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Abstract
HTTP Desync is a high-risk threat in today’s decentralized
Internet, stemming from discrepancies among HTTP im-
plementations. Current automatic detection tools, primarily
dictionary-based scanners and black-box fuzzers, lack insights
into internal states of implementations, leading to ineffective
testing. Moreover, they focus on the request-side Desync,
overlooking vulnerabilities in HTTP responses.

In this paper, we present HDHUNTER, a novel automatic
HTTP discrepancy detection framework using the gray-box
coverage-directed differential testing technique. HDHUNTER
can discover discrepancies in not only HTTP requests but
also HTTP responses and CGI responses. We evaluated our
HDHUNTER prototype against 19 state-of-the-art HTTP im-
plementations and identified 17 new HTTP Desync vulner-
abilities. We have disclosed all identified vulnerabilities to
corresponding vendors and received acknowledgments and
bug bounty rewards, including 9 CVEs from well-known
HTTP software, including Apache, Tomcat, Squid, etc.

1 Introduction

Today’s Internet has largely deviated from the end-to-end
principle of its original design. Numerous middleboxes such
as proxies, firewalls, and content delivery networks (CDN)
are commonly deployed in the network. As a result, a typical
end-to-end HTTP request may traverse multiple middleboxes
before reaching its final destination.

However, this layered architecture introduces a potential
threat: HTTP Desync. The vulnerability arises when different
HTTP implementations in the chain may have processing dis-
crepancies on the same message. Attackers can leverage the
discrepancies to desynchronize the HTTP message queues,
resulting in message smuggling and manipulation. Such at-
tacks could lead to severe security consequences, such as
cache poisoning, session hijacking, account takeovers, and
security policy bypass. Numerous such vulnerabilities [27,29]
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and attacks [11] towards famous Web services have recently
emerged, illustrating HTTP Desync has become a serious
threat to the Internet.

Previous work has developed various detection tools for
HTTP Desync vulnerabilities [13, 24, 45]. Smuggler [13] em-
ploys a series of predefined payloads to test the exploitability
of websites, but this method lacks the capability to uncover
new variants of attacks. On the other hand, T-Reqs [24] and
HDiff [45] introduce black-box fuzzing techniques to gener-
ate test cases based on HTTP grammar or RFC documents
to identify HTTP request smuggling attacks. However, they
suffer from two limitations: First, the ‘blind’ nature of black-
box testing makes their testing ineffective, because they lack
insights into the internal states of the targets, leading to inef-
fectiveness and incompleteness in testing. Second, they only
focus on the request side testing, overlooking the potential
HTTP Desync vulnerabilities in HTTP responses.

Gray-box coverage-directed testing has proven to be highly
effective in uncovering vulnerabilities in various targets, in-
cluding TLS [9] and JVM [8]. This technique leverages ex-
ecution coverage to guide the mutation of inputs, thereby
enabling a more thorough exploration of program branches.
However, the state-of-the-art gray-box coverage-directed tools
like AFL [51] are not readily suitable for identifying HTTP
Desync due to three challenges. First, existing tools like AFL
are adept at identifying memory-related bugs within a sin-
gle target, but HTTP Desync involves discrepancies between
multiple HTTP implementations. Second, there is a lack of
effective vulnerability detectors to detect Desync vulnerabili-
ties in HTTP requests and responses. Third, HTTP Desync’s
potential to disrupt the HTTP message queue and TCP state
can significantly destabilize the fuzzing process, resulting in
numerous false positives and negatives.

In this paper, we propose HDHUNTER, a novel HTTP
Desync vulnerability discovery framework to address the
above issues. We address the first challenge by utilizing the ex-
ecution coverage information from multiple implementations
to optimize the test case generation. For the second challenge,
we developed a new HTTP Desync detector to extract internal



states from inside of the implementations to identify all forms
of HTTP Desync vulnerabilities. For the third challenge, we
implemented a snapshot-based execution framework that uti-
lizes the snapshot to reset the network states effectively.

We implemented a HDHUNTER prototype and evaluated
it against 19 state-of-the-art open-source HTTP implemen-
tations. We highlight five primary types of found discrepan-
cies: 1) Non-standard numbers; 2) Inconsistent trailer sec-
tion acceptance; 3) Non-standard line separator; 4) Different
TE.CL attack handling strategies; 5) Incomplete response
sanitization. We identified 17 HTTP Desync vulnerabilities
in those implementations, affecting famous implementations
like Apache, Tomcat, Squid, etc. We disclosed all of the found
vulnerabilities to corresponding maintainers and received pos-
itive feedback. A total of 9 CVE IDs have been assigned.
$4660 bounty has been granted by Internet Bug Bounty for
the vulnerability discovered in Tomcat.

Contributions. In summary, we make the following con-
tributions:

• We proposed a novel approach, HDHUNTER, that uti-
lizes the gray-box coverage-directed differential testing
framework to identify HTTP Desync vulnerabilities au-
tomatically.

• We developed and open-sourced a prototype of
HDHUNTER1, and evaluated it on 19 state-of-the-art
HTTP implementations. We found 17 new HTTP Desync
vulnerabilities in Apache, Tomcat, Squid, and other
HTTP implementations.

• We conducted the first study to automatically identify
Desync vulnerabilities in HTTP responses and CGI re-
sponses. We responsibly disclosed all of them to the
corresponding vendors and received positive feedback.

2 Background

2.1 HTTP, CGI, and Request Smuggling
Hypertext Transfer Protocol (HTTP) is the foundation of

web applications, functioning as a request-response protocol
between clients and servers. HTTP has evolved significantly,
with HTTP/1.1 and earlier versions using a text-based format,
while HTTP/2 and later versions adopted a binary format.
Despite its age, HTTP/1.1 remains widely supported due to
its established infrastructure and ease of debugging, even
though it presents challenges in message parsing. In this paper,
‘HTTP’ specifically refers to HTTP/1.1.

HTTP has two key features that enhance web communi-
cation: persistent connections and HTTP pipelining. Persis-
tent connections (keep-alive) allow multiple HTTP requests
and responses to use the same TCP connection, reducing the

1Link to the repository of HDHUNTER: https://github.com/muker
an/HDHunter

need for new connections. HTTP pipelining extends this by
enabling multiple requests to be sent through the same con-
nection at once without waiting for each response, though
responses must be delivered in order. Together, these fea-
tures reduce network and processing overhead, improving
efficiency.

Common Gateway Interface (CGI) is a protocol for gen-
erating dynamic web content, serving as an intermediary be-
tween a web server and external applications. CGI scripts,
written in various programming languages, enable interactive
elements in web applications. Building on CGI, advance-
ments like WSGI [15, 16] used by Python applications and
FastCGI [34] used by PHP have emerged, improving perfor-
mance and expanding CGI techniques. Other related technolo-
gies include SCGI [42], uwsgi [48], Rack [41], and AJP [3],
all extending the original CGI concept.

HTTP Request Smuggling (HRS) is a technique that
exploits inconsistencies in the interpretation of request bound-
aries between two web servers, typically a front-end proxy
and a back-end server. By crafting ambiguous HTTP requests,
an attacker can smuggle a request within another, leading to
various security issues such as security controls bypassing, or
request manipulating.

A common method for exploiting HRS involves leveraging
two distinct HTTP encoding methods: no encoding and chun-
ked encoding, regulated by two headers: Content-Length
(CL) and Transfer-Encoding (TE). No encoding imposes
no restrictions on the message body format and the value of
CL denotes the message body length. Chunked encoding is
intended for use when the message’s overall length cannot be
determined by the time the headers are dispatched. It adheres
to a structured format where the content is divided into seg-
ments, each labeled with its own size indicator. Although, it
is mentioned in the HTTP RFC [18] that “a sender MUST
NOT send a Content-Length header field in any message that
contains a Transfer-Encoding header field”, HTTP servers ex-
hibit diverse levels of support for chunked encoding and may
not adopt the best practice to process messages when both
TE and CL headers are present. This can lead to differences
in how the message is recognized and handled by different
servers.

Figure 1 demonstrates that when both TE and CL are
present, the front-end proxy accepts the TE header and for-
wards the whole message without discarding the CL header.
In the meanwhile, the back-end server accepts the CL header,
leading to the splitting of one request into multiple requests.

2.2 Fuzzing Techniques

Fuzzing is an automated software testing technique, that
provides a large quantity of unexpected or random input data
to the test target, in order to identify potential vulnerabilities.

Categories of Fuzzing Techniques. Fuzzing techniques
are categorized into black-box, white-box, and gray-box based
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Figure 1: Example of HTTP Request Smuggling

on the fuzzer’s knowledge of the software. Black-box fuzzing
operates without internal knowledge, treating the software as
opaque and testing it externally. White-box fuzzing requires
a comprehensive understanding of the software’s internals,
enabling precise testing. Gray-box fuzzing occupies a middle
ground, leveraging a partial understanding of the software’s
internal running states to enhance testing efficiency. It offers
greater insight than black-box fuzzing yet does not require
the exhaustive detail of white-box fuzzing.

Coverage-directed Fuzzing. In gray-box fuzzing, the most
commonly used internal state to direct the fuzzing process is
code coverage. Coverage in this context refers to the extent to
which the code of the program is executed when subjected to
test cases. By monitoring which parts of the code are being
exercised by the inputs, gray-box fuzzing efficiently identifies
untested portions of the program, directing the input mutation
or generation towards these areas to enhance the thoroughness
of the testing.

Differential Testing. Normally, the focus of fuzzing is on
a single instance and is intended to detect memory-related
vulnerabilities like buffer overflows, memory leaks, and null
pointer dereferences. It uses various memory sanitizers as the
oracle. In contrast, differential testing is particularly effective
in discovering logic issues. This method entails analyzing
the same inputs on multiple implementations or software
versions to highlight differences in how each system handles
the data by comparing their output. Such comparative analysis
is essential to detect logical errors that may not be detected
during a single-instance test.

3 Overview

3.1 Threat Model

The core of HTTP Desync lies in the discrepancies in how
different implementations interpret the HTTP protocol, allow-
ing attackers to perform a variety of malicious attacks. The
aforementioned HTTP Request Smuggling is one common
form of HTTP Desync.

In this paper, we extend the scope of traditional HTTP

Request Smuggling to encompass six forms of desynchro-
nization in HTTP transactions. First, we have expanded and
categorized the form of HTTP Request-side Desync as fol-
lows.

• Inconsistent number of messages. The borders between
HTTP messages are determined by the semantics of the
message. The HTTP protocol includes multiple optional
fields that define these boundaries, and different HTTP
parsers may interpret these fields differently. Therefore,
different HTTP parsers may recognize one payload into
different numbers of HTTP messages. This is the tra-
ditional form of the HTTP Desync, as shown in Fig-
ure 2(a).

• Inconsistent content of messages. In some cases, the
handling discrepancies did not bring more or less HTTP
messages but resulted in different contents, as demon-
strated in Figure 2(b). This threat model exists in proto-
col conversion between HTTP and other protocols like
CGI, while the HTTP and CGI parsers may adopt differ-
ent strategies to recognize the payload.

• Inconsistent order of messages. Modern HTTP servers
use techniques like HTTP pipelining and persistent con-
nections to improve performance. Those features allow
the client to send multiple requests simultaneously and
the server is supposed to process and respond to these
requests in the order they were received. However, if the
implementation sends the response in a wrong or unex-
pected order, it could result in HTTP Desync. Figure 2(c)
provides an illustrative example of a proxy that handles
messages in a reversed order, resulting in HTTP Desync.

Second, we extend the threat model to cover HTTP Re-
sponse Desync, because issues prevalent in request handling
can similarly affect response processing. In the multifaceted
internet infrastructure of today, characterized by Content De-
livery Networks (CDNs) and microservices, proxies often
serve multiple endpoints, each managed by distinct entities.
If an attacker gains control over any of these endpoints and
discrepancies in response parsing exist among proxies or be-
tween proxies and clients, they can potentially infiltrate the
response queue, leading to the manipulation of responses or
the exposure of sensitive information. For example, services
like AWS API Gateway and projects like Kubernetes Ingress
support configuring different paths that point to different up-
stream URLs. If one of the upstreams is compromised and the
response parser is vulnerable to the TE.CL attack, attackers
can smuggle a fake response with both TE and CL headers
into the victim’s response queue, resulting in response manip-
ulation. Figure 2(d),2(e) and 2(f) are 3 examples when incon-
sistent number, content, and order of messages take place in
HTTP responses. It is important to note that endpoints may
have not only an HTTP upstream but also an application up-
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Figure 2: Examples of HTTP Desync: Inconsistent number, content, and order of messages

stream capable of delivering HTTP responses derived from
CGI responses.

To the best of our knowledge, this represents the most com-
prehensive taxonomy of HTTP Desync attacks. As we will
describe later, those insights enable us to detect and discover
novel attacks missed by previous research.

3.2 Challenges

Typically, fuzzing involves three key components: (1) gen-
erating effective test cases; (2) executing the targets with each
test input; (3) detecting whether vulnerabilities are triggered.
Our research aims to advance existing detection tools in all
three components to effectively identify HTTP Desync vulner-
abilities. We have identified the following research challenges
that need to be addressed to accomplish our objective.

C1. How do we generate effective test cases to maxi-
mize the possibility of HTTP desynchronization? HTTP
desynchronization is caused by parsing and processing dis-
crepancies between multiple implementations. The genera-
tion and mutation strategies should be designed based on the
objectives.

Previous studies have presented several approaches to ad-
dress this. T-Reqs [24] proposes CFG-based input gener-
ation and tree-level mutation to enhance its methodology.
HDiff [45] utilizes similar methods while incorporating nat-
ural language processing techniques in its input generation.
However, they are both black-box fuzzing techniques that lack
internal insights from the target system. Their "blind" nature
makes their testing ineffective in uncovering deep corner cases
in implementations. Moreover, these tools do not generate
test cases targeting HTTP responses and CGI responses.

On the other hand, current gray-box coverage-guided
fuzzing tools like AFL excel in identifying memory-related
bugs in a single target. In contrast, HTTP Desync in-
volves discrepancies between multiple HTTP implementa-
tions. Presently, there are no off-the-shelf gray-box fuzzing
tools for identifying HTTP Desync vulnerabilities, which re-

quire more effort in strategy design.
C2. How do we identify a potential HTTP desynchro-

nization? Given a test input, we need an oracle to decide
whether the HTTP desynchronization occurs, similar to sani-
tizers in memory-related bug identification. Previous methods,
such as error-based and timeout-based detection, are ineffi-
cient and have a high false positive rate. Meanwhile, these
methods target existing attacks and are not designed to find
new types of HTTP Desync attacks based on the principle
and overlook the detection of response-side Desync vulnera-
bilities. A new identification method is required to cover all
potential HTTP desynchronization scenarios.

C3. How to efficiently restore states of HTTP implemen-
tations? HTTP desynchronization can disrupt both the HTTP
message queue and the TCP state. The remaining state from
each test can significantly influence the stability of the fuzzing
process, leading to numerous false positives and negatives. To
ensure effective fuzzing, it is crucial to start each test with a
clear state. The straightforward solution is to restart the target
for each test input to reset the state. However, the initializa-
tion process of large HTTP implementations like Tomcat can
take a considerable amount of time. Therefore, developing an
efficient mechanism for state recovery is essential to optimize
the testing process.

4 Design

We propose HDHUNTER, a gray-box coverage-directed
differential fuzzing technique targeting discrepancies between
open-source HTTP implementations. Unlike existing black-
box solutions, HDHUNTER can explore more execution paths
in test targets thanks to the coverage information collected
during processing. Besides, the combination of coverage from
two implementations can be used as an indicator to help in-
duce more discrepancies. HDHUNTER not only targets HTTP
requests, but also HTTP and CGI responses, as illustrated in
Figure 2.
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4.1 Workflow

We adopt state-of-the-art AFL-like fuzzing framework
based on Genetic Algorithm, while adding targeted strate-
gies and mechanisms for HTTP Desync.

The workflow of HDHUNTER is illustrated in Figure 3. It
can be broken down into seven steps: 1) We manually extract
HTTP messages from the network traffic as initial seeds and
add them to the corpus; 2) The main fuzzing loop starts, where
the fuzzer selects a test case from the corpus; 3) The mutators
mutate the selected test case; 4) The executor runs the mutated
input on two implementations while collecting their coverage
and states; 5) The detector determines if there is any discrep-
ancy between the outputs of these two implementations, and if
so, generates reports; 6) The feedback mechanisms determine
if the mutated input has value in triggering more discrepan-
cies, if so, add it to the corpus, in any case loop steps 2–6;
7) Manually analyze discrepancies to identify HTTP Desync
vulnerabilities.

4.2 Test Case Generation

We create a new structure for test cases and designated
mutation strategies to induce more discrepancies within the
mutator, and use coverage-directed feedback to direct new
test case generation.

4.2.1 Structure of Test Case

HTTP is a text-based network protocol. Unstructured test
cases only support byte-level mutation strategies that cannot
satisfy HTTP’s semantic rules. It will take too much time for
the fuzzer to generate a legitimate input. Therefore, HTTP
syntax should be considered in the test case’s structure to pave
the way for high-level mutators.

As illustrated in Figure 4, HTTP messages, including re-
quests and responses, are composed of three parts: the start
line, the field lines (i.e.: headers), and the message body, ac-
cording to RFC. They differ in the start line but share the
same format in the subsequent parts. The start line and field
lines have fixed formats, while the message body is either
a raw binary stream controlled by Content-Length or a
structured chunked encoding enabled by Transfer-Encodi
ng. Besides, the HTTP pipelining and long connection allow

POST / HTTP/1.1
Content-Type: text/plain
Content-Length: 12

Hello world!

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 12

Hello world!

Status: 200
Content-Type: text/plain

Hello world!

HTTP Request HTTP Response CGI Response

HTTP-message = start-line CRLF
               *( field-line CRLF )
               CRLF
               [ message-body ]

Definition from RFC

†

† The Status header in a CGI response is one of the field lines but acts
as the start line.

Figure 4: Comparison Between HTTP Request, Response,
and CGI Response: Three different colors represent three
different parts of HTTP.

multiple HTTP messages in one single connection. More-
over, CGI responses are similar in format to HTTP responses,
with a notable distinction in their method of conveying the
status code. Unlike HTTP responses, CGI responses employ
a specialized Status header for transmitting the status code.
Consequently, it is feasible to design a universal test case
structure that encompasses all three message types.

We restructure the test cases, which contain an array of
HTTP messages. Each message is composed of three parts,
start line, field lines, and message body, reflecting the nature
of HTTP. The message body supports the raw and chunked
encoding. Messages are stored using a dynamic tree structure,
reflecting the ABNF definition listed in Appendix A, which
is extracted from RFC. Each field is labeled with its datatype
corresponding to its actual function: string, number, symbol,
to facilitate subsequent mutation operations. However, the la-
bels do not restrict the datatypes of the fields. The test case can
be serialized into HTTP requests, HTTP responses, or CGI
responses, adapting to their respective structural requirements
as needed.

4.2.2 Mutation Strategies

To explore larger input space and introduce more discrep-
ancies, we optimize the mutators with three levels of mutation
strategies: 1) Sequence: Based on the fact that HTTP supports
long connection and pipelining, sequence-level strategies can
help explore potential discrepancies introduced by multiple
messages; 2) Message: Message-level strategies reflect the
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HTTP syntax, while blurring the formatting requirements; 3)
Byte: Introduce randomness to the input to cover the discrep-
ancies that caused by Robustness Principle. Detailed mutation
strategies are present in Table 3. One test case can undergo
multiple mutations using multiple mutation strategies in a
single run.

4.2.3 Coverage-directed Feedback

The feedback of the seed selection process plays a crucial
role in deciding whether a mutated input should be added
to the corpus. In this process, AFL utilizes an accumulated
edge hit count map, a mechanism designed to assess if the cur-
rent input introduces new execution paths or activates existing
ones with greater frequency, which is the core of the coverage-
directed fuzzing. This approach is adaptable to various imple-
mentations, effectively steering the fuzzing process toward
generating seeds that are more likely to activate a broader
range of edges within each implementation. HDHUNTER uti-
lizes this mechanism by combining two edge hit count maps
from two implementations into one double-sized edge map,
to reflect coverage information from both targets.

The seeds that trigger both new edges and discrepancies
between two implementations will not be added to the cor-
pus during the fuzzing process, because the inputs mutated
from those seeds are more likely to trigger previously found
discrepancies, which will affect the fuzzing efficiency.

4.3 Snapshot-based Executor

The executor runs the mutated input on both targeted imple-
mentations under the snapshot-based execution framework.
The workflow of the framework is illustrated in Figure 5. The
framework utilizes the snapshot technique to clear the network
states efficiently. It also contains a test harness that supports
testing not only HTTP requests but also HTTP responses
and CGI responses. To support implementations written in
interpreted programming languages, we adopt the solution
proposed by Witcher [47] to collect coverage from interpreted
languages, which modifies the bytecode interpreters of the
programming languages to update the coverage information
using the line number and opcode of the current and prior

Executor Harness Impl.

① Test case
② Requestin

③ Response

④ Cov. & States
⑤ Result

Executor Harness Impl.

① Test case
② Requestbenign

⑤ Response

⑥ Cov. & States
⑦ Result

③ Requestfwd

④ Responsein

Request (HTTP) Response (HTTP & CGI)

Figure 6: Execution Procedure

instructions. For implementations written in compiled lan-
guages, such as C and C++, we use SanitizerCoverage [46]
provided by Clang to collect coverage. The coverage infor-
mation is situated within two distinct processes within two
QEMU guests. The generated coverage map is collected from
these processes via shared memory and guest memory access.

4.3.1 Snapshot-based State Recovery

HTTP is running over TCP/IP protocol. The remaining
states of the network layer can affect HTTP processing. Be-
sides, each implementation has coded its own buffer mecha-
nism, which may have flaws. Thus, it is necessary to clear its
states.

Snapshot is commonly used in file systems and virtual
machines. It saves states of a specific point and is designed to
restore them efficiently. Previous research, including Nyx [43]
and its extension Nyx-Net [44], has proposed a fast snapshot
restoration mechanism for hypervisors. However, Nyx utilizes
hardware-level processing tracing to collect the code coverage,
which is good for kernels and drivers but brings more noise for
userspace applications. Nyx-Net supports AFL-like coverage
collection, but it implements a custom hook-based network
stack to communicate with test targets, which has limited
support for multi-processing programs and has compatibility
issues when testing complex network applications such as
HTTP servers.

To enable highly efficient state recovery for HTTP imple-
mentations, we reused Nyx’s fast snapshot reloading mecha-
nism, while implementing AFL-like coverage collection. We
built a dedicated harness to communicate with the test targets
using Linux’s original socket API. The harness uses Nyx’s
API to take a snapshot right after the target is ready and collect
its edge map through shared memory. The states are restored
after executing each test case, and the coverage is retrieved
using the guest memory access functionality.

The harness checks if the target is ready by repeatedly
executing a benign probing input. Once the input is accepted
without error, we assume that the target is in the ready state.



4.3.2 Support for HTTP Requests, Responses, and CGI
Responses

The test harness has two modes of execution, one for HTTP
requests and another for HTTP and CGI responses. Figure 6
demonstrates the procedures for execution.

For HTTP requests, the test harness follows a standard
procedure to send the request. It obtains the test case from the
executor, transforms it into an HTTP request (Requestin), and
passes it to the implementation.

For HTTP and CGI responses, the implementation is con-
figured to forward the HTTP and CGI requests to the harness.
After obtaining the test case, the harness initially sends a
benign request (Requestbenign) to the implementation. After
receiving the forwarded request (Requestfwd), the harness re-
sponds with the formatted test case (Responsein).

4.4 HTTP Desync Detector
The detector is responsible for identifying discrepancies

between implementations. It follows a pre-defined set of rules
to identify discrepancies using the internal states collected
during the execution process. We will begin by detailing how
we collect the internal states from implementations via code
insertion, and then introduce our detection rule.

4.4.1 Internal States Extraction

Information about the handling process can be partially
acquired by referring to the forwarded requests and responses.
However, information collected through this method can be
inaccurate due to the sanitization and post-processing. For
example, NGINX will convert chunk-encoded requests to raw
encoding during the forwarding process so that we cannot
know what kind of encoding NGINX has used to process
the request from the forwarded message. Therefore, we take
measures to extract internal states from the inside of the im-
plementations.

We collect seven types of states that form the State Tuple:

(Count,Consumed,Body,Encoding,CL,Order,Status)

1) Count: the number of requests or responses that the im-
plementation recognized; 2) Consumed: the actual length of
messages that the implementation consumed during the pars-
ing process; 3) Body: the content of the parsed message body.
Since it is hard to extract the message body in some imple-
mentations, it is downgraded to the length of the message
body; 4) Encoding: the encoding used in the parsing process:
raw or chunked; 5) CL: the value of the Content-Length
header; 6) Order: the parameter that describes the order of
messages; 7) Status: the HTTP response status code.

We collect the first five types of states by manually inserting
customized code into the HTTP handling functions of the im-
plementations. The inserted code utilizes the internal API of

the corresponding implementation to extract headers, copies
the internal buffer to retrieve the body content and length,
and records the message count before dispatching. The con-
sumed length is tracked by incrementing counters each time
the implementation reads data from the buffer. The detailed
example of the code we inserted into Apache is demonstrated
in Appendix D.2.

For Order and Status, we collect them externally and auto-
matically. Although both disordered requests and responses
can cause inconsistent order of messages, the most convenient
way to check if the disorder occurs is to check if the order of
the final responses matches. Therefore, we employ an exter-
nal method to determine Order by embedding a header called
X-Desync-Id with a distinct UUID string during execution.
The implementations are configured to forward the original
X-Desync-Id header. Order will be set to the collection of
X-Desync-Id values. The status code is a useful and stable
external flag to identify if a request is accepted or denied by
the implementation. We collect the status code by reading
the first lines of produced or forwarded responses in the test
harness.

4.4.2 Detection Rule

The detailed detection rules are illustrated in Appendix C.
A discrepancy is considered to exist if any of the rules are not
satisfied. For Count, Body and Order, the states from two im-
plementations are simply compared to ascertain whether they
match exactly. For Encoding, CL and Consumed, the Status
code is first consulted. In the event that both implementations
generate status codes between 400 and 599, which are treated
as the same error state, it is not meaningful to compare their
encodings, content lengths, and consumed lengths, as they
end up with the result — to reject the current message and
possibly stop parsing the subsequent input.

5 Evaluation and Findings

5.1 Experiment Setup

Evaluation Targets Selection. HDHUNTER is a gray-box
fuzzer designed to find HTTP discrepancies in open-source
projects, so we focus on open-source HTTP implementations.
We consider both the GitHub stars and deployment popular-
ity since we find that some HTTP implementations, such as
Apache HTTP Server, receive fewer stars than their popularity
on GitHub.

At last, we selected 19 state-of-the-art HTTP implementa-
tions written in different languages as our evaluation targets,
including integrated servers, cache servers, network frame-
works, and application servers, detailed in Table 1. We test
these implementations against their latest version at the time
of the experiment.



Table 1: Evaluation Targets and New Vulnerabilities Found

Category Name Version ME1 CGI Star2 Host2 Vuln. Status Inconsistency Attack CVE3Severity

Integrated
Servers

NGINX 1.25.2 ✓ ✓ 19.3K 20.1M - - - - - -
Apache 2.4.57 ✓ ✓ 3.3K 13.7M 4 Fixed Resp. TE.CL Resp. Forgery ✓ Low
Lighttpd 1.4.70 ✓ ✓ 547 3.6M - - - - - -
H2O 2.2.6 ✓ ✓ 10.6K 2.1K 1 Fixed Number Parsing Req. Smuggling - N/A
HAProxy 2.8.2 ✓ ✓ 4.1K 30.0K - - - - - -

Cache
Servers

Squid 6.1 ✓ ✗ 1.8K 5.1M 1 Fixed Number Parsing Req. Smuggling ✓ Critical
Varnish 7.3.0 ✓ ✗ 3.4K 1.7M - - - - - -
ATS 9.2.0 ✓ ✗ 1.7K 126.2K 1 Fixed Trailer Section Req. Smuggling ✓ Critical

Network
Frameworks

Twisted 23.8.0 ✓ ✗ 5.3K 78.2K 2 Fixed Resp. Order Resp. Stealing ✓ High
Confirmed Resp. TE.CL Resp. Forgery ✓ N/A

Tornado 6.3.2 ✗ ✓ 21.3K 144.3K - - - - - -
gevent 23.7.0 ✗ ✓ 6.1K N/A 1 Fixed Trailer Section Req. Smuggling ✓ Critical
Eventlet 0.33.3 ✗ ✓ 1.2K N/A 3 Confirmed Number Parsing Req. Smuggling - N/A

Trailer Section Req. Smuggling - N/A
Req. TE.CL Req. Confusing - N/A

Application
Servers

Tomcat 10.1.9 ✗ ✗ 7.0K 690.5K 1 Fixed4 Trailer Section Req. Smuggling ✓ High
Jetty 12.0.0 ✗ ✗ 3.7K 367.5K 1 Fixed Number Parsing Req. Smuggling ✓ Moderate
Puma 6.3.0 ✗ ✓ 7.5K N/A - - - - - -
Falcon 0.42.3 ✗ ✓ 2.4K 2.2K 1 Fixed Number Parsing Req. Smuggling ✓ Moderate
uWSGI 2.0.21 ✗ ✓ 3.4K N/A - - - - - -
Waitress 2.1.2 ✗ ✓ 1.3K 20.4K - - - - - -
Gunicorn 21.2.0 ✗ ✓ 9.2K 175.1K 1 Reported Req. TE.CL Req. Confusing - N/A

1 ME: Support for hosting multiple endpoints pointing to different upstreams.
2 Data crawled from GitHub and Censys on Nov. 16th, 2023.
3 Every CVE except Twisted’s is assigned by its project maintainers. Twisted’s is assigned by MITRE with the maintainers’ permission.
4 $4660 bounty has been granted by Internet Bug Bounty to acknowledge our contribution.

HDHUNTER extracts the State Tuple by inserting code
into targets to identify handling discrepancies. The statistics
of the inserted lines, functions, and files are attached to Ap-
pendix D.1. An example of code insertion for Apache HTTPd
is attached to Appendix D.2

In addition to identifying discrepancies related to HTTP
requests, HDHUNTER has the exceptional ability to identify
discrepancies in HTTP and CGI responses. Among 19 se-
lected implementations, 9 support hosting multiple endpoints,
5 of which support CGI proxy. Since the threat model of
HTTP Response Desync we previously defined can only ap-
ply to HTTP implementations with multiple endpoints, we
only set up response testing configurations for these imple-
mentations.

All implementations are configured to the single-thread
mode, in order to minimize the influence of multi-threading
on coverage and path collection during execution.

Ultimately, we established a total of 171 testing pairs for
HTTP requests, 36 for HTTP responses, and 10 for CGI re-
sponses. We run our tool against each test pair for 12 hours
and repeat for 5 times. For initial seed selection, we use tcp-
dump [21] to capture real-world traffic on our router and select
20 raw HTTP messages covering different HTTP specifica-

tions for each run. Our seed selection criteria is to collect
initial seeds that encompass a wide variety of HTTP methods
and headers. This includes diversity in values, such as identi-
ty/no encoding and chunked encoding. Additionally, we aim
to include seeds with varied body content types, such as URL
encoding, form data, JSON, and binary format.

Experiment Platform Setup. We conduct our experiment
on a machine with Intel Core i7-1260P (up to 4.70GHz)
CPU, 64GB RAM, and Ubuntu 22.04.4 LTS (6.5.0-41-generic
x86_64) operating system.

5.2 Findings

We ran our HDHUNTER prototype on each pair within each
configuration and removed the duplicates by utilizing the cov-
erage. We then manually analyzed each report by referring to
the State Tuple. We highlight 5 primary types of discrepan-
cies found by HDHUNTER, as detailed in Appendix E. The
Trailer Section and Response TE.CL are 2 novel discrepan-
cies we identified. Besides, we found new variants in other 3
types of discrepancies. In total, we identified 17 new HTTP
Desync vulnerabilities, affecting well-known HTTP servers
such as Apache, Tomcat, Squid, etc. We have disclosed these



vulnerabilities to their maintainers and received 9 CVE IDs,
as shown in Table 1.

5.2.1 Non-standard number parsing

Number fields are common in HTTP protocol. Two impor-
tant number fields control the boundary of the message body:
the value of the Content-Length header and the chunk sizes.
HTTP RFCs allow decimal digits in CL and hexadecimal
digits in the chunk sizes. However, we found 8 tested HTTP
implementations that allow other characters in these fields,
including 0x prefix, + prefix, _ between, and any suffixes. We
demonstrate the detailed acceptance of these characters in
Appendix F. This behavior results in inconsistent number and
content of messages.

For example, let us consider how Squid and H2O handle a
chunk with a 0x-prefixed size respectively. Squid processes
the chunk normally, but H2O interprets it as the last chunk,
which indicates the end of the request, leading to a significant
difference in their understanding of the message’s length and
boundary. As a result, an intentionally crafted message may
cause H2O to misinterpret it as two separate requests.

5.2.2 Inconsistent trailer section acceptance

Trailer sections enable the ability to send additional meta-
data after sending contents in chunked messages. Despite be-
ing an RFC standard, state-of-the-art HTTP implementations
show no interest in supporting it while handling it diversely.
We will discuss the inconsistencies in two stages: parsing and
forwarding.

In the parsing stage, some implementations, such as Apache
HTTP Server and HAProxy, will accept trailer sections and
validate the format. They throw 400 when sending malformed
trailer sections. In contrast, implementations like NGINX ac-
cept requests with trailer sections even if they are malformed.
Other implementations do not support trailer sections at all.

In the forwarding stage, most tested implementations ig-
nore trailer sections because of the request sanitization. How-
ever, Apache Traffic Server does not sanitize the request and
forwards the original raw request with trailer sections.

For implementations that do not support trailer sections,
they may misinterpret the trailer section as other HTTP com-
ponents, leading to an inconsistent number of messages. We
found that gevent, Eventlet, and Puma exhibit this issue. When
an HTTP request with a trailer section is sent, these implemen-
tations respond with two HTTP responses: the first is normal,
and the second has a 400 status. Analysis shows that gevent
and Eventlet drop the first line of the trailer section and treat
the rest payload as a new request. Puma skips two characters
after the last chunk, leading to similar misinterpretation.

Tomcat supports the trailer section but has problems pars-
ing the trailer section if there’s no colon in the line. It will skip
lines until one line has a colon. Therefore, when processing

the first payload in Appendix G.2, Tomcat would interpret it
as two requests while other implementations interpret it as
three.

5.2.3 Non-standard line separator

The standard line separator for HTTP is CRLF: a Carriage
Return (\r) together with a Line Feed (\n). We found several
HTTP implementations that allow the use of a single LF as
the line separator. This tolerance may result in inconsistent
number of messages between two implementations if one only
allows CRLF and accepts LF in the chunk extension, while the
other allows both LF and CRLF. Please refer to Appendix G.2
for a detailed payload and description. We have verified the
payload on NGINX and Gunicorn.

5.2.4 Different request TE.CL handling strategies

Sending both TE and CL headers at the same time is a clas-
sic way to introduce desynchronization. Most state-of-the-art
HTTP implementations have taken measures to mitigate this
issue. We found no implementation forwards these two head-
ers without sanitization. Some of the implementations reject
the request and respond with status 400. Others accept the
request, but they handle persistent connections with different
behaviors. Some implementations abort persistent connec-
tions upon receiving the request, while others maintain them.
It should be noted that uWSGI does not support chunked en-
coding by default. It would read the request body according
to the CL header.

Eventlet and Gunicorn are two implementations that sup-
port Python’s WSGI interface. They support the chunk-
encoded message body, but they also accept the CL header
and pass the value to the application through the CONTENT_LE
NGTH environment variable. According to most CGI standards,
applications should obey the value of the CL environment
variable when processing the request body. However, devel-
opers of the applications may choose to read the whole HTTP
body without referring to it, resulting in inconsistent content
of messages.

5.2.5 Different response TE.CL handling strategies

HTTP requests and responses differ only in the first line, so
the classic threat model that confuses the request’s boundary
using both TE and CL headers should also work for responses.
We found plenty of discrepancies in their handling of HTTP
and CGI responses.

When handling HTTP responses, the majority of implemen-
tations are consistent with the behavior of handling requests.
They accept the TE header and keep TE or CL when forward-
ing. Some of them abort the persistent connections with the
upstream server on receiving responses with both TE and
CL headers. Varnish throws 503 Backend Fetch Failed when
receiving such responses. H2O and Twisted unexpectedly



accept the CL header, which is inconsistent with their behav-
ior when processing requests. Twisted even forwards both
TE and CL headers to the downstream client, which leads to
inconsistent number of messages.

As for CGI responses, five tested CGI proxies demonstrate
three different behaviors. Lighttpd and HAProxy accept the
TE header and chunk-encoded message body. NGINX and
H2O accept the CL header. Apache does not refer to either
CL or TE but forwards both TE and CL and the whole body
to the downstream client. By specifying a smaller CL or
constructing a chunked message body, inconsistent number of
messages occurs between Apache and the downstream client.
We found that four of Apache’s mod_proxy CGI modules,
including FastCGI, SCGI, uWSGI, and AJP, are affected.

5.2.6 Other notable discrepancies

We found that when sending two pipelined requests to
Twisted, it will handle them simultaneously without waiting
for the response of the first request. If the first request takes
longer to process than the second request, the responses are
disordered, resulting in inconsistent order of messages.

5.3 Attacks
This section delves into the exploitation of target imple-

mentations by capitalizing on previously identified inconsis-
tencies. We outline four distinct attack techniques, visually
represented in Figure 7.

5.3.1 Request Smuggling

By leveraging inconsistent number of messages, we can
perform the classic request smuggling attack to bypass the
authentication mechanism and execute any request.

Reverse proxies and cache servers can apply restrictions
and require authentication on certain request paths to protect
sensitive APIs, such as the back-end management and com-
mand execution interfaces. Normally, the proxy will block a
direct request towards these paths.

However, when Tomcat, gevent, Eventlet, and Puma are
deployed as the upstream server of the reverse proxy that
forwards the raw request without sanitization, an attacker
can leverage their misbehavior of handling trailer sections to
bypass the access control mechanism.

We have practiced this attack on Apache Traffic Server
and gevent. ATS does not sanitize the request and forwards
the raw request with trailer sections. We configured ATS to
forward requests that target at /path1 to the upstream gevent
application. By sending payloads in Figure 7(a), an attacker
can access /path2 on the gevent application, which cannot be
directly requested through ATS.

Non-standard number parsing and line separators can also
be leveraged to facilitate request smuggling, as they result in
inconsistent number of messages.

5.3.2 Request Confusing

Sometimes, boundary confusion cannot smuggle a new
request but can interfere with the application to retrieve the
proper content, resulting in condition bypass. We refer to this
attack as Request Confusing.

We can leverage the defeats, that accept chunked encoded
body while setting the value of the CONTENT_LENGTH envi-
ronment variable according to the CL header in Gunicorn and
Eventlet, to perform Request Confusing. According to the
standard of WSGI [15, 16], applications should not attempt
to read more data than is specified by the CONTENT_LENG
TH value, which seems to make this value the authoritative
request length. However, developers of the applications may
choose to read the whole input without referring to that value.
We find a possible combination that can lead to Request Con-
fusing in Gunicorn and Flask, where Flask is deployed as a
WSGI application.

Gunicorn accepts Chunked with a capitalized C as a valid
chunked encoding indicator. Flask has a function to get the
content length of the request body. If the value of the HTTP
_TRANSFER_ENCODING environment variable is not exactly
chunked, it will return the value of CONTENT_LENGTH environ-
ment variable. Meanwhile, Flask will parse the whole as form
data input without referring to CONTENT_LENGTH.

Figure 7(b) demonstrates the attack scenario. After sending
the payload that contains a malformed Chunked and a CL
header with value 0, developers who use Flask can success-
fully get the form-encoded data through request.form, but
the value of request.content_length is 0. Any code that
uses that value will incorrectly assume that the length of the
body is 0, resulting in potential condition bypasses.

5.3.3 Response Stealing

Response Stealing refers to an attack method where at-
tackers exploit discrepancies in response processing across
implementations to illicitly acquire a victim’s response. This
can lead to significant issues such as privacy breaches or
cookie hijacking.

The disordered responses issue found in Twisted can be
leveraged to perform Response Stealing. As illustrated in
Figure 7(c), we assume there is a proxy that handles incoming
requests and forwards them in pipelined form to a Twisted
server through a persistent connection. For instance, proxies
employing the Net::HTTP::NB library from Perl to dispatch
requests are aligned with this requirement. The Twisted server
serves as a shared web-hosting gateway that allows tenants to
configure an endpoint pointed to their servers or applications.
By holding the request sent by himself, the attacker can steal
the first response that should have been sent to the victim.
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Figure 7: Examples of HTTP Desync Attacks We Discovered

5.3.4 Response Forgery

Victims’ responses can not only be stolen but also manipu-
lated. Response forgery is a type of attack in which an attacker
creates a deceptive response to replace the benign one.

The improper handling of TE and CL headers in CGI re-
sponses by Apache can also be exploited to execute a Re-
sponse Forgery attack. As shown in Figure 7(d), when the
attacker-controlled application sends a CGI response, which
contains a misleading CL header whose value is 0 as the
header and a deceptive response as the message body, Apache
does not refer to the CL, accepts the whole message body,
converts it into an HTTP response without sanitization, and
forwards them back to the downstream. If the downstream
and Apache hold a persistent connection and enable HTTP
pipelining, the encapsulated response will poison the response
queue and be forged as the second response, resulting in Re-
sponse Forgery. In fact, the HTTP pipelining is not required
since the downstream may not clear the receiving buffer after
processing a response. Consequently, after the second request
is forwarded, any residual payload in the buffer is mistakenly
interpreted as its response.

5.4 Comparison

Comparing to Existing Tools. Before evaluating our tool,
we used existing tools, including T-Reqs [24] and HDiff [45],
to test our evaluation targets. T-Reqs by default uses three
distinct configurations to test the first line, headers, and bodies
respectively. We manually merged three configurations into
one to cover all three parts. We ran both T-Reqs and HDiff
for 12 hours and 5 times. The evaluation results indicate that
they indeed found some discrepancies. However, these dis-

Table 2: Comparison Between Types of Discovered Discrep-
ancies

Number
Parsing

Trailer
Section

Line
Sep.

Req.
TE.CL

Resp.
TE.CL

T-Reqs

HDiff

HDHUNTER

: Not capable; : Capable to find some types; : Capable.

crepancies can cause at least one implementation of the pair
denying an input and are difficult to exploit for HTTP Desync
attacks. Table 2 shows the comparison of discovered discrep-
ancies with these two tools. They are capable of identifying
discrepancies caused by Line Separator and Request TE.CL,
but missing the remaining discrepancies, including those per-
taining to Number Parsing and Trailer Section. To find out
the underlying cause, we investigated their runtime logs. Our
findings indicate that their generators are unable to generate
a valid payload capable of triggering the discrepancies due
to a lack of coverage guidance. Additionally, their detectors
are unable to identify some types of discrepancies due to the
absence of internal states.

Furthermore, we performed a comparison experiment to
find out how code coverage contributes to the discrepancy
exploration process. We kept running T-Reqs, HDiff, and
HDHUNTER and collecting the respective increment in the
number of covered edges after processing a baseline re-
quest. Figure 8 shows an example of coverage growth for
the Apache–NGINX and Apache–Tomcat combination. The
evaluation shows that HDHUNTER covered more edges than
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Figure 8: Comparison of Covered Edges over Time when
Testing Apache–NGINX and Apache–Tomcat Combinations

T-Reqs and HDiff under the same circumstances, thereby in-
creasing the likelihood of uncovering deeper vulnerabilities.

Ablation Study. To evaluate the contributions of our de-
sign, we conducted an ablation study by replacing two of the
key components of our system — the test case generation and
snapshot-based executor — with existing implementations.

To assess the efficacy of HDHUNTER’s test case gener-
ation, we replaced it with AFL’s original generation strate-
gies. We used the same set of seeds to run the experiment.
As illustrated in Figure 8, HDHUNTER with AFL’s test case
generation covers more edges than T-Reqs and HDiff, but
fewer edges compared with our HDHUNTER’s test case gen-
eration. Additionally, the execution speed significantly de-
creased when using AFL’s original generation, dropping from
120 exe/s to 13 exe/s during the Apache–NGINX evaluation.
We discovered that the AFL’s byte-level mutations generated
a substantial number of incomplete test cases, which caused
timeouts and significantly slowed down the fuzzing process.

We then assessed the performance of our snapshot-based
executor in comparison to the traditional full-restart approach
by measuring the executions per second (exe/s) across various
test setups. In scenarios where full-restart operates efficiently,
such as the Apache–Squid combination, our framework in-
creased execution speeds significantly — boosting perfor-
mance from 1.2 exe/s to 62 exe/s, achieving an acceleration
factor of up to 52 times. For more time-intensive restart sce-
narios, such as the Apache–Tomcat combination, the snapshot
framework improved performance from 0.24 exe/s to 21 ex-
e/s, corresponding to an even higher acceleration ratio of
88. These results underscore the significant efficiency gains
possible with our snapshot-based executor.

6 Discussion

6.1 Contribution of Fuzzing

In addition to enhancing the automation of the vulnera-
bility detection process, fuzzing can also identify previously
unknown variants of vulnerabilities that developers may not

be aware of. Furthermore, with coverage guidance, the traver-
sal depth is greater than that of black-box approaches.

Taking number parsing for example, our fuzzer discovered
vulnerabilities rooted in programming languages that many
developers had overlooked. Another example is the trailer
section issue newly discovered by HDHUNTER, where our
tool identified a novel payload attached in Appendix G.2
that lacked a colon in a trailer field, which goes beyond the
traditional TE.CL threat model.

6.2 Insights
We dive into the insights behind the vulnerabilities, which

can be classified into three categories.
Number Parsing. We discovered that five of the implemen-

tations we tested do not adhere to the HTTP RFCs regarding
number parsing, despite clear restrictions on permissible char-
acters outlined in the RFCs. We identified that the primary
cause of this discrepancy lies in developers frequently relying
on built-in number parsers of programming languages, such
as int() in Python. However, these parsers vary across dif-
ferent programming languages, each adhering to their unique
standards for number parsing. This includes differing levels of
support for various formats and base systems, like underscore
separators and hexadecimal notation, as shown in Appendix F.
Discrepancies among HTTP RFCs and the standards of dif-
ferent programming languages create unintentional semantic
gap variations.

Trailer Sections. We observed that many implementations
have different support for trailer sections, leading to HTTP
Desync attacks. These features, being rarely used in HTTP
and relatively more complex to test, often escape thorough
scrutiny. However, with the help of coverage information
guiding the generation of test cases, we can produce test cases
capable of activating the erroneous branches associated with
these least-used components or hidden in deep program logic,
thus uncovering vulnerabilities missed by previous research.

CGI Converting Issues. Another type of new vulnerability
we found stems from the protocol conversion process between
CGI and HTTP. CGI protocols, which are binary-based or
reliant on in-process communication, define message bound-
aries using their own distinct mechanisms instead of relying
on HTTP’s TE or CL headers. While certain CGI protocols
mandate that the gateway should not read data beyond what is
specified by the CL if present, not all implementations follow
this rule. We found that headers declared in CGI responses
are often carried over into HTTP responses, leading to new
types of HTTP Response Desync.

6.3 Responsible Disclosure
We responsibly disclosed the vulnerabilities in Table 1 to

the respective vendors. Falcon, Jetty, Squid, H2O, gevent,
Tomcat, ATS, Apache, and Twisted have confirmed and



patched the vulnerabilities, with 9 CVE IDs assigned. We
received a 4660 USD bounty from Internet Bug Bounty [23]
for the Tomcat vulnerability. Eventlet’s maintainers confirmed
the issues and plan to fix them in future versions. Gunicorn’s
developers received our report, but we have not received fur-
ther updates from them.

6.4 Mitigation
HTTP Desync is caused by the handling discrepancies be-

tween implementations, which is a long-addressing problem.
To mitigate HTTP Desync, we propose the following three
solutions:

Deny Malformed Messages and Support Required Spec-
ifications. A major cause of HTTP Desync vulnerabilities is
deviations from the standards outlined in RFC documents,
such as supporting non-standard number format and lack-
ing support for trailer sections. Developers of HTTP han-
dlers should thoroughly understand the relevant RFCs and
ensure their implementations conform to these specifications
by denying malformed messages and supporting required
specifications. It is important to note, however, that some
RFC guidelines are advisory rather than mandatory. While
strict adherence to RFC specifications can significantly reduce
issues, it may not completely eliminate them.

Sanitize the Message Before Forwarding. Most HTTP
Desync attack scenarios involve interaction between a proxy
and a server. If the proxy forwards an unambiguous message
to the server, it eliminates the potential for a discrepancy.
Hence, it is crucial for the proxy to sanitize the message
before forwarding it. This process can be done by first pars-
ing the original message and then reconstructing it anew for
forwarding. A significant number of state-of-the-art HTTP
proxies have already adopted this practice and have lowered
the occurrence of HTTP Desync, demonstrating its efficacy.

Integrate Differential Fuzzing into the Development
Workflow. Incorporating differential fuzzing into the imple-
mentation’s validation routine can greatly help locate and
resolve handling discrepancies. This method should be used
alongside unit testing in the development stage to ensure a
more secure implementation.

6.5 Limitation
Our methodology is not applicable to closed-source HTTP

services, as it is not feasible to gather coverage and internal
state information externally. Nonetheless, new findings from
open-source implementations can serve as valuable references
for testing whether similar issues exist in closed-source ser-
vices.

Moreover, our work applies only to HTTP/1.1 due to
its specific input structure, mutation strategies, and detector.
HTTP/2 and HTTP/3 have transformed into binary proto-
cols, eliminating the text-based parsing differences. How-

ever, to support legacy HTTP/1.1 clients, HTTP proxies have
implemented protocol downgrade features that can convert
messages to HTTP/1.1 format, potentially leading to HTTP
Desync by exploiting their boundary understanding gap. Pre-
vious work [28] has systematically summarized HTTP/2
Desync attacks. In addition, the complexity and flexibility
of HTTP/2’s features, such as multiplexing, stream prioriti-
zation, etc., introduce expanded attack surfaces that can be
exploited for DoS attacks. To detect such threats, the test case
generation and the detector need to be refactored, but other
components and the workflow can be reused.

Additionally, we acknowledge that developing
HDHUNTER requires considerable manual effort dur-
ing code insertion to extract internal states and discrepancy
analysis. However, the code insertion is one-time work, and
the tool can be run periodically in case software updates may
introduce new vulnerabilities. So in the long term, we believe
the approach will have a good return on investment. Since
the Large Language Models (LLM) can read, understand,
and modify the source code, further research can utilize
LLMs, like GPT [35], Gemini [12], LLaMA [1], etc., to
reduce human labor. Previous research [52] has leveraged
LLM to generate fuzz drivers. In our case, LLM can help
locate the entry function of the HTTP handler by explaining
the functions within the project and subsequently filtering
out those that are associated with HTTP handling. For
discrepancy analysis, targeted validation environments can
be set up to validate the presence of existing vulnerability
types to reduce human labor.

7 Related Work

HTTP Desync. The concept of HTTP Desync was first
raised by Kettle [26]. The article extended the scope of tradi-
tional HTTP Request Smuggling [32], the confusion between
Content-Length and Transfer-Encoding, to the parsing
discrepancy of the TE header. There are more studies [27, 29]
involving new variants of HTTP Desync, but they still focus
on the inconsistent number of HTTP requests interpreted be-
tween HTTP proxies and servers. In contrast, the Request
Confusing raised in our paper focuses on the inconsistent
content of messages interpreted between CGI gateways and
applications. Doyhenard [14] first raised HTTP Response
Desync. By controlling the responses, the attacker can ma-
nipulate the HTTP response queue to inject crafted messages
into the HTTP pipeline. However, these studies mainly focus
on manually discovering HTTP Desync. Our work discovered
that Desync can further arise in CGI responses.

Another response-related vulnerability, HTTP Response
Splitting [2], is a type of Web application-level vulnerabil-
ity distinct from HTTP Desync. It involves the injection of
headers and bodies into a response by leveraging bugs in the
Web application. In contrast, Response Forgery and Stealing
are interpreter-level vulnerabilities, caused by the response



forwarding misbehavior of HTTP servers and CGI gateways.
Previous research proposed different techniques to find

HTTP Request Smuggling vulnerabilities. T-Reqs [24] pro-
posed a grammar-based fuzzer to identify discrepancies and
HRS vulnerabilities. HDiff [45] utilized the natural language
processing techniques to extract rules from the RFC docu-
ments to generate semantically diverse inputs in differential
testing. Both of them are black-box fuzzing techniques with-
out obtaining information from the test target, limiting their
effectiveness. HTTP Garden [25] leveraged the path informa-
tion to guide test case generation to discover HRS vulnerabili-
ties. In this paper, we employ the gray-box fuzzing approaches
to discover the HTTP Desync vulnerabilities. With the help
of coverage, we are able to find deeper vulnerabilities. More-
over, we systematically summarized the categories of HTTP
Desync, broadened the HTTP Desync to HTTP responses, and
introduced a snapshot-based execution framework to mitigate
the impact of network state on results.

Broadly speaking, HTTP Desync belongs to a family of
“semantic gap” attacks. Similar inconsistency problems also
exist in other systems, such as email systems [6, 53], Web
application firewalls [50], cache systems [5, 30], CDN sys-
tems [7, 22, 31, 54], and Web applications [49].

Gray-box Fuzzing. Gray-box Fuzzing employs a genetic
algorithm to guide the input generation and mutation based on
the internal states in order to enhance the overall effectiveness.
The most famous solutions are AFL [51] and its enhanced
version AFL++ [19], which leverage the branch coverage col-
lected during execution to guide the test process. LibAFL [20]
was developed by the maintainers of AFL++, where devel-
opers can easily reuse state-of-the-art fuzzing components to
increase overall efficiency and only need to implement the
necessary ones that are required to achieve their objectives.
We implemented HDHUNTER based on LibAFL, making it
easy to extend and co-operate with existing fuzzing solutions.
AFLNet [38] utilized the server’s response code as feedback
to guide the fuzzing process for interactive network protocols.
NSFuzz [40] integrated static analysis to extract internal state
variables as feedback. The remaining states of the network
stack can interfere with the testing process. Coverage-directed
differential testing has been widely applied to detecting log-
ical defects in various protocols, such as mucert [9] for SS-
L/TLS and classfuzz [8] for JVM. Our work does not adopt
their Markov chain Monte Carlo (MCMC) algorithm, but
to reuse the mutual AFL framework with augmentations for
HTTP Desync. NEZHA [37] optimized the coverage feed-
back process of differential testing by introducing δ-diversity
that synthesized the path information to guide the seed selec-
tion process. However, it does not apply to network protocols,
because the unstable cycle times and execution paths intro-
duced by the network’s asynchronous waiting and handling
can produce different δ-diversity when executing the same
input. The combined edge map used by HDHUNTER, with
AFL’s hit-count bucket division and accumulated edge cov-

erage information, can provide immunity to such scenarios.
In summary, the above work is targeting one single program-
ming language. Witcher [47] first applied gray-box fuzzing to
SQL and command injection vulnerabilities and introduced
the coverage collection for interpreted languages by inserting
code into the bytecode interpreter. By combining and enhanc-
ing Witcher and SanitizerCoverage [46], we broaden our test
scope to HTTP implementations in more languages. However,
existing tools are not tailored to identify discrepancies across
two or more HTTP implementations. Consequently, their ef-
fectiveness in detecting HTTP Desync vulnerabilities, which
are primarily caused by such discrepancies, is significantly
limited.

8 Conclusion

In this paper, we expanded the scope of HTTP Desync
to both HTTP requests and responses, and proposed
a novel coverage-directed differential testing framework
HDHUNTER, capable of automatically identifying HTTP dis-
crepancies. We tested 19 state-of-the-art HTTP implemen-
tations using our HDHUNTER prototype. We highlighted 5
types of discovered discrepancies and validated their ability
to trigger HTTP Desync, resulting in 4 types of attacks in-
cluding Request Smuggling, Request Confusing, Response
Stealing, and Response Forgery. We responsibly disclosed
these vulnerabilities to relevant vendors. A total of 9 CVE
IDs have been assigned.
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A HTTP Grammar

HDHUNTER uses the ABNF rules in Listing 1, which are
manually extracted from RFC, to perform input mutations.
The non-terminals without a rule are regarded as data fields,
i.e. *OCTET.

Listing 1: ABNF Rules Used to Build the Structure of HTTP
Messages
1 HTTP -message = start -line *( field -line CRLF )

↪→ CRLF [message -body]
2 start -line = request -line / status -line
3 request -line = method SP request -target SP HTTP -

↪→ version CRLF
4 status -line = HTTP -version SP status -code SP [

↪→ reason -phrase] CRLF
5 field -line = field -name ":" OWS field -value OWS

↪→ CRLF

6 message -body = chunked -body / *OCTET
7 chunked -body = *chunk last -chunk trailer -section

↪→ CRLF
8 chunk = chunk -size [ chunk -ext ] CRLF chunk

↪→ -data CRLF
9 chunk -size = 1*HEXDIG

10 last -chunk = 1*("0") [ chunk -ext ] CRLF
11 trailer -section = *field -line
12
13 SP = %x20
14 HTAB = %x09
15 OWS = *( SP / HTAB )
16 CRLF = %x0D %x0A
17 HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E"

↪→ / "F"

B Detailed Mutation Strategies

Table 3: Mutation Strategies of HDHUNTER

Level Strategy

Sequence* 1) Randomly select a message from corpus and
add to the sequence
2) Delete a message from the sequence

Message*

3) Duplicate a field line
4) Delete a field line
5) Randomly select field lines from corpus and
insert them at a random position
6) Randomly swap two values of the same type
7) Randomly replace a value with one random preset
token of the same type
8) Randomly select field lines from corpus and
replace the trailer section (chunked only)

Byte
9) Randomly insert bytes
10) Randomly remove bytes
11) Randomly duplicate bytes
12) Randomly select bytes from corpus and insert
them at a random position

* New mutation strategies introduced in HDHUNTER.

The detailed mutation strategies used by HDHUNTER are
presented in Table 3.

C Detection Rules

Algorithm 1 is the logic of our HTTP Desync Detector.

D Code Insertion

D.1 Statistics
Table 4 shows the number of lines, functions, and files we

modified in 5 representative targets’ request handling pro-
cedures, covering 4 categories and 5 different programming
languages.

https://uwsgi-docs.readthedocs.io/en/latest/Protocol.html
https://uwsgi-docs.readthedocs.io/en/latest/Protocol.html


Algorithm 1 HTTP Desync Detection Process: Determine
whether there is an HTTP Desync, using State Tuples SA,SB
of implementation A and B

procedure DESYNCDETECTION(SA,SB)
if COUNT(SA) ̸= COUNT(SB) then

return true
for i← 0 to COUNT(SA) do

if ORDER(SA,i) ̸= ORDER(SB,i) then
return true

if BODY(SA,i) ̸= BODY(SB,i) then
return true

if ISERROR(STATUS(SA,i)) and ISERROR(STATUS(SB,i))
then

continue
if ENCODING(SA,i) ̸= ENCODING(SB,i) then

return true
if CL(SA,i) ̸= CL(SB,i) then

return true
if CONSUMED(SA,i) ̸= CONSUMED(SB,i) then

return true
return f alse

Table 4: Statistic of Inserted Code in 5 Representative Targets

Target Line† Func File Hour Category Lang.

Apache 19 4 4 2–3 Intergrated Server C

Squid 17 7 3 2–3 Cache Server C++

gevent 25 5 1 1–2 Network Framework Python

Tomcat 11 6 5 1–2 Application Server Java

Falcon 64 6 5 1–2 Application Server Ruby

† Comments and empty lines are not included.

D.2 Example
The apache.diff file in the repository refers to the diff of

the code we insert into Apache. This code extracts the first
five types of states for the HTTP requests handling process.
ap_process_http_async_connection is Apache’s HTTP
handling function. After calling ap_read_request, Apache
has parsed the request, and we can read and set Encoding and
CL. Count is incremented after the processing of the request.
ap_http_filter is responsible for parsing the HTTP body.
We locate the positions where Apache reads the body, includ-
ing the chunk size, content, and body content, and insert code
to maintain Consumed and Body. Apache reuses the code
to read raw body and chunked body. ap_rgetline_core is
called when reading the start line and field lines.

E Detailed Discrepancies

A substantial number of discrepancies were identified dur-
ing the experiment. For instance, in the Apache–Tomcat pair,

Table 5: Different Types of Non-standard Number Parsing

Type Example Affected

0x prefix

Content-Length: 0x8 Falcon

Transfer-Encoding: chunked

0x8
abcdefgh

Falcon
Squid
Eventlet
Tornado

+ prefix

Content-Length: +8
Jetty
Eventlet

Transfer-Encoding: chunked

+8
abcdefgh

Falcon
Eventlet

_ between

Content-Length: 1_0

Falcon
Tornado

Transfer-Encoding: chunked

1_0
abcdefgh

Any suffixes
Transfer-Encoding: chunked

8irrelavent_characters
abcdefgh

H2O
ATS

approximately 13500 discrepancies were reported during each
run. After the preliminary deduplication, around 500 discrep-
ancies remained.

Figure 9 details 5 primary types of discrepancies found by
HDHUNTER.

F Different Types of Non-standard Number
Parsing

Non-standard number parsing is one of the primary dis-
crepancies between HTTP implementations discovered by
HDHUNTER. We summarize their different behaviors in Ta-
ble 5.

G HTTP Payloads

G.1 Payloads as Artifact

To facilitate future research, the collection of the vulnerable
payloads has been uploaded to the repository.

G.2 Interesting Payloads

In this section, we share two interesting payloads found by
HDHUNTER that can be leveraged to perform HTTP Desync
Attacks.
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Figure 9: Five Primary Types of Discrepancies Between Implementations We Discovered

The first one (Listing 2) is an exploitable HTTP request
smuggling payload in the tested version of Tomcat. Tomcat
will interpret this payload as two requests — with lines 1–15
as the first and lines 17–19 as the second. The other HTTP
implementations, such as ATS, will interpret this payload
differently — with lines 1–10 as the first and lines 12–19 as
the second. If a setup uses ATS as the proxy and Tomcat as
the server, the malicious payload embedded in the second
request can be executed on Tomcat.

Listing 2: Payload that Leads to Discrepancy in Tomcat

1 POST /benign_path HTTP/1.1
2 Host: a.com
3 Connection: keep-alive
4 Transfer-Encoding: chunked
5
6 5
7 12345
8 0
9 Content: hello

10 a
11
12 POST /benign_path HTTP/1.1
13 Host: a.com
14 Connection: keep-alive
15 Content-Length: 37
16
17 GET /evil_path HTTP/1.1
18 Any: any
19 Host: b.com
20
21

The second one (Listing 3) is a payload that can lead to
discrepancy by non-standard line separators. Assume imple-
mentation A only allows CRLF and accepts LF in the chunk

extension, and implementation B allows both LF and CRLF.
A will interpret lines 6–7 as the first chunk, lines 8–9 as the
second chunk, and lines 12–15 as the second request. B will
interpret line 6 with the left 8 characters as the first chunk,
line 8 as the trailer section, lines 9–11 as the second request,
and drop lines 12–15 since the connection is set to close. The
discrepancy is caused by the confused boundary of the first
chunk.

Listing 3: Payload that Leads to Discrepancy by Non-standard
Line Separator

1 POST /proxy HTTP/1.1[CR][LF]
2 Host: a.com[CR][LF]
3 Transfer-Encoding: chunked[CR][LF]
4 Connection: keep-alive[CR][LF]
5 [CR][LF]

6 0a;[LF][CR][LF]
7 12345678[LF]0[CR][LF]
8 4b;:123[CR][LF]
9 [CR][LF]POST /proxy HTTP/1.1[CR][LF]Host: b.com[CR]

[LF]Connection: close[CR][LF]Content-Length: 5
[CR][LF][CR][LF]

10 0[CR][LF]
11 [CR][LF]

12 GET /proxy HTTP/1.1[CR][LF]
13 Host: a.com[CR][LF]
14 Connection: close[CR][LF]
15 [CR][LF]

H Impact of Initial Seeds

Initial seeds play a vital role in the fuzzing process. In
order to evaluate the impact of the initial seeds, a series of ex-
periments were conducted against the Apache–NGINX com-
bination. The experiments involved the use of 20 selected,
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Figure 10: Comparison of Covered Edges over Time when
Testing Apache–NGINX Using Four Different Sets of Initial
Seeds

10 selected, 20 random, and 20 selected seeds, respectively,
with the last environment using AFL’s test case generation,
denoted as A, B, C, D. To be specific, D shares the same set
of initial seeds with A. B is a subset of A which has lower
diversity. C is selected randomly from the network flow. The
coverage growth of these setups is illustrated in Figure 10.
The experiment results demonstrate that the size of the initial
seeds is not a contributing factor to the outcome. Instead, a
positive correlation exists between the diversity of the initial
seeds and coverage.
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