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Artificially inflated traffic (AIT) attacks have become a
prevalent threat for businesses that rely on SMS-based user
verification systems: attackers use bot accounts to initiate
intense volume of artificial SMS verification requests. Mali-
cious telecommunication service providers or SMS aggrega-
tors are potential cheating entities. To date, however, there is
no published literature formally characterizing AIT attacks
or investigating attack detection techniques. Several online
blogs provide traffic volume inspection suggestions without
revealing implementation details and attack data. We bridge
this gap, and for the first time formally characterize AIT at-
tack techniques based on a large-scale dataset consisting of
9.4 million SMS request logs: our analysis reveals that attacks
often use short-lived email services, and reuse common prefix
values to rapidly generate unverified phone numbers and IMEI
numbers. To bypass rate limit policies, bots are programmed
to submit a few requests before switching to a different ac-
count, phone number or device. This distributed nature of
the attack makes detection based on naive historical-event
inspection extremely challenging.

We propose a novel AIT attack detection system that moni-
tors such scattered attack orchestration from three different
levels: machine learning features are extracted based on a sin-
gle request information, multiple historical events associated
with a user, phone number, or device, and country-wide suspi-
cious traffic that has some ties to the request being inspected.
A pivotal country-wide feature, for example, counts the num-
ber of distinct phone numbers associated with a given prefix
value from the last 24 hour traffic. Based on this three-level
feature engineering technique and a fixed threshold, we report
89.6% recall rate (false positive rate: 0.2%) on authentication
requests initiated through the web client, and 91.1% recall
rate (FPR: 0.1%) on the native application client traffic.

1 Introduction

In December 2022 Elon Musk tweeted “Twitter was being
scammed to the tune of 60M dollars a year for SMS texts...”
and explained the prevalence of artificially inflated traffic

(AIT) attacks [5], which are coordinated to generate fake SMS
authentication requests through bot accounts, and make huge
profit by artificially “running up a tab” and billing authen-
tication service providers. Highly likely suspects are rogue
telecommunication service providers (telcos) or SMS aggre-
gators who exploit their own customers. A recent whitepaper
estimates the global damage of AIT attacks in 2023 to be
about 1.2 Billion USD [1].

Rate limit policies are typically employed to slow down
AIT attacks: authentication service providers allow just a sev-
eral consecutive fail attempts before introducing a lengthy
account lock out period to prevent heavy re-submission of
two-factor SMS authentication requests. Our real-world SMS
request log analysis, however, reveals that latest attacks are
knowledgeable about the exact rate limit configurations, and
perform widely distributed attacks to bypass them. Attack-
ers use various methods to generate a large volume of fake
accounts, phone numbers, and international mobile equip-
ment identity (IMEI) numbers, and program bots to submit
just a few requests before switching information – render-
ing rate limit techniques that monitor user, phone number, or
device-specific events mostly ineffective. Numerous blogs
published by SMS aggregators discuss general AIT attack
trends, and recommend the adoption of rate limit policies
without explaining the risks of encountering such distributed
attack behaviors. Inspecting SMS conversion rates (successful
validation rates) and incoming traffic rates are other typical
suggestions – however, formal analysis of attack traffic and
implementation guidelines are missing. When and how such
information should be inspected and translated into specific
rules or machine learning features remain unanswered. Fur-
ther, we find no published literature attempting to formally
characterize or investigate AIT attacks.

To bridge the gap, we analyze a large-scale SMS log dataset
consisting of about 9.4 million logs collected from 19 differ-
ent countries over three month in 2023: based on our own
labeling method, we tag 4,947,099 samples as attacks and
4,496,447 samples as benign or genuine requests. Our attack
set deep-dive reveals that the following three techniques are



common: (1) use of short-lived email services (e.g., disposable
email services) to rapidly generate bulk emails and register
bot accounts using them, (2) bulk generation of unverified
phone numbers and IMEI numbers based on common prefix
values, (3) use of outdated devices to ease the process of root-
ing devices. Understanding the scattered nature of recent AIT
attacks and the common attack techniques being used, we
propose a novel feature engineering technique that inspects
extensive traffic information from three different levels: (1)
quick inspection of information available from a single SMS
request event, (2) multi-event inspection of historical SMS
events associated with a given user, phone number, or device,
and (3) country-wide inspection of SMS events that have
some ties to a request being evaluated. We train a decision
tree classifier, and evaluate the model performance based on
a test set representing the last two weeks data. Having ob-
served slightly varying attack behaviors among the two client
types – web browser and mobile native client – we train two
separate classifiers based on different set of features, and eval-
uate their performance separately. We summarize key paper
contributions as follows:

• This paper presents the first systematic analysis of AIT
attacks based on real-world SMS authentication traffic logs.

• To timely detect extremely scattered attacks, our novel AIT
attack detection technique inspects a single SMS event,
multiple historical events associated with a user or device,
and country-wide events that are tied to an attack campaign.

• We evaluate the effectiveness of this technique based on
a large-scale dataset (9.4 million SMS logs). Based on 18
novel features, including a single-event feature that checks
the time difference between “SMS request time” and “email
domain first-appearance time,” and a country-wide feature
that monitors increase in the daily usage rate of a given
email domain, we achieve 89.6% recall (0.2% FPR) for
detecting attacks initiated through web clients. In the case
native client traffic, country-wide features that identify sus-
piciously large recurrence of phone number or IMEI prefix
patterns, together with single-event features that identify
outdated system configuration exploits, play a pivotal role
in detecting 91.1% of attacks (0.1% FPR). This native traf-
fic tailored model consists of 13 features.

2 Objectives and Requirements

We explain the system design objectives and key deployment
constraints identified through discussions with the engineers
of the studied SMS authentication service.

2.1 Background: AIT Attacks and Scope
AIT attacks typically involve creation of a large number of
bot accounts on a target authentication service, and making
several SMS authentication requests through each account to

artificially generate high-profile peak traffic. Attackers exploit
both web and native clients, initiating SMS-authentication
requests through web browsers or native apps installed on mo-
bile devices. Likely suspects are malicious SMS aggregators
or telcos that exploit their own customers (service providers)
by billing them for such artificially inflated SMS traffic [1].

Authentication service providers try to mitigate AIT attacks
by employing rate limit policies: an effective policy, for in-
stance, would only allow several SMS authentication requests
to be initiated by the same user account, device (IMEI), phone
number, or IP address within a short time window. Any policy
violation would trigger a lengthy lock-out period.

Our real-world data analysis, however, revealed that latest
AIT attacks are effective in bypassing such rate limit policies:
attackers (we presume recruited by SMS aggregators or tel-
cos) seem to invest significant time, effort, and money into
acquiring huge volumes of fake phone numbers, IMEIs, email
addresses, and bot accounts, and performing distributed at-
tacks using them. To maximize attack efficiency and integrity,
short-lived disposable email services are often exploited to
quickly register bulk email accounts, and common combina-
tion of valid prefix patterns are used upon generating fake
phone numbers and IMEIs. A large peak traffic identified
in Indonesia, for example, comprises 283,157 SMS requests
with 168,346 fake phone numbers and 231,796 fake IMEIs ex-
ploited during a cycle lasting just 3 days. In an extreme case,
we identified attack campaigns designed to submit just a single
SMS request per each trackable information. Such sparsely
distributed nature of AIT attacks make it almost infeasible
to apply traditional multi-event inspection based detection
methods. Despite those challenges, common attack patterns
are prevalent across multiple countries, indicating that model
generalization may be achievable. We further elaborate on the
attack characteristics in Section 5.1.

Our primary goal is to optimize the detection rates for
highly visible peak traffic cycles that are at least a few times
larger in volume than normally observed daily volume in a
given country, such that are also associated with suspiciously
low daily conversion rates. This is because such high-profile
peak traffics account for most of the observed AIT attacks,
and the presence of distinct short-lived peak patterns provide
strong ground truth evidence about AIT attacks.

2.2 Deployment Considerations
We identified three key business expectations that need to be
considered upon building a practical and deployable system.

1. Explainable features. To facilitate efficient means to
analyze and mitigate real-world occurrences of false pos-
itives and false negatives – identifying their root causes
– the intuition behind the proposed features and their
computational logic need to be clear.

2. False positive rates (FPRs). In the context of the studied
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Figure 1: AIT attack detection system architecture overview.

authentication service, about 0.2% of SMS authentica-
tion false positives result in “Voice of the Customer”
(VoC). If we set our usability objective to “add no more
than 1 VoC per week,” two weeks of test data imply our
false positive constraint should be about 1,000 false pos-
itives during that period. This requirement warrants for
a more narrow investigation of FPR-favoring thresholds
in the 0.8–0.9 range.

3. Latency. Since SMS traffic inspection would occur as
part of the overall user login process, attack detection
latency should be kept between half a second to a second
to ensure unhindered user experience.

3 System Overview

We provide an overview of the proposed AIT attack detection
system architecture, and key components used to compute the
three-level features and make run-time inference decisions.

3.1 Architecture Overview

Figure 1 depicts an overview of the AIT attack detection
system architecture. At the heart of the architecture is the
“AIT Attack Detector,” which is responsible for computing an
inference score for a given SMS request, making an authenti-
cation decision by checking whether the score is lower than a
pre-defined threshold.

Authentication phase. A web or native client application is
used to make an SMS authentication request. Upon receiving
this request, the two-factor “Authentication Server” queries
the Detector for an attack inference decision.

Feature computation phase. Once the Detector receives
an SMS request, it initiates the “Feature Extractor” to compute
the three-level feature sets. User account and device specific
information are gathered from the “User Info” database man-
aged by the Authentication Server, and used to compute single-
event features such as the time difference between “SMS re-

quest timestamp” and “email domain first-appearance times-
tamp.” Historical SMS log data that are needed to compute
multi-event and country-wide features are retrieved through
the “SMS Log” database. For instance, a country-wide feature
that counts the recurrence of a phone number prefix pattern
in last 24 hours is computed based on retrieval of historical
log data. We facilitate live inspection by using the current
timestamp, and selecting the preceding 24 hour traffic. To im-
prove computation efficiency, reusable static information such
as native device/client released-dates are stored as “Lookup
Tables” and facilitate fast access.

Attack inference phase. After the run-time feature com-
putation process, the Feature Extractor creates an one-
dimensional feature vector consisting of 18 values (web
model) or 13 features (native model), and returns the fea-
ture vector back to the Detector. This feature vector is also
stored in the “Feature store” for subsequent model training
purposes. The Detector then forwards the feature vector to
the “ML Server,” which in turn, uses the “ML model” to com-
pute a binary classification probability score, and returns the
score back to the Detector. Inference scores close to value
“1” indicate an AIT attack whereas scores close to value “0”
indicate genuine or benign requests. The Detector then checks
the returned score against a threshold, and informs the Au-
thentication Server to proceed with sending an SMS OTP if
the score is less than the threshold. Finally, information about
inspected SMS requests are logged to the SMS Log database.

Model training phase. We apply a labeling method (ex-
plained in Section 4.3) to create attack and genuine labels.
Our model training process involves two separate steps. First,
pre-computed feature vectors are retrieved from the “Feature
Store” to construct a train set. In our evaluation, we use the
first two-month data as the “train set,” the first 15 days of
the third month as the “validation set,” and the remaining
data as the “test set.” The train set is used to train a binary
classifier that predicts the probability of a given request being
an AIT attack. In our pilot experiments, the Gradient-Boosted
Trees (GBTs) algorithm generally reported best detection
performance (SVM, random forest, and logistic regression
algorithms were also tested) – hence, all results are reported
based on GBT classifiers. Tree hyperparameters were opti-
mized based on grid search: 10 “max-depth” 200 “num-trees”
showed optimal performance on the web traffic; 5 max-depth
and 200 num-trees were optimal settings for native models.

4 Dataset Description

We provide details of SMS authentication logs and the label-
ing method applied to tag positive/negative samples.

4.1 Dataset Overview
We privately obtained the dataset through an SMS authentica-
tion service provider that serves two-factor SMS authentica-



tion service to tens of millions of end users residing in 195
countries – end users log in to their accounts to use online
stores, manage their devices, access personal data, etc. Top
10 target countries with the most AIT attack traffic between
August and October in 2023 from each of the two client chan-
nels (web and native) were pre-selected and shared – attack
volumes were roughly estimated based on highly-visible peak
cycles. Due to one overlapping case, there were 19 countries
from both channels – the full list and their attack sizes can be
found in Table 3 and 4. The majority of those countries were
located on Africa and South Asia continents where the SMS
pricing rates are typically very expensive. All 19 countries
were also flagged as high risk countries in a recent report [1].
This dataset, in total, consists of 2,915,990 and 6,527,556
samples from the web and native traffic, respectively.

4.2 Log Attributes
The SMS log data contains basic SMS authentication request
information including, anonymized user identifier, email do-
main name, target phone number, request time, IP address,
device IMEI number, device model, client and OS version,
authentication service type (e.g., account sign in or second-
factor set up), application in use, SMS target country, action
type (e.g., request sent or successful validation), and SMS pric-
ing information. Information about the client type (web or na-
tive channel) used to first register an account, whether a given
user has previously registered a “trusted device” (two-factor
authentication is waived on a trusted device), and whether
the ownership of a given phone number has previously been
verified are also available. We note there were some informa-
tion missing depending on the client type used. On the web
side (requests initiated through web browsers), device, client
application, and OS related information were missing. On
the native side, user identifier and email domain information
were missing – features that rely on such information were
not considered upon building the native model. We extracted
phone number prefix (removing last 4 digits) and IMEI prefix
(removing last 7 digits) values, and stored them as separate
fields to facilitate more efficient and privacy-preserving fea-
ture exploration process. We also obtained additional lookup
tables summarizing the first released dates for different OS,
native client, and device model versions.

4.3 Labeling Method
Since we were provided with unlabeled data, and our objective
was to train a binary classifier through supervised learning, we
developed an AIT attack set labeling method tailored to the
given SMS traffic dataset. Based on the intuition that highly
visible peak traffic – daily SMS traffic volume that is multiple
folds larger than the normally observed traffic for a given
country – represents an AIT attack cycle with high precision,
we first designed algorithms to accurately detect the presence

of peak traffic: we defined “normal” daily SMS traffic volume
and variability for each country by computing 25% trimmed
mean and standard deviations across the three month data, and
searched for daily traffic volume that is several standard devia-
tions larger than this mean value; we also checked whether the
daily conversion rate falls by a suspiciously large value (e.g.,
20%) compared to the median computed based on the normal
daily traffic. After identifying all peak cycles, we applied the
following two labeling methods:

• In the case of web traffic, we searched for attack-
triggering users and phone numbers that submitted at
least four SMS requests without any successful valida-
tion during the same (within-peak) day; we chose “four”
as the threshold based on web peak traffic distribution
analysis, which revealed that web channel attacks typ-
ically submit four requests and switch information to
bypass rate limit policies. Surprisingly, in three coun-
tries, we observed continuous peak traffic associated with
high conversion rates (malicious peak traffics are typi-
cally associated with extremely low rates). Here, due to
bulk of attacks validating requests, the first labeling rule
was inapplicable. To improve labeling quality in such
unusual context, we looked for signs of significant eleva-
tion in the proportion of a given application being used
on a given day and country compared to a pre-defined
daily usage proportion. If this difference is larger than a
threshold (e.g., 0.3), indicating that a specific application
is being heavily exploited by attackers, and the request
came as part of a peak volume, we selected associated
user and phone number.

• A large bulk of native channel attacks submitted just
one or two requests before switching phone or IMEI
numbers, and did not validate requests. To accurately
identify such scattered behaviors, we simply selected
all “phone number and IMEI” information pairs that
are found in a given peak traffic, but have never been
validated during the three month period.

After identifying a set of malicious users, phone numbers,
and IMEI numbers, we labeled all samples associated with
that set as positive (attack) samples. Note, although the pri-
mary objective of the proposed labeling method was to tag
attack samples from peak cycles, this last step may also find
a small number of samples that are part of non-peak traffic.
All remaining samples are labeled as negative (genuine) sam-
ples. To check the validity of our labeling algorithms, we
performed eye-tests on all 19 countries, and ensured that the
normal daily traffic volume (representing the genuine volume)
is consistently present throughout both peak and non-peak
cycles. Figure 2 illustrate this technique: the green lines rep-
resent the normal traffic volume. Our labeling method was
reviewed several times, and eventually endorsed by data ex-
perts and security engineers from the service provider. Upon
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Figure 2: Web client attacks (top) and native client attacks (bottom) in the selected four countries during 3 months, respectively.
Blue line, green line, and orange line represent daily total SMS volume, genuine volume, and attack volume, respectively.

completion of the full labeling process, we identified a to-
tal of 2,182,994 attack (732,996 genuine) samples from the
web traffic, and 2,764,105 attack (3,763,451 genuine) samples
from the native traffic. Bangladesh (36%), Ukraine (14%),
and Pakistan (10%) comprise the largest attack sets in the
web traffic. Indonesia (35%), Niger (13%), and Zimbabwe
(12%) are three countries associated with the largest native
attack traffic (see Table 8 in Appendix A).

A large peak attack cycle found in Sri Lanka (see Figure 2
(a)), for example, lasted 5 days and submitted 85,002 requests,
while exploiting 2,611 fake phone numbers and 3,057 bot
accounts during the process. The last peak cycle in Indonesia
(see Figure 2 (b)) lasted for 3 days and submitted 283,157
SMS requests through the native client – 168,346 fake phone
numbers and 231,796 fake IMEIs were exploited during the
attack. Shorter cycles were found too: for example, a peak
cycle in Sudan summitted 38,459 requests in a single day.

5 Feature Exploration

We identify representative AIT attack techniques based on
the labeled data, and explain how this information can be
translated into effective ML features. We distinguish features
included in preliminary models and those exclusively avail-
able to optimized (final) models: preliminary models serve
as initial baseline systems, which comprise features carefully
constructed based on publicly accessible knowledge.

5.1 Known Attack Characteristics
SMS aggregators and security companies have posted blogs
describing common AIT attack characteristics and simple
detection rules that could be applied [21, 22]. Although im-
plementation details are missing, commonly highlighted rec-

ommendations are clear, and involve the adoption of authenti-
cation rate limit policies, identifying heavily used accounts,
devices, or IPs, and monitoring short-term traffic bursts and
extreme drops in conversion rates. Several blogs [10, 14] also
identify sequential numbering patterns that are commonly
used to generate fake phone numbers, and suggest checking
for similarities between phone numbers.

Implementing some of those suggested techniques are
straightforward: to monitor heavy reuse, we explored
user-sms-count and ph-sms-count features which simply
count the number of requests submitted for a given user ac-
count or phone number within the last 24 hours (a time win-
dow fixed based on numerous optimization experiments), and
included those features in the initial preliminary model. To
characterize short-term traffic outbursts and programmatic
re-submissions, we experimented with several statistical fea-
tures: user-diff-avg selects all SMS authentication re-
quests submitted by a given user within the last 24 hours,
computes the time difference between all two consecutive
request pairs, and records the average of those time difference
values; user-time-diff-std records standard deviation
about the average. Similarly, ph-diff-avg, ph-diff-std,
imei-diff-avg, imei-diff-std features record the time
difference average and standard deviation computed based
on phone number and IMEI as the grouping information.
Note, the user-specific features are only applicable to the web
channel model due to missing information in the logs (see
Section 4.2); likewise, the IMEI-specific features are solely
applicable to the native channel model. These time-difference
based statistical features are also included in the preliminary
model. To characterize significant reductions in conversion
rates we also explored user-conv-rate, ph-conv-rate,
and imei-conv-rate features as part of the preliminary
model, which measure the proportion of successfully vali-



dated requests in the last 24 hours for a given user account,
phone number, and IMEI number, respectively. We refer to
above features as “multi-event” features.

Identification of sequential numbering patterns in phone
numbers, however, is less trivial. A significant portion of
observed attacks submit just one request before switching
trackable information – it would be infeasible to measure sim-
ilarity between numbers in this scenario. One might consider
measuring similarity against an entire SMS traffic of a given
country based on a lengthy time window but such techniques
would require a few hundreds if not thousands of similarity
scores to be computed per request – this level of computa-
tional complexity sits uneasily with the latency expectations
(see Section 2.2).

Counting the recurrence of “phone number prefix” is an-
other viable solution. But exactly how and when prefix recur-
rences should be counted, and how those prefix count values
should be used during run-time inspection are non-trivial ques-
tions that remain unanswered. We propose a novel feature
engineering technique that first extracts the prefix value from
a given phone number (request being inspected), counts the
recurrence of that prefix from an entire 24 hour traffic of a tar-
get country, and appends this count value, ph-prefix-count,
as one of many ML features while constructing the feature
vector. The key advantages are (a) only the prefix associated
with the inspected phone number is counted, and (b) multiple
features are used collectively to reduce false positives.

Due to the AIT attack behaviors diverging slightly, and
the disparities in the type of information being collected (or
missing in the logs) between the two channels, we analyze the
attack characteristics associated with each channel separately.

5.2 Web Channel Attack Characteristics

About 73% of the web-channel attacks submitted four or less
requests in the 24 hour time window. The multi-event fea-
tures, designed to detect frequent re-submissions, will not be
effective in detecting the first or second attempts (due to lack
of historical information). Understanding this limitation, we
shift our focus to inspecting country-wide suspicious traffic or
additional side-channel information related to single events.

Short-Lived Email Services (Web-Short-Email). We
identified a common technique from the web traffic that ex-
ploits short-lived temporary email services (mostly disposable
email services) to facilitate rapid and bulk generation of func-
tioning emails, and registration of bot accounts. About 31% of
web-channel attacks use bot accounts registered using emails
created through such temporary services, which are relatively
new, and thus their first appearance date (in the SMS logs)
should be recent. Our em-domain-sms-diff single-event
feature is designed to flag the use of such temporary email
services: we compute the difference between the SMS request
timestamp and the email domain first-appearance timestamp.
Benign accounts are typically associated with well established

email services like “gmail” or “hotmail,” and the time differ-
ence value will be in the several years range. Conversely, bot
accounts will report a much shorter value – often in the range
of several days or weeks.

Dominant Email Services (Web-Dominant-Email). We
also observed a widely contrasting attack trend: about 47%
of attacks associated with bot accounts were registered using
well-established email services such as “gmail.com,” “out-
look.com,” or “yahoo.com.” Hence, such attempts cannot be
detected using the em-domain-sms-diff feature. To timely
detect this campaign, we propose a novel country-wide fea-
ture that monitors the daily usage rate of well-known email
domains, and flags any suspicious traffic elevations. Our
em-domain-prop-change feature computes the proportion
of SMS traffic initiated by a given email domain in the last
24-hour traffic of a target country, and subtracts the baseline
value (pre-computed based on normal daily traffic) from this
computed value to measure the change.

Phone Number Prefix Reuse (Web-Phone-Prefix). An-
other attack technique exploits a large list of unverified
phone numbers, and accounts for about 42% of the web
attacks. To detect the root attack behavior, we employed
the ph-prefix-count feature described in Section 5.1. Our
country-wide fake phone number pattern investigation re-
vealed that attackers typically keep the first 4–6 digits (which
often represent state or telco) the same [4], and change just the
last 4–5 digits to generate bulk numbers. Taking advantage of
such constraints impeding attackers, we removed the last four
digits from a given number, and used the remaining digits
as the prefix. Same (reused) phone numbers contributed just
once upon counting the recurrence of a prefix value.

Successful Validation (Web-Validation). Surprisingly,
in three countries, Azerbaijan, Ukraine, and Uzbekistan, we
observed a significant portion of attacks (about 82%) that
successfully validated authentication requests – we sur-
mise this attack was designed to bypass rate limit poli-
cies and conversion-rate monitoring rules. Similar to the
Web-Phone-Prefix campaign, however, the majority of ex-
ploited bot accounts were registered with small number
of well-known email domains (99%), and programmed to
switch between fake phone numbers (estimated to be about
43%). To that end, we expect the two country-wide features,
em-domain-prop-change and ph-prefix-count, to be ef-
fective in detecting this attack campaign.

Feature distribution differences between attack samples
and genuine samples are depicted in Figure 3 in Appendix B.

5.3 Native Channel Attack Characteristics

Native channel attacks were further scattered: in most cases
(96%) bots submitted just one or two requests before switch-
ing IMEI numbers or phone numbers.

Phone Number Prefix Reuse (Native-Phone-Prefix).
Phone number prefix reuse behaviors were more prevalent



in native channel attacks. About 91% of the native attack
samples recorded ph-prefix-count values greater than 30,
while 99.9% of the genuine samples recorded values less than
10 (see Figure 3 in Appendix B). This warrants for an exten-
sive use of the same ph-prefix-count feature. In the opti-
mized native model, we also added ph-prefix-conv-rate,
which measures the conversion rate for a given phone prefix
value within the last 24 hours – country-wide conversion rate
features were designed to exploit the fact that native attacks
typically do not complete validation.

IMEI Prefix Reuse (Native-IMEI-Prefix). We observed a
similar technique in the context of IMEI numbers, in which
attackers generated bulk unverified IMEI numbers associ-
ated with a single mobile device model (see Figure 3 in Ap-
pendix B), and programmed bots to use a different IMEI after
submitting just one or two requests. Impressively, those fake
IMEI numbers typically conformed to the valid IMEI format,
allowing them to bypass various IMEI validity checkers. In-
depth analysis of the IMEI patterns revealed that attackers
often change just the last 7 digits – this is because the first
8 digits of an IMEI number represent the “type allocation
code”, which are preset values and cannot be changed, and
the next 7 digits consist of 6-digit serial numbers and one
check digit [3], leaving just the last 7 digits for possible ma-
nipulation. Hence, we simply excluded the last 7 digits to
identify an IMEI prefix value. An IMEI prefix count feature,
however, showed marginal impact in improving performance
due to being strongly correlated to ph-prefix-count values.
In a continued attempt to take advantage of this prefix reuse
behavior, we explored imei-prefix-sms-prop, which mea-
sures the proportion of requests submitted by a given IMEI
prefix in the 24-hour traffic volume recorded from a given
target country. Having noticed that a large chunk of IMEI
numbers were generated through a fixed device configura-
tion (model, OS, and client version), we also examined the
effectiveness of adding a device-sms-prop feature, which
measures the proportion of traffic initiated by a given device
configuration in the 24-hour traffic of a target country. This
feature was particularly useful in lowering FPRs. We also
added device-conv-rate to the final model to measure the
country-wide conversion rate for a given device model.

Old Native Clients (Native-Old-Client). About 65% of
native channel attacks were performed on earlier device mod-
els that are at least 6 years old, or using outdated OS or client
versions that are at least 4 years old. Conversely, most of the
genuine traffic were initiated through latest configurations:
only 18% were using earlier models or outdated software ver-
sions. To identify those behaviors, we explored three novel
single-event features, device-sms-diff, os-sms-diff, and
client-sms-diff, which measure the time difference be-
tween the current request timestamp and released date of the
given device model, OS version, and client version, respec-
tively. We had access to released date lookup tables. Con-
sidering deployment, however, those dates can be roughly

estimated by using their first log appearance dates.

5.4 Web Model Features
The preliminary model, which has been designed based on
the well-known attack trends (see Section 5.1), includes
all multi-event features as well as the novel country-wide
ph-prefix-count feature – consisting of 10 features in total.
The final optimized model uses 8 additional features, includ-
ing all new single-event and country-wide features described
in Section 5.2. We explain all 18 features in detail through
Table 1. The optimized model also uses five new single-
event features – service-id, sms-cost, join-channel,
is-same-country, and have-trusted-device – to capture
information about certain authentication services being ex-
ploited more during attacks, country-specific SMS pricing
rates, whether users registered their accounts through a web
or native client (bot accounts are typically registered through
web), whether the account registration country matches the
SMS target country, and whether a user has previously added
a trusted device to skip two-factor authentication. Marking a
device trusted likely resembles a genuine user behavior. We
measured the feature importance scores using the “mean de-
crease in PRAUC accuracy” method while training the final
optimized model, and sorted the list in Table 1 based on on
their importance ranks.

5.5 Native Model Features
The native preliminary model comprises the same set of fea-
tures as the web version except the IMEI-specific multi-event
features replace user-specific features. Along with the new
features described in Section 5.3, we added is-ph-verified
to the optimized native model, which is a single-event feature
that checks whether the ownership of a given phone number
has been verified before. We presume legitimate users would
use phone numbers that have been verified at least once in
the past. The final model comprises 13 features, which are
explained in Table 2.

6 Evaluation

In this section we report the attack detection (recall) rates
for the two channels (web and native) measured based on
the validation set and test set, and compare the performance
between the preliminary and optimized model versions.

6.1 Software and Hardware Used
We evaluated the system detection accuracy and latency us-
ing a server machine equipped with Intel Xeon Platinum
8173M CPU 2.00 GHz (4 cores), 24GB of RAM, and an
NVIDIA Tesla T4 GPU card. We trained GBT classifiers us-
ing “Tensorflow 2.13.1” and “TensorFlow Decision Forests



Table 1: A summary of the optimized Web model ML features – sorted based on the feature importance score (“Imp. Score”). All
multi-event and country-wide features are computed using a time window of 24 hours unless otherwise specified. The feature
importance scores are measured using the “mean decrease in PRAUC (area under precision-recall curve)” method.

Imp. Score Feature Type Feature Computation Logic
0.0141 Single-event em-domain-sms-diff Time difference between SMS request date and email domain first appearance date (converted to days)
0.0036 Country-wide ph-prefix-count # distinct phone numbers with the same prefix value extracted from a given phone number
0.0031 Country-wide em-domain-prop-change SMS volume proportion from a given domain − SMS volume proportion from a given domain normal traffic
0.0024 Single-event service-id Source of SMS request
0.0009 Single-event sms-cost SMS billing rate for a given country
0.0001 Single-event join-channel Channel used during initial account registration (mobile or web)
0.0001 Multi-event user-sms-count # SMS from a given user
0.0001 Single-event is-same-country SMS target country and GeoIP country are the same (0 or 1)
0.0000 Single-event have-trusted-device User has marked at least one device as trusted (0 or 1)
0.0000 Multi-event user-diff-std Standard deviation of time difference values computed between all consecutive pair of events selected for a given user
0.0000 Multi-event user-conv-rate Successful authentication validation rate for a given user
0.0000 Multi-event ph-user-count # users associated with a given phone number
0.0000 Multi-event user-ph-count # phone numbers used by a given user
0.0000 Multi-event ph-conv-rate Successful authentication validation rate for a given phone number
0.0000 Multi-event ph-diff-avg Average of time difference values computed between all consecutive pair of events selected for a given phone number
0.0000 Multi-event user-diff-avg Average of time difference values computed between all consecutive pair of events selected for a given user
0.0000 Multi-event ph-diff-std Standard deviation of time difference values computed between all consecutive pair of events selected for a given phone number
0.0000 Multi-event ph-sms-count # SMS from given phone number

Table 2: A summary of the optimized native model ML features – sorted based on the feature importance score (“Imp. Score”).
All multi-event and country-wide features are computed using a time window of 24 hours unless otherwise specified.

Imp. Score Feature Type Feature Computation Logic
0.0377 Country-wide ph-prefix-count # distinct phone numbers with same prefix value extracted from a given phone number
0.0290 Single-event is-ph-verified Given phone number was previously verified (0 or 1)
0.0223 Single-event sms-cost SMS billing rate for a given country
0.0162 Single-event os-sms-diff Time difference between SMS request date and OS version released date
0.0052 Single-event client-sms-diff Time difference between SMS request date and native client application version released date
0.0043 Multi-event ph-conv-rate Successful authentication validation rate for a given phone number
0.0033 Country-wide imei-prefix-conv-rate Successful authentication validation rate for a given IMEI prefix
0.0027 Country-wide device-sms-prop SMS volume proportion from a given device model in a given country
0.0019 Country-wide device-conv-rate Successful authentication validation rate for a given device model
0.0016 Country-wide imei-prefix-sms-prop SMS volume proportion from a given IMEI prefix in a given country
0.0011 Country-wide ph-prefix-conv-rate Successful authentication validation rate for a given phone number prefix
0.0008 Single-event device-sms-diff Time difference between SMS request date and device model released date
0.0004 Multi-event imei-conv-rate Successful authentication validation rate for a given IMEI

1.5.0” libraries in Python, and used relational database and
SQL queries to access raw data.

6.2 Dataset and Evaluation Methodology
We divided the three-month dataset into three separate sets:
a train set comprising the first two month logs, a validation
set comprising the first 15 days of logs from the third month,
and a test set comprising the remaining samples. We selected
a total of 1,690,953 attack samples and 497,917 genuine sam-
ples to train the web model. The native model was trained
using 750,420 attack samples and 2,509,922 genuine samples.
The details on train set by country are found in Table 9 in Ap-
pendix A. We explored several sampling methods to construct
a more attack-to-genuine balanced train set (e.g., about 50%
from each class) but our validation experiments revealed that
using all available samples tend to produce superior results –
this is probably because the degree of class imbalance is not
substantially high [2]. The validation set was used extensively
to optimize individual feature performance, and finalize the
feature vectors presented in Sections 5.4 and 5.5. We report
the validation set performance in the next section. The two
optimized versions were used to measure the final false pos-
itive rates (FPRs) and true positive rates (TPRs) on the test

set. This final test set consists of 250,240 attack samples and
116,392 genuine samples from the web traffic, and 840,006
attack samples and 664,853 genuine samples associated with
the native traffic.

6.3 Validation Set Performance
We measured validation set performance for the web and na-
tive models based on two different thresholds (0.8 vs. 0.9) and
two model versions (preliminary vs. optimized). We chose
two FPR-favoring thresholds based on the guidelines stated
in Section 2.2. Validation set TPRs and FPRs are summarized
in Tables 3 (web) and 4 (native).

Preliminary vs. optimized. The optimized web model
demonstrated superiority in both metrics: overall TPR in-
creased by 3.2 percentage points while FPR recorded 1.0 point
reduction under 0.9 threshold. Attacks in Bangladesh heav-
ily exploited Web-Short-Email and Web-Phone-Prefix tech-
niques – since ph-prefix-count is available in both models,
we surmise em-domain-sms-diff was primarily responsible
for detecting additional attacks in the optimized model. Re-
garding Azerbaijan, em-domain-prop-change was the main
reason for 12.4 percentage point elevation in TPR. Several
individual FPRs showed immense improvements: Bangladesh



and Azerbaijan, in particular, recorded 11.80 and 2.43 per-
centage point reductions in FPR. We observed similar trends
with the optimized native model and 0.9 threshold. FPR ben-
efits were clear, albeit minor TPR losses: Kuwait, Lesotho,
and Niger reported 8.31, 8.46, and 5.35 reductions in FPRs,
respectively, based on the optimized model.

Threshold effects. The adoption of 0.9 threshold on the op-
timized web model led to about 1.1 percentage point reduction
in TPR (compared to 0.8 threshold), yet individual FPR en-
hancements were significant: 0.47, 0.24, 0.53 percentage point
reductions in FPRs were reported in Ukraine, Bangladesh, and
Azerbaijan, respectively. Similar effects were observed from
the optimized native model: 4.50, 1.58, and 5.60 FPR reduc-
tions were reported in Niger, Sudan, and Kuwait, respectively.

Web vs. native models. With respect to the optimized
models and 0.9 threshold adoption, FPRs were less than 0.2%
in both models. Native model reported higher TPR (96.1%
vs. 91.2%) – we attribute this to more consistent combination
of attack techniques being employed in the native attack set
(“N1, N2, N3”) across countries.

Low TPR cases. The optimized web model still reported
noticeably low TPR for Ukraine (65.9%): the TPR mea-
sured based on the first 7 days was 82.3% but fell sharply
to 50.7% when the last 8 days of attack traffic was used.
We attribute this change to divergence in the two key
feature distributions: the proportion of first 7-day traffic
with em-domain-prop-change greater than 0.2 was about
81% but fell immensely to 51% under the last 8-day traf-
fic; likewise, the proportion of the first 7-day traffic with
ph-prefix-count greater than 30 was 65%, which fell to
just 32% among the last 8-day traffic. In Section 6.7, we in-
vestigate the effects of retraining models (with latest data) on
stabilizing performance.

High FPR cases. High FPR cases were found in Uzbek-
istan (2.1%) and Kuwait (2.3%) from the web and native
traffic, respectively. Both FPRs are significantly higher than
the average. However, all false positives recorded in those two
countries incurred during short peak cycles – hence, we ex-
pect most user experience issues (genuine users being denied
access) to be temporary, and disappear shortly after a day or
two, e.g., when an associated phone prefix or email domain is
no longer being heavily exploited by an attack. In the case of
Kuwait (native), all 260 false positives were associated with
ph-prefix-count values greater than 90 (suspicious) and
only 5 of them recorded conversion rates greater than zero
(genuine-like behavior) – implying that a significant portion
may actually represent true positives (mislabeled samples),
and a very small number of actual false positives may occur
when benign users coincidentally use attackers’ prefix val-
ues or device model during peak attack cycles. Similarly, in
the case of web traffic, all false positives in Uzbekistan were
found as part of peak cycles, heavily reusing phone prefix
values. Among them, 21.6% of false positives simultaneously
exploited short-lived email services. Such adversarial charac-

teristics indicate that those samples may also represent true
positives.

6.4 Test Set Performance

To emphasize the performance superiority of the optimized
model, we compare the test set probability score distribu-
tions between the two models (preliminary vs. optimized)
in Appendix C. In this section, we report the final test set
performance based on the two optimized models.

Threshold effects. The optimized web model under 0.9
threshold reported about 3.8 times improvement in FPR (com-
pared to 0.8) while compromising about 2.5 percentage points
in TPR. With respect to the optimized native model, two
thresholds led to insignificant differences in both TPRs and
FPRs. Considering the tight FPR constraints (see Section 2.2),
our recommendation is to use 0.9 threshold for both models.

Web vs. native models. The two optimized models re-
ported similar TPRs and FPRs under the 0.9 threshold, demon-
strating their robustness to the test set settings. F1-scores for
the web and native models were 95.27 and 95.06, respectively,
and precision were 99.92 and 99.95. The web model achieved
competitive TPRs in all countries with at least one highly
visible peak cycle (top five countries in the table) – all recall
rates exceeding 80%. The bottom four countries were associ-
ated with minor non-peak traffic (few hundred samples), and
we are not too concerned about their low TPRs. The native
model reported above 90% TPRs in all countries except for
Indonesia (86.5%) and Sudan (77.1%) – as we learned from
the validation experiment, those two countries have tendency
to perform slightly worse. Attack samples from Zambia, Peru,
and Lesotho are associated with small off-peak traffic.

FPR requirements. 0.19% FPR associated with the web
model translates to just 221 false positives and 0.11% FPR
associated with the native model translates to 731 false posi-
tives – the total false positives added from both channels (952)
would satisfy the “about 1,000 false positives” requirement.

Low TPR cases. In the case of the native traffic, we rec-
ognized one country with low TPR: Sudan (77.1%). In-depth
analysis of attack samples with scores less than 0.9 (thresh-
old) revealed that the majority (86%) is associated with much
smaller yet stealthy daily traffic volumes. About 21% of the
IMEIs and phone numbers used during this suspicious time
span were also found active in previous peak cycles, adding
confidence that this stealthy volume may indeed represent true
positives in real-world settings. These attacks seem extremely
scattered though – submitting just one request per IMEI or
phone number. Heavy prefix reuse patterns were missing,
rendering all country-wide features ineffective against them.
Overall traffic volumes initiated by such attack campaigns,
however, were small: 9,390 samples in Sudan in the course
of two weeks.

High FPR cases. We found a slightly elevated FPR regard-
ing the native traffic in Libya (1.3%). In contrary to what we



Table 3: Web-model TPRs and FPRs measured using the validation set and two threshold values (0.9 and 0.8), and reported
separately for the preliminary and optimized model (presented as column headers). W1, W2, W3, and W4 represent “Web-
Short-Email”, “Web-Dominant-Email”, “Web-Phone-Prefix”, and “Web-Validation” attack techniques, respectively. “Not-peak”
indicates small number of attack samples belonging to off-peak traffic. Countries are sorted based on attack set size. ∆ represents
changes in TPR/FPR compared to corresponding (same threshold) preliminary model performance.

Preliminary Optimized

Country Attack # SMS requests thr=0.9 thr=0.8 thr=0.9 thr=0.8
Techniques Attack Genuine TPR(%) FPR(%) TPR(%) FPR(%) TPR(%) FPR(%) TPR(%) FPR(%)

Sri Lanka W2,W3 85,018 3,525 99.76 0.00 99.77 0.00 99.77 0.00 99.78 0.00
Ukraine W2,W3,W4 48,127 6,629 66.59 0.09 70.85 0.36 65.89 0.47 68.75 0.94
Bangladesh W1,W3 41,528 9,493 83.50 11.85 83.66 12.87 96.25 0.05 96.45 0.29
Libya W2,W3 38,347 870 99.62 0.00 99.62 0.00 99.75 0.11 99.76 0.23
Azerbaijan W2,W3,W4 21,929 1,521 76.76 2.56 76.95 2.96 89.19 0.13 93.81 0.66
Uzbekistan W2,W3,W4 6,024 3,513 99.10 2.08 99.30 2.13 99.54 2.13 99.65 2.13
Russia Not-peak 351 57,274 13.96 0.09 20.23 0.23 28.49 0.04 41.60 0.05
Pakistan Not-peak 237 17,474 19.41 0.19 22.36 0.33 14.77 0.02 16.46 0.02
Nigeria Not-peak 126 11,171 20.63 0.00 42.06 0.03 17.46 0.00 21.43 0.01
Morocco Not-peak 114 7,217 0.88 0.24 1.75 0.86 0.88 0.00 0.88 0.01
Total 241,801 118,687 87.95 1.13 88.87 1.36 91.18 (∆ +3.23) 0.12 (∆ -1.01) 92.23 (∆ +3.36) 0.18 (∆ -1.18)

Table 4: Native-model TPRs and FPRs measured using the validation set and two threshold values (0.9 and 0.8), and reported
separately for the preliminary and optimized model (presented as column headers). N1, N2, and N3 represent “Native-Phone-
Prefix”, “Native-IMEI-Prefix”, and “Native-Old-Client” attack techniques, respectively. Sorted based on attack set size.

Preliminary Optimized

Country Attack # SMS requests thr=0.9 thr=0.8 thr=0.9 thr=0.8
Techniques Attack Genuine TPR(%) FPR(%) TPR(%) FPR(%) TPR(%) FPR(%) TPR(%) FPR(%)

Zambia N1,N2,N3 197,759 9,259 99.66 0.52 99.68 0.54 99.73 0.08 99.76 0.27
Zimbabwe N1,N2,N3 188,380 12,067 99.45 0.47 99.75 0.47 99.74 0.00 99.77 0.20
Indonesia N1,N3 166,112 346,263 87.99 0.02 88.00 0.02 87.89 0.01 88.01 0.02
Niger N1,N2,N3 158,644 4,668 99.86 5.91 99.87 5.93 99.49 0.56 99.84 5.06
Ghana N1,N2,N3 140,455 27,537 98.89 0.58 98.91 0.58 98.70 0.06 98.76 0.17
Sudan N1,N2,N3 131,970 21,602 87.67 1.83 87.70 1.84 86.88 0.25 87.80 1.83
Lesotho N1,N2,N3 99,598 1,798 99.92 8.57 99.94 8.57 99.54 0.11 99.57 0.61
Kuwait N1,N2,N3 78,967 11,470 99.50 10.58 99.54 10.60 96.05 2.27 98.23 7.87
Libya N1,N2,N3 11,325 18,895 96.64 0.47 96.67 0.47 92.78 0.02 96.81 0.47
Peru Not-peak 469 135,117 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total 1,173,679 588,676 96.50 0.42 96.57 0.42 96.08 (∆ -0.42) 0.07 (∆ -0.35) 96.46 (∆ -0.11) 0.31 (∆ -0.11)

Table 5: Optimized web model TPRs and FPRs measured
using the test set and two threshold values. Countries are
sorted based on attack set size available in the test set.

Optimized

Country Attack # SMS requests thr=0.9 thr=0.8
Techniques Attack Genuine TPR(%) FPR(%) TPR(%) FPR(%)

Bangladesh W1,W3 114,498 9,334 92.02 1.00 94.76 6.57
Ukraine W2,W3,W4 67,443 6,710 85.68 0.30 88.13 0.80
Azerbaijan W2,W3,W4 34,323 1,428 81.83 0.21 85.99 0.70
Uzbekistan W2,W3,W4 23,455 3,211 98.71 1.10 98.92 1.25
Morocco W2,W3,W4 9,869 6,720 96.99 0.16 97.19 0.52
Russia Not-peak 363 59,317 20.11 0.06 27.27 0.11
Pakistan Not-peak 235 15,685 20.85 0.11 22.98 0.17
Nigeria Not-peak 50 9,936 14.00 0.00 16.00 0.01
Sri Lanka Not-peak 4 3,318 0.00 0.00 0.00 0.00
Libya Not-peak 0 733 0.00 0.00 0.00 0.00
Total 250,240 116,392 89.55 0.19 92.07 0.73

observed from the validation case studies, however, all false
positives in Libya were found from non-peak traffic. Similarly,
about 89% of false positives found in Indonesia – where the
genuine set size is by far the largest among all countries – were
also associated with non-peak traffic. Our deep-dive analysis
of such samples revealed that they may represent mis-labeled
cases: we identified numerous attack-like feature distributions
(e.g., large ph-prefix-count and imei-prefix-sms-prop
values), and no previous history of phone number verification,
which strongly indicate that they may have been mis-labeled
as negative samples simply because our labeling algorithm
disregards non-peak traffic. Another piece of evidence that

Table 6: Optimized native model TPRs and FPRs measured
using the test set and two threshold values. Countries are
sorted based on attack set size available in the test set.

Optimized

Country Attack # SMS requests thr=0.9 thr=0.8
Techniques Attack Genuine TPR(%) FPR(%) TPR(%) FPR(%)

Indonesia N1,N2 284,708 402,072 86.52 0.10 86.61 0.13
Niger N1,N2 200,412 4,653 98.30 0.52 98.31 0.52
Kuwait N1,N2 159,558 10,540 94.99 0.01 95.05 0.02
Zimbabwe N1,N2 132,128 14,096 90.76 0.00 90.89 0.00
Sudan N1,N2 47,849 30,373 77.14 0.02 77.16 0.02
Ghana N1,N2 13,602 26,957 94.82 0.01 95.24 0.01
Zambia Not-peak 927 9,302 50.59 0.00 53.83 0.00
Peru Not-peak 516 143,292 0.00 0.00 0.00 0.00
Lesotho N1 298 1,814 81.54 0.00 81.54 0.00
Libya Not-peak 8 21,754 0.00 1.32 0.00 1.42
Total 840,006 664,853 91.11 0.11 91.19 0.13

confirms this hypothesis is their specific device configuration,
which was also identified as a heavily exploited configuration
in the previous Niger attack. We argue that those mis-labeled
samples would represent true positives in real-world settings,
and would be correctly classified by our system as attacks. In
the case of the web traffic, 86% of the false positives reported
from Bangladesh and Uzbekistan were part of peak attack cy-
cles. About 62% of those samples (in peaks) were associated
with repeated use of “add a new number” or “password reset”
services (service-id), which are both adversarial behaviors.
Again, such bulk false positives may represent mis-labeled
cases.



Window size evaluation. To validate the suitability of us-
ing 24-hour time windows, we experimented with 1, 12, 24,
and 48 hour time windows for computing features, and com-
pared performance on the test set. A 24-hour time window,
for example, implies that we would use all traffic available
during the last 24 hours, starting from the current timestamp.
TPRs (and FPRs) reported based on those four window sizes
were 58.9% (0.20%), 66.2% (0.21%), 91.2% (0.12%), and
86.1% (0.14%) for the web model, and 38.2% (0.05%), 27.6%
(0.00%), 96.1% (0.07%), and 91.1% (0.09%) for the native
model – showing peak performance with 24-hour windows.

Generalization. To demonstrate generalizability of the two
models, we removed two countries with the largest number
of test attack samples from the train set, trained new models,
and measured performance on those two “unknown” coun-
tries. From the web train set, we removed Bangladesh and
Ukraine, trained a model, and measured performance on those
two countries: 98.0% TPR and 0.57% FPR. Likewise, we re-
moved Indonesia and Niger from the native train set, and
measured their performance: 91.0% TPR and 0.04% FPR.
We surmise attacks in unknown countries are effectively mit-
igated because identified “attack techniques” (see Tables 5
and 6) are commonly employed across multiple countries.
To measure train set size dependencies, we trained the two
models using just the second month (September) data, and
evaluated performance based on the test set: the web model
reported 90.5% TPR (0.31% FPR), and the native model re-
ported 91.2% TPR (0.11% FPR), demonstrating robustness
to reduced train set sizes.

6.5 Robustness to Evasion Attacks
To measure the two models’ robustness to evasive feature
manipulations we first outline the following assumptions:

1. Attackers will try to manipulate as many features as
possible (use values close to genuine distributions) yet
still generate heavy peak volumes to maintain profit.

2. To maintain similar peak volumes and cycle duration,
attackers will not be able to drastically downsize country-
wide (country-level volume monitoring) features.

3. Almost all native attacks use inoperative phone numbers –
implying native conversion rate and verification features
cannot be manipulated without dramatically increasing
costs (purchasing tens of thousands of phone numbers).

Based on those assumptions, we constructed cost-efficient
yet comparably pervasive attack sets by first selecting all gen-
uine samples from the test set (attackers replicating benign
behaviors), and replacing all country-wide features with val-
ues that represent 50, 40, 30, 20, and 10th percentile in the
test attack set. We then measured web and native model de-
tection rates based on those sets. As summarized in Table

10 (see Appendix D.1), the web model showed robustness to
evasive settings that use the 40th percentile country-wide val-
ues; weaknesses were spotted, however, when 30th percentile
values were used, allowing about 51% of attacks to bypass the
system. The web model broke when 20th percentile values
were used (4.1% TPR). Such downsized attacks, however,
appear infeasible: to generate similar level of short-lived peak
volumes – we assume attackers’ target would be around me-
dian values – attackers would have to acquire about 48 times
more valid phone prefix values (336 vs. 7), and create bulk
bot accounts on 6 more email domains (70.3% vs. 12.5%).
On average, about 2,658 unique phone prefix values were ex-
ploited in each peak cycle. Considering that phone numbers
(used in the web countries) are typically 9-10 digits long, and
the first 2-3 digits are fixed for mobile carriers or area codes,
attackers are left with just 2-4 digits to freely exploit phone
prefix values. Hence, acquiring 48 times more prefix values
seems impractical. Conversely, the native model maintained
robustness across all five evasive settings. We attribute this to
abnormally high phone prefix count values (260) and SMS
proportions (30%) found even at the 10th percentile positions.

To construct more resilient web models, we applied the
identical evasive set generation technique to the train set, and
transformed genuine train samples into attack samples based
on the country-wide feature values selected at five different
percentile positions. Based on five different combination of
train sets (evasive set plus original train set), we trained five
separate models, and measured their performance on the orig-
inal test set as well as the evasive test set. As shown in Table
11 (see Appendix D.1), a new model trained with an evasive
set representing 30th percentile values reported 82.0% TPR
(0.15% FPR) on the test set constructed using 30th percentile
values, demonstrating the effectiveness of adding evasive sam-
ples in the train set. This same model reported 45.7% TPR
(0.15% FPR) on the attack set constructed using 20th per-
centile values – low ROIs (54.3% success rate) would likely
discourage attackers from initiating such expensive attacks.
Importantly, all five models reported consistently high TPRs
and low FPRs on the original test sets. We also experimented
with an extremely expensive native setting that involves at-
tackers purchasing tens of thousands of new phones and vali-
dating all SMS requests: even in this setting, the same training
technique was effective in lowering attack success rates to
just 25% (see Appendix D.2).

6.6 Model Size and Overheads

We measured the model complexity, model training time, and
attack inference time for the optimized web and native models.
The web model is 7.6 megabytes in size, and contains 200
trees and 121,628 nodes. The native model with less number
of features is even lighter, consisting of 200 trees and 6,170
nodes; it is just half a megabyte in size. It only took 617 and
326 seconds to train the two models, respectively.



Table 7: TPRs and FPRs of original (“No retraining”) model,
and the three different retraining strategies: models are trained
every 3, 5, and 10 days.

Channel No retraining 10-day retraining 5-day retraining 3-day retraining
TPR(%) FPR(%) TPR(%) FPR(%) TPR(%) FPR(%) TPR(%) FPR(%)

Web 90.35 0.15 94.69 0.15 95.36 0.18 96.30 0.18
Native 94.01 0.09 94.05 0.07 94.10 0.09 94.09 0.10

In an effort to minimize run-time model inference time,
we assumed historical SMS request logs representing the
last 24 hours of web/native traffic are pre-loaded in memory
through continuous batch execution for each of the studied 19
countries, and retrieving the last 24-hour traffic directly from
memory would take negligible query time – in the worst cases
(when the daily traffic volumes are at their global peaks),
this continuous caching job would use up about 31 (web
traffic) and 253 (native traffic) megabytes of memory. Our
inference latency measurements therefore excludes this initial
data retrieval time, and solely measures the time taken to
(a) compute all 18 (web) or 13 (native) features on a given
request log, and (b) execute the model predict function. For
each of the two models, we randomly selected 10,000 attack
samples and 10,000 genuine samples, and measured the mean
time taken to complete those two steps. The mean time taken
to predict attack samples and genuine samples using the web
model were 31.2 (σ = 11.4) and 17.0 (σ = 4.4) milliseconds,
respectively. We noticed a significant elevation in the mean
time when the native model was tested, reporting 329.4 (σ =
156.0) and 63.4 (σ = 11.7) milliseconds. We attribute this
difference to the increase in daily and peak SMS volumes.
Benign users may experience some added delays when heavy-
volume AIT attacks are being orchestrated but we argue that
such hindered experiences will be temporary as peak attacks
typically last only a few days.

6.7 Model Retraining Effects
To investigate the effects of periodically retraining models,
we merged the validation set and test set as a single test set
(comprising 30 days of test samples), and experimented with
3, 5, and 10-day retraining periods. For instance, to measure
the 3-day retraining performance, we started with the original
models and recorded inference scores using the first 3 days of
the merged test set. We then trained a new model including
the samples from those 3 days in the train set, while ensuring
proportion of the original (thoroughly validated) train set
is always 75% or more of the entire set – this proportion
starts from 100% but gradually falls to 75% as more SMS
logs become available over time. We always selected most
recent samples (latest attack trends) to make up the remaining
25%. We then computed inference scores again using the
samples from the next 3 days (4th–6th day). Consequently, we
would retrain a new model every 3 days, measure performance
based on the following 3 days of test samples, and repeat the
process until we cover the entire test set. We then report a
single TPR/FPR by combining all results. For comparison,

we also measured the baseline performance using the original
models without retraining. With respect to web models, FPRs
dropped slightly but TPRs improved significantly: 90.4% (no
retraining) vs. 96.3% with 3-day retraining (see Table 7).
Conversely, we observed insignificant changes in both FPRs
and TPRs after retraining native models. We attribute this
to already peaking validation set performance (even without
retraining), and lack of repetitive sequences of the “N1, N2”
campaigns in the test set period. Considering the fast model
training times reported in Section 6.6 and minor performance
differences between retraining frequencies, we recommend
retraining models every 10 or so days based on the original-set
retaining strategy described above.

7 Discussion

We revisit challenging case studies, and discuss real-world
false positive and false negative implications.

7.1 False Positive Implications

We found high FPR cases in several countries when the
web model was used: Uzbekistan (validation set: 2.1%, test
set: 1.1%), and Bangladesh (test set: 1.0%). 92% of those
FPR cases, however, incurred during short peak traffic cycles.
Kuwait encountered high FPR with the native model in the
validation settings (2.3%) but most of those false positives
were indeed mislabeled samples. Small portion of real false
positives, however, imply that unfortunate benign users (e.g.,
using attackers’ prefix) may experience rejections during or
shortly after peak cycles. These observations imply that the
adoption of the two models may incur small surge in FPRs
when intense AIT attacks are being performed. But we argue
that such FPRs would quickly disappear after a day or two
(near the end of peak cycles) when blocked phone/IMEI pre-
fix and email domains are no longer heavily reused. Libya
and Indonesia, under the test set settings and native traffic,
reported a different FPR trend: most of the false positives
were associated with off-peak traffic. Our FPR analysis, how-
ever, revealed that they were all mislabeled samples; such
cases would represent off-peak true positives in real-world
settings, and would not affect usability. Nevertheless, we en-
courage service providers to adopt fallback methods (e.g.,
mobile authenticator app), and allow users to log in through
other second-factor methods in case SMS continues to fail.

7.2 False Negative Implications

Ukraine reported noticeably high TPR (65.9%) with the op-
timized web model under the validation settings – Web-
Dominant-Email, Web-Phone-Prefix, and Web-Validation
techniques were employed in a mixed fashion, making it a
very challenging attack campaign to detect. Our fine-grained



TPR analysis revealed that the performance changes signif-
icantly between the first 7-day traffic (82.3%) and the last
8-day traffic (50.7%) due to high variability in attack con-
figurations and feature distributions. Our preliminary model
retraining experiment demonstrated that including the latest
dataset (such that would be retrieved through the Feature
store in Figure 1) in the train set can be effective in improving
robustness to feature distribution variability, and improving
overall performance. We leave investigation of model retrain-
ing effects to future work.

In the case of the native model, we found one specific
case from the test set with low TPRs: Sudan (77.1%). Al-
though the attack samples came from what our algorithms
identified as “peak” traffic, all samples scored less than 0.9
(false negatives) were associated with low-profile peak cy-
cles comprising just 9,390 samples during that time span
– in consequence, our country-wide features, which rely on
rapid accumulation of prefix counts over 24 hours, became
mostly ineffective. We argue that the real-world impact of
such stealthy attack campaigns would be somewhat limited
because of their significantly downsized traffic volumes.

Through those case studies, we learned about covertly exe-
cuted attacks designed to accumulate long-term profit. As part
of future work, we plan to identify and characterize attack
campaigns that may be prevalent outside peak cycles, and
explore features based on more extensive time windows (e.g.,
several days or weeks) to build a system for detecting more
stealthy attack campaigns.

7.3 Limitations

Despite the fact that our labeling method (see Section 4.3) was
designed to primarily inspect peak traffic (periods with very
high probability of AIT attacks) and minimize false positives
in other non-peak cycles, our individual within-peak labeling
rules may still introduce small portion of false positives –
this is because genuine users may also try to perform SMS
authentication during peak cycles, and may have accidentally
entered incorrect one-time codes several times or may have
been trying to access an application that was also dominantly
being exploited by an attack campaign. Such samples would
have been labeled as positive samples too, and may translate
to false positives in real-world settings (if our model rejects
them). However, it was our design decision to optimize attack
sample labeling rates within the identified peak (attack likely)
cycles, and achieve uppermost performance in detecting large-
volume peak attacks, while minimizing false positives in all
other non-peak (normal traffic) time spans. If there is a strong
need to further improve labeling accuracy within peak traffic
cycles, one may try to seek additional evidence (e.g., service
usage history) that indicates benign user behavior, and update
labels.

Questions about generalization – applying the system to
other unstudied countries – remain mostly unanswered. Our

preliminary experiments, however, demonstrated robust per-
formance on unknown countries which have been removed
from the train set (see Section 6.4). We attribute this trend
to the similarities in the AIT attack techniques that are com-
monly employed across multiple countries.

Our test results reported low TPRs on non-peak attacks. To
gauge the severity of this system weakness, we measured
rough sizes of non-peak attacks by selecting accounts or
IMEIs that were used to submit more than 20 requests on
a given day, and counted associated samples from all off-
peak traffic: their volumes were only about 0.35% (web) and
0.02% (native) of peak attack volumes, however, implying
low overall severity.

The two models are robust to evasive attacks that try to mod-
erately downsize country-wide feature values. More sparse
manipulations would yield about 51% attack success rate on
the web traffic; native model continued to show resilience.
Training a new web model after including evasive samples
in the train set, however, significantly lowered attack success
rate to 18%. We argue that low ROIs (profit vs. cost of acquir-
ing new phone numbers, devices, and email accounts) would
effectively demoralize such evasive attempts.

7.4 Real-World Deployment: Live Inspection
The proposed system would be integrated with an “Authen-
tication Server” as the first line of defense (see Figure 1),
performing live inspection on all incoming SMS authenti-
cation requests. Upon receiving a request, the “Feature Ex-
tractor” would be instructed to compute all features using
last 24-hour traffic information. SMS Logs, which contain
this history data, would be pre-loaded to the server memory
through continuous batch execution: the memory needed to
support this caching activity would be about 31 (web) and
253 (native) megabytes (see Section 6.6). This batch process
would enable fast computation, adding about 31 (web) and
329 milliseconds (native) of inference latency during peak
attack cycles. The “ML Server” takes features as input and
computes an attack probability score. The “Detector” checks
this score against a threshold (0.9), and returns the final infer-
ence result to the Authentication Server. If the inference result
indicates an AIT attack, the request is blocked; otherwise, an
one-time code would be sent to the specified phone number.
Through this live inspection system we expect about 90% of
the peak attack traffic to be blocked. Finally, request details
and inference results are logged to SMS Logs: to anonymize
PIIs, only the phone number prefix and IMEI prefix should
be stored in plaintext (to compute prefix features); distinct
occurrences can be counted using their encrypted values.

8 Related Work

This paper presents, to the best of our knowledge, the first
formal analysis of AIT attack characteristics, and the system-



atic implementation and evaluation of AIT attack detection
methods. However, we do acknowledge that there have been
open articles, albeit non-academic ones, where security prac-
titioners have shared their initial thoughts on this problem so
we first relate our work to such posts. Then below, we also
relate our work to research regarding detection methods of
malicious bot activities in three heavily researched domains:
Volumetric DDoS (Distributed Denial of Service), Malicious
Web Crawlers, and Credential Stuffing.

AIT attacks. Recent online blogs [21, 22] suggest com-
mon set of countermeasures based on well-understood tradi-
tional security practices: adopting rate limit policies, detecting
heavily-reused IPs or devices, and monitoring conversion rate
drops and incoming traffic rates are commonly explained.
Web-Phone-Prefix and Native-Phone-Prefix campaigns (see
Section 5.3), systematically characterized through our own
SMS log analysis, are also mentioned in several blogs [10, 14]:
inline with our reports, the authors identify sequential num-
ber patterns, and suggest checking similarity between phone
numbers. Implementation details, however, are absent – exact
techniques for checking similarities efficiently, and translat-
ing the results into an actual detection rule or an ML feature
remain unexplained. False positive implications are not ex-
plained. In Section 5.1, we explain the key challenges in
measuring phone number similarities, and propose a novel
country-wide feature engineering technique to efficiently cap-
ture phone prefix recurrence counts. To slow down bot activity
the authors also recommend using CAPTCHA [14, 21, 22]
but prior literature [9, 23–25] have shown that most existing
CAPTCHAs can be bypassed through automated means.

Volumetric DDoS. DDoS attacks are performed by bots
to disrupt a given target by generating traffic volumes that
exceed the allowed bandwidth of the target. Research in this
domain [6, 7, 15, 18, 27, 28, 30] employ features extracted
from packet headers, single network connections, and multi-
ple network connections. For example, a feature vector used
in [15] includes protocol, the number of packet from source
to destination, and the number of connections with the same
destination address. In the case of DDoS attacks the same
source and destination pair must be reused to some degree
to bring down a target server – in an extreme AIT attack
case, however, we found bots sending just a single request
and changing every observable information (user account, de-
vice, IP, and phone number). This thinly scattered behavior
makes it infeasible to apply traditional multi-event monitoring
techniques. In this context, our country-wide features, which
extract partial information from a given request and look for
extensive clues from a bigger traffic, provide the only known
means to timely detect scattered bot behaviors.

Malicious Web Crawler. Research in this domain [12, 13,
16, 17, 19, 26, 29] focus on bots used to automatically explore
the open web and try to exploit any new found end points. The
extensive analysis done in recent work with honeysites [16]
show that such crawler bots exhibit interesting characteristics,

and most methods proposed for their detection focus on the
differentiating behaviors they typically exhibit in their explo-
ration. Unfortunately, due to the nature of crawlers, most of
these detection methods [12, 13, 17, 19, 26, 29] assume a
certain volume of activity from a single entity (e.g. 30+ re-
quests is assumed in [13] for any meaningful crawler activity)
so they do not translate well into the extremely scattered na-
ture of AIT attacks. As such, both lines of research should be
considered orthogonal and complementary to each other.

Credential Stuffing. Bots are also often deployed for cre-
dential stuffing, online attacks designed to compromise user
accounts through remote dictionary or brute-force attacks per-
formed on web authentication servers. Though simple three
strike rules have been used to thwart these attacks in the past,
as attackers evolved to circumvent such restrictions, recent
work [8, 11, 20] have proposed methods to differentiate le-
gitimate login attempts from malicious ones. Among them,
one recent paper [11] employs relevant features: inspecting
number of unique usernames submitted, login inter-arrival
time (mean and standard deviation), and login success rates.
The first feature, inspecting system-wide count of unique user-
names, resembles some of our country-wide feature. The fun-
damental difference, however, is that their login requests are
first grouped by IP address – rendering them less applicable to
the scattered attacks studied in this paper. The intuition behind
the second (login inter-arrival times) and third (login success
rate) features are similar to our own motivations for exploring
various time-difference and conversion rate features.

9 Conclusion

To timely detect advanced AIT attacks designed to bypass
rate limit policies, we proposed traffic monitoring at three
different levels: single-event, multi-event, and country-wide
inspection. Our novel country-wide features that inspect the
proportion changes in SMS requests submitted by a given
email domain, and single-event features that check for the
use of short-lived email services are particularly effective in
detecting attacks initiated through web clients: we recorded
89.6% TPR while keeping the FPR around 0.2%. Native client
side attacks that misuse large volumes of fake phone numbers
are effectively detected using country-wide features that count
frequently reused prefix values. Further, single-event features
that identify the use of outdated devices and native clients play
a decisive role in detecting attacks that are initiated through
rooted devices. Taken together, those features are primarily
responsible for detecting 91.1% of all native attacks (at 0.1%
FPR). Under intense peak attack traffic, our system would
add about 31.2 and 329.4 milliseconds of detection latency
in the case of web and native traffic. Considering that AIT
attack detection systems (other than trivial rate limit policies
and traffic volume inspection rules) currently do not exist,
these high recall rates and extremely low FPRs are indeed
promising.



10 Ethics Considerations

Although the authors’ affiliation and the organization that
shared SMS request log dataset are independent entities, the
two are part of the same global corporate umbrella. While
confidentially receiving the dataset – i.e., the dataset never left
the corporate private and secure network – we inquired and
checked with the internal legal and privacy protection office,
and received confirmation that the conducted research and the
act of publishing statistical results comply with the terms and
conditions stated in users’ consent for data collection and use.

Specifically, the collection and use of all personally identifi-
able information (PII), including phone numbers, IMEIs, and
IP addresses, are explicitly stated in terms and conditions that
users must read and agree upon creating an account. In fact,
all log attributes disclosed in Section 4.2 (used to compute
features) are explicitly mentioned in the “what information
do we collect,” “how do we use your information,” and “how
do we keep your information secure” sections.

Before conducting the presented research, we contacted in-
ternal legal office and privacy protection office, and completed
both legal, privacy, and personal data compliance reviews with
respect to (1) collecting and storing SMS authentication re-
quest logs (including all attributes disclosed in Section 4.2)
from the studied authentication service, and (2) analyzing
those logs to develop an AIT attack detection system for both
web and native channels, and publishing statistical results and
findings.

All SMS authentication logs were encrypted and made ac-
cessible only within the organization’s secure private network
– performing two-factor authentication was mandatory to ac-
cess the data. Access to PIIs were governed with more strin-
gent policies: the authors had to request specific PII access
permissions on a daily basis (every 24 hours) to decrypt them.
Decrypted PIIs (phone numbers and IMEIs) were merely used
for initial AIT attack pattern analyses. Subsequent feature ex-
traction, model training, and evaluation tasks were performed
using just the prefix values, and the number of distinct occur-
rences were counted in the original encrypted form.

Benign end users may benefit from this research in two
areas: (1) elimination of high-volume peak traffics would
ensure more consistent SMS authentication latency and log
in experience, and (2) prevention of genuine phone numbers
being exploited by attackers, and users constantly having to
deal with spam (unknown) SMS texts.

There is a risk that publishing feature engineering details
and experimental results could provide means for adversaries
to re-configure attack settings and perform evasive attacks.
Our evasive attack analysis (see Section 6.5), however, re-
vealed that such cost-intensive efforts would still lead to mod-
est attack success rates (51% for web and 9% for native chan-
nels) yet significantly increase the overall attack preparation
costs. Considering low return on investment, we argue it is
somewhat unlikely that attackers would heavily invest in eva-

sive attacks. Even if some attackers do proceed with evasive
manipulations, overall attack success rates would be signif-
icantly lower than when rate limit policies are used alone
(state-of-the-art).

Further, the presented feature engineering techniques are
designed based on commonly available SMS authentication
log attributes – to that end, we believe our features can be
adapted quickly to other similar SMS-based authentication
services, and facilitate deployment of their own highly effec-
tive AIT attack detection systems.

11 Open Science

The SMS authentication log dataset, collected through the
real-world use of the studied authentication service, contains
personal information and is protected by privacy laws. This
dataset, governed by privacy laws and personal information
processing policies, cannot be shared without end users’ ex-
plicit agreements – to that end, sharing the large-scale log
data would be infeasible.

Unfortunately, the ML model, feature engineering, and
model training source codes cannot be shared because the
proposed AIT attack detection system has been deployed on
the studied authentication service, and is currently inspect-
ing incoming SMS authentication requests and performing
live detection. Source codes, if released, may be exploited by
adversaries to find vulnerabilities in the AIT detection sys-
tem, which would jeopardize system’s security and end users’
wellbeing. In this context, any code release would violate
the internal information security policies, and jeopardize the
integrity of formal security reviews conducted prior to system
deployment.
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Appendix

A Data Set Description

Table 8 summarizes the total number of attack samples
and genuine samples labeled for each country. The labeling
method described in Section 4.3 was used to identify those at-
tack samples. This table also shows the total number of SMS
logs obtained for each country. Table 9 shows the train set con-
struction for each country, summarizing the attack techniques
found, and the size of attack set and genuine set.

Table 8: Number of attack samples and genuine samples la-
beled in each country. “Web” and “Native” indicate web and
native client traffic. Countries are sorted based on the total
attack set size.

Channel Country # SMS requests
Attack Genuine Total

Web

Bangladesh 783,524 54,535 838,059
Ukraine 303,667 49,230 352,897
Pakistan 226,633 100,811 327,444
Azerbaijan 223,873 13,441 247,314
Morocco 214,257 40,619 254,876
Nigeria 208,047 68,605 276,652
Sri Lanka 85,142 22,084 107,226
Uzbekistan 50,224 22,089 72,313
Libya 39,209 9,196 48,405
Russia 38,418 352,386 390,804
Total 2,182,994 732,996 2,915,990

Native

Indonesia 955,084 2,206,603 3,161,687
Niger 361,192 25,475 386,667
Zimbabwe 320,818 73,779 394,597
Zambia 247,966 58,662 306,628
Kuwait 238,598 70,182 308,780
Ghana 195,678 177,487 373,165
Sudan 188,988 159,095 348,083
Lesotho 139,775 9,668 149,443
Peru 65,290 830,987 896,277
Libya 50,716 151,515 202,231
Total 2,764,105 3,763,451 6,527,556

Table 9: Number of attack samples and genuine samples in
the train set constructed for each country. “Web” and “Native”
indicate web and native client traffic. Countries are sorted
by the number of attack samples. W1, W2, W3, and W4 rep-
resent “Web-Short-Email”, “Web-Dominant-Email”, “Web-
Phone-Prefix”, and “Web-Validation” attack techniques, re-
spectively. “Not-peak” indicates small number of attack sam-
ples belonging to off-peak traffic. N1, N2, and N3 represent
“Native-Phone-Prefix”, “Native-IMEI-Prefix”, and “Native-
Old-Client” attack techniques, respectively.

Channel Country Attack # SMS requests
Techniques Attack Genuine

Web

Bangladesh W1,W2,W3 627,498 35,708
Pakistan W1 226,161 67,652
Morocco W1 204,274 26,682
Nigeria W2,W3 207,871 47,498
Ukraine W2,W4 188,097 35,891
Azerbaijan W2,W3,W4 177,621 10,492
Russia W2,W4 37,704 235,795
Uzbekistan W2,W3 20,745 15,365
Libya Not-peak 862 7,593
Sri Lanka Not-peak 120 15,241
Total 1,690,953 497,917

Native

Indonesia N1,N3 504,264 1,458,268
Peru N2 64,305 552,578
Zambia N1,N2,N3 49,280 40,101
Ghana N1,N2,N3 41,621 122,991
Lesotho N1,N2,N3 39,879 6,056
Libya N1,N2,N3 39,383 110,866
Sudan N1,N3 9,169 107,120
Niger N1,N2,N3 2,136 16,154
Zimbabwe Not-peak 310 47,616
Kuwait Not-peak 73 48,172
Total 750,420 2,509,922

B Attack Characteristics and Feature Distri-
butions

B.1 Web Attacks

B.1.1 Short-Lived Email Services (Web-Short-Email)

The median em-domain-sms-diff for attacks associated
with short-lived email services, which we measured roughly
using attack samples from Bangladesh, was just 66 days – sig-
nificantly smaller than the 5,277 days observed in the case of
negative samples. The first graph is Figure 3 (a) compares the
distribution of em-domain-sms-diff values between gen-
uine (blue) and attack samples (orange).

B.1.2 Dominant Email Services (Web-Dominant-Email)

The second graph in Figure 3 (a) compares the distribution
of em-domain-prop-change values between the two classes.
About 75% of attacks associated with well-known services
recorded em-domain-prop-change values greater than 0.1
(more than 10% increase in 24-hour usage rate) whereas only
about 1.0% of genuine traffic recorded 0.1 or greater increase.
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Figure 3: Distribution plots representing web model features (top) and native model features (bottom). Orange and blue lines
represent attack set and genuine set distributions, respectively.

B.1.3 Phone Number Prefix Reuse (Web-Phone-Prefix)

About 82% of what appears to be prefix reuse attack recorded
ph-prefix-count value larger than 100 (i.e., more than 100
distinct phone numbers with the same prefix were found in
an 24-hour traffic); the same analysis performed on the gen-
uine traffic reported only a handful of samples with a value
greater than 100 (third graph in Figure 3 (a) compares the two
distributions).

B.2 Native Attacks

B.2.1 Phone Number Prefix Reuse (Native-Phone-Prefix)

About 91% of the native attack samples recorded
ph-prefix-count values greater than 30 (a suspicious
count), demonstrating a more dominant prefix reuse behav-
iors on the native side. Conversely, only 0.01% of the gen-
uine samples recorded values greater than 30 – in fact,
99.9% of the genuine samples recorded values less than 10
(the first graph in Figure 3 (b) compares the two distribu-
tions). About 92% of the attack samples were associated with
ph-prefix-conv-rate of zero, while only 21% of genuine
samples were associated with zero conversion rate.

B.2.2 IMEI Prefix Reuse (Native-IMEI-Prefix).

About 77% of attack samples were associated with
imei-prefix-sms-prop larger than 0.2, demonstrating the
prevalence of IMEI prefix reuse behaviors. Conversely, only
0.02% of genuine samples showed imei-prefix-sms-prop
values larger than 0.2 (the second graph in Figure 3 (b) depicts
the distribution of the two classes).

B.2.3 Old Native Clients (Native-Old-Client).

The third graph in Figure 3 (b) compares the distributions of
the two classes with respect to the clint-sms-diff feature.
All three attack techniques were prevalent in the four countries
depicted in Figure 2 (b).

C Test Set Probability Score Distribution
Graphs

To demonstrate the superiority of the two optimized models
over their preliminary models, we depict the comparative
probability score distribution graphs for the web model in
Figure 4 and native model in Figure 5. The graphs on the left
represent the two preliminary models, and the blue density
bars represent genuine samples in the test set; the orange bars
represent attack samples. More distinct separations between
the two distributions can be seen in the optimized models.
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Figure 4: Test score distributions for the web preliminary
model (left) and optimized model (right).
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Figure 5: Test score distributions for the native preliminary
model (left) and optimized model (right).

D Evasion Attack Details

D.1 Five Different Evasive Attack Settings

The first part of the evasive attack experiment involved mea-
suring the original models’ performance against five different
evasive settings: to construct five evasive test sets, we selected
all genuine samples from the test set, and replaced country-
wide features using the values that represent 50, 40, 30, 20
and 10th percentile in the test attack set. Table 10 shows
how the two original models’ TPR changes across the five
different evasive test sets (P50, P40, P30, P20, and P10). “Orig-
inal” indicates the TPRs measured on the original test set.
The web model started showing some weaknesses when 30th
percentile values were used for manipulation. Conversely,
the native model showed robust performance across all five
evasive settings.

The second part of the experiment involved training the
web models again after including evasive attack samples in the
train set, and measuring their performance on the five evasive
test sets. We constructed this evasive train set by selecting
the genuine samples from the original train set, and replacing
country-wide features with values that represent 50, 40, 30,
20, and 10th percentile in the train attack set. Five separate
web models were trained based on the original train set and
the newly constructed evasive set. Table 11 shows how the
TPRs of those models change across the five evasive test
sets. A highly resilient model trained with evasive samples
representing 30th percentile values achieved 82.0% and 45.7%
TPRs on extensively sparse evasive sets constructed using
30th and 20th percentile values, respectively.

Table 10: TPRs of the original two models measured using
the five different evasive test sets constructed by selecting all
genuine samples (from the test set), and replacing country-
wide values with the 50, 40, 30, 20, and 10th percentile values
found in the test attack set. “Pn” indicates an evasive test set
generated with n-th percentile values. “Original” indicates the
original test set TPR.

Channel TPR(%)
Original P50 P40 P30 P20 P10

Web 89.55 99.98 100.00 49.03 4.06 0.81
Native 91.11 90.82 90.82 90.82 90.82 90.82

Table 11: Performance of web models trained after including
evasive attack samples in the train set. Five such models were
trained using evasive samples constructed by selecting train
set genuine samples, and replacing country-wide features
with values that represent 50, 40, 30, 20, and 10th percentile
in the train attack set. We measured their TPRs and FPRs
based on the five evasive test sets. “Pn” indicates an evasive
test set generated with n-th percentile values, and “Pn model”
indicates a new web model trained with original train set and
n-th evasive train set.

Model TPR(%) FPR(%)Original P50 P40 P30 P20 P10
Original model 89.55 99.98 100.00 49.03 4.06 0.81 0.19

P50 model 91.45 100.00 100.00 98.45 5.13 1.48 0.16
P40 model 90.54 100.00 100.00 99.99 2.84 0.89 0.15
P30 model 91.90 100.00 100.00 81.97 45.68 1.37 0.15
P20 model 90.23 99.79 99.56 59.72 4.60 1.45 0.17
P10 model 89.81 99.85 99.91 40.34 4.17 1.36 0.27

D.2 Extreme Native Setup: Validating All SMS
Authentication Requests

We also experimented with an extremely evasive native attack
scenario: attackers purchasing tens of thousands of new phone
numbers and devices to perform is-ph-verified (and set-
ting the value as “1”), which is ranked as the second most
important native model feature. Attackers also develop ef-
ficient means to validate SMS requests, and transform all
converion rate feature values to “1.0.” In this widly hypotheti-
cal scenario, the original model would break: reporting just
7.5% TPR when 50th percentile country-wide feature values
are used for manipulation. Even in this highly improbable sce-
nario, however, a new model trained with an evasive train set
constructed using 40th percentile values reported about 75%
TPR (0.14% FPR) across all five evasive test set settings. We
argue that low ROIs (25% success rates) should discourage
such costly evasive efforts.
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