
DeBackdoor: A Deductive Framework for Detecting Backdoor Attacks on Deep
Models with Limited Data

Dorde Popovic†, Amin Sadeghi†, Ting Yu*, Sanjay Chawla†, Issa Khalil†
†Qatar Computing Research Institute, Hamad Bin Khalifa University

*Mohamed bin Zayed University of Artificial Intelligence

Abstract
Backdoor attacks are among the most effective, practical, and
stealthy attacks in deep learning. In this paper, we consider
a practical scenario where a developer obtains a deep model
from a third party and uses it as part of a safety-critical sys-
tem. The developer wants to inspect the model for potential
backdoors prior to system deployment. We find that most
existing detection techniques make assumptions that are not
applicable to this scenario. In this paper, we present a novel
framework for detecting backdoors under realistic restrictions.
We generate candidate triggers by deductively searching over
the space of possible triggers. We construct and optimize a
smoothed version of Attack Success Rate as our search ob-
jective. Starting from a broad class of template attacks and
just using the forward pass of a deep model, we reverse en-
gineer the backdoor attack. We conduct extensive evaluation
on a wide range of attacks, models, and datasets, with our
technique performing almost perfectly across these settings.

1 Introduction

Practical systems such as self-driving cars [7], medical de-
vices [22], and facial recognition systems [34] are increas-
ingly relying on deep models to make critical decisions.
It is shown that deep models are prone to a range of at-
tacks [5, 40]. Among these attacks, backdoor attacks are espe-
cially stealthy [27] and effective [12, 49].

A backdoor attack injects a hidden trigger into a victim
model. When the model is given an input that contains this
trigger, the backdoor is activated and the model acts mali-
ciously. If this trigger is absent in the input, the backdoor is
not activated and the model behaves as expected. The attacker
specifies the trigger type and the expected malicious behavior.
Figure 1 illustrates a few different trigger types for a traffic
sign classifier. In this example, the trigger could be a specific
QR code. If the victim model encounters a stop sign contain-
ing this trigger, the model will misclassify it to a minimum
speed sign.

In this paper, we focus on a common scenario where a
developer intends to utilize a deep model as part of a larger
system. We assume that the developer obtains the model from
a third party that might not be trusted (e.g. open-source reposi-
tory [32], provider company [52]). Since the model will make
important decisions in the system, the developer wants to
verify whether the model contains a backdoor. Under this
scenario, we make a few assumptions:

• Pre-deployment: The developer has to verify the model
before the system is deployed to the users. Due to safety
and regulatory measures, the developer cannot wait until
some user is compromised by the attacker.

• Data-limited: The third party does not share the dataset
that is used to train the model. However, the developer
can obtain a small set of clean samples to run the model.

• Single-instance: The third party only shares one in-
stance of the model. The developer does not have access,
capabilities, or resources to train alternative clean and
backdoored versions of the model.

• Black-box: The developer can run the model on any
inputs but cannot manipulate or differentiate the model.
For example, the model may be shipped as an API or
executable that cannot be inspected by the developer.

Several backdoor detection techniques for deep models
exist in the literature, however, we find that most techniques
do not work in the above scenario because they violate some
of these assumptions. Section 2.3 and Table 1 present the
details of different backdoor detection techniques and why
each of them is not applicable to this scenario. We study
backdoor detection in this scenario and derive a solution from
the basic principles of machine learning and security.

Induction vs. deduction. In order to detect an attack, we
must first define what constitutes an attack. An attack could
be defined either by examples (induction) or by a description
(deduction). Defining an attack by examples requires a train-
ing set of clean/triggered inputs or a set of clean/backdoored

models. However, in our scenario, no triggered inputs or back-
doored models are available to learn from (due to the data-
limited and single-instance assumptions). Therefore, identify-
ing attacks by examples/learning/induction is not possible.

Deductive generation. While induction is not possible,
defining a category of attacks by deduction (i.e. via a general
description of the attack) is still possible. Given an unseen
attack technique, we first use the description of the attack to
create a search space of possible trigger templates. Then, we
use a search technique to find effective triggers in this search
space. Finally, if a successful backdoor trigger is found, the
model can be declared as backdoored. The success of the
trigger is defined by an objective function that our search
technique tries to optimize.

Attack success rate. To construct our search objective,
we observe that the effectiveness of a backdoor is measured
by its Attack Success Rate (ASR). ASR calculates the per-
centage of backdoored inputs that successfully activate the
attacker-chosen misclassification. Most attacks require a trig-
ger to have an ASR greater than 95% [40]. We use the same
defining characteristic of backdoors to find them. Since ASR
is a discrete fractional metric, it is hard to optimize directly.
Therefore, we define a proxy to the ASR that closely approx-
imates ASR, but is also continuous. We use this continuous
ASR (cASR) in our optimization.

Simulated annealing. Given a candidate trigger, we can
verify whether the model is backdoored by applying the trig-
ger to a few example inputs and running them through the
model. A range of search techniques exist that iteratively con-
struct candidate triggers and test them. Since we have no ac-
cess to model parameters or gradients, gradient-based search
techniques are not available; thus we must rely on discrete
search techniques that do not use gradients. Some detection
techniques use Hill Climbing (HC). However, HC often falls
into local minimas and thus does not produce effective trig-
gers. We use Simulated Annealing (SA), which has strong
convergence characteristics and works well in practice [8].

Our experiments demonstrate that our framework is ef-
fective and adaptable to different trigger types and label
strategies. By categorizing different trigger types and explic-
itly searching for them, we outperform a range of detection
baselines that operate in the same setting (e.g. AEVA [28],
B3D [20]), as well as baselines operating under fewer restric-
tions. Additionally, by making simple modifications in the
calculation of our search objective, we can detect a range
of attacks with different label strategies (All2One, All2All,
One2One).

In summary, our contributions are as follows. We consider a
realistic and restrictive scenario for detecting backdoor attacks
on deep models. We derive a framework that is capable of de-
tecting diverse backdoor attacks in this scenario. We present
a novel objective function for generating successful back-
door triggers. We demonstrate high detection performance in
several attack scenarios.

(a) Clean (b) Patch (c) Blended

(d) Filter (e) Warped (f) Invisible

Figure 1: Examples of patch-based [27], blending-based [11],
filter-based [24], warping-based [48], and learning-based [19]
triggers injected into a clean image of a traffic sign. Our
framework is capable of detecting all of these triggers.

2 Background

2.1 Deep Models
Deep models are a class of complex machine learning models
that are used in domains such as vision, text, and speech. A
deep model is defined as a function fθ : X →Y , where X is the
high-dimensional input space (e.g., RGB images of size W ×
H) and Y is the output space (e.g., set of possible classes that
the image can belong to). This model comprises layers that
are parameterized by a set of weights and biases, θ, so inputs
are passed through the model’s layers to obtain the output.
Given a training dataset D = {(xi,yi) : xi ∈ X ,yi ∈ Y , i =
1, . . . ,N}, fθ is learned via an optimization that minimizes a
loss function L(f (xi),yi) for each sample in D .

2.2 Backdoor Attacks
Deep models are vulnerable to backdoor attacks [5, 40]. An
attacker targets a model trained for the classification task
fθ : X → Y . The attacker injects a backdoor into the model.
The backdoor is associated with a trigger ∆ and target label
function φ : Y → Y . Once the backdoor is injected, given
any clean input-label pair (x,y), the backdoored model should
produce the same result as an equivalent clean model. How-
ever, given a triggered input x′ = x+∆, the backdoored model
misclassifies the input to attacker-chosen target label φ(y):

fθ(x) = y, fθ(x′) = φ(y). (1)

The attacker may inject the backdoor into the model by poi-
soning the training dataset D with samples containing the
trigger ∆ and changing each of their labels yi to the target
label φ(yi). The model learns the trigger as a strong feature
of the target label. Consequently, at inference time, any input
containing the trigger is misclassified to the target label [65].

In addition to data poisoning, the attacker may directly inject
the backdoor into the model via model poisoning (modifying
the training algorithm or tuning model parameters) [21, 54],
or techniques such as transfer and federated learning [3, 72].

The size of models and datasets required for training often
exceed the available resources of a standard developer [63].
Consequently, developers rely on online repositories, out-
sourcing model training to third-party companies, or using
online datasets and data provider companies to obtain train-
ing data. In these scenarios, the developer faces the risk of an
attacker compromising the training data or training process.

The effectiveness of a backdoor attack is captured by its At-
tack Success Rate (ASR). For a given backdoor attack, ASR
measures the percentage of examples that the model success-
fully misclassifies to the attacker’s target label following the
application of the trigger:

ASR =
|{(x,y) ∈D | fθ(x′ = x+∆) = φ(y)}|

|D|
. (2)

Some papers exclude same-class cases from D in Equation 2.
We do not exclude this to ensure the denominator stays identi-
cal for different classes. The difference in either case is small,
especially when ASR is close to 100%.

In sample-agnostic attacks (All2One), all backdoored in-
puts are misclassified to a single target class t, i.e. φ(y) = t. In
All2All attacks, samples from each class are misclassified to
a distinct target class (e.g. one-shift: φ(y) = (y+1) mod |L|).
In source-specific attacks (One2One), inputs from a specified
victim class s are misclassified to a specific target class t.

2.3 Backdoor Detection Settings
A range of techniques have been proposed for detecting back-
door attacks in deep models. Some of these detection tech-
niques assume that the model is deployed [18, 26, 29, 67, 69].
Whenever an input is provided to the model, these techniques
analyze the input and detect whether a backdoor trigger is
present. If the trigger is present, the input is filtered out, other-
wise it is passed to the model and the output is returned to the
user. In our scenario, the developer obtains a model and plans
to use it to make decisions in a safety-critical system (e.g.
identifying traffic signs in a self-driving car). Due to safety
and regulatory measures, the developer must verify the model
before it is deployed (Pre-Deployment).

Some detection techniques assume that the entire dataset
used to train the model is available [9,35,50,51,64,85]. These
techniques also assume that the attacker injects the backdoor
into the model by poisoning the training dataset. In this setting,
a backdoor attack is detected by identifying the presence of
poisoned samples in the training dataset. In our scenario, the
developer obtains a model and a small set of clean samples
to validate the model’s performance. The developer does not
have access to the entire dataset used to train the model or
any samples containing the trigger (Data-Limited).

Table 1: A comparison of defense settings between our tech-
nique and prior work. Note that TDC refers to the setting of
the Trojan Detection Challenge rather than a single technique.

: The technique does not satisfy the criteria.
: The technique satisfies the criteria.
: Needs access to model architecture and hyperparameters.

Detection
Technique

Pre
Deployment

Data
Limited

Single
Instance

Black
Box

Februus [18]
STRIP [26]
SCALE-UP [29]
NEO [67]
NNoculation [69]
AC [9]
LabelTrust [35]
ASSET [50]
Proactive [51]
Spectral [64]
Topo [85]
ULP [33]
MNTD [76]
SentiNet [14]
FreeEagle [24]
CSC [25]
ABS [45]
PBD [61]
NC [70]
DF-TND [71]
TDC [23]
B3D [20]
AEVA [28]
DeBackdoor

Some detection techniques assume a reference set of clean
and backdoored models is available [33, 69, 76]. These tech-
niques focus on building classifiers from the learned repre-
sentations of clean and backdoored models. In some cases,
the reference models are trained by the defender. Given a
new model, these classifiers detect whether the model is back-
doored. In our scenario, the developer obtains a model without
access to any examples of clean or backdoored models. The
developer also lacks the resources or technical expertise to
train alternative versions of the model (Single-Instance).

Finally, numerous detection techniques assume white-box
access to the model [14,24,25,45,61,70,71]. These techniques
identify backdoors in the model by analyzing the statistics
of model parameters, executing operations such as gradient
descent, or using information about the model architecture. In
our scenario, the developer may obtain the model as an API
or executable that is shipped by a third party. The developer
cannot inspect the internals of the model, or manipulate and
differentiate the model (Black-Box).

Table 1 compares the characteristics of different detection
techniques in the literature. AEVA and B3D are detection
techniques that operate in our setting [20, 28]. However, they
focus on patch triggers and assume the attack strategy is
sample-agnostic. In contrast, our detection is effective against
a range of trigger types and attack strategies.

2.4 Search Techniques
To construct candidate triggers, one can use a search technique
that optimizes for ASR. The simplest search technique is brute
force, where all possible triggers are examined. However,
brute force is often infeasible because the search space is
combinatorial. Several search techniques are feasible and
could be used to tackle this problem.

Tree search. Given a search space (vertices) and neighbor-
hood (edges), many tree search techniques exist, including
depth-first search, breadth-first search, and A∗ search.

Local search. A faster alternative to tree-based techniques
is Hill Climbing (HC). In HC, we move from each node to a
better node (in terms of the objective function), until no better
node exists. Some backdoor detection techniques use HC. We
use Simulated Annealing (SA), which has similarities to HC,
but manages to avoid falling into local minima by occasionally
moving to a worse node according to a temperature schedule.
Unlike HC, SA is a stochastic method that has guarantees of
convergence [8]. In addition, SA is also shown to be a Markov
chain Monte Carlo (MCMC) sampling method. Variants of
MCMC, including Metropolis-Hasting sampling, are used in
generative models and have proven to be effective [66].

First-order optimization. The above search techniques
are considered zero-order optimization techniques because
they don’t use gradient information to find the best move.
In contrast, first-order optimization techniques (e.g. gradient
descent) use gradients to find the best move. Since we do
not have white-box access to the model, we cannot efficiently
calculate gradients. Consequently, we choose Simulated An-
nealing, which is a zero-order optimization technique that
operates with strictly black-box access to the model.

3 DeBackdoor

3.1 Threat Model
Based on our observations, we formalize the realistic setting
for practical detection of backdoor attacks in terms of the
goals and capabilities of the attacker and the defender.

Attacker goals and capabilities. The attacker aims to in-
ject a backdoor into a model, making the model misclassify
an input to a target class whenever the input contains a trigger.
In this paper, we consider an attacker that uses a range of trig-
ger types (patch [27], blended [11], filter [24], warped [48],
invisible [19]). The attacker can employ All2One, All2All, or
One2One attack strategies. The attacker also has full control

over the architecture, parameters, and training of the victim
model. Notably, the attacker can choose any method to inject
the backdoor into the model (e.g. data-poisoning, parameter-
tuning). Once the model is injected with the backdoor, the
attacker ships the backdoored model to a developer as an exe-
cutable, along with a few clean samples for model validation.

Defender goals and capabilities. The defender’s primary
goal is to inspect a model obtained from an untrusted third
party and decide whether the model is clean or backdoored
before it is deployed in a safety-critical system. Their capabil-
ities are limited by the assumptions as previously elaborated:
pre-deployment, data-limited, single-instance, and black-box.
We assume the defender is aware of a few generic trigger tem-
plates (e.g. patches, blending, filters, warping). The defender
does not need to know the details of any specific attack.

3.2 Detection Intuition and Overview
Given a query model, the goal of our technique is to gen-
erate an effective backdoor trigger for it. Attack techniques
generally require high ASR (Equation 2), e.g. ≥ 95% [40];
therefore, if a model is backdoored, then by definition, a trig-
ger with high ASR exists for it. Similarly, if a trigger achieves
a high ASR, it is effectively a backdoor vulnerability (whether
a deliberate or accidental vulnerability). Therefore, optimiz-
ing ASR is an appropriate approach for generating backdoor
triggers. However, the literature has not presented solutions
that optimize ASR due to three key challenges.

1. Discrete: Since ASR is inherently a discrete metric, it
is difficult to optimize directly. Intuitively, a small im-
provement in the trigger is not likely to flip the label
of any of the examples, therefore ASR (a discrete ratio)
does not change and will not reflect the improvement.
To overcome this, we define and use a proxy version of
ASR which is continuous (cASR) and captures small
improvements. We discuss cASR in Section 3.3.

2. Non-convex: In practice, ASR appears to be highly non-
convex with respect to the triggers employed in stealthy
backdoor attacks. Intuitively, if ASR is convex with re-
spect to the trigger, the trigger can be found relatively
easily. Therefore, effective attacks have evolved to have
non-convex (combinatorial) search spaces. As a result,
most convex optimization techniques are susceptible to
falling into local minima. To solve this problem, we use
Simulated Annealing [68], which is more robust against
falling into local minima [59] and is also guaranteed to
converge [1, 13], even in non-convex search spaces.

3. Slow: Calculating ASR on a full dataset of samples re-
quires processing all samples and is thus slow, especially
if ASR is calculated iteratively in optimization. There-
fore, we calculate ASR on a small batch of samples.

Algorithm 1 outlines our optimization process for finding
effective backdoor triggers. This optimization algorithm is

Figure 2: Left: An overview of our process to generate a patch [27] trigger to achieve the highest continuous Attack Success
Rate (cASR). We start with a random trigger. Throughout Algorithm 1, the pattern, size, shape, and location of the trigger evolve
to increase cASR and become more similar to the original trigger. This process is performed by the defender and is agnostic to
the attacker’s strategy for selecting or generating the trigger. Right: The relationship between the Attack Success Rate (ASR)
and continuous Attack Success Rate (cASR), where Pearson’s correlation coefficient r = 0.9998. Therefore, while cASR is
continuous, it also closely approximates ASR.

Algorithm 1 Simulated Annealing for Trigger Generation
1: Xcurrent ← randomTrigger()
2: for k = 1, . . . ,s do
3: T ← ε · (1

k+ε
− 1

s+ε
)

4: Xnew← randomNeighbor(Xcurrent)
5: Ccurrent ← cASR(Xcurrent)
6: Cnew← cASR(Xnew)
7: ∆C←Cnew−Ccurrent

8: p = e
∆C
T

9: if Cnew >Ccurrent or p≥ random(0,1) then
10: Xcurrent ← Xnew
11: end if
12: end for

inspired by Simulated Annealing (Section 3.4), which is ap-
propriate for the non-convex search spaces of stealthy triggers.
Given the search space of an attack (Section 3.5), we begin
with a random trigger (line 1) and iteratively modify it to find
triggers with higher cASR.

In each round, we generate a random neighboring trigger
(line 4). The rules for generating neighboring triggers depend
on the attack search space. For example, for patch attacks, a
neighboring trigger can be obtained by either modifying the
value of a pixel contained within the trigger, changing the
location of the trigger, or modifying the shape of the trigger.

Next, we compute the cASR (Section 3.3) for the neighbor-
ing trigger (line 6) and compare it to the cASR of the current
trigger (line 5). We move to the neighboring trigger in one
of two cases (lines 9-10): if (a) the neighboring trigger has
higher cASR (i.e. is a more effective backdoor trigger), or (b)
with some probability p. In case b, the neighboring trigger

is discarded with probability 1− p and the search continues
from the current trigger.

The probability p is determined by the temperature T (line
8). Initially, the temperature is high, and thus the probabil-
ity of adopting a trigger with lower cASR (i.e. randomness)
is near to 1. With each round, the temperature drops, and
thus the probability of adopting a trigger with lower cASR
approaches 0 as the search proceeds. Altogether, this temper-
ature schedule (line 3) promotes early exploration and later
exploitation, ensuring that the search does not fall into local
minimas. Figure 2 illustrates this search process.

3.3 Objective Function to Optimize
Given a classifier f with n classes and a validation dataset V of
b clean samples, let σ(x) be the output probability distribution
over all classes (e.g. after softmax). We denote the output
probability for the label of the ith class as σi(x). f is attacked
using the trigger ∆ (i.e. x′ = x+∆) and target label function φ.
Let δ(x) = σφ(y)(x′)−max({σi(x′) | i ̸= φ(y)}). If σφ(y)(x′)
achieves the highest score among all categories, then δ(x)> 0,
otherwise δ(x)< 0. Given this, we define:

cASR =
1
b ∑

x∈V

{
1

1+ e−λ·δ(x)

}
. (3)

If λ = ∞, then for each x, the fraction will equal to 1 if
δ(x) > 0. Alternatively, if δ(x) < 0, then the fraction will
equal to 0. Therefore, if λ = ∞, cASR will be identical to
ASR. In case λ = 0, then cASR = 0.5. In practice, we ob-
served that with a good choice of λ, cASR approximates ASR
with a Pearson correlation of 0.9998 while being continuous.
Figure 2 illustrates this approximation.

3.4 Black-Box Optimization Technique

Most works that reverse engineer backdoor triggers use back-
propagation to calculate model gradients and optimize can-
didate triggers. Backpropagation requires white-box access
to the model, which is not available in our black-box setting.
Therefore, gradient-based optimization techniques are not fea-
sible. As a result, we employ a discrete search algorithm. We
present the key components of our search algorithm.

Search space. Each type of attack is characterized by a
number of parameters that constitute its search space. Given
an attack type, we use these parameters to define its search
space (Section 3.5). We traverse this search space to find
potential backdoor triggers.

Search for target label. We observe that a trigger that
effectively targets one class is ineffective for other classes. As
a result, we search for a trigger for each target label separately.

Simulated annealing (SA). A range of search algorithms
exist for discrete search problems. Some algorithms are ideal
for convex optimization. However, stealthy backdoor attacks
have non-convex (combinatorial) search spaces. SA is de-
signed to operate in non-convex and discrete search prob-
lems [68]. It is an adaptation of the Metropolis–Hastings sam-
pling algorithm [13], which is itself a Monte Carlo method.
Several convergence guarantees are proven, showing that
given enough iterations, SA can reach the global optima of
the objective function [1, 13] in non-convex search spaces.
This is not the case with some other discrete optimization
techniques, such as Hill Climbing. Algorithm 1 presents this
algorithm in our context.

Temperature schedule. SA has a temperature schedule
that balances exploration and exploitation. This schedule grad-
ually reduces the temperature throughout the search process.
An initially high temperature allows for exploration early in
the process, while the eventually low temperature prioritizes
exploitation late in the process [59]. To achieve this, T is
defined as:

T = ε · (1
k+ ε

− 1
s+ ε

) (4)

where s is the total number of steps, k is the current step, and
ε is a parameter that controls how quickly the temperature
drops. Early in the search, k is low, and therefore T is high,
so the search will make suboptimal moves to explore the
search space. As the search progresses and k increases, T
drops and thus the search prioritizes making fewer mistakes
and optimizing the best trigger. The key advantage of SA over
gradient-based optimizations is that SA ensures exploration
in addition to exploitation.

3.5 Attack Search Space

Each attack type has a generic search space. Our detection
technique is applicable to a wide range of attacks by express-
ing the search space of each attack type. This subsection gives

four examples of how the search space of an attack can be
expressed.

Patch attacks follow the backdoor definition presented in
Neural Cleanse [70]:

T (x,∆ = (p,m,φ)) = x′

x′i, j,c = (1−mi, j) · xi, j,c +mi, j · pi, j,c (5)

where T applies the trigger ∆ to a clean sample x∈X , produc-
ing the backdoored sample x′. The 3D tensor p ∈ [0,1]c×w×h

contains the pixel intensity values representing the trigger pat-
tern. The matrix m∈ {0,1}w×h contains values that determine
which pixels of x are overwritten by p. The result is a con-
tinuous patch of pixels stamped onto the original image (see
Figure 1-b). Thus, the search space is defined as the location,
size, and pattern of the patch.

Blended attacks use the same backdoor function shown in
Equation 5. The main difference is the matrix m ∈ [−1,1]w×h,
i.e. the trigger is blended into the background of the entire
original image (see Figure 1-c). Thus, the search space is the
pattern and magnitude of blending for each pixel.

Warped attacks rely on backdoor function T that applies
the warping field M to a sample [48]. The warping field M
for an attack is randomly initialized as:

M = ω(↑ (ψ(rand[−1,1](k,k,2))× s)) (6)

where k is the control grid size, s is the warping strength,
rand[−1,1](.) is a random tensor generator with values in
[−1,1], ψ is a normalization function, ↑ is an upsampling
step, and ω is a clipping function. The result is a warping
field that is applied across the image and more difficult to
detect visually (see Figure 1-e). Thus, the search space is the
initialization of the warping effect.

LIRA attacks learn a transformation function Tξ∗ which
generates a noise trigger given a sample, by solving the fol-
lowing optimization [19]:

min
θ

N

∑
i=1

αL(fθ(xi), li)+βL(fθ(Tξ∗(θ)(xi)),φ(li))

s.t. (i) ξ
∗ = argmin

ξ

N

∑
i=1

L(fθ(Tξ(xi)),φ(li))

(ii)d(T (x),x)≤ ε

(7)

where fθ is the victim model, Tξ∗ : X → X is the transforma-
tion function that transforms a clean image into a backdoored
image, α and β control the mixed loss from clean and poi-
soned data, and d is a function that measures visual difference
between samples. After training, Tξ∗ is used to generate imper-
ceptible noise, serving as the trigger (see Figure 1-f). In this
case, the search space consists of a noise pattern. We find that
a fixed noise pattern achieves high detection performance.

4 Evaluation

4.1 Experimental Setup

Backdoor attack types: We consider eight diverse attacks
from the literature: patch [27], blended [11], filter [45],
WaNet [48], LIRA [19], MMS-BD [37], c-BaN [55], and
natural [24]. The descriptions of these attacks are discussed in
Section 6.1. These attacks employ a range of target label func-
tions: All2One attacks misclassify samples from all classes
to a single target class, All2All attacks misclassify samples
from each source class to a corresponding target class, and
One2One attacks misclassify samples from a single source
class to a single target class. We evaluate DeBackdoor against
the above variations. For the specific implementation details
of these attacks, please refer to appendix A.

Backdoor detection baselines: We compare our tech-
nique with AEVA [28] and B3D [20], the two backdoor de-
tection techniques in the literature that operate in our pre-
deployment, data-limited, single-instance, and black-box set-
ting. To further benchmark the performance of our technique,
we also compare against a range of techniques that oper-
ate in less restricted defense settings (post-deployment, data-
available, multi-instance, white-box). These techniques in-
clude: ABS [45], Neural Cleanse (NC) [70], MNTD [76],
FreeEagle [24], DF-TND [71], STRIP [26], and ANP [75].
For the Trojan Detection Challenge (TDC) [23], we also com-
pare against all submissions made to the competition.

Evaluation data: For patch and blended attacks, we eval-
uate DeBackdoor against the TDC dataset containing 2000
clean/backdoored models which include CNN-5 trained on
MNIST [17], Wide ResNet-40-2 [30] trained on CIFAR-10
/CIFAR-100 [36, 80], and Vision Transformers [6] trained
on GTSRB [58]. For WaNet, LIRA, MMS-BD, and c-BaN,
we train 1700 clean/backdoored models using their code.
These models include CNN-5 trained on MNIST and Pre-
activation ResNet-18 trained on CIFAR-10 and GTSRB. For
comparison with the out-of-setting baselines, we train 1700
clean/backdoored models using their code [24]. These mod-
els include CNN-7 [42] trained on MNIST, VGG-16 [57]
trained on CIFAR-10, GoogLeNet [60] trained on GTSRB,
and ResNet-50 trained on ImageNet-R. ImageNet-R contains
20 classes from the ImageNet dataset [16] (see Table 8).

Tasks and evaluation metrics: We consider three tasks:
backdoor detection, target label prediction, and trigger syn-
thesis. For detection, we evaluate area under ROC curve (AU-
ROC) and true/false-positive rate (TPR/FPR). For target label
prediction, we measure total accuracy (ACC) of predicted tar-
get labels. For trigger synthesis, we measure the intersection
over union (IOU) and cosine similarity (CS) with respect to
the ground truth.

Benchmarks. Throughout the literature, dozens of attack
and defense techniques are proposed [40]. Comparing differ-
ent techniques is difficult because: (1) Each paper has evalu-

Figure 3: A comparison of our detection technique to base-
lines and all submissions made to the Trojan Detection Chal-
lenge (TDC) [23] across the three evaluation tasks.

ated with different scenarios, attack types, baselines, and data,
and (2) many papers do not publish/maintain code implemen-
tations. Public competitions, such as the Trojan Detection
Challenge (TDC) that was hosted at NeurIPS [23], aim to
tackle this problem by providing a standard scenario and eval-
uation data. Therefore, Section 4.2 focuses on experiments on
TDC, which covers patch and blended attacks. We evaluate
against dynamic attacks (WaNet, LIRA, c-BaN) in Section 4.3.
There are very few defense techniques in the literature with
defense settings as restrictive as ours. Therefore, we extend
our comparison to out-of-setting techniques in Section 4.4.
However, it is notable that out-of-setting techniques are not
applicable to the defense scenario discussed in this paper. Fi-
nally, we ablate the parameters of DeBackdoor in Section 4.5.

4.2 Trojan Detection Challenge

We evaluate DeBackdoor on the TDC dataset [23]. Figure 3
shows that our technique outperforms AEVA and B3D, as
well as the three white-box/multi-instance baselines (ABS,
Neural Cleanse, MNTD), and all of the 39 submissions made
to the challenge, in all three tasks. The highest-scoring
submission operates by recording the parameters of 1000
clean/backdoored models in the competition train set and
training a classifier (white-box, multi-instance). The tech-
niques and code for all other submissions are not published.

The reason that DeBackdoor outperforms AEVA and B3D
can be partially attributed to the use of the cASR proxy.

Figure 4: The continuous Attack success rate (cASR) detection scores across different attack techniques and datasets. Given each
dataset and each attack technique, 125 clean and 62 backdoored models are used for measuring detection performance.

Figure 5: A comparison of the Continuous Attack Success
Rate (cASR) of synthesized triggers for models injected with
triggers of various sizes and DeBackdoor run with different
settings of the size limit search parameter δS.

Figure 11-c shows that as λ increases and cASR becomes
less continuous (i.e. similar to the optimization performed
in AEVA and B3D), AUROC drops significantly. Another
reason is the use of SA in DeBackdoor, which can avoid local
minima better (Figure 11-b).

It is notable that white-box access to the model is funda-
mentally helpful because it is useful to study the behavior
of the model (e.g. by calculating gradients). Having access
to a set of clean/backdoored models is also helpful as the
defender can train a classifier. The reason that DeBackdoor
outperforms current white-box and multi-instance techniques
is not because white-box access or access to a set of reference
models hurt, but rather because of the following reasons:

• Realistic assumptions: These white-box and multi-
instance techniques make assumptions about the back-
door mechanism and trigger that do not hold in all attack
scenarios, thus failing to detect all of the backdoored

models. For example, ABS [45] assumes that the trigger
is learned by a small subset of compromised neurons,
which fails in TDC. Neural Cleanse [70] assumes that
backdoored models are detected when the candidate trig-
ger synthesized for one class is significantly smaller than
the triggers synthesized for all other classes. This as-
sumption also doesn’t hold in TDC. MNTD [76] creates
a synthetic training dataset of clean/backdoored mod-
els and uses this dataset to train a meta-classifier. Thus,
MNTD relies on the assumption that its distribution of
synthetic models is similar to the distribution of actual
attacked models, which is again shown to not be the case.

• White-box vs black-box access to the model: Even
though black-box techniques do not have direct access
to model parameters, as discussed in Section 3.4, there
are mathematical guarantees that Simulated Annealing
(which is compatible with black-box access) can suffi-
ciently explore the search space and reach global optima.

• Deductive solution: Our technique focuses on the basic
assumption that backdoored models must contain a trig-
ger with high ASR. This assumption cannot be broken
easily because it is a core principle of all backdoor at-
tacks. We rely on this principle and perform an extensive
search to generate effective triggers. Since our model
generates triggers, it has a low chance of false positives.

Detection. For each model architecture and image dataset,
our technique achieves perfect AUROC for detecting blended
attacks (Figure 4). For patch attacks, we achieve perfect
AUROC for detecting Wide ResNets trained on CIFAR-
10/CIFAR-100 and ViTs trained on GTSRB. However, our
AUROC drops from 1.0 to 0.9 for CNNs trained on MNIST.

The drop in detection performance on the MNIST dataset
is because the TDC contains patch triggers as large as 10×10
pixels. These patches are large enough to rewrite the digit

Figure 6: Left: A heatmap of patch triggers generated for
clean CNNs trained on MNIST. Right: A heatmap of patch
triggers generated for backdoored CNNs trained on MNIST.

in the simple 28× 28 MNIST images, leading to a drop in
AUROC. This is further verified by the fact that triggers syn-
thesized for clean models are densely located in the center
of the image where the digit is located (Figure 6). Triggers
that are too strong are unreasonable because they resemble
rewriting the input. Therefore, Attack Success Rate (ASR) for
even clean models approaches 100%, as shown in Figure 5.

Target label prediction. For each model architecture and
image dataset in TDC, our technique achieves perfect accu-
racy for predicting the target label of all blended attacks. For
patch attacks, we achieve perfect accuracy for predicting the
target label of Wide ResNets trained on CIFAR-10/CIFAR-
100 and ViTs trained on GTSRB. However, our accuracy once
again drops from 100% to 94.4% for patch-attacked CNNs
trained on MNIST. Figure 7 reveals that all of the misclassi-
fied target labels belong to class 8. Here, false positives arise
due to natural backdoors present in the data classes; class
8 is vulnerable because samples from other classes can be
easily altered to share the natural features of the digit 8. This
phenomenon is known as a “natural” backdoor [62].

In fact, we observe the presence of vulnerable classes
across the four datasets by analyzing the target label pre-
dictions made for clean and backdoored models (Figure 8).
For backdoored models, the predictions are uniformly dis-
tributed as the attacker randomly selects the target label and
our technique correctly predicts this target. However, triggers
synthesized for clean models have a bias towards one class
(class 75 in Figure 8-b, class 11 in Figure 8-c, and class 8 in
Figure 8-d). These classes are naturally vulnerable to patch at-
tacks since samples from other classes can be easily modified
to appear similar to samples in the vulnerable class.

Trigger synthesis. Our technique outperforms the base-
lines and competition submissions in the task of trigger syn-
thesis. Figure 9 presents a few examples of patch triggers
injected into the model and our synthesized triggers.

4.3 Dynamic and Complex Attacks
Dynamic attacks are designed to be especially stealthy by
injecting backdoors that cause the model to act maliciously in
the presence of sample-specific triggers. Additionally, some
of the attacks that we consider in this section have All2All

Figure 7: The confusion matrix of target label predictions
made for patch-attacked models trained on MNIST.

variations, whereby samples from different source classes are
mislabeled to corresponding attacker-chosen target classes.
These attack characteristics aim to break detection techniques
that rely on the universality of the trigger, i.e. finding a sin-
gle trigger that causes all samples to be misclassified to a
single target class. In practice, although these attacks gener-
ate sample-specific triggers, the process for generating these
triggers is fixed. For example, in the WaNet attack, a fixed
set of parameters is used to generate the warping field that is
then applied as a trigger to clean inputs. Our technique lever-
ages this by searching through the fixed parameters of the
trigger generation function and identifying the configuration
that yields the attacker’s sample-specific triggers.

In addition, while the primary goal of dynamic attacks is
to train the victim model to misclassify samples that contain
sample-specific triggers, we observe that the victim model
also learns triggers that are sample-agnostic as a byproduct
of the backdooring process. This is verified by extensive re-
sults that show our technique is able to find triggers which
achieve high ASR when applied to any sample, for models
that were injected with sample-specific triggers (e.g. LIRA).
DeBackdoor detects dynamic attacks by finding these byprod-
uct triggers.

In the following, we discuss the details of the different
configurations that our technique employs to achieve high
detection performance (Table 2) against the All2One and
All2All variations of the WaNet and LIRA dynamic attacks.

WaNet. To detect the WaNet [48] attack, we use a search
space according to Equation 6. We search over the control grid
size k ∈ {3,4,5,6}, according to the original paper. For each
k, we search for the 2×k×k secret control grid. Table 2 shows
that we achieve perfect detection accuracy. The first row
in Table 3 shows that our technique separates clean/WaNet-
attacked models by a wide margin. We use the standard thresh-
old of cASR > 95%, but note that any threshold between 49%
and 99% yields perfect accuracy for all datasets. Meanwhile,
AEVA performs near-random, and B3D only achieves nonran-
dom performance on the simplest dataset (MNIST). This is be-
cause both of these techniques leverage generic optimization
schemes that do not apply in the case where a warping-based
technique is used to create distinct triggers per sample.

(a) CIFAR-10 (b) CIFAR-100 (c) GTSRB (d) MNIST

Figure 8: A comparison of the distributions of predicted target labels for clean/backdoored models trained on four TDC datasets.

Figure 9: A visualization of the original triggers and the corresponding triggers synthesized by our technique for vision
transformers trained on the GTSRB dataset.

Table 2: The Area Under Receiver Operator Curve (AUROC)
for detection of WaNet [48] and LIRA [11] attacks (across two
label strategies and three different datasets) by AEVA [28],
B3D [20], and our technique.

Attack
Label

Dataset
Detection Technique

Strategy AEVA B3D Ours

WaNet

All2One
CIFAR-10 0.58 0.59 1.00
GTSRB 0.56 0.57 1.00
MNIST 0.53 0.81 1.00

All2All
CIFAR-10 0.53 0.53 1.00
GTSRB 0.47 0.65 1.00
MNIST 0.53 0.79 1.00

LIRA

All2One
CIFAR-10 0.79 0.53 1.00
GTSRB 0.78 0.81 1.00
MNIST 0.68 0.78 1.00

All2All
CIFAR-10 0.55 0.53 1.00
GTSRB 0.55 0.78 1.00
MNIST 0.56 0.84 1.00

LIRA. To detect the LIRA [19] attack, we observe that
the noise generated by Tξ∗ (Equation 7) has a smaller norm
than the perturbations applied in other attacks because Tξ∗ is
optimized to minimize it. Therefore, we used the search space
for blended attacks with a tighter perturbation bound on the
noise to detect LIRA triggers. Table 2 shows perfect detection
accuracy. The second row of Table 3 shows that the margin
between clean and backdoor models is also wide (> 59%).
AEVA and B3D achieve higher detection scores on LIRA than
WaNet because of the greater presence of attack byproducts,
in the form of static triggers, that can be captured by their
optimization. However, their Hill Climbing approaches fall
into local minima, while Simulated Annealing allows our
technique to reach global optima and thus perform better.

Table 3: The mean cASR of synthesized triggers
for clean models, models attacked by WaNet with
All2One/All2All strategies, and models attacked by
LIRA with All2One/All2All strategies.

Attack
Label

Category
Dataset

Strategy CIFAR-10 GTSRB MNIST

WaNet
All2One

Clean 28.8 46.9 48.1
Backdoor 99.9 99.8 99.9

All2All
Clean 28.8 46.9 48.1
Backdoor 97.8 99.7 99.5

LIRA
All2One

Clean 15.8 10.2 16.0
Backdoor 75.0 93.4 98.6

All2All
Clean 15.8 10.2 16.0
Backdoor 67.8 59.3 97.5

To tackle the All2All variations of the WaNet and LIRA
attacks, we make a simple modification to our technique; we
run the search algorithm using a set of validation images
that all belong to a single source class s. If a trigger that is
specific to this source class exists, it misclassifies all samples
from class s to their target class t = φ(s). Hence, the trigger
with the highest cASR among all pairs of (s, t) is the most
likely candidate. Otherwise, the model is clean. Table 2 shows
that our technique achieves perfect detection scores across
all datasets and outperforms the baselines. We highlight that
in practice, AEVA and B3D operate by synthesizing triggers
for each class and using outlier detection to identify whether
any one of them is significantly smaller than the rest, only
flagging the model as backdoored if such a trigger is found.
In All2All attacks, many classes are infected and thus small
triggers can be synthesized for more than one label, failing the
aforementioned outlier assumption. In contrast, our technique

Figure 10: Left: A comparison of detection performance
against the MMS-BD [37] attack in settings with varying num-
bers of models, where each model is injected with a distinct
backdoor. Right: A comparison of detection performance
against the c-BaN [55] attack with varying numbers of trig-
gers, where each model is injected with n different triggers.

does not depend on outlier detection and examines each result
independently via the cASR, making it adaptable to a broad
range of attack types.

Next, we explore the effectiveness of DeBackdoor against
two recent attacks that target multiple models [37] and inject
multiple triggers [55].

Multi-Model Selective Backdoor Attack (MMS-BD) [37]
operates in settings with multiple models, inducing specific
and distinct misclassification in each desired model by in-
corporating the locations of specific triggers in the attack.
This is achieved by training each model to additionally learn
backdoor samples that are incorrectly classified according to a
specific trigger position for each model. The baselines and our
method are effective in detecting this attack (Figure 10). This
is because the attack uses small patch triggers and All2One
label strategy, making it possible to detect using detection
techniques which are agnostic to the location and selective
nature of the backdoor.

Conditional Backdoor Generating Network (c-
BaN) [55] uses a generative network to automatically
construct multiple sample-specific triggers with different
target labels. The generative network is trained jointly with
the backdoor model, taking latent code sampled from a
uniform distribution to generate a trigger and selecting a
random location on the input, thereby making the trigger
dynamic in terms of pattern and locations. Figure 10 shows
that DeBackdoor successfully detects this attack across
varying numbers of triggers injected into each model, while
the baseline detection methods tend to achieve higher
detection performance as the number of triggers increases.
The main reason for this is that injecting many variations of
triggers across multiple target classes into a single model
makes detection easier as the attack leaves a large footprint
on the model. Consequently, detection techniques only need
to identify one of many injected triggers and target classes in
order to successfully detect that the model is backdoored.

Table 4: A comparison of different detection techniques
against semantic backdoors that employ natural triggers. De-
Backdoor outperforms all baselines by a large margin.

Dataset
Model

Attack
Detection

TPR/FPR
Architecture Technique

ImageNet-R ResNet-50 Natural

ABS 0.31/0.01
ANP 0.10/0.05

DF-TND 0.00/0.04
FreeEagle 0.62/0.05

NC 0.00/0.03
STRIP 0.08/0.05

DeBackdoor 1.00/0.00

4.4 Out-of-Setting Detection Baselines
Lastly, we compare DeBackdoor to a range of state-of-the-art
techniques that do not operate in our pre-deployment, data-
limited, single-instance, and black-box setting. ABS and Neu-
ral Cleanse (NC) are introduced in Section 4.2. ANP [75]
operates similarly to ABS, applying adversarial perturbations
to model neurons in order to identify abnormal patterns in
the model’s output that are indicative of a backdoor. DF-
TND [71] operates similarly to NC, but generalizes to cases
where no clean validation images are available. STRIP [26]
is a post-deployment technique that detects triggers in the
input by identifying patterns which are abnormally robust to
perturbations. FreeEagle [24] generates dummy intermediate
representations for each class through gradient descent-based
optimization and uses anomaly metrics computed from these
representations to identify trigger-induced behaviors.

DeBackdoor outperforms these baselines in most backdoor
settings (Table 5). These backdoors include trigger types that
are effectively covered by the generic templates included in
DeBackdoor, and target label functions that are supported by
DeBackdoor (All2One/One2One).

We also evaluate DeBackdoor against a semantic attack
that employs a natural trigger [24]. In this attack, the attacker
selects a natural semantic feature that can be found in clean
images of a victim class as the trigger (e.g. a green meadow
in the image of a ram). Then, the attacker injects the backdoor
into the model such that any image of a ram in a green meadow
is misclassified to a specific target class, while all other images
of rams are correctly classified. DeBackdoor outperforms the
baselines by a large margin.

4.5 Ablation Study
All experiments running our detection technique were con-
ducted using an NVIDIA Tesla V100 GPU and 32GB of RAM.
We analyze the effects of the choices of hyper-parameters
of our technique on a subset of the TDC dataset: clean im-
age batch size b, number of optimization steps s, and score
smoothing parameter λ.

Table 5: A comparison of different detection techniques on a number of datasets, architectures, and backdoor settings. Given
each backdoor setting and defense technique, we report True Positive Rate (TPR) and False Positive Rate (FPR). Notice that
DeBackdoor outperforms FreeEagle and other techniques in most tasks. Most performance numbers are borrowed from [24].

Dataset

Backdoor Settings & TPR/FPR
Detection Model All2One One2One
Technique Architecture Patch Blending Filter Patch Blending Filter

Trigger Trigger Trigger Trigger Trigger Trigger

ABS

CIFAR-10 VGG-16 0.37/0.04 0.61/0.05 0.21/0.04 0.56/0.05 0.25/0.02 0.26/0.05
GTSRB GoogLeNet 0.56/0.05 0.62/0.04 0.34/0.05 0.43/0.05 0.26/0.04 0.13/0.05

ImageNet-R ResNet-50 0.67/0.05 0.22/0.01 0.73/0.03 0.43/0.05 0.40/0.04 0.32/0.05
MNIST CNN-7 0.71/0.05 0.64/0.05 0.23/0.04 0.35/0.02 0.15/0.05 0.23/0.05

ANP

CIFAR-10 VGG-16 0.90/0.01 0.76/0.04 0.77/0.03 0.62/0.05 0.51/0.05 0.57/0.05
GTSRB GoogLeNet 0.90/0.05 0.74/0.05 0.53/0.05 0.28/0.05 0.13/0.05 0.14/0.05

ImageNet-R ResNet-50 0.99/0.05 0.96/0.03 0.74/0.05 0.31/0.05 0.23/0.05 0.19/0.05
MNIST CNN-7 0.83/0.05 0.86/0.05 0.73/0.05 0.71/0.05 0.68/0.05 0.43/0.05

DF-TND

CIFAR-10 VGG-16 0.00/0.02 0.00/0.04 0.00/0.03 0.00/0.04 0.01/0.03 0.03/0.05
GTSRB GoogLeNet 0.23/0.05 0.08/0.04 0.31/0.05 0.19/0.05 0.17/0.05 0.28/0.04

ImageNet-R ResNet-50 0.76/0.05 0.32/0.05 0.90/0.03 0.18/0.05 0.23/0.05 0.38/0.05
MNIST CNN-7 0.05/0.04 0.23/0.05 0.00/0.02 0.04/0.01 0.09/0.05 0.03/0.05

FreeEagle

CIFAR-10 VGG-16 0.98/0.03 0.73/0.04 0.85/0.04 0.71/0.05 0.72/0.05 0.74/0.04
GTSRB GoogLeNet 0.99/0.03 0.99/0.04 1.00/0.03 0.89/0.03 0.76/0.04 0.84/0.05

ImageNet-R ResNet-50 0.99/0.04 0.86/0.03 0.99/0.02 0.74/0.03 0.73/0.04 0.78/0.05
MNIST CNN-7 0.97/0.03 0.81/0.05 0.79/0.01 0.78/0.03 0.70/0.04 0.72/0.03

NC

CIFAR-10 VGG-16 0.90/0.00 0.70/0.00 0.13/0.05 0.07/0.05 0.02/0.04 0.02/0.05
GTSRB GoogLeNet 1.00/0.00 1.00/0.00 0.51/0.05 0.21/0.05 0.33/0.05 0.04/0.05

ImageNet-R ResNet-50 0.75/0.00 0.68/0.02 0.23/0.05 0.00/0.00 0.00/0.00 0.00/0.00
MNIST CNN-7 0.83/0.00 0.90/0.00 0.32/0.02 0.23/0.05 0.13/0.05 0.28/0.02

STRIP

CIFAR-10 VGG-16 0.89/0.04 0.92/0.04 0.10/0.03 0.00/0.02 0.04/0.05 0.02/0.05
GTSRB GoogLeNet 0.97/0.01 0.57/0.05 0.34/0.05 0.10/0.05 0.01/0.05 0.11/0.05

ImageNet-R ResNet-50 0.44/0.05 0.53/0.05 0.14/0.05 0.10/0.05 0.03/0.02 0.07/0.03
MNIST CNN-7 0.83/0.05 0.00/0.01 0.00/0.02 0.00/0.04 0.00/0.03 0.00/0.01

DeBackdoor

CIFAR-10 VGG-16 1.00/0.00 0.90/0.04 1.00/0.00 0.88/0.04 0.97/0.04 1.00/0.00
GTSRB GoogLeNet 1.00/0.00 0.98/0.00 0.96/0.04 1.00/0.02 0.76/0.00 0.74/0.04

ImageNet-R ResNet-50 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00
MNIST CNN-7 1.00/0.00 1.00/0.00 0.97/0.02 1.00/0.00 0.97/0.02 1.00/0.00

Batch size refers to the number of clean validation images
used to compute the cASR. We see that time and AUROC
both increase as b grows (Figure 11-a). While larger batches
take a longer time for inference, increasing b makes cASR a
closer estimate of ASR. For our approach, a batch size of 32
is sufficient.

Number of steps counts the iterations of Simulated An-
nealing. Figure 11-b shows the effect of the number of steps
on AUROC. In our experiments, 10000 Simulated Annealing
steps have been enough. However, for harder problems, one
can potentially use more steps, as the computation takes only
a few minutes for a model in our experiments.

λ parameter trades off smoothing and similarity when
approximating ASR using cASR. We vary λ and observe
the best performance when λ = 0.6 (Figure 11-c). Larger
values of λ cause discreteness (Equation 3) while smaller

values of λ yield inaccurate approximation of ASR. To search
for λ and batch size, we deliberately reduced the number of
Simulated Annealing steps to avoid AUROC = 100%, so that
improvements become visible.

Computational cost of our detection technique is domi-
nated by the runtime of querying the model (Table 6). The
runtime is about a few minutes per category using a V100
GPU. Simple architectures (lightweight CNNs) are faster than
larger ones (vision transformers). The time also depends on
the complexity of the search space as simpler search spaces
require fewer SA steps. Figure 12 shows that detection run-
time grows linearly, and at different rates (depending on the
architecture), as the number of model parameters increases.
The search across multiple target labels is straightforward to
parallelize.

(a) Effect of search batch size on Area
Under ROC Curve (AUROC)

(b) Effect of number of Simulated
Annealing steps on AUROC

(c) Effect of the choice of parameter λ

on AUROC

Figure 11: A study of the effect of batch size b, number of Simulated Annealing (SA) steps s, and the choice of λ on Area Under
ROC Curve (AUROC) to separate clean/backdoor models. To search for b and λ, we used sub-optimal s, and to search for s we
used suboptimal b to avoid AUROC = 1.0 and ensure that the comparison is meaningful. We found that b = 32, s = 10000, and
λ = 0.6 achieve an optimum speed-accuracy trade-off for our experiments. For LIRA and WaNet, s = 1000 is sufficient.

Table 6: A comparison of detection runtime per class label
for different backdoor attacks, models, and image datasets in
the TDC. When 10000 Simulated Annealing steps are used,
it takes about or less than a minute on a single V100 GPU.

Attack
Label Inspection Time (s)

Wide-ResNet Vision Transformer CNN
(CIFAR-10) (GTSRB) (MNIST)

Patch 66.44 60.28 16.33
Blended 52.62 49.32 13.60
WaNet 17.57 14.66 5.66
LIRA 8.65 4.59 1.69

5 Discussion

Future attacks. DeBackdoor behaves similarly to Antivirus
software. Given a model, DeBackdoor scans it to find potential
backdoors given a known list of broad attack templates. Each
template defines a search space that DeBackdoor searches
through. Here, future-proofness depends on the database of
templates and we may miss a zero-day attack unless the de-
fender introduces an appropriate template. We highlight that
DeBackdoor is easily adaptable to incorporate new templates
to cover novel attack types as they arise. This being said,
our experiments show that if an unseen new attack behaves
similarly to an existing template, the new attack can still
be detected. For example, even though MMS-BD [37] uses
location-specific triggers and c-BAN [55] is a dynamic attack,
DeBackdoor can reliably detect both of these newer attacks
via the generic patch template.

Defining a new attack. We argue that whether a behav-
ior is considered an attack or not, is a matter of definition.
This definition should be expressed in some form. Defense

(a) ResNets [30] (b) VGGs [57]

Figure 12: A comparison of detection runtime per class label
of different backdoor attacks across different model architec-
tures and varying model sizes.

techniques define a backdoor attack using either (1) a set of
backdoored models, or (2) a set of triggered inputs, or (3)
some broad knowledge about the behavior of the attack. We
argue that in the absence of the first two sources, we must rely
on the third.

Detection of model watermarks. Some model watermark-
ing techniques rely on embedding triggers into clean samples,
causing the model to classify the sample to a verification
output. In this case, DeBackdoor may detect this trigger as
it behaves identically to a backdoor. Ultimately, it is up to
the defender to decide whether this trigger compromises the
model or serves verification purposes.

6 Related Work

6.1 Backdoor Attacks
A backdoor attack operates by injecting a hidden backdoor
into a deep model. When the model is provided an input that

contains a trigger, the model misbehaves by misclassifying
the input to an attacker-chosen target label. Otherwise, the
model’s classification of clean inputs is identical to that of a
normal model, making backdoor attacks stealthy.

BadNets [27] proposed the first backdoor attack that uses a
patch as a trigger, causing the backdoored model to misclas-
sify any input with this trigger to an attacker-chosen target
label t (sample-agnostic). The backdoor is injected into the
model by poisoning a subset of the training data samples by
adding the trigger to the input and changing the label to t. The
model is then trained using this data to learn the trigger as a
strong feature of the target class.

Some works focused on making this attack more stealthy by
developing new triggers. For example, the blended attack [11]
proposes using a trigger that is blended into the background
of the input and thus more difficult to distinguish. Refool [46]
proposes planting triggers into inputs that appear as natural
reflections, bypassing visual inspection.

Other works focused on making backdoor attacks more
practical by developing triggers that are effective in real-world
scenarios. Physical and semantic backdoors [24, 41, 74, 77]
propose using physical objects (e.g. pink sunglasses) and
semantic features (e.g. green meadows) as triggers that can be
found in the real world. Compression-resistant backdoors [78]
design triggers that are resilient to changes induced during
the compression process.

Recently, dynamic attacks were proposed as a powerful
alternative to static (sample-agnostic) attacks [55]. Dynamic
attacks use a trigger that is sample-specific. For example,
WaNet [48] proposes using a warping effect as a trigger, which
produces different changes for each input. LIRA [19] trains
an autoencoder to generate noise that is distinct for each input
and invisible to human inspection. These attacks bypass de-
tection techniques that assume a single trigger is used across
all inputs. In addition to sample-specific triggers, some works
proposed making the target label dependent on the input [37].

Since poisoned samples can be detected in the training
dataset by flagging inputs with incorrect labels, clean-label
attacks were proposed as an alternative that does not require
the attacker to modify labels [4, 53, 65, 83]. We defer the
review of backdoor attacks in other domains to appendix D.

6.2 Backdoor Defenses
A wide range of methods have been proposed to defend
against backdoor attacks. These methods operate in different
defense settings and take diverse approaches to address the
threat of backdoor attacks.

Some defense techniques are deployed alongside the model
and defend the model by inspecting and either sanitizing or
filtering out any inputs that might contain a backdoor trig-
ger [18, 29, 69]. For example, STRIP [26] applies perturba-
tions to incoming inputs, observes the randomness of pre-
dicted classes, and identifies low entropy in predictions as an

indicator of the presence of a backdoor trigger.
Other defense techniques are pre-emptive, defending the

model by analyzing and isolating the subset of the training
data that is poisoned [50, 51, 64, 67, 85]. For example, AC [9]
clusters the training dataset using the model activations for dif-
ferent inputs. The cluster of poisoned samples is then detected
and can be excluded from model training.

A few defense techniques build classifiers that classify
models as clean or backdoored. These techniques assume
that a dataset of clean and backdoored models is available
(e.g. setting of TDC [23]). Otherwise, these techniques train
datasets of clean and backdoored models [33, 76].

Some defense techniques do not rely on any triggered in-
puts or training data, detecting backdoors by directly inspect-
ing the internals of the model [25, 45, 71, 85]. For example,
FreeEagle [24] uses dummy inputs and records the intermedi-
ate representations of the model to detect anomalous activa-
tions that indicate the model contains a backdoor.

A family of defense techniques attempts to reverse-
engineer the trigger [20, 28, 56, 61, 70, 71]. For each potential
target class, a candidate trigger is synthesized by solving the
backdoor optimization problem (i.e. finding a small perturba-
tion that causes the model to misclassify inputs to the target
class). Once a set of candidate triggers is synthesized, various
anomaly detection methods are applied to identify whether a
true backdoor trigger exists.

Beyond detecting backdoor attacks, a range of defense tech-
niques have been proposed that aim to remove a backdoor
from the infected model [31, 43, 44, 75, 84]. Some of these
techniques propose removing backdoors by fine-tuning the
model on clean data. The other set of these techniques re-
moves the backdoor by pruning backdoored neurons and thus
preventing the backdoor from being activated.

7 Conclusion

In this work, we consider a realistic defense scenario against
backdoor attacks. This scenario is defined by a few charac-
teristics that we refer to as the pre-deployment, data-limited,
single-instance, and black-box constraints.

Given a query model, our framework generates candidate
triggers by optimizing a novel objective function. This yields
explainable results that can be used to detect whether the
model has a backdoor, as well as the trigger, target labels,
and the success rate of the attack. We generate triggers using
Simulated Annealing, which is appropriately designed for
non-convex optimization problems.

Most prior works do not operate in our scenario. However,
for evaluation and documentation purposes, we compare our
framework against a range of detection techniques that are
not restricted to these constraints. We evaluate our framework
against eight attack techniques, five architectures, and five
datasets. Our model demonstrate superior performance across
these diverse settings.

Ethics Considerations and Compliance with the
Open Science Policy

Ethics Considerations
In developing DeBackdoor, no human subjects were involved,
so there are no ethical concerns related to data privacy. How-
ever, the ethical implications of this work are significant, given
its focus on providing a novel method for detecting backdoor
attacks in deep learning models that may be used in safety-
critical applications. This work intends to provide an addi-
tional method for verifying the safety and security of this tech-
nology before its deployment. Additionally, by highlighting
these threats, this study raises awareness within the research
and practice communities and expedites the development of
robust defensive mechanisms. Our work positively contributes
to secure and trustworthy AI, ensuring deep models are safer
for all applications and user communities.

Compliance with the Open Science Policy
We provide sufficient details regarding configurations,
datasets, baselines, metrics, and deep models used in our
study and experiments. These details greatly support and
enhance the reproducibility and replicability of our scientific
findings. To further facilitate the artifact evaluation in terms of
availability, functionality, and reproducibility of our findings,
the implementation of DeBackdoor is publicly available at
https://zenodo.org/records/14738587. We have included de-
tailed instructions for installation and execution, alongside
examples of models backdoored using the attacks discussed
in this study. Due to the large size of the complete datasets,
they will be available upon request.

References

[1] Rolf Adams and Leanne Bischof. Seeded region grow-
ing. IEEE Transactions on pattern analysis and machine
intelligence, 16(6):641–647, 1994.

[2] Hasan Abed Al Kader Hammoud, Shuming Liu,
Mohammed Alkhrashi, Fahad Albalawi, and Bernard
Ghanem. Look listen and attack: Backdoor attacks
against video action recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) Workshops, pages 3439–3450,
June 2024.

[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Debo-
rah Estrin, and Vitaly Shmatikov. How to backdoor fed-
erated learning. In Silvia Chiappa and Roberto Calandra,
editors, Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, vol-
ume 108 of Proceedings of Machine Learning Research,
pages 2938–2948. PMLR, 26–28 Aug 2020.

[4] M. Barni, K. Kallas, and B. Tondi. A new backdoor
attack in cnns by training set corruption without label
poisoning. In 2019 IEEE International Conference on
Image Processing (ICIP), pages 101–105, 2019.

[5] Marco Barreno, Blaine Nelson, Anthony D Joseph, and
J Doug Tygar. The security of machine learning. Ma-
chine Learning, 81:121–148, 2010.

[6] Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov.
Better plain vit baselines for imagenet-1k. arXiv
preprint arXiv:2205.01580, 2022.

[7] Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Pra-
soon Goyal, Lawrence D Jackel, Mathew Monfort,
Urs Muller, Jiakai Zhang, et al. End to end learning
for self-driving cars. In 2016 IEEE International
Conference on Intelligent Transportation Systems
(ITSC), pages 1–8. IEEE, 2016.

[8] Claude J. P. Bélisle. Convergence theorems for a class
of simulated annealing algorithms on rd. Journal of
Applied Probability, 29(4):885–895, 1992.

[9] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo,
Heiko Ludwig, Benjamin Edwards, Taesung Lee, Ian
Molloy, and Biplav Srivastava. Detecting backdoor at-
tacks on deep neural networks by activation clustering,
2018.

[10] Meng Chen, Xiangyu Xu, Li Lu, Zhongjie Ba, Feng Lin,
and Kui Ren. Devil in the room: Triggering audio back-
doors in the physical world. In 33rd USENIX Security
Symposium (USENIX Security 24), pages 7285–7302,
Philadelphia, PA, August 2024. USENIX Association.

[11] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. Targeted backdoor attacks on deep learning
systems using data poisoning, 2017.

[12] Yanjiao Chen, Xueluan Gong, Qian Wang, Xing Di, and
Huayang Huang. Backdoor attacks and defenses for
deep neural networks in outsourced cloud environments.
IEEE Network, 34(5):141–147, 2020.

[13] Siddhartha Chib and Edward Greenberg. Understand-
ing the metropolis-hastings algorithm. The American
Statistician, 49(4):327–335, 1995.

[14] Edward Chou, Florian Tramèr, and Giancarlo Pellegrino.
Sentinet: Detecting localized universal attacks against
deep learning systems. In 2020 IEEE Security and
Privacy Workshops (SPW), pages 48–54, 2020.

[15] Jiazhu Dai, Chuanshuai Chen, and Yufeng Li. A back-
door attack against lstm-based text classification sys-
tems. IEEE Access, 7:138872–138878, 2019.

https://zenodo.org/records/14738587

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, 2009.

[17] Li Deng. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

[18] Bao Gia Doan, Ehsan Abbasnejad, and Damith C. Ranas-
inghe. Februus: Input purification defense against trojan
attacks on deep neural network systems. In Annual Com-
puter Security Applications Conference, ACSAC ’20,
page 897–912, New York, NY, USA, 2020. Association
for Computing Machinery.

[19] Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. Lira:
Learnable, imperceptible and robust backdoor attacks.
In 2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 11946–11956, 2021.

[20] Yinpeng Dong, Xiao Yang, Zhijie Deng, Tianyu Pang,
Zihao Xiao, Hang Su, and Jun Zhu. Black-box detec-
tion of backdoor attacks with limited information and
data. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 16482–16491,
2021.

[21] Jacob Dumford and Walter Scheirer. Backdooring con-
volutional neural networks via targeted weight perturba-
tions. In 2020 IEEE International Joint Conference on
Biometrics (IJCB), pages 1–9, 2020.

[22] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin
Ko, Susan M Swetter, Helen M Blau, and Sebastian
Thrun. Dermatologist-level classification of skin cancer
with deep neural networks. nature, 542(7639):115–118,
2017.

[23] Neural Information Processing Systems Foundation.
The trojan detection challenge. NeurIPS 2022, 2022.

[24] Chong Fu, Xuhong Zhang, Shouling Ji, Ting Wang,
Peng Lin, Yanghe Feng, and Jianwei Yin. FreeEagle:
Detecting complex neural trojans in Data-Free cases.
In 32nd USENIX Security Symposium (USENIX Secu-
rity 23), pages 6399–6416, Anaheim, CA, August 2023.
USENIX Association.

[25] Hui Gao, Yunfang Chen, Wei Zhang, and Petros
Nicopolitidis. Detection of trojaning attack on neu-
ral networks via cost of sample classification. Sec. and
Commun. Netw., 2019, jan 2019.

[26] Yansong Gao, Change Xu, Derui Wang, Shiping Chen,
Damith C. Ranasinghe, and Surya Nepal. Strip: A de-
fence against trojan attacks on deep neural networks.
In Proceedings of the 35th Annual Computer Security

Applications Conference, ACSAC ’19, page 113–125,
New York, NY, USA, 2019. Association for Computing
Machinery.

[27] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth
Garg. Badnets: Identifying vulnerabilities in the ma-
chine learning model supply chain. arXiv preprint
arXiv:1708.06733, 2017.

[28] Junfeng Guo, Ang Li, and Cong Liu. Aeva: Black-
box backdoor detection using adversarial extreme value
analysis. In International Conference on Learning Rep-
resentations, 2021.

[29] Junfeng Guo, Yiming Li, Xun Chen, Hanqing Guo,
Lichao Sun, and Cong Liu. Scale-up: An efficient
black-box input-level backdoor detection via analyz-
ing scaled prediction consistency. arXiv preprint
arXiv:2302.03251, 2023.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[31] Zirui Huang, Yunlong Mao, and Sheng Zhong. UBA-Inf:
Unlearning activated backdoor attack with Influence-
Driven camouflage. In 33rd USENIX Security Sympo-
sium (USENIX Security 24), pages 4211–4228, Philadel-
phia, PA, August 2024. USENIX Association.

[32] Shashank Mohan Jain. Hugging Face, pages 51–67.
Apress, Berkeley, CA, 2022.

[33] Soheil Kolouri, Aniruddha Saha, Hamed Pirsiavash, and
Heiko Hoffmann. Universal litmus patterns: Reveal-
ing backdoor attacks in cnns. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

[34] Yassin Kortli, Maher Jridi, Ayman Al Falou, and Mo-
hamed Atri. Face recognition systems: A survey. Sen-
sors, 20(2), 2020.

[35] Torsten Krauß, Jasper Stang, and Alexandra Dmitrienko.
Verify your labels! trustworthy predictions and datasets
via confidence scores. In 33rd USENIX Security Sympo-
sium (USENIX Security 24), pages 2955–2971, Philadel-
phia, PA, August 2024. USENIX Association.

[36] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. 2009.

[37] Hyun Kwon. Multi-model selective backdoor attack
with different trigger positions. IEICE TRANSACTIONS
on Information and Systems, 105(1):170–174, 2022.

[38] Changjiang Li, Ren Pang, Bochuan Cao, Zhaohan Xi,
Jinghui Chen, Shouling Ji, and Ting Wang. On the diffi-
culty of defending contrastive learning against backdoor
attacks. In 33rd USENIX Security Symposium (USENIX
Security 24), pages 2901–2918, Philadelphia, PA, Au-
gust 2024. USENIX Association.

[39] Songze Li and Yanbo Dai. BackdoorIndicator: Leverag-
ing OOD data for proactive backdoor detection in fed-
erated learning. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 4193–4210, Philadelphia,
PA, August 2024. USENIX Association.

[40] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia.
Backdoor learning: A survey. IEEE Transactions on
Neural Networks and Learning Systems, pages 1–18,
2022.

[41] Yiming Li, Tongqing Zhai, Baoyuan Wu, Yong Jiang,
Zhifeng Li, and Shutao Xia. Rethinking the trigger of
backdoor attack, 2021.

[42] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang.
Composite backdoor attack for deep neural network by
mixing existing benign features. In Proceedings of
the 2020 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’20, page 113–131, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

[43] Hongbin Liu, Michael K. Reiter, and Neil Zhenqiang
Gong. Mudjacking: Patching backdoor vulnerabilities
in foundation models. In 33rd USENIX Security Sympo-
sium (USENIX Security 24), pages 2919–2936, Philadel-
phia, PA, August 2024. USENIX Association.

[44] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
Fine-pruning: Defending against backdooring attacks
on deep neural networks, 2018.

[45] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing
Ma, Yousra Aafer, and Xiangyu Zhang. Abs: Scan-
ning neural networks for back-doors by artificial brain
stimulation. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’19, page 1265–1282, New York, NY, USA, 2019.
Association for Computing Machinery.

[46] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu.
Reflection backdoor: A natural backdoor attack on deep
neural networks. Berlin, Heidelberg, 2020. Springer-
Verlag.

[47] Xiaoting Lyu, Yufei Han, Wei Wang, Jingkai Liu, Yong-
sheng Zhu, Guangquan Xu, Jiqiang Liu, and Xiangliang
Zhang. Lurking in the shadows: Unveiling stealthy back-
door attacks against personalized federated learning. In

33rd USENIX Security Symposium (USENIX Security
24), pages 4157–4174, Philadelphia, PA, August 2024.
USENIX Association.

[48] Tuan Anh Nguyen and Anh Tuan Tran. Wanet - im-
perceptible warping-based backdoor attack. In Interna-
tional Conference on Learning Representations, 2021.

[49] Luca Pajola and Mauro Conti. Fall of giants: How
popular text-based mlaas fall against a simple evasion
attack. In 2021 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 198–211, 2021.

[50] Minzhou Pan, Yi Zeng, Lingjuan Lyu, Xue Lin, and
Ruoxi Jia. ASSET: Robust backdoor data detection
across a multiplicity of deep learning paradigms. In
32nd USENIX Security Symposium (USENIX Security
23), pages 2725–2742, Anaheim, CA, August 2023.
USENIX Association.

[51] Xiangyu Qi, Tinghao Xie, Jiachen T. Wang, Tong Wu,
Saeed Mahloujifar, and Prateek Mittal. Towards a proac-
tive ML approach for detecting backdoor poison sam-
ples. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 1685–1702, Anaheim, CA, August
2023. USENIX Association.

[52] Mauro Ribeiro, Katarina Grolinger, and Miriam A.M.
Capretz. Mlaas: Machine learning as a service. In
2015 IEEE 14th International Conference on Machine
Learning and Applications (ICMLA), pages 896–902,
2015.

[53] Aniruddha Saha, Akshayvarun Subramanya, and Hamed
Pirsiavash. Hidden trigger backdoor attacks. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
34(07):11957–11965, Apr. 2020.

[54] Ahmed Salem, Michael Backes, and Yang Zhang. Don’t
trigger me! a triggerless backdoor attack against deep
neural networks, 2020.

[55] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma,
and Yang Zhang. Dynamic backdoor attacks against
machine learning models. In 2022 IEEE 7th European
Symposium on Security and Privacy (EuroS&P), pages
703–718, 2022.

[56] Guangyu Shen, Yingqi Liu, Guanhong Tao, Shengwei
An, Qiuling Xu, Siyuan Cheng, Shiqing Ma, and Xi-
angyu Zhang. Backdoor scanning for deep neural net-
works through k-arm optimization. In Marina Meila and
Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pages
9525–9536. PMLR, 18–24 Jul 2021.

[57] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition,
2015.

[58] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and
Christian Igel. Man vs. computer: Benchmarking ma-
chine learning algorithms for traffic sign recognition.
Neural networks, 32:323–332, 2012.

[59] MA Styblinski and T-S Tang. Experiments in nonconvex
optimization: stochastic approximation with function
smoothing and simulated annealing. Neural Networks,
3(4):467–483, 1990.

[60] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions, 2014.

[61] Guanhong Tao, Guangyu Shen, Yingqi Liu, Shengwei
An, Qiuling Xu, Shiqing Ma, Pan Li, and Xiangyu
Zhang. Better trigger inversion optimization in backdoor
scanning. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 13358–
13368, 2022.

[62] Guanhong Tao, Zhenting Wang, Siyuan Cheng, Shiqing
Ma, Shengwei An, Yingqi Liu, Guangyu Shen, Zhuo
Zhang, Yunshu Mao, and Xiangyu Zhang. Backdoor
vulnerabilities in normally trained deep learning models.
arXiv preprint arXiv:2211.15929, 2022.

[63] Neil C. Thompson, Kristjan Greenewald, Keeheon Lee,
and Gabriel F. Manso. The computational limits of deep
learning, 2022.

[64] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral
signatures in backdoor attacks. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates, Inc.,
2018.

[65] Alexander Turner, Dimitris Tsipras, and Aleksander
Madry. Label-consistent backdoor attacks, 2019.

[66] Ryan Turner, Jane Hung, Eric Frank, Yunus Saatci, and
Jason Yosinski. Metropolis-hastings generative adver-
sarial networks, 2019.

[67] Sakshi Udeshi, Shanshan Peng, Gerald Woo, Lionell
Loh, Louth Rawshan, and Sudipta Chattopadhyay.
Model agnostic defence against backdoor attacks in ma-
chine learning, 2022.

[68] Peter J. M. van Laarhoven and Emile H. L. Aarts. Sim-
ulated annealing, pages 7–15. Springer Netherlands,
Dordrecht, 1987.

[69] Akshaj Kumar Veldanda, Kang Liu, Benjamin Tan,
Prashanth Krishnamurthy, Farshad Khorrami, Ramesh
Karri, Brendan Dolan-Gavitt, and Siddharth Garg. Nnoc-
ulation: Catching badnets in the wild. In Proceedings of
the 14th ACM Workshop on Artificial Intelligence and
Security, AISec ’21, page 49–60, New York, NY, USA,
2021. Association for Computing Machinery.

[70] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li,
Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao. Neu-
ral cleanse: Identifying and mitigating backdoor attacks
in neural networks. In 2019 IEEE Symposium on Secu-
rity and Privacy (SP), pages 707–723, 2019.

[71] Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen,
Jinjun Xiong, and Meng Wang. Practical detection
of trojan neural networks: Data-limited and data-free
cases. In Computer Vision – ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XXIII, page 222–238, Berlin, Heidel-
berg, 2020. Springer-Verlag.

[72] Shuo Wang, Surya Nepal, Carsten Rudolph, Marthie
Grobler, Shangyu Chen, and Tianle Chen. Backdoor
attacks against transfer learning with pre-trained deep
learning models. IEEE Transactions on Services Com-
puting, 15(3):1526–1539, 2022.

[73] Yue Wang, Esha Sarkar, Wenqing Li, Michail Mani-
atakos, and Saif Eddin Jabari. Stop-and-go: Exploring
backdoor attacks on deep reinforcement learning-based
traffic congestion control systems. IEEE Transactions
on Information Forensics and Security, 16:4772–4787,
2021.

[74] Emily Wenger, Josephine Passananti, Arjun Nitin
Bhagoji, Yuanshun Yao, Haitao Zheng, and Ben Y. Zhao.
Backdoor attacks against deep learning systems in the
physical world. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 6206–6215, June 2021.

[75] Dongxian Wu and Yisen Wang. Adversarial neuron
pruning purifies backdoored deep models, 2021.

[76] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov,
Carl A. Gunter, and Bo Li. Detecting ai trojans us-
ing meta neural analysis. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 103–120, 2021.

[77] Mingfu Xue, Can He, Jian Wang, and Weiqiang Liu.
Backdoors hidden in facial features: a novel invisible
backdoor attack against face recognition systems. Peer-
to-Peer Networking and Applications, 14:1458–1474,
2021.

[78] Mingfu Xue, Xin Wang, Shichang Sun, Yushu Zhang,
Jian Wang, and Weiqiang Liu. Compression-resistant
backdoor attack against deep neural networks, 2022.

[79] Shenao Yan, Shen Wang, Yue Duan, Hanbin Hong, Kiho
Lee, Doowon Kim, and Yuan Hong. An LLM-Assisted
Easy-to-Trigger backdoor attack on code completion
models: Injecting disguised vulnerabilities against
strong detection. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 1795–1812, Philadelphia,
PA, August 2024. USENIX Association.

[80] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. arXiv preprint arXiv:1605.07146, 2016.

[81] Rui Zhang, Hongwei Li, Rui Wen, Wenbo Jiang, Yuan
Zhang, Michael Backes, Yun Shen, and Yang Zhang.
Instruction backdoor attacks against customized LLMs.
In 33rd USENIX Security Symposium (USENIX Security
24), pages 1849–1866, Philadelphia, PA, August 2024.
USENIX Association.

[82] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhen-
qiang Gong. Backdoor attacks to graph neural networks.
In Proceedings of the 26th ACM Symposium on Access
Control Models and Technologies, SACMAT ’21, page
15–26, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[83] Bingyin Zhao and Yingjie Lao. Towards class-oriented
poisoning attacks against neural networks. In Proceed-
ings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision (WACV), pages 3741–3750,
January 2022.

[84] Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan
Ramamurthy, and Xue Lin. Bridging mode connectivity
in loss landscapes and adversarial robustness, 2020.

[85] Songzhu Zheng, Yikai Zhang, Hubert Wagner, Mayank
Goswami, and Chao Chen. Topological detection of
trojaned neural networks. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Sys-
tems, volume 34, pages 17258–17272. Curran Asso-
ciates, Inc., 2021.

A Implementation Details of Backdoor At-
tacks

For patch attacks, the pattern matrix p is randomly sampled
from an independent Bernoulli 0/1 distribution. The mask
matrix m is distinct for each model, so each trigger has a
different location and size. For blended attacks, the pattern
matrix p is randomly sampled from an independent Uniform
[0,1] distribution. For filter attacks, we adopt the negative

color filter for 1-channel images (MNIST) and the vintage-
photography-style filter for 3-channel images (CIFAR-10, GT-
SRB, ImageNet) [24]. These attacks are either All2One or
One2One, with a random choice of t and s. We use stealthier
adaptations of these attacks that fine-tune models from the
starting parameters of clean models. Furthermore, regular-
ization with multiple similarity losses ensures that clean and
backdoored models appear statistically indistinguishable. We
consider diverse triggers (pattern, shape, size, target label).

For WaNet attacks, the k× k×2 control-grid is randomly
sampled from an independent Uniform [−1,1] distribu-
tion. s is randomly sampled from an independent Uniform
[0.25,0.75] distribution and k is randomly sampled from the
set {3,4,5,6}, as values outside of these ranges either make
the trigger visually distinguishable or ineffective. For LIRA
attacks, the transformation function Tξ∗ is learned using a sim-
ple autoencoder architecture. These attacks are either All2One
with random choice of t, or All2All with one-shift strategy.

MMS-BD targets 2≤m≤ 10 models and injects each with
a location-specific patch trigger. c-BaN injects a single model
with 2≤ n≤ 10 sample-specific patch triggers generated from
a uniform distributions and using random locations. These
attacks are All2One with random choice of t.

For semantic attacks, the trigger is a green meadow, a nat-
ural semantic feature of images in the “ram” class. These
attacks are One2One, with random target class t.

B Texture Similarity of Original and Synthe-
sized Triggers

In Section 4.2, we evaluated the performance of DeBackdor
on the trigger synthesis task by measuring the intersection
over union (IoU) between the mask of the original trigger
and the mask of the trigger synthesized by DeBackdoor. In
addition to measuring the similarity of triggers masks, we
also measure the similarity between the textures of original
and synthesized triggers. To measure the similarity between
two textures, we extract a 4096 dimensional feature vector
from each trigger. We used bag of words features because
they are agnostic to texture size. Finally, we calculate the
cosine similarity (CS) between the two textures.

We calculate CS between our predicted texture and the
ground-truth texture, and between a random texture and the
ground-truth texture. For each of the 4 datasets in TDC, we
calculated this similarity analysis on 125 backdoored models
and reported the results in table 7. Our predicted textures are
more similar to the ground truth than a random texture. How-
ever, they are very different from the ground truth texture. It
is notable that even though our predicted textures are different
from the ground truth, they are usually more effective (i.e.
higher ASR). This highlights that a byproduct of the backdoor-
ing process is the injection of not only the attacker-chosen
trigger, but a range of triggers of varying sizes and textures.

Table 7: The similarity score of our synthesized triggers for
patch attacks in the TDC. For each of the similarity scores,
125 different triggers on 125 different models are used.

Dataset
Model Cosine Similarity (CS)
Architecture Random DeBackdoor

CIFAR-10 Wide ResNet-40-2 0.007 0.021
CIFAR-100 Wide ResNet-40-2 0.012 0.041
GTSRB ViT 0.013 0.034
MNIST CNN-5 0.008 0.842

C Further Discussion

Beyond the vision domain. We evaluate our detection tech-
nique on numerous computer vision models. In this work,
we have demonstrated the versatility of our framework by
showing that simple modifications to the trigger search space
enable the detection of new attacks. Future work can explore
extending our framework to encompass various models in
other domains such as text, speech, and graphs. In these cases,
in addition to modifying the trigger search space, several low-
level submodules will also need modification to fit the target
domain. For example, the backdoor application submodule
will be adapted to apply perturbations on the target domain,
and the neighbor generation submodule will be adapted to
generate neighbors based on changes in the target domain.

Decision boundary for detection. In realistic scenarios, a
defender will inspect a model that they have received from
an untrusted third party and receive a single score for this
model. While using a hard threshold of 95% is generally ef-
fective, we highlight two cases where this threshold will lead
to issues. First, when the trigger used in an attack does not
have an explicit search space and must be approximated (e.g.
LIRA), the scores produced by our technique will drop for
both clean and backdoored models. This means that scores
of some backdoored models will drop below the 95% cutoff,
leading to an increase in false negatives. However, the scores
of all backdoored models will still be significantly higher than
any clean model. Consequently, when performing approxi-
mate detection of attacks, the defender can lower the decision
boundary and achieve high detection performance.

Second, the scores produced by our technique are depen-
dent on the upper bound of the perturbation δS that is used as
the attacker’s trigger. If the bound is very high, we observe
that our technique is capable of synthesizing effective triggers
with high scores for even clean models. Intuitively, if you al-
low a trigger to perform significant perturbation to the image
(e.g. a patch that covers half of the image), then the trigger
can alter the image’s features to make it look like it belongs
to a different class.

Table 8: An overview of the 20 classes used from Ima-
geNet [16] to construct ImageNet-R.

Class ID Class ID Class
in Imagenet-R in ImageNet Description

0 n02114367 grey wolf
1 n02123159 tiger cat
2 n02342885 hamster
3 n02412080 ram
4 n02894605 breakwater
5 n02895154 breastplate
6 n02930766 taxicab
7 n02999410 chain
8 n03089624 confectionery store
9 n03125729 cradle
10 n03141823 crutch
11 n03201208 dining table
12 n03240683 drilling rig
13 n03450230 gown
14 n03773504 missile
15 n03787032 square academic cap
16 n03792782 mountain bike
17 n03929855 pickelhaube
18 n03937543 pill bottle
19 n04162706 seat belt

D Emerging Threats

Deep models are increasingly employed in tasks across dif-
ferent domains. This poses a diverse set of security problems,
with backdoor attacks being demonstrated against audio [10],
graph [82], language [15], and video [2] models. Recent back-
door attacks against large language models (LLMs) [79, 81]
are of special concern due to the widespread adoption of
LLMs in safety-critical tasks such as code generation.

Backdoor attacks have also been implemented in a wide
range of deep learning paradigms (e.g. contrastive learn-
ing [38], reinforcement learning [73], transfer learning).

Federated Learning (FL) is especially vulnerable to back-
door attacks. In FL, untrusted clients participate in training
a global model. The client performs a local round of train-
ing on their data and shares only the resulting gradients with
a server. The server aggregates these gradients from many
clients and uses them to update the global model. This setting
makes backdoor attacks a pressing concern in FL as any of the
clients can inject a backdoor, with both attacks and defenses
being demonstrated in practice [3, 39, 47].

Overall, backdoor attacks are adaptable to many different
settings and will continue to pose a threat to deep models and
their users. Given the rapid advancement and adoption of new
deep models, research on backdoor attacks and defenses will
remain an active research direction in the coming years.

	Introduction
	Background
	Deep Models
	Backdoor Attacks
	Backdoor Detection Settings
	Search Techniques

	DeBackdoor
	Threat Model
	Detection Intuition and Overview
	Objective Function to Optimize
	Black-Box Optimization Technique
	Attack Search Space

	Evaluation
	Experimental Setup
	Trojan Detection Challenge
	Dynamic and Complex Attacks
	Out-of-Setting Detection Baselines
	Ablation Study

	Discussion
	Related Work
	Backdoor Attacks
	Backdoor Defenses

	Conclusion
	Implementation Details of Backdoor Attacks
	Texture Similarity of Original and Synthesized Triggers
	Further Discussion
	Emerging Threats

