The
evaluation of the polynomials is then performed using the
Paterson-Stockmeyer algorithm adapted to Chebyshev ba-
sis [10], which requires only O(

√
d) homomorphic multipli-

cations to evaluate a degree-d polynomial. We denote an ap-
proximation of degree d of these functions with Cmp( · , · ;d)
and IndA( · ;d), respectively. In terms of multiplicative depth,
each approximation requires around log(d) levels.

For assessing our solution against related work, we also im-
plement the comparison function by Cheon et al. [12], which



v1 0 0 0 0 0 0 0
v2 0 0 0 0 0 0 0
v3 0 0 0 0 0 0 0
v4 0 0 0 0 0 0 0
v5 0 0 0 0 0 0 0
v6 0 0 0 0 0 0 0
v7 0 0 0 0 0 0 0
v8 0 0 0 0 0 0 0

v1 0 0 0 v5 0 0 0
v2 0 0 0 v6 0 0 0
v3 0 0 0 v7 0 0 0
v4 0 0 0 v8 0 0 0
v5 0 0 0 v1 0 0 0
v6 0 0 0 v2 0 0 0
v7 0 0 0 v3 0 0 0
v8 0 0 0 v4 0 0 0

v1 0 v3 0 v5 0 v7 0
v2 0 v4 0 v6 0 v8 0
v3 0 v5 0 v7 0 v1 0
v4 0 v6 0 v8 0 v2 0
v5 0 v7 0 v1 0 v3 0
v6 0 v8 0 v2 0 v4 0
v7 0 v1 0 v3 0 v5 0
v8 0 v2 0 v4 0 v6 0

v1 v2 v3 v4 v5 v6 v7 v8

v2 v3 v4 v5 v6 v7 v8 v1

v3 v4 v5 v6 v7 v8 v1 v2

v4 v5 v6 v7 v8 v1 v2 v3

v5 v6 v7 v8 v1 v2 v3 v4

v6 v7 v8 v1 v2 v3 v4 v5

v7 v8 v1 v2 v3 v4 v5 v6

v8 v1 v2 v3 v4 v5 v6 v7

v1 v2 v3 v4 v5 v6 v7 v8

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Starting configuration Left rotation by N(N−1)/2 Left rotation by N(N−1)/4 Left rotation by N(N−1)/8 Mask all but the first row
v v+ v≪ 28 v+ v≪ 14 v+ v≪ 7 v · (1N ∥ 0N(N−1))

Figure 1: Transposing a vector of length N = 8 from column to row (TransC).

is used in the work of Hong et al. [18]. Their implementation
is based on the composition of two polynomials

f (x) = (35x−35x3 +21x5−5x7)/24

g(x) = (4589x−16577x3 +25614x5−12860x7)/210 .

In particular, by combining d f times f and dg times g, one
can get an arbitrarily close approximation of the compare
function Cmp(x) = ( f d f (gdg(x− y))+1)/2. While the indi-
cator function for any interval A = [a,b] can be computed as
Ind[a,b](x) = Cmp(x,a)(1−Cmp(x,b)).

Chebyshev usually leads to approximations with low mul-
tiplicative depth, while the f ,g approach leads to approxi-
mations with low evaluation runtime. In general, for a com-
parison function, the higher the degree of the approximation
the better it can correctly compare values that are close to
each other. For a discussion on this topic and for different
implementations of the comparison function, we refer to [21].

2.3 Matrix Encoding and Operations
Our approach relies on matrices for intermediate computa-
tions. To encode a matrix into a ciphertext we adopt the row-
by-row approach [20], which consists of concatenating each
row into a single vector and then encrypting it. For a square
matrix of size N, we have the requirement that N2 ≤ n/2,
where n is the ring dimension, otherwise multiple ciphertexts
are needed to store the entire matrix.

We describe some basic functionalities useful for working
with encrypted matrices. These functionalities will be the
building blocks of our approach. Given a matrix encoded into
a ciphertext X :

• MaskR(X ,k) extracts row k by masking everything else,
i.e., setting everything else to zero;

• SumR(X) sums all the rows together component-wise
and stores the result in the first row;

• ReplR(X) assumes a matrix with only the first row non-
zero and replicates it all over by copying its values into
the other rows;

• TransR(X) assumes a square matrix with only the first
row non-zero and transposes it (i.e., moving it into the
first column).

Similarly for the columns, we have MaskC, SumC, ReplC,
TransC. Masking works by multiplying the encrypted matrix
by an appropriate plaintext bit mask. For sum and replication
there are well-known algorithms in the literature that work
recursively, and only require log(N) rotations, where N is
the number of rows/columns of the matrix [17]. For these to
work, N must be a power of two, thus the matrix might require
padding. We provide their pseudocode in Appendix A. As
for transposition, to the best of our knowledge no algorithm
that works in log(N) is available in the literature. Hence, we
propose Algorithm 1 and Algorithm 2, which can be of inde-
pendent interest. Figure 1 shows an example of the TransC
algorithm for a generic vector of length N = 8.

Algorithm 1 TransR

Input: X encryption of a vector x encoded as a row.
Output: X encryption of the vector x encoded as a column.

1: for i = 1, . . . ,⌈logN⌉ do
2: X ← X +(X ≫ N(N−1)/2i)
3: end for
4: X ←MaskC(X ,0)
5: return X

Algorithm 2 TransC

Input: X encryption of a vector x encoded as a column.
Output: X encryption of the vector x encoded as a row.

1: for i = 1, . . . ,⌈logN⌉ do
2: X ← X +(X ≪ N(N−1)/2i)
3: end for
4: X ←MaskR(X ,0)
5: return X



3 Our Design for Ranking, Order statistics,
and Sorting

The core idea of our design is to manipulate the encrypted
vector in such a way that only a single evaluation of the
comparison function is needed to compare all values. For
instance, given a vector v = (v1,v2,v3), we produce

vR = (v1,v2,v3,v1,v2,v3,v1,v2,v3),

vC = (v1,v1,v1,v2,v2,v2,v3,v3,v3).

The comparison Cmp(vR,vC) contains information about vi <
v j for all pairs (vi,v j). It is easier to visualize this by seeing
vR,vC as square matrices that have been encoded row-by-row
into vectors:

vR =

v1 v2 v3
v1 v2 v3
v1 v2 v3

 , vC =

v1 v1 v1
v2 v2 v2
v3 v3 v3

 .

Turning v into vR and vC homomorphically can be done by
composing the matrix operations mentioned above, as will be
described in detail later. Note that we are implicitly assuming
we can fit N2 elements in a ciphertext, where the vector length
N is 3 in the example above. If this assumption does not
hold, we require multiple ciphertexts, which we discuss in
Section 5.

3.1 Ranking
Ranking associates the elements of a vector to their rank,
that is the position they would have if the vector was sorted,
starting from 1. In case of ties, we adopt fractional ranking,
for which ties receive a rank equal to the average of the ranks
they span. For instance, the ranking of (50,10,20,20,40) is
(5,1,2.5,2.5,4).

Given an input vector v encrypted as V , we think of it as
the first row of a null matrix. The encoding vR is produced by
simply applying ReplR, while vC is produced by first trans-
posing the initial vector to a column with TransR and then
replicating it with ReplC. The component-wise comparison of
vR > vC is ideally a matrix with values in {0,0.5,1}, whose
each column j contains information about the position of v j
in the sorted array:

• a number of ones equal to the number of elements
smaller than v j, and

• a number of 0.5 equal to the number of elements equal
to v j.

Thus, summing the elements in the column (and an additional
0.5) gives the fractional rank of v j. A pseudocode is provided
in Algorithm 3, while a schematic with an example can be
found in Figure 2.

Algorithm 3 Rank

Input: V encryption of v=(v1, . . . ,vN)∈RN , approximation
degree d ∈ N.

Output: R encryption of a vector in RN representing the
(fractional) ranking of v.

1: VR← ReplR(V )
2: VC← ReplC(TransR(V ))
3: C← Cmp(VR,VC;d)
4: R← SumR(C)+(0.5, . . . ,0.5)
5: return R

20 30 10 40

0 0 0 0

0 0 0 0

0 0 0 0

20 30 10 40

20 30 10 40

20 30 10 40

20 30 10 40

20 0 0 0

30 0 0 0

10 0 0 0

40 0 0 0

20 20 20 20

30 30 30 30

10 10 10 10

40 40 40 40

Cmp
o1 > o2

0.5 1 0 1

0 0.5 0 1

1 1 0.5 1

0 0 0 0.5

1.5 2.5 0.5 3.5

0 0 0 0

0 0 0 0

0 0 0 0

2 3 1 4

0 0 0 0

0 0 0 0

0 0 0 0

Input

Output

ReplR

TransR

ReplC

o1
o2

SumR +0.5

Figure 2: Schematic example of ranking a 4-element vector.

We assume the vector size is a power of 2 to work with
recursive operations on matrices. If it is not, we can pad it to
the next power of 2 and perform an additional masking after
the comparison to remove the excess information.

The cost of Algorithm 3 is 4⌈logN⌉ rotations, which can
be reduced to 3⌈logN⌉ by parallelizing ReplR and ReplC,
and
√

d ciphertext-ciphertext multiplications, with a multi-
plicative depth of ~⌈logd⌉.

Correctness Proof Assuming the correctness of the build-
ing blocks and the ideal functionality of the algorithm, namely
no noise from the scheme and no approximation error for
the comparison function, we prove that the output R pro-
duced by Algorithm 3 on input the encryption of a vector
v = (v1, . . . ,vN) is actually the encryption of the fractional



ranking of v. Let r = (r1, . . . ,rN) be the decryption of R. Let
j ∈ {1, . . . ,N}, we prove that r j is the rank of v j. Let vR and
vC be the decryption as matrices of VR and VC, respectively.
By the correctness of ReplR, vR;i, j = v j for all i ∈ {1, . . . ,N},
where vR;i, j is the element at row i and column j of vR. Sim-
ilarly, by the correctness of ReplC and TransR, vC;i, j = vi
for all i ∈ {1, . . . ,N}. Let c be the decryption as matrix of C,
then ci, j = Cmp(v j,vi), where Cmp is defined in Equation 1.
Then r j = ∑

N
i=1 ci, j +0.5. We split the sum over the following

partition of {1, . . . ,N}:

L j := {i ∈ {1, . . . ,N} : vi < v j}
E j := {i ∈ {1, . . . ,N} : vi = v j}
G j := {i ∈ {1, . . . ,N} : vi > v j}

and get

r j = ∑
L j

ci, j +∑
E j

ci, j +∑
G j

ci, j +0.5

= ∑
L j

1+∑
E j

0.5+∑
G j

0+0.5

= |L j|+0.5 · |E j|+0.5.

The elements equal to v j span a rank from |L j|+1 to |L j|+
|E j|, thus the fractional rank of v j is their average, namely

1
|E j|

|E j |

∑
k=1

(|L j|+ k) =
1
|E j|

(|E j| · |L j|+0.5 · |E j| · (|E j|+1))

= |L j|+0.5 · (|E j|+1) = r j.

3.2 Order Statistics
The k-th order statistic (or k-statistic) of a vector is its k-th
smallest value, that is the value of rank k if such rank exists.
A value of given rank might not exist if there are ties in the
vector. Here, we will show how to work around this issue in
the specific case of the first and last order statistics (i.e., min
and max). While we will provide a general-purpose solution
in Section 4.

We can determine the k-th order statistic of a vector v by
first computing its ranking and then applying to it an indicator
function “around k”, namely for the interval [k−0.5,k+0.5].
It will output a bit mask whose ones correspond to the po-
sitions of the elements with rank k, if they exist (see Algo-
rithm 4). One can then retrieve the actual value of the statis-
tic by computing the inner product ⟨O,V ⟩ = SumC(O ·V )
and dividing it by the L1 norm of the mask SumC(O). This
can be done under encryption by approximating 1/x in the
range [0.5,N +0.5], or by using Goldschmidt’s division algo-
rithm [13]. The outcome will be zero if no element of rank k
exists.

Correctness Proof Assuming the correctness of the build-
ing blocks and Algorithm 3, and the ideal functionality of the

Algorithm 4 Order Statistic

Input: V encryption of v=(v1, . . . ,vN)∈RN , approximation
degrees dC,dI ∈ N, index k ∈ {1, . . . ,N}.

Output: O encryption of a Boolean vector in {0,1}N that
has value 1 in position i if and only if vi has rank k.

1: R← Rank(V ;dC)
2: O← Indk(R;dI)
3: return O

algorithm, we prove that Algorithm 4 is correct. The input is
the encryption of a vector v = (v1, . . . ,vN), together with an
index k ∈ N. Let r,o be the decryption of R,O respectively.
For i ∈ {1, . . . ,N},

oi = Indk(ri) =

{
1 if Rank(vi) = k

0 if Rank(vi) ̸= k
.

Min and Max We can ensure that we can always com-
pute minimum and maximum (first and last order statistic) by
employing a slightly different definition of the comparison
function. By using

CmpG(x,y) =

{
1 if x > y

0 if x≤ y

all the minimal elements are assigned to the first rank, thus
the minimum can be retrieved with Ind1. Similarly, by using

CmpGE(x,y) =

{
1 if x≥ y

0 if x < y

all the maximal elements are assigned to the last rank, thus
the maximum can be retrieved with IndN .

3.3 Sorting
We sort a vector by extracting all its order statistics simulta-
neously, parallelizing the strategy presented in Algorithm 4.
For now, we assume that all elements in the vector are dis-
tinct, ensuring that there is exactly one element for each rank
k ∈ {1, . . . ,N}, and allowing us to extract any order statistic.
We will show how to remove this assumption in Section 4.

To extract all the order statistics in one go, the idea is to
compute the ranking of v, replicate it over the rows, and extract
a different k-statistic for each row k. Normally, this would
require applying N different indicator functions. To avoid this,
we shift each row’s domain by subtracting the entire row by
(k, . . . ,k). Applying an indicator function around zero then
produces a one-hot encoding of the position of the k-statistic
for each row k. Next, we perform an inner-product with the
original vector: we replicate the vector over the rows, multiply
it by the previously-computed mask, and sum the result over
the columns. This way, the first element of each row k contains



Algorithm 5 Sorting

Input: V encryption of v = (v1, . . . ,vN) ∈ RN with distinct
elements, approximation degrees dC,dI ∈ N.

Output: S encryption of the sorted form of v.
1: R← Rank(V ;dC)
2: RR← ReplR(R)
3: M← Ind0(RR− (1N ∥ · · · ∥ NN);dI)
4: VR← ReplR(V )
5: S← TransC(SumC(M ·VR))
6: return S
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Input

Output
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Rank

ReplR

o1o2

Ind0

ReplR

SumC TransC

Figure 3: Schematic example of sorting a 4-element vector.

the corresponding k-statistic of v. The pseudocode is provided
in Algorithm 5, while a schematic with an example can be
found in Figure 3.

Note that the quantity ReplR(V ) is already computed
within the ranking algorithm, thus the extra cost is given
by only 3⌈logN⌉ rotations, the evaluation of the indicator

function, and the multiplication M ·VR. As an additional opti-
mization, we can avoid the final transposition and save ⌈logN⌉
rotations with a slight tweak in the ranking algorithm. By in-
verting the order of the operands in the Cmp and replacing the
SumR with a SumC, the output of the ranking algorithm will
be in column-form instead of row-form. This entails swap-
ping row- and column-operations in the sorting algorithm,
and replacing ReplR(V ) with ReplC(TransR(V )), which is
also a quantity computed within the ranking algorithm. The
(parallel) cost of the sorting algorithm is then:

• 5⌈logN⌉ rotations, and

•
√

dC +
√

dI + 1 ciphertext-ciphertext multiplications,
with a multiplicative depth of ~⌈logdC⌉+ ⌈logdI⌉+1.

Correctness Proof Assuming the correctness of the build-
ing blocks and Algorithm 3, and the ideal functionality of
the algorithm, we prove that the output S produced by Algo-
rithm 5 on input the encryption of a vector with distinct ele-
ments v = (v1, . . . ,vN) is actually the encryption of the sorted
form of v. Let rR,m,vR,s be the decryption of RR,M,VR,S
respectively. As the elements vi are all distinct, the ranking of
v is a permutation of {1, . . . ,N}. Let i ∈ {1, . . . ,N}, we thus
have to prove that Rank(si) = i. By the correctness of ReplR:

mi, j = Ind0(rR;i, j− i) = Ind0(r j− i) =

{
1 if r j = i

0 if r j ̸= i

and by the correctness of SumC, TransC, and ReplR, we have

si =
N

∑
j=1

mi, j · vR;i, j =
N

∑
j=1

mi, j · v j.

Since r is a permutation of {1, . . . ,N}, there exists one and
only one index k such that Rank(vk) = i. Hence, si = vk and
Rank(si) = i.

4 Tie-Correction Offset

If two or more elements are in a tie, namely share the same
value, they receive the same rank. As noted in Section 3,
this causes the ranking function to become non-surjective,
which hinders the extraction of certain order statistics and,
consequently, prevents a correct sorting of the input vec-
tor. For example, the (fractional) ranking of the input vector
v = [10,20,20,40] is r = [1,2.5,2.5,4]. If we now want to
extract the second or third order statistics (which should both
correspond to the value 20), we should apply an indicator
around rank 2 and 3, respectively, which would miss the ac-
tual rank value 2.5. To fix this issue, we build an offset vector
that redistributes the fractional ranking of all elements in a
tie over the ranks they span. In our example, the offset vector



would be f = [0,−0.5,0.5,0], which corrects the fractional
ranking to

r+ f = [1,2,3,4]

allowing us to correctly extract all four order statistics. As
follows, we explain how to build this tie-correction offset
vector under encryption with small computational overhead.

To build this offset, we need to evaluate the equality op-
erator (Eq) among all pairs of elements in the input vector.
Similarly to Cmp, the output of this function is a square matrix
e of size N×N such that ei, j = 1 if vi = v j, and 0 otherwise.
The equality can be evaluated as an indicator function around
0, which can be done in parallel to the greater-than Cmp in
the ranking. However, we note that the information needed
to compute the equality matrix e is already contained in the
comparison matrix c. We can reuse it to compute the equality:

e = 4 · c · (1− c)

mapping both zeros and ones of c to 0, and the values 0.5 to 1.
In our implementation we mainly use the latter option, which
comes with an overhead of just two multiplications.

Note that each column j contains a number of ones equal to
the number of elements that are in a tie with v j. This includes
the trivial equality v j = v j on the main diagonal. By masking
out the lower triangle of e and summing over the rows, we
count the non-trivial identities only once, namely

u j = |{i ∈ {1, . . . , j} : vi = v j}| .

For instance, if the first four elements of v are in a tie, then
the corresponding values in u are 1,2,3,4. We can use u to
offset the ranking. But, since we are using fractional ranking,
we first need to shift it by half of the tie size, that is the range
the elements in the tie span. To do this, we sum directly over
the rows of e, without masking it, and get

t j = |{i ∈ {1, . . . ,N} : vi = v j}| .

Now, the correction offset for the ranking can be computed as

f j = u j−0.5 · t j−0.5

where the last −0.5 makes the offset start from zero, and it
nicely cancels out with the +0.5 in the last line of the ranking
algorithm. The pseudocode to compute the tie-correction
offset is presented in Algorithm 6. This runs at the end of the
ranking algorithm (Algorithm 3), and the offset can just be
added to the fractional ranking to make it suitable for order
statistics extraction and sorting.

As a particular case, we can modify Algorithm 4 to com-
pute the median by extracting the (N +1)/2 statistic if N is
odd, or both the N/2 and (N/2)+1 statistics if N is even. In
the latter case, an additional plaintext multiplication by 0.5
is needed after the inner product. In a similar way, one can
compute any percentile of the given vector.

Algorithm 6 Tie-Correction Offset

Input: V encryption of v = (v1, . . . ,vN) ∈ RN .
Output: F encryption of a vector in RN representing the

tie-correction offset vector of v.
1: E← Eq(V )
2: mask← δ j≥i
3: U ← SumR(E ·mask)
4: T ← SumR(E)
5: F ←U−0.5 ·T − (0.5, . . . ,0.5)
6: return F
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Figure 4: Schematic example of computing the tie-correction
offset for a 4-element vector.

Correctness Proof Given a vector v ∈ RN , let V be its en-
cryption. Let R and F be the output of Algorithm 3 and Al-
gorithm 6 on input V , respectively. And let r and f be the
corresponding decryption. Assuming the correctness of the



building blocks and Algorithm 3, and the ideal functionality
of the algorithms, we prove that (1) k := r+ f is a permuta-
tion of (1, . . . ,N), and (2) v j is the k j-th order statistic of v,
for all j ∈ {1, . . . ,N}. Let e, u, and t be the decryption of the
intermediate computations E, U , and T in Algorithm 6, re-
spectively. Let j ∈ {1, . . . ,N}, and let us define the following
subsets of {1, . . . ,N}:

L j := {i ∈ {1, . . . ,N} : vi < v j}
E j := {i ∈ {1, . . . ,N} : vi = v j}
U j := {i ∈ {1, . . . , j} : vi = v j} .

By the correctness of SumR, we have that

u j =
N

∑
i=1

ei jδ j≥i = |U j|

t j =
N

∑
i=1

ei j = |E j|

and thus

f j = u j−0.5 · t j−0.5
= |U j|−0.5 · |E j|−0.5 .

On the other hand, by the correctness of Algorithm 3, we
know that

r j = |L j|+0.5 · (|E j|+1) .

Combining these two identities we get

k j :=r j + f j

= |U j|−0.5 · |E j|−0.5+ |L j|+0.5 · (|E j|+1)
= |U j|+ |L j| .

Let w be the sorted array, then we note that wi = v j for all
i ∈ {|L j|+1, . . . , |L j|+ |E j|}. Since |U j| ≥ 1 (as it contains
at least the trivial identity), and |U j| ≤ |E j| (as U j ⊆ E j), we
have that |L j|+1≤ k≤ |L j|+ |E j|. Hence, wk j = v j, proving
point (2).

Now, we prove that k is a permutation of (1, . . . ,N). Let
j ∈ {1, . . . ,N}, then

• k j ∈ N: this is trivial, since both |U j|, |L j| ∈ N;

• k j ≥ 1: since v j = v j, we have that k j ≥ |U j| ≥ 1;

• k j ≤ N: this is true since U j and L j are non-overlapping
subsets of {1, . . . ,N};

• for all j′ ̸= j, k j′ ̸= k j: we consider three cases

1. if v j = v j′ , then L j =L j′ ; without loss of generality,
we assume j′> j, thus |U j′ |> |U j|, hence k j′ > k j;

2. if v j < v j′ , then L j∪U j ⊆L j∪E j ⊆L j′ , thus k j =
|L j|+ |U j|< |L j′ |+1≤ k j′ ;

3. if v j > v j′ , the proof is symmetric to the previous
case.

This proves point (1).

v1 v2 v3 v4 v5 v6 v7 v8 . . . . . . vN
V1 V2 . . . VL

v1

V1
v2
v3
v4

V1 >V1 V1 >V2 . . . V1 >VL

v5

V2
v6
v7
v8

V2 >V1 V2 >V2 . . . V2 >VL

...
...

...
...

. . .
...

... VL

vN

VL >V1 VL >V2 . . . VL >VL

Figure 5: Comparison in multi-ciphertext mode. The vector v
is split into blocks of size B = 4. The upper triangle contains
information about the comparison between all pairs vi > v j.

5 Multiple Ciphertexts Encoding

When a vector is too long and does not fit in a ciphertext we
can split it into multiple blocks. This happens when N2 > n/2,
where n is the ring dimension and N is the vector length. In
this case, we divide the vector into L blocks V1, . . . ,VL of size
B = 2⌊log

√
n/2⌋, which can be done under encryption by suit-

able rotations and masking. When it comes to comparisons,
we also have to consider the comparisons between different
blocks, that is, computing

Ci, j = (Vi >Vj) := Cmp(ReplR(Vi),ReplC(TransR(Vj))

for all i, j ∈ {1, . . . ,L}. The results can then be aggregated
row-wise and block-wise to compute the ranking

Ri =
L

∑
j=1

SumR(Ci, j)+0.5

for i ∈ {1, . . . ,L}. Note that we can also compute the block-
sum first, as ∑

L
j=1 SumR(Ci, j) = SumR(∑L

j=1 Ci, j), allowing
for evaluating SumR only once per block. The split output
R1, . . . ,RL can then be merged back into a single ciphertext if
needed and if it fits.

The total number of comparisons is L2, but they can all
be computed in parallel, making this approach suitable for
a multi-threaded environment. To reduce the computational
burden, we notice that not all the comparisons Ci, j are actually
needed, as the information in Ci, j is already contained in C j,i
for all i, j (see Figure 5). In particular, we have that

Ci, j = (1−C j,i)
⊤. (3)



Algorithm 7 Multi-Ciphertext Ranking

Input: V1, . . . ,VL multi-ciphertext encryption of
v = (v1, . . . ,vN) ∈ RN , approximation degree d ∈ N.

Output: R1, . . . ,RL multi-ciphertext encryption of a vector
in RN representing the (fractional) ranking of v.

1: parallel for i = 1, . . . ,L do
2: VR;i← ReplR(Vi)
3: VC;i← ReplC(TransR(Vi))
4: end for
5: parallel for i = 1, . . . ,L do
6: parallel for j = i, . . . ,L do
7: Ci, j← Cmp(VR;i,VC; j;d)
8: end for
9: end for

10: parallel for i = 1, . . . ,L do
11: Ri ← TransC(SumC(∑i−1

j=1 (1−C j,i)))+

SumR(∑L
j=i Ci, j)+(0.5, . . . ,0.5)

12: end for
13: return R1, . . . ,RL

Proof of Equation 3 For the sake of notation, let A :=Ci, j
and B := C j,i. Then Am,n = Cmp(Vi;n,Vj;m), where Vx;y de-
notes the y-th element of block x. On the other hand, Bn,m =
Cmp(Vj;m,Vi;n) = 1−Cmp(Vi;n,Vj;m).

Hence, we compute Ci, j only for j ≥ i and use Equation 3
for j < i. To avoid the transposition of 1−C j,i as a whole
matrix, which is expensive, we operate on it column-wise, and
only transpose it in the end, after summing it up to a vector:

Ri = TransC
(

SumC
( i−1

∑
j=1

(1−C j,i)
))

+SumR
( L

∑
j=i

Ci, j

)
.

This optimization makes us save L(L−1)/2 comparisons. Al-
gorithm 7 describes the full pseudocode for multi-ciphertext
ranking. The correctness can be proven similarly as for Algo-
rithm 3, by exploiting Equation 3. The algorithm in case of
ranking with tie-correction is similar. We omit its description
in the multi-ciphertext pseudocode for the sake of clarity.

We proceed on the same line to adapt sorting to the multi-
ciphertext setting. First, a multi-ciphertext ranking is com-
puted. As we have to extract N order statistics, and each one
could be in any of the ciphertext blocks, the ranking blocks
are replicated both row-wise and block-wise. Then each row
of each block is shifted by a constant going from 1 to N, as
in Algorithm 5, although this time it spans over multiple in-
stances of the same ranking block. We conclude by applying
the indicator function to each instance of each ranking block
and summing up the results, both row- and block-wise. A
detailed description is presented in Algorithm 8.

Algorithm 8 Multi-Ciphertext Sorting

Input: V1, . . . ,VL multi-ciphertext encryption of
v = (v1, . . . ,vN) ∈ RN with distinct elements, ap-
proximation degrees dC,dI ∈ N.

Output: S1, . . . ,SL multi-ciphertext encryption of the sorted
form of v.

1: R1, . . . ,RL← Rank(V1, . . . ,VL;dC)
2: parallel for i = 1, . . . ,L do
3: RR;i← ReplR(Ri)
4: end for
5: parallel for i = 1, . . . ,L do
6: VR;i← ReplR(Vi)
7: Si← 0
8: parallel for j = 1, . . . ,L do
9: Mi, j ← Ind0(RR; j − ((B(i − 1) + 1)N ∥ · · · ∥

(Bi)N);dI)
10: Si← Si +Mi, j ·VR; j
11: end for
12: Si← TransC(SumC(Si))
13: end for
14: return S1, . . . ,SL

6 Experimental Evaluation

We evaluate the performance of our designs for different vec-
tor sizes and compare them with existing work.

6.1 Experimental Setup

We use the CKKS implementation provided by the OpenFHE
library [1],2 with a scaling factor (decimal precision) ranging
from 30 to 59 bits. The ring dimension goes up to 216 for rank-
ing, and 217 for order statistics and sorting, to accommodate
the higher multiplicative depth. The parameters are chosen in
accordance with the Homomorphic Encryption Standard to as-
sure 128-bit security [2,3]. Our code is available at https://
github.com/FedericoMazzone/openfhe-statistics.

We present the runtime of ranking, computing the mini-
mum, median, and sorting elements that are generated uni-
formly at random in a bounded interval. For ranking and
minimum, we use Chebyshev approximation of the compari-
son function up to degree 211 for N ≤ 256, while we employ
the f ,g approximation by Cheon et al. [12] for N > 256, as
we start benefiting from the lower runtime. The composition
degrees used are d f = 2 and dg = 3, which are the same we
adopt in the median and sorting experiments for any N.

As the depth of our circuit is upper-bounded by 65, boot-
strapping is not needed, and the scheme is used as a leveled
homomorphic encryption. All the experiments are performed
on a Linux machine with Intel Xeon Platinum 8358 running
at 2.60 GHz, with 32 cores (64 threads), and 512 GB RAM.

2https://github.com/openfheorg/openfhe-development

https://github.com/FedericoMazzone/openfhe-statistics
https://github.com/FedericoMazzone/openfhe-statistics
https://github.com/openfheorg/openfhe-development
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Figure 6: Runtime of ranking, minimum, median, and sorting for increasing vector size. Related work’s performance is reported
as baseline: Phoenix [19] and NEXUS [27] for minimum, and Hong et al. [18] for median and sorting. All solutions are assessed
both in single-threaded (ST, dashed lines) and multi-threaded (MT, solid lines) settings. Both axes are in logarithmic scale.

6.2 Empirical Results

In Figure 6, we report the runtime performance of our solution
for the different functionalities described in Section 3, both in
single-threaded (ST) and multi-threaded (MT) settings, with
a maximum of 64 concurrent threads.

Our approach demonstrates particularly fast performance
for small-sized input vectors that can be processed within a
single ciphertext. For example, computing the minimum of a
vector takes only 15.65s for N = 8, and up to 31.95s for N =
128, in ST. However, as soon as the input vector needs to be
split into multiple chunks — of 128 elements for ranking and



minimum, and of 256 elements for median and sorting — our
solution exhibits a steep increase in runtime. The runtime for
the minimum computation jumps to 112.61s for 2 chunks (256
elements), 648.55s for 4 chunks (512 elements), 1994.30s for
8 chunks (1024 elements), and so on.

This slow-down due to switching from single- to multi-
ciphertext mode can be observed in all four functionalities.
The primary cause is the increased number of comparisons
required in multi-ciphertext mode. This effect is particularly
noticeable in the ST setting, where comparisons are evaluated
sequentially, making the quadratic growth of our solution’s
cost evident in the runtime. In the MT setting, the slow-down
becomes more pronounced once we exceed the available CPU
threads (CPU limit in Figure 6) and can no longer parallelize
the comparison evaluations. Specifically, this occurs when the
number of blocks increases from 8 to 16, causing the number
of comparisons to grow from 36 to 136, which exceeds the
64-thread capacity of our machine. Beyond this point, com-
parisons begin to execute sequentially, which has a significant

impact on the runtime of our solution.
In Figure 6a we can see the computational overhead intro-

duced by the tie-correction offset in the ranking algorithm. In
the MT setting, ranking takes 0.56s for N = 8 and 12.77s for
N = 256, while the tie-correction increases these runtimes to
1.66s and 25.97s, respectively. The overhead varies within this
range, peaking at 13.2s, while it stabilizes at around 25–27%
for N > 256. Note that this overhead is not only due to the
extra operations required to compute the correction offset, but
also to the increased multiplicative depth, which makes all
operations computationally more expensive.

In Figure 6c and Figure 6d we report the runtime for the
median and sorting algorithms, respectively. We will discuss
them in more detail in Section 6.3. For the moment, we only
highlight that the median serves as a representative test for
order statistic extraction with tie-correction enabled. The cost
of computing any other order statistic is identical, as it only
changes the interval of the indicator function.

Finally, Table 2 shows that memory consumption grows

Table 2: Memory consumption comparison of different solutions, both in single-thread (ST) and multi-thread (MT).

(a) Ranking

Our Solution (basic) Our Solution (tie corr.)
N ST MT ST MT

8 191 MB 191 MB 514 MB 508 MB
16 271 MB 259 MB 739 MB 748 MB
32 765 MB 781 MB 952 MB 961 MB
64 881 MB 891 MB 1.06 GB 1.07 GB

128 1.05 GB 1.06 GB 1.42 GB 1.43 GB
256 1.15 GB 1.58 GB 1.54 GB 2.21 GB
512 4.08 GB 6.77 GB 4.67 GB 7.63 GB

1024 4.43 GB 13.3 GB 5.13 GB 15.4 GB
2048 5.09 GB 21.0 GB 6.04 GB 24.4 GB
4096 6.55 GB 22.4 GB 8.01 GB 26.6 GB
8194 9.95 GB 25.1 GB 12.6 GB 30.9 GB

16384 18.8 GB 30.8 GB 25.0 GB 40.2 GB

(b) Minimum

Our Solution NEXUS [27]
N ST MT ST MT

8 1.34 GB 1.32 GB 9.65 GB 9.68 GB
16 1.61 GB 1.64 GB 11.0 GB 11.2 GB
32 1.91 GB 1.93 GB 13.7 GB 14.6 GB
64 2.60 GB 2.62 GB 15.0 GB 15.6 GB

128 2.93 GB 2.95 GB 15.8 GB 15.9 GB
256 3.47 GB 4.94 GB 18.6 GB 19.8 GB
512 18.9 GB 23.2 GB 34.1 GB 36.3 GB

1024 20.0 GB 39.0 GB 35.3 GB 37.7 GB
2048 22.6 GB 99.6 GB 37.7 GB 39.4 GB
4096 30.4 GB 113 GB 60.2 GB 64.3 GB
8194 34.4 GB 126 GB 60.9 GB 65.0 GB

16384 46.4 GB 165 GB 62.2 GB 66.3 GB

(c) Median

Our Solution Hong et al. [18]
N ST MT ST MT

8 5.73 GB 5.86 GB 12.9 GB 37.9 GB
16 7.89 GB 8.02 GB 12.9 GB 37.9 GB
32 9.42 GB 9.52 GB 12.9 GB 37.9 GB
64 12.2 GB 12.3 GB 12.9 GB 37.9 GB

128 13.9 GB 14.1 GB 12.9 GB 37.9 GB
256 16.9 GB 17.2 GB 12.9 GB 37.9 GB
512 18.7 GB 23.0 GB 12.9 GB 37.9 GB

1024 21.9 GB 35.2 GB 12.9 GB 37.9 GB
2048 25.6 GB 65.1 GB 12.9 GB 37.9 GB
4096 29.8 GB 111 GB 12.9 GB 37.9 GB
8194 34.6 GB 129 GB 12.9 GB 37.9 GB

16384 40.0 GB 192 GB 12.9 GB 37.9 GB

(d) Sorting

Our Solution Hong et al. [18]
N ST MT ST MT

8 7.22 GB 7.34 GB 10.9 GB 35.9 GB
16 8.95 GB 9.03 GB 10.9 GB 35.9 GB
32 11.6 GB 11.7 GB 10.9 GB 35.9 GB
64 13.5 GB 13.7 GB 10.9 GB 35.9 GB

128 16.8 GB 17.0 GB 10.9 GB 35.9 GB
256 18.8 GB 19.0 GB 10.9 GB 35.9 GB
512 21.7 GB 28.0 GB 10.9 GB 35.9 GB

1024 23.2 GB 42.2 GB 10.9 GB 35.9 GB
2048 26.9 GB 97.0 GB 10.9 GB 35.9 GB
4096 31.2 GB 116 GB 10.9 GB 35.9 GB
8194 36.0 GB 155 GB 10.9 GB 35.9 GB

16384 41.3 GB 230 GB 10.9 GB 35.9 GB



steadily with the input size, and the switch from single- to
multi-ciphertext has a relatively minor impact compared to
the jumps caused by an increase in the ring dimension. For
example, in the case of ranking (basic) in a single-thread set-
ting, transitioning from single-ciphertext (N = 128) to multi-
ciphertext (N = 256) results in a modest memory increase
from 1.05GB to 1.15GB (+10%). In contrast, when the ring
dimension increases, the memory consumption grows signifi-
cantly: from N = 16 to N = 32 (ring dimension: 214→ 215),
the memory rises from 271MB to 765MB (+182%), and from
N = 256 to N = 512 (ring dimension: 215→ 216), it increases
from 1.15GB to 4.08GB (+255%). This is expected since each
ciphertext requires at least twice as many bits to represent
after a ring dimension increase.

6.3 Comparison with Previous Work
We compare our approach to state-of-the-art solutions for
computing the minimum/maximum, median, and sorting. To
ensure a fair comparison, for each experiment we use the
same comparison approximation method and degree across
all evaluated solutions.

Minimum and Maximum For computing the minimum
and maximum, we assess our approach against two existing
solutions: Phoenix [19] and NEXUS [27]. Like our solution,
both Phoenix and NEXUS operate on elements encrypted
within a single ciphertext. Table 3 provides a detailed compar-
ison, focusing on the number of evaluations of the comparison
function, homomorphic rotations, and the number of slots re-
quired in the ciphertext. While the logarithmic and linear
scaling of NEXUS and Phoenix, respectively, enable their so-
lutions to handle larger input vectors more efficiently, our ap-
proach performs better for small input sizes. As shown in Fig-
ure 6b, our solution is faster for N ≤ 1024 in single-threaded
(ST) settings and N ≤ 2048 in multi-threaded (MT) settings,
given our hardware configuration with 64 threads. For larger
input vectors, NEXUS becomes the preferred choice due to
its superior scalability. By design, Phoenix consistently lags
behind NEXUS in runtime performance.

When the input vector is relatively short, our approach
provides a significant speed-up over existing solutions. For
example, in the use case of NEXUS [27], where the argmax
is applied for secure transformer inference, particularly for
computing the output layer in BERT-based and GPT-2 models
with N = 128 nodes, we observe the following:

• Phoenix [19] requires 128 comparisons, 128 rotations,
resulting in a total runtime of 92.31 minutes;

• NEXUS [27] requires 7 comparisons, 7 rotations, with a
total runtime of 5.05 minutes;

• our approach requires 2 comparisons, 28 rotations, re-
sulting in a total runtime of 12.83 seconds.

However, it is important to note that NEXUS and Phoenix
have different space requirements compared to our approach,
as summarized in Table 3. This enables them to utilize extra
space for batching computations. For instance, if a cipher-
text can encode 16,384 elements, our solution processes only
1 argmax in this example, while NEXUS and Phoenix can
process 64 and 128 vectors simultaneously, respectively.

Memory usage follows a similar trend, as shown in Table 2.
Our approach consumes less memory than NEXUS for small
inputs, but the memory consumption increases significantly
with larger inputs. The memory consumption of Phoenix is
not explicitly reported as it is equivalent to that of NEXUS.

Median and Sorting For sorting vectors, we compare our
approach with the state-of-the-art for CKKS, that is the k-way
sorting network approach by Hong et al. [18]. While their
method also leverages the SIMD capabilities of the encryption
scheme, it results in a comparison depth of k log2

k N when
employing a k-way network. Their approach performs a total
of O(N log2

k N) comparisons, making it more scalable than our
solution for larger input vectors. This scalability advantage is
evident in Figure 6d, where we report their runtime for k = 5,
the optimal parameter choice for their solution. However, our
approach outperforms Hong et al. [18] for input sizes up to
N = 4096 in ST settings, and up to N = 8192 in MT settings.

We extended Hong et al.’s scheme to compute the median.
Specifically, we sort the input vector using their algorithm, ex-
tract the values at indices N/2 and N/2+1, and then compare
these median values with the original vector to determine the
median indices. As shown in Figure 6c, the overhead intro-
duced by this extension is minimal. Nonetheless, combined
with the slightly lower computational cost of our median algo-
rithm compared to full sorting, it shifts the input size thresh-
olds where our solution is beneficial over theirs to N = 8192
in ST and N = 16384 in MT. In terms of memory usage, we
note that their solution maintains constant memory consump-
tion, whereas our approach scales with the input size.

6.4 Applications and Limitations

The main limitation of our approach resides in its quadratic
space complexity, which forces us to split the input vector
in many smaller chunks, quickly increasing the number of

Table 3: Summary of different solutions for computing the
minimum and maximum functionalities.

Comparisons Rotations Slots

Phoenix [19] O(N) O(N) N
NEXUS [27] O(logN) O(logN) 2N
Our work O(L2) O(logN) N2



necessary comparison evaluations. This is relevant especially
for large inputs or in environments with limited parallelization
capabilities. As a result, the scalability of our solution is
hindered in such scenarios.

However, our solution is well-suited for applications that
do not involve processing large vectors. For example, it may
be effective in scenarios involving outsourced data analysis
of small datasets, which are often encountered in healthcare
studies where hospitals analyze data from hundreds of pa-
tients. Additionally, it could perform well on datasets with
categorical attributes. Those could be represented in a one-hot
encoding, making categorical operations (e.g., mode) straight-
forward to implement within our approach. In such cases,
as categorical attributes typically have a limited number of
possible values, we would be dealing with short vectors.

In the context of privacy-preserving machine learning
(PPML), our approach can be applied in secure inference tasks.
For instance, it can be useful for computing the max-pooling
layers of a convolutional neural network (CNN), where the
maximum is calculated over a kernel-sized vector, typically
3x3, 5x5, or 7x7. It is also applicable in extracting the argmax
from the output layer of most neural networks for classifica-
tion tasks. In such cases, the vector size corresponds to the
number of classes in the classification problem, which is typi-
cally in the range of 2 to 100, depending on the application.

Beyond inference, in the context of PPML training, we
foresee that our solution could be employed to securely train
simple unsupervised models in federated settings. A notable
example is k-means clustering, where the main computation
involves finding the argmin of distances over k clusters. Here,
k often takes values such as 2, 5, or 8, making our approach
particularly suitable for such tasks.

7 Related Work

A vast body of literature has focused on either sorting ele-
ments or computing their maximum value under encryption.
Sorting under FHE has been studied starting from 2010 under
the Smart-Vercauteren (SV) scheme [25] using bitwise en-
coding and comparison based swaps to implement algorithms
like Bubble Sort, Insertion Sort [8], and Quick Sort [9], all of
which requiring O(N2) comparisons. Subsequently, Bitonic
Sort and Odd-Even Merge Sort were also implemented, re-
ducing the cost to O(N log2 N) comparisons, of which N can
be potentially run in parallel, making the comparison depth
log2 N [16]. In 2021, some works started designing sorting
for floating-point values under CKKS. Hong et al. [18] use k-
way sorting networks to achieve a k log2

k N comparison depth.
While Lu et al. (PEGASUS) [22] also implement Bitonic Sort
but performing the comparisons using the efficient look-up
tables of FHEW [15] after a scheme switching from CKKS.

An entire line of work has focused specifically on im-
proving on the evaluation of the comparison function it-
self. Chialva et al. [14] use the identity tanh(kx) = (ekx−

e−kx)/(ekx + e−kx) to approximate the sign function for large
k > 0, while Boura et al. [4] employ an approximation based
on Fourier series. The work by Cheon et al. [13] is the first
one to study the max function under CKKS, and it is based
on an iterative computation of uk/(uk + vk) for large k > 0.
The same author proposes a new solution in [12], where a
composition of 2 polynomials f ,g is used to approximate the
sign function, proving an optimal asymptotic complexity. This
study was then picked up by Lee et al. [21], who generalized
the technique to composition of k polynomials, and found the
optimal set of polynomials for any given multiplicative depth.

In Phoenix [19], the authors face the problem of comput-
ing the argmax in the output layer of a neural network to
perform privacy-preserving inference. There, the elements
are stored within a single CKKS ciphertext and they propose
a method based on rotations to compute the argmax in N
comparisons and N rotations. In NEXUS [27], the authors
apply the same strategy recursively, exploiting SIMD slot
folding, which results in comparing the elements in a binary
tree fashion, thus reducing the cost to logN +1 rotations and
logN + 1 comparisons. They use it for secure transformer
inference, in particular for computing the argmax output layer
in BERT-based and GPT-2 models.

It is also worth mentioning the work by Lu et al. [23], where
the authors propose FHE algorithms that compute a variety
of descriptive statistics, including percentile. However, their
method is limited to ordinal attributes and requires plaintext
encoding dependent on value order, whereas our approach ad-
dresses numerical attributes, operating with encrypted vectors
without specific plaintext encoding, and thus it can be easily
integrated in larger (numerical) circuits. Our paper contributes
to these lines of work by introducing a novel approach for
implementing comparison-based functionalities that achieve
a constant comparison depth of 2. This represents an impor-
tant reduction with respect to existing solutions, which have
higher comparison depths, as also summarized in Table 1.

8 Conclusion

In this paper, we have presented a novel approach for com-
puting ranking, order statistics, and sorting of a vector under
CKKS. Our method relies on homomorphic matrix encoding
and on the SIMD capabilities of the cryptosystem to compare
all elements with each other at once, reducing the comparison
depth of these algorithms to 2. This makes our solution highly
parallelizable, opening potential future work in the direction
of hardware acceleration. We showed that our approach is
beneficial over existing solutions when the input vector is
within the order of thousand of elements, achieving remark-
able speed-ups, and particularly shining in multi-threaded
settings. We consider the algorithms we designed practical
for a wide range of privacy-preserving scenarios, especially
for data outsourcing and secure machine learning, or for serv-
ing as fundamental building blocks for larger protocols.
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A Recursive Matrix Operations

We provide the pseudocode for SumR, SumC, ReplR, ReplC
for a square matrix with N number of rows/columns. The
matrix is assumed to be padded in such a way that N is a
power of 2.
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Algorithm 9 SumR

Input: X encryption of a square matrix of size N.
Output: X encryption of a row vector.

1: for i = 0, . . . , logN−1 do
2: X ← X +(X ≪ N ·2i)
3: end for
4: X ←MaskR(X ,0)
5: return X

Algorithm 10 SumC

Input: X encryption of a square matrix of size N.
Output: X encryption of a column vector.

1: for i = 0, . . . , logN−1 do
2: X ← X +(X ≪ 2i)
3: end for
4: X ←MaskC(X ,0)
5: return X

Algorithm 11 ReplR

Input: X encryption of a row vector of size N.
Output: X encryption of a square matrix.

1: for i = 0, . . . , logN−1 do
2: X ← X +(X ≫ N ·2i)
3: end for
4: return X

Algorithm 12 ReplC

Input: X encryption of a column vector of size N.
Output: X encryption of a square matrix.

1: for i = 0, . . . , logN−1 do
2: X ← X +(X ≫ 2i)
3: end for
4: return X

B Effect of Chebyshev Approximation Degree
on Performance

In this work we employ a relatively basic implementation of
comparison and indicator functions. There is an entire body
of literature that focuses specifically on this topic, which one
may consider for real-life application, see for instance [12,
21]. Nonetheless, we still provide some indication on how
different approximation degrees influence the runtime of our
algorithms, in exchange of having a more precise result.

We use ranking and minimum computation as case studies
for this analysis. Figure 7 shows the impact of the approxima-
tion degree of the comparison function, represented in terms
of its multiplicative depth, on runtime and approximation er-
ror in the ranking task. Higher degrees yield lower error but
incur longer runtimes. The reported error is for a vector of
128 elements, indicating how many positions each element is
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Figure 7: Ranking a vector of 128 elements for different ap-
proximation degrees of the comparison function (as multi-
plicative depth). The ranking error and runtime are reported.

ranked away, on average and in the worst case. The steep in-
crease after depth 11 is due to the fact that the ring dimension
must increase to assure 128 bits of security, making the basic
homomorphic operations more expensive.

Sweet spots in the trade-off can be noticed at depth 10
and 11, which corresponds to an approximation degree of
29 and 210, respectively. At depth 10, the runtime is around
3.52 seconds, while the elements are ranked no more than
1 position away from their actual rank. Notably, this error
is proportional to the separation between elements; closely
positioned elements are more susceptible to rank swapping.
One could willingly decide to use a lower approximation
degree and exploit this effect to achieve a form of differential
privacy.

Similar considerations can be applied to the minimum com-
putation. Figure 8 reports the error as the L1 distance between
the computed and the expected minimum values. We can see
that a sensitive improvement in accuracy occurs when transi-
tioning from comparison depth 11 to 12. Moreover, we notice
a sweet spot for the runtime when the sum of the approxima-
tion depths equals 24 (the upper-right diagonal), with the (12,
12) combination yielding the lowest error.
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