
Effective Directed Fuzzing with Hierarchical Scheduling for Web Vulnerability
Detection

Zihan Lin, Yuan Zhang, Jiarun Dai, Xinyou Huang, Bocheng Xiang, Guangliang Yang, Letian Yuan, Lei
Zhang, Fengyu Liu, Tian Chen, and Min Yang

Fudan University

Abstract
Java web applications play a pivotal role in the modern dig-
ital landscape. Due to their widespread use and significant
importance, Java web applications have been one prime target
for cyber attacks. In this work, we propose a novel directed
fuzzing approach, called WDFUZZ, that can effectively vet
the security of Java web applications. To achieve this, we ad-
dress two main challenges: (1) efficiently exploring numerous
web entries and parameters, and (2) generating structured and
semantically constrained inputs. Our WDFUZZ approach is
two-fold. First, we develop a semantic constraint extraction
technique to accurately capture the expected input structures
and constraints of web parameters. Second, we implement
a hierarchical scheduling strategy that evaluates the poten-
tial of each seed to trigger vulnerabilities and prioritizes the
most promising seeds. In our evaluation against 15 real-world
Java web applications, WDFUZZ achieved a 92.6% recall rate
in the known vulnerability dataset, finding 3.2 times more
vulnerabilities and detecting them 7.1 times faster than the
state-of-the-art web fuzzer. We also identified 92 previously
unknown vulnerabilities, with 4 CVE IDs and 15 CNVD IDs
assigned to date.

1 Introduction

Java web applications play a pivotal role in the modern digital
landscape. They can facilitate convenient interaction and pro-
vide seamless access to diverse functionalities in various ar-
eas, such as business, education, healthcare, and entertainment.
However, web applications can often be vulnerable to various
security threats, including SQL injection, command injection,
server-side request forgery (SSRF), arbitrary file read/write,
and server-side template injection (SSTI). Recent statistics
showed that over 75% of web applications have at least one
defect, with 24% being regarded as serious flaws [37]. Given
the extensive deployment of web applications and the poten-
tial impact of such security flaws, it is crucial to design an
effective method for the security vetting of web applications.

Fuzzing is one of the most effective security analysis tech-
niques, contributing to the discovery of the most dangerous
vulnerabilities [17, 36]. It has been widely applied in several
fields, including desktop software, network protocols, and
Linux kernel. Despite its success, it is a challenging task to
apply fuzzing to the security analysis of Java web applica-
tions. Two main challenges are faced and must be carefully
dealt with.

• Challenge-1: Efficiently exploring numerous web en-
tries and parameters. Web applications often have large
code spaces that contain a large number of entry points
and parameters. In practice, such multi-dimensional large
search spaces make it difficult to efficiently pinpoint the
vulnerabilities.

• Challenge-2: Generating structured and semantically
constrained inputs. Web applications often require com-
plex, structured inputs with specific semantic constraints
for thorough testing. These inputs are difficult to generate
using conventional fuzzing methods, making it challenging
to effectively uncover vulnerabilities.

There are a few efforts made to address these challenges.
However, they faced weaknesses that hindered their effective-
ness in identifying vulnerabilities in Java web applications.
Black-box web scanners [2, 5, 23, 24] often struggle with low
coverage rates due to their reliance on the increasingly com-
plex web front-end interactions to obtain feedback, failing
to explore deeper vulnerabilities adequately. Grey-box web
fuzzers [27, 28, 38, 42, 45, 49] also exhibit critical limitations.
They often explore a substantial amount of code unrelated to
vulnerabilities due to the adoption of coverage-based guid-
ance. Meanwhile, their simplistic scheduling strategies fail to
identify and prioritize the most promising web entry points
for triggering vulnerabilities, instead wasting time and budget
on less likely candidates, which ultimately reduces the over-
all efficiency of vulnerability detection. Additionally, these
approaches typically rely on incomplete black-box crawlers
to extract web parameters, overlooking the structured nature
of inputs and their semantic constraints, further limiting their

ability to generate valid test cases.
In this paper, we present a novel fuzzer, WDFUZZ, that can

effectively detect 6 types of common critical vulnerabilities
such as command injection, SQL injection, and arbitrary file
read/write in Java web applications. Our approach is moti-
vated by several key insights that help address the inherent
challenges of exploring extensive code spaces and generating
structured inputs with semantic constraints. First, although
there are numerous entry points in a web application, our
experiment result shows that only 4.8% of the web entries
involve security-sensitive operations and have the potential to
trigger web vulnerabilities. A natural idea arises that directed
fuzzing can be utilized to shrink the code space to be analyzed.
To achieve this, it is critical to guide fuzzing on the critical
paths that connect user inputs (via entry points) to sensitive
operations. Second, we observe that the difficulty of trigger-
ing vulnerabilities varies across different web entry points
and sink locations due to the varying levels of input valida-
tion, sanitization, and processing logic employed at different
parts of the application. This variance motivates us to design
a novel hierarchical scheduling strategy that prioritizes testing
resources toward the most promising paths, maximizing the
likelihood of successful exploitation.

Based on these insights, we design WDFUZZ with two
main phases: 1) static preparation, which understands and ex-
tracts necessary semantics, including sensitive paths to sinks
and path constraints, for further guiding fuzzing; 2) dynamic
fuzzing, which explores the paths with a hierarchical schedul-
ing strategy. Specifically, in the static preparation phase, WD-
FUZZ performs entry and sink discovery to pinpoint critical
code areas. Following this, WDFUZZ conducts vulnerable
path extraction for guiding fuzzing with identifying potential
exploitation paths and semantic constraint extraction. Specifi-
cally, WDFUZZ gathers necessary information on input pa-
rameters, ultimately constructing a request tree that accurately
reflects the structures and constraints of input data.

In the second fuzzing phase, we propose a hierarchical
scheduling strategy to evaluate and prioritize the most promis-
ing seeds for fuzzing. The selected seeds are then mutated to
generate web requests, which are executed against the web ap-
plication to collect distance feedback to assess the exploration
of vulnerable paths. Any requests triggering the bug oracle
are documented in a comprehensive vulnerability report. As a
result, WDFUZZ strategically targets high-risk code areas, sig-
nificantly enhancing the efficiency of vulnerability detection
in Java web applications.

Last, we evaluate the effectiveness and efficiency of WD-
FUZZ on a diverse dataset consisting of 15 widely used popu-
lar Java web applications (including both open-source applica-
tions and closed-source commercial ones) and 68 known vul-
nerabilities. WDFUZZ achieved a remarkable 92.6% (63/68)
recall rate for known vulnerabilities, which is 3.2 times more
than the state-of-the-art web fuzzer, Witcher [42]. Addition-
ally, WDFUZZ demonstrated a significant reduction in the

time-to-exposure (TTE) for vulnerabilities, with an 87.69%
decrease compared to Witcher. In terms of vulnerability detec-
tion efficiency, WDFUZZ can identify 59.39 vulnerabilities
per hour – 7.1 times faster than Witcher. Moreover, WDFUZZ
successfully identified 92 previously unknown vulnerabilities,
all of which were responsibly reported to the relevant devel-
opers. Among these, 19 have been confirmed and fixed by
vendors, with 4 CVE IDs and 15 CNVD IDs assigned to date.
These vulnerabilities consist of high-risk vulnerabilities such
as SQL injection, arbitrary file read/write, and SSRF. The
security impact is significant, as it can lead to unauthorized
access, data breaches, disruption of web services, and poten-
tial system takeover. Ablation studies further proved that each
component of WDFUZZ contributed positively to its overall
performance, validating the effectiveness of our approach in
enhancing web application security.

In summary, in this paper, we make the following contribu-
tions:

• We propose the first directed fuzzing approach specifically
designed for web applications, integrating a novel parame-
ter structure and constraint extraction scheme along with
an advanced hierarchical scheduling strategy to enhance
vulnerability detection efficiency.

• We develop and release an open-source prototype fuzzer,
WDFUZZ, which detects vulnerabilities in Java web appli-
cations effectively and efficiently.

• Experimental results demonstrate that WDFUZZ signifi-
cantly outperforms existing state-of-the-art web fuzzers,
while identifying 92 previously unknown web vulnerabili-
ties.

2 Background and Motivation

In this section, we first discuss the background of web appli-
cation security. Subsequently, we review existing web vulner-
ability detection approaches and their limitations, which are
the motivation of our research.

2.1 Web Application Security
Java web applications play a pivotal role in the modern digital
ecosystem, offering flexible user access and diverse func-
tionalities. Due to insecure development practices and the
ever-evolving nature of cyber threats, modern Java web appli-
cations inevitably suffer from various vulnerabilities, includ-
ing SQL injection, command injection, server-side request
forgery (SSRF), arbitrary file read/write, and server-side tem-
plate injection (SSTI).

Detecting vulnerabilities in Java web applications remains
an open challenge due to several factors. First, the exten-
sive codebase of these applications often contains numerous
functionality entries and execution paths, making it imprac-
tical to explore the entire code space, especially given the

low throughput of web applications. Second, the prevalence
of customized protocols with complicated input formats and
composite semantic constraints further hinders the effective-
ness of testing. As thoroughly discussed in §2.2, existing
approaches often find it difficult to effectively address these
challenges, which limits their ability to uncover vulnerabili-
ties within a limited time budget. This highlights the need for
innovative approaches that can effectively address the unique
challenges posed by Java web applications.

2.2 Existing Work and Limitations

In recent years, the detection of vulnerabilities in web appli-
cations has predominantly followed three lines of methodolo-
gies, namely static analysis, black-box scanning, and grey-box
fuzzing. Although these works have made nice first cuts in
this problem domain, they still have non-negligible limita-
tions that significantly hurt the effectiveness and efficiency of
vulnerability detection (detailed as follows).

Static analysis techniques (e.g., TChecker [33], ANTaint
[46], and JackEE [9]) have been developed to automatically
analyze source code for potential security flaws. The main
idea is to track malicious user input from the web entry point
to some security-sensitive operations to find potentially vul-
nerable execution paths in web applications. A common
known issue of these techniques is the high false positive
rates [20, 30, 44], which can cost a lot of manual efforts to an-
alyze the bug reports to find genuine security threats. Further-
more, static methods struggle to generate practical proof-of-
concept (PoC) exploits, limiting their usability in real-world
scenarios like verifying and fixing the detected vulnerabilities.

Black-box scanners (e.g., Burp Suite [2], Wapiti [7], and
OWASP ZAP [5]) focus on testing running web applications
without access to the underlying code. While these scanners
are useful for identifying vulnerabilities from an attacker’s
perspective, they generally suffer from low coverage and fail
to explore deeper vulnerabilities within the application [23,
31]. Their effectiveness is further limited by the reliance on
complex front-end interactions to gather feedback, which may
not adequately represent all potential attack vectors.

Grey-box fuzzing has emerged as a promising approach by
combining dynamic and static analysis techniques to lever-
age internal information of programs to enhance vulnerability
detection efficiency. It presents significant advantages over
traditional static and black-box methods, making it an appeal-
ing option for testing web applications. Various techniques,
such as webFuzz [45], Witcher [42], Atropos [28], and Ce-
Fuzz [49], have been developed within this domain. However,
these approaches still fail to address key challenges, limit-
ing their effectiveness in detecting vulnerabilities. Existing
methods mainly rely on black-box crawling to generate ini-
tial seeds, which often results in incomplete attack surface
discovery and high false negative rates. Additionally, they
typically use coverage-guided feedback, which is inefficient

and wastes time on branches that do not lead to vulnerabilities.
The nested structures and complex semantic constraints of
web application parameters also make it difficult for these
methods to generate valid test cases. These limitations high-
light the pressing need for a more effective fuzzing method-
ology to enhance vulnerability detection in web applications,
which we will explore in this paper.

3 WDFUZZ Overview

To enhance the security of web applications, we must address
a critical question: How can we effectively fuzz web appli-
cations to uncover vulnerabilities? As discussed in the pre-
vious sections, due to the complexity and vast code space
of web applications, coverage-guided fuzzing approaches
are insufficient. This necessitates the adoption of directed
fuzzing, which allows us to strategically prune the search
space. Furthermore, unlike memory corruption vulnerabilities
in binary programs, where memory operations are ubiquitous
and finding potentially vulnerable operations can be chal-
lenging, web vulnerabilities are strongly related to specific
security-sensitive operations, such as database manipulations
and network requests. These operations can be more readily
identified through static analysis, making them suitable tar-
gets for directed fuzzing. Therefore, utilizing directed fuzzing
is helpful and essential for improving vulnerability detection
efficiency in web applications. While directed fuzzing is not
a novel concept and has been successfully applied to fuzz
binary software, it still encounters unique challenges in the
context of web application vulnerability detection.

3.1 Challenges

Fuzzing is one of the most effective vulnerability detection
approaches. To apply fuzzing to the security of web applica-
tions, two primary challenges must be addressed, i.e., 1) how
to efficiently explore the web entries and parameters under
the throughput limitations, and 2) how to address the nested
structure and complex semantic constraints posed on web
application input.

Challenge-1: Exploring numerous web entries and param-
eters with low throughput. The first challenge is exploring
the extensive number of entry points and parameters within
web applications, coupled with the low testing throughput.
Web applications typically expose hundreds and thousands of
entry points, with each entry point often requiring multiple
parameters for testing. For instance, a single commercial Java
web application may present over 27,000 accessible entry
points, each having an average of 10 input parameters. Even
if we use static analysis to prune the entry points that are un-
likely to trigger vulnerabilities, there still remain over 1,200
entries, representing a large exploration space.

Additionally, the throughput for fuzzing web applications

is very low, frequently dropping below 15 execs/s, in con-
trast to the over 500 execs/s typically achieved in binary pro-
gram fuzzing [1]. Existing research also suggests that the
throughput of web applications can decline to as low as 1.25
execs/s [28]. This significant reduction in fuzzing throughput
limits the ability to explore and test web applications within
a reasonable time budget. As a result, efficiently navigating
this complex landscape of entries and parameters is a critical
challenge for effective fuzzing.

Challenge-2: Generating structured and semantically con-
strained inputs to test web parameters. Many web ap-
plications necessitate inputs in complex formats, such as
JSON or XML, which are composed of nested key-value pairs.
This structural complexity presents significant challenges for
fuzzing, as it is difficult to infer appropriate keys and values,
as well as the overall structure that meets the program’s re-
quirements. Consequently, generating well-formed requests
that can be accurately processed by the application becomes
a hard task.

Furthermore, web applications often impose strict semantic
constraints on these inputs, such as the specific formats like
dates and email addresses, as well as the constraints within
the application code. These constraints further complicate the
input generation process, as inputs must not only adhere to
the required structure but also have the expected values of the
application. The inability to generate valid and meaningful
inputs significantly limits the effectiveness of a fuzzer in
uncovering vulnerabilities within web applications.

Motivating Example. Figure 1a shows an example in-
volving multiple web entry points and two sink locations
(i.e., the code locations performing security-sensitive oper-
ations) within a Java web application. The Java methods
deptMapper.updateDept and deptMapper.deleteDept
in line 10 and line 15 are potential SQL injection sinks, since
the configuration of the underlying database operations uses
the insecure ${params.dataScope} placeholder which di-
rectly injects the parameter values into the SQL statements
(line 3 in Figure 1b).

Detecting the vulnerability illustrated in Figure 1 is chal-
lenging. Firstly, among all the code paths in this exam-
ple, only the path highlighted in red – from entry point
1 (the edit method in line 2) to sink location 1 (the
deptMapper.updateDept method in line 10) – is exploitable.
Existing work typically applies a simple fixed scheduling strat-
egy that uniformly explores all web entries, wasting a lot of
time on unpromising entries that cannot trigger vulnerabili-
ties. For instance, in this example, entry 2 is not vulnerable
due to the external configuration config.allowDelete is
set to false. As a result, a fixed scheduling strategy treats the
two entry points equally, leading to insufficient exploration
of the promising entry point 1 while wasting time on the
unpromising entry point 2.

Moreover, existing solutions may fail to generate valid and

1 @PostMapping("/edit") /* web entry 1 */
2 void edit(@Validated SysDept dept) {
3 if ("open".equals(dept.getStatus()))
4 updateDeptStatus(dept);
5 checkAndDeleteDept(dept);
6 }
7 void updateDeptStatus(SysDept dept) {
8 Map action = JSONObject.parse(dept.getParams().get("action"));
9 if (action.getBoolean("modify")) {

10 deptMapper.updateDept(dept); // sink location 1
11 }}
12 void checkAndDeleteDept(SysDept dept) {
13 // not triggerable due to configuration
14 if (action.getBoolean("delete") && config.allowDelete) {
15 deptMapper.deleteDept(dept); // sink location 2
16 }}
17 @PostMapping("/delete") /* web entry 2 */
18 void delete(@Validated SysDept dept) {
19 checkAndDeleteDept(dept);
20 }
21 /* a lot of other web entries */
22 @PostMapping("/other")
23 void otherWebEntries() { ... }
24 /* explicit parameter definition */
25 class SysDept {
26 Long deptId;
27 @Email String email;
28 String status;
29 @JsonFormat(pattern="yyyy-MM-dd HH:mm") Date updateTime;
30 Map<String, Object> params;
31 }

(a) Vulnerable web application.

1 <update id="updateDept"> <!-- SQL statement configuration -->
2 UPDATE sys_dept SET status = #{status}
3 WHERE dept_id IN ${params.dataScope}
4 </update>

(b) Database operation configuration for deptMapper.updateDept.

1 status=open
2 &deptId=101
3 &email=fuzz@example.com
4 &updateTime=2024-01-01 08:00
5 ¶ms[action]={"modify":true}
6 ¶ms[dataScope]=’payload

(c) Payload to exploit the above web vulnerability.

Figure 1: Motivating example from a real world vulnerability.

meaningful inputs. In this example, the payload that triggers
the vulnerability must satisfy the following structural and
semantic constraints: 1 Input semantics: The input must com-
ply with complex validations like email and date formats to
ensure the web application accepts the provided input. 2
Input structure: The parameters must adhere to the nested
structures. For instance, the params parameter must be a map
that contains a key named action, whose value must be a
structured JSON string. This JSON must have nested keys for
modify or delete, both of which must be boolean true. 3
Application checks: The status field must be “open” for the
editing process to proceed past the necessary checks.

Existing fuzzers can barely extract these semantic con-
straints, and are generally incapable of generating inputs with
valid nested structures such as maps and JSON, which are
prevalent in modern web applications.

Web environment

Instrument

Selective distance
instrumentor

Web application
runtime

Distance feedback

Bug oracle

Static preparation phase Fuzzing phase

Entry & sink
discovery

Web application
bytecode

Web application
configurations

Vulnerable path
extraction

Semantic constraint
extraction

API sequences

Request tree
generation

Request tree mutator

Request translator

Hierarchical scheduling

Web entry scoring

Sink location scoring

Seed energy
allocation

Selected entry

Selected sink loc.

Corpus

Parameters &
constraints

Selected
seed

Mutated
seed

Mutated
request

Handle request Distance
update

Vulnerability
report

Execution state

Web entries & sinks

Initial
seeds

Figure 2: The system architecture of WDFUZZ.

3.2 Our Main Idea
Upon the above challenges, our main idea is to apply directed
fuzzing to focus limited testing resources on high-risk code
areas within web applications, thereby maximizing the effi-
ciency of vulnerability detection. However, as discussed in
§3.1, there remain several difficulties to solve. Through our
observations of the characteristics of web applications, we
summarize several key insights below that help us design an
effective directed fuzzer.

Observation #1: The difficulties for triggering vulnerabili-
ties differ across various web entry points and sink locations.
Some entry points and their associated sink locations may
present easier conditions for exploitation than others. By rec-
ognizing this variance, we can allocate more testing resources
to those locations that are more likely to yield successful
exploitation. We design a novel hierarchical scheduling tech-
nique to identify and prioritize the most promising entries,
sink locations, and seeds, which maximizes the chances of
discovering vulnerabilities in web applications.

Observation #2: The web application development com-
monly involves using well-known frameworks and libraries
to configure accessible entry points and handle user inputs.
For example, statistics indicate that the Spring framework
holds 81% of the market share for Java server-side web ap-
plications [6]. As a result, this prevalent development pattern
enables the effective extraction of web entry points and API
sequences that process inputs, which helps understand the ex-
pected inputs of a web application. Importantly, these API se-
quences contain extensive information about inputs, including
data types, nested relationships, and validation rules, thereby
providing insights into the relationships between parameters
and their expected formats.

Based on these observations, we propose a novel directed
fuzzer, WDFUZZ, to tackle the challenges of exploring ex-
pansive web application codebases and generating structured,
semantically constrained inputs.

3.2.1 Workflow

As illustrated in Figure 2, the overall process for WDFUZZ
involves two main phases: the static preparation phase and

the fuzzing phase.

Static Preparation Phase. WDFUZZ takes the bytecode
and configuration files of the target web application as the
input. The static preparation phase begins with entry and sink
discovery to identify all the entry points and sink call sites
in the web application. WDFUZZ then performs vulnerable
path extraction through static analysis to identify potentially
vulnerable paths from entries to sinks. These paths can later
be used to precisely extract constraints and construct initial
seeds.

Next, semantic constraint extraction is conducted to gather
information on the structure and constraints of input parame-
ters based on the API sequences on the vulnerable paths. By
leveraging web application development patterns, we can sys-
tematically develop a precise semantic constraint extraction
technique, enabling the inference of the structure (e.g., nested
JSON objects), and semantic constraints (e.g., emails, date
formats, and checks in application code) of web parameters.

This information collectively contributes to the request tree
generation, where initial seeds for fuzzing are generated with
a tree-based representation, accurately reflecting the structure
and constraints of input parameters. Additionally, the static
preparation phase also provides information for the distance
instrumentation on the web application runtime.

Fuzzing Phase. After the static preparation phase, the gen-
erated initial seeds are put into a corpus. WDFUZZ employs
the hierarchical scheduling technique, which evaluates the
potential of web entries, sink locations, and seeds based on
multiple factors to prioritize the most promising seeds for un-
covering vulnerabilities. This targeted approach ensures that
WDFUZZ focuses on the most promising seeds first, improv-
ing the efficiency and effectiveness of our fuzzing process.

The selected seeds are then mutated using the request tree
mutator and translated into mutated requests to test the web
application. During runtime, these mutated requests are ex-
ecuted, and distance feedback is collected to evaluate the
fuzzing progress in exploring the vulnerable paths. This feed-
back helps determine if a seed is “interesting” enough to war-
rant further mutations and provides information for the future
evaluation of seeds. Finally, any request triggering the bug

oracle will be reported, and a comprehensive vulnerability
report is generated, detailing the discovered issues.

4 Design and Implementation

In this section, we present the design of WDFUZZ and de-
ploy a prototype specifically targeting Java web applications.
Note that WDFUZZ only requires the bytecode of target ap-
plications as input. In the paper, we use source code in the
examples for illustrative purposes and readability.

4.1 Static Preparation Phase
In this phase, our goal is to identify the vulnerable code ar-
eas within web applications and to extract the corresponding
structures and constraints of web parameters. This workflow
includes the discovery of entry points and sinks, the extrac-
tion of vulnerable paths, and the identification of semantic
constraints associated with input parameters.

4.1.1 Entry and Sink Discovery

In order to statically find vulnerable paths within the web
applications, the first step is to define and detect the feasible
entries and sinks in the applications, which is challenging
due to the complexity and variability of web application ar-
chitectures. Our primary insight stems from the observation
that the majority (over 81%) of Java web applications are
developed using well-established web frameworks such as
Servlet and Spring framework. By harnessing this insight,
WDFUZZ incorporates a method that systematically matches
common development patterns inherent to these frameworks
to effectively identify web entry points and sink locations,
which are crucial for directed fuzzing.

Entry Point Identification. The goal of detecting web ap-
plication entry points is to identify as many attack vectors
as possible, which is crucial for discovering more vulner-
abilities. We comprehensively construct development pat-
terns for five popular Java web frameworks based on their
documentation, including Spring1, Struts22, Servlet3, JSP4,
and Javax-standard REST APIs5. As for the example in Fig-
ure 1a, WDFUZZ is able to identify the edit and delete
as web entry points, since its route is explicitly defined by
the @PostMapping (line 1 and line 17) annotation from the
Spring framework.

Sink Identification. WDFUZZ employs two primary strate-
gies to identify sinks and find sink locations. Firstly, WD-
FUZZ relies on a manually predefined sink list, including

1https://spring.io/
2https://struts.apache.org/
3https://docs.oracle.com/javaee/7/tutorial/servlets.htm
4https://docs.oracle.com/javaee/5/tutorial/doc/bnajo.

html
5https://docs.oracle.com/javaee/7/tutorial/jaxrs.htm

common security-sensitive operations like SQL execution,
command execution, SSRF, etc. These predefined sinks, as
listed in Appendix A, are derived from well-known patterns
and practices in web application security [47], ensuring that
our analysis covers the most critical areas where web vulner-
abilities are likely to occur.

Secondly, WDFUZZ also incorporates a complementary
sink identification strategy to accurately identify the sinks
introduced during runtime. The necessity lies in that, some
security-sensitive operations in Java web applications are
merely observed during runtime. For example, frameworks
like MyBatis6 for database operations and Thymeleaf7 for
template rendering can bind sensitive operations to user-
defined Java methods during the application’s execution. To
be specific, WDFUZZ relies on a set of static detection rules
derived from the framework documentation for identifying
these runtime sinks. For instance, WDFUZZ can identify
deptMapper.updateDept as a sink that performs SQL op-
erations by applying a static detection rule that analyzes the
SQL mapping configurations in Figure 1b.

4.1.2 Vulnerable Path Extraction

This module is designed to efficiently identify and extract
vulnerable paths through taint analysis. The process of ex-
tracting vulnerable paths involves not only tracing paths from
web inputs to sink locations but also tracking the user-input
web parameters along these paths to determine whether these
inputs can influence any sinks. WDFUZZ extracts those paths
that lead to sinks potentially influenced by user inputs, which
is significant indications of vulnerabilities.

Java web applications utilize two distinct types of web
parameters: 1 Data-binding parameters, which are directly
bound from the request to the arguments of entry methods by
web frameworks; and 2 Runtime-fetched parameters, which
are dynamically retrieved and processed through APIs such
as request.getParameter. WDFUZZ begins by tainting
the data-binding parameters of the web entry methods. For
the parameters of class types, WDFUZZ recursively taints
their fields, including those inherited from superclasses. Ad-
ditionally, when WDFUZZ identifies call sites related to the
retrieval of runtime-fetched parameters, it taints the corre-
sponding return values. Then WDFUZZ propagates the taint
through the inter-procedural control flow graph (ICFG), seek-
ing to find taint paths from the web parameters to the sink
locations. When a taint path is found, WDFUZZ can also
determine a path from an entry to a sink location, where the
sink is potentially controllable by the web parameters.

To enhance the precision of our taint analysis, we support
dependency injection features commonly used in Java web
frameworks [19]. WDFUZZ generates singleton heap objects
for injected class fields and connects corresponding call edges

6https://mybatis.org/mybatis-3/
7https://www.thymeleaf.org/

https://spring.io/
https://struts.apache.org/
https://docs.oracle.com/javaee/7/tutorial/servlets.htm
https://docs.oracle.com/javaee/5/tutorial/doc/bnajo.html
https://docs.oracle.com/javaee/5/tutorial/doc/bnajo.html
https://docs.oracle.com/javaee/7/tutorial/jaxrs.htm
https://mybatis.org/mybatis-3/
https://www.thymeleaf.org/

POST /edit HTTP/1.1
Content-Type: application/x-www-form-urlencoded

status=open&email=web@fuzz.com&deptId=101
&updateTime=2024-01-01 08:00
¶ms[action]={"modify":true}
¶ms[dataScope]='G4hi

Entry node
Value node
Structure node

Entry (edit)

…
status email

params
(Map structure)

action
(JSON structure)

modify delete

dataScope

status.equals("open")
== true

p =
params.get("action")

a =
JSONObject.parse(p)

a.getBoolean("modify")
== true

1. /* web entry 1 */
2. @PostMapping("/edit")
3. void edit(@Validated SysDept dept) {
4. if ("open".equals(dept.getStatus())) {
5. updateDeptStatus(dept);
6. }
7. // ...
8. }
9. void updateDeptStatus(SysDept dept) {
10. Map action = JSONObject.parse(
11. dept.getParams().get("action"));
12. if (action.getBoolean("modify")) {
13. deptMapper.updateDept(dept);
14. }
15. }
16. /* parameter definition */
17. class SysDept extends BaseEntity {
18. Long deptId;
19. @Email
20. String email;
21. String status;
22. @JsonFormat(pattern="yyyy-MM-dd HH:mm")
23. Date updateTime;
24. Map<String, Object> params;
25. }

1. /* SQL statement configuration */
2. <update id="updateDept">
3. UPDATE sys_dept SET status = #{status}
4. WHERE dept_id IN ${params.dataScope}
5. </update>

Parameter Type Constraints Related sink
locations

Initial
value

status string open SL1 X1yz
email string web@fuzz.com A2bc
deptId long 0

udpateTime string 2024-01-01
08:00 D3ef

params Map SL1, SL2
action JSON SL1, SL2
modify boolean true SL1 false
delete boolean true SL2 false

dataScope string G4hi

status has constraint:
 (== "open")

params has key: action

action is a JSON object

action has key: modify
modify has constraint: (== true)

deptId is long type

email has contraint: email format

updateTime has contraint: date format

params has key:
dataScope

API sequence

Green text: semantic constraints

Blue text: parameter structures

(a) Semantic Constraint Extraction (b) Request Tree Generation

Parameter Old value Applied
mutator Mutated value

status X1yz Use constraint open
email A2bc Use constraint fuzz@fuzz.com
deptId 0 Type-based 101

udpateTime D3ef Use constraint 2024-01-01
08:00

params - - -
action - - -
modify false Type-based true
delete false Mute for SL1 [Muted]

dataScope G4hi Type-based 'G4hi

(c) Request Tree Mutation and Translation

Request translation

Request tree mutation

Figure 3: An illustration of the process of detecting the vulnerability in the motivating example in Figure 1.

in the call graph to accurately track tainted data, thereby in-
creasing the reliability of the vulnerable path extraction.

4.1.3 Semantic Constraint Extraction

The main idea of this module is to extract the semantic con-
straints based on the API operation sequences in which the
parameters are processed.

It first extracts the parameter names depending on the type
of web parameters. For data-binding parameters, which are di-
rectly mapped to the parameters of entry methods, WDFUZZ
processes all method parameters and extracts their names
following the Java Bean conventions8. To extract the names
of runtime-fetched parameters, we use a backward data-flow
tracking approach on the arguments of parameter retrieval
methods (e.g., request.getParameter). This technique al-
lows us to trace back and identify the parameter names being
passed and processed. As illustrated in Figure 3, WDFUZZ
can identify that the web entry edit expects 5 data-binding
parameters within the SysDept class, i.e., deptId, email,
status, updateTime and params.

After WDFUZZ identifies all the parameters, it traces the
taint paths of the parameters along the vulnerable paths found
in §4.1.2. This tracing allows WDFUZZ to capture the API
sequences that process these parameters and extract semantic
constraints, including structural information, type constraints,
and value constraints.

1 Structural Information. Structural information is ex-
tracted by analyzing APIs involved in parameter structure
processing within the API sequences. For instance, if a pa-
rameter is processed using the JSON.parseObject method,
WDFUZZ can infer the parameter as a string representing
a JSON object. Furthermore, if the following API call is

8https://download.oracle.com/otndocs/jcp/
7224-javabeans-1.01-fr-spec-oth-JSpec/

obj.getString("some_key"), WDFUZZ can infer that this
object contains a key named some_key with a string value.

2 Type Constraints. Type constraints are derived based
on analyzing APIs that imply type-specific operations in the
sequences. For example, the presence of Integer.parseInt
in the API sequence indicates that the parameter should be
an integer. Additionally, if parameters are bound from class
objects, WDFUZZ infers the parameter types based on the
declaring types of the fields.

3 Value Constraints. Value constraints are derived by ana-
lyzing APIs that compare or validate parameter values. For
instance, if a parameter is subjected to validation through func-
tions like String.equals, WDFUZZ will solve the constant
values and extract them as value constraints.

As for the example in Figure 3, WDFUZZ first analyzes the
data-binding web parameters to extract semantic constraints.
Specifically, it identifies that the parameter deptId must be
a long type value. Additionally, the parameters email and
updateTime are found to have the email and date format
validations. WDFUZZ also examines the configuration file to
derive structural information about the Map-type parameter
params. It reveals that there exists a key named dataScope
within the params parameter.

WDFUZZ further performs taint tracking on the dept pa-
rameter and its fields, which allows it to extract a sequence of
API calls that the web application performs on this parameter,
as illustrated in the stage (a) of Figure 3 in magenta color.
From this API sequence, WDFUZZ can uncover a series of
structural and semantic constraints associated with the web
parameters, e.g., status must equal “open”; the map params
contains a key named action; the action key itself is a
nested JSON object containing a key named modify, whose
value must be true.

https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/
https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/

4.1.4 Request Tree Generation

WDFUZZ employs a tree-based structure, i.e., request tree, to
represent the initial seeds for each entry point of the web appli-
cation due to the tree-like nature of web parameters, such as
nested JSON and Map structures. Such structure can include
all the information about extracted entry points, potential sink
locations, parameter names, and semantic constraints. A re-
quest tree includes three different node types, each serving a
distinct purpose:

• Entry node contains information related to the entry point,
including the URL, HTTP method, and overall parameter
passing method (URL-encoded form, JSON, XML, etc.) of
the request.

• Structure node holds the structural information of param-
eters, such as the key names in a Map or a JSON object.
Structure nodes do not contain concrete values but serve as
hierarchical placeholders.

• Value node stores key-value pairs where the key is the pa-
rameter name and the value is the concrete value of the
parameter in this seed. It also includes the semantic con-
straints extracted by the previous static analysis modules.

The design of the request tree ensures that each tree can be
uniquely mapped to a specific HTTP request.

The stage (b) of Figure 3 shows the request tree generated
for the motivating example. The structure of the request tree
is mapped from the structural information extracted in the
previous step. Each value node in the tree also retains the in-
formation about the constraints and the related sink locations,
which can be used for later mutations.

4.2 Fuzzing Phase
The fuzzing phase is designed to actively engage with the web
application, utilizing the previously identified entry points,
sinks, and parameter constraints to uncover vulnerabilities
through a series of targeted mutations and requests. We design
a hierarchical scheduling to prioritize the most promising
entry points and corresponding sink location, and utilize a
set of mutation operators to mutate the request trees. The
following sections delve into the specific methodologies. The
entire fuzzing loop is summarized in Appendix B.

4.2.1 Hierarchical Scheduling

WDFUZZ leverages hierarchical scheduling to assess and se-
lect the most promising entry points and corresponding sink
locations that could trigger vulnerabilities in web applications.
The hierarchical scheduling strategy follows a comprehensive
evaluation process to prioritize the most promising seeds. Ini-
tially, each entry point is assessed for its potential to trigger
vulnerabilities, prioritizing those with higher potential. Sub-
sequently, after the web entry is selected, the potential of the

e1 e2 e3 en...

l1 l2 l3 lm...

Web entries

Sink locations

s1 s2 s3 sk...Corpus

Selected
entry

Selected
sink loc.

Selected
seed

s3'
Mutated

seed
Mutated request

Figure 4: An illustration of the hierarchical scheduling pro-
cess.

selected entry to reach specific sink locations is also evalu-
ated, giving precedence to locations that are easier to reach.
Once both the targeted entry and sink location are determined,
fuzzing energy (i.e., the number of mutations) is allocated
to the seed from the corpus of the selected entry and sink
location.

To facilitate this, a scoring algorithm is designed to calcu-
late a score based on the potential of an entry point, taking
into account multiple factors such as the distances to the sink
locations, the number of times the entry point has been sched-
uled, the number of times the call site has been triggered, and
the complexity of the entry point parameters. The scores of
sink locations are calculated similarly.

We visualize this scheduling process in Figure 4. First,
we sample a target entry point from the pool of all entry
points based on their scores, for example, the entry point
e2 as shown in the figure. Next, from all the reachable sink
locations corresponding to the selected entry, we sample a
target sink location (e.g., l3) based on the scores as well. Once
both the entry and sink locations are determined, we sample
the next seed from the corresponding corpus (a FIFO circular
queue), like s3 in the figure, and allocate its fuzzing energy,
which is the number of mutations. The mutated seed s′3 is then
translated into a request to test the web application.

The scoring algorithm is a critical component of our hi-
erarchical scheduling strategy, designed to assess the level
of “promising” nature of each entry point and correspond-
ing sink location using multiple parameters, therefore max-
imizing the efficiency of triggering vulnerabilities. Existing
scoring algorithms, e.g., Hawkeye [18], LOLLY [32] and Se-
lectFuzz [34], typically focus on fuzzing a single entry to
trigger known vulnerabilities at specific code locations. In
contrast, as highlighted in §3.1, the design goal of WDFUZZ’s
scoring algorithm is to explore large code space of web ap-
plications efficiently, which have numerous web entries and
sink locations. To sum up, our proposed scoring algorithm is
expected to offer two unique advantages: 1 it leverages the

hierarchical structure inherent in web applications, recogniz-
ing that different web entries, sink locations and parameters
have varying potential for triggering vulnerabilities; 2 it ad-
ditionally considers a wider range of web-specific factors for
achieving efficient and effective fuzzing, e.g., the complexity
of web parameters.

Following the above design considerations, our scoring
algorithm technically prioritizes those seeds with lower dis-
tances towards sink locations, fewer schedules, fewer reached
times of sink locations, and lower complexity. Specifically,
the score of an entry point e is defined as

se =−d̄e−αnse−βnte− γnce−δe, (1)

where d̄e represents the current average distance of the entry e
to all reachable sink locations, nse represents how many times
the entry e has been scheduled, nte is the count of entry e suc-
cessfully triggering sink locations, and nce is the complexity
factor of the entry point e which is defined as the average
number of mutable value nodes.

The distance d̄e is initially calculated by averaging the
number of basic blocks from the entry point e to each reach-
able sink. During the fuzzing process, the distance is updated
whenever an execution path reaches a basic block which re-
duces the number of basic blocks required to reach any sink.
The coefficients α, β, and γ are empirically set to fine-tune
the scoring. δe is a penalty factor for those entries that have
already triggered bug oracles. This multi-dimensional scoring
allows for a balance between exploration and exploitation,
ensuring that the fuzzer prioritizes the most promising web
entries.

Following the scoring, a weighted sampling process is con-
ducted based on the scores. This ensures that entry points
with higher scores are prioritized in the fuzzing process. The
weight used in sampling is defined by

we = f (t)exp(se), (2)

where f (t) is a time coefficient that increases from 0 to 1 over
the elapsed time t, making the impact of the score grows over
time. A sigmoid function, for example, can be used:

f (t) =
1

1+ e−k(t−t0/2) , (3)

where k controls the steepness of the time coefficient’s growth,
and t0 represents the time at which f (t) approaches 1, indi-
cating that the sampling process fully utilizes the scoring
results.

Once the sampling of entry points is completed, WDFUZZ
further calculates the scores for each sink location that can
be reached from the selected entry points, based on a similar
scoring process. The score sl of a sink location l can be rep-
resented similar to Equation 1, and the weights for sampling
sink locations are exactly the same as Equation 2.

WDFUZZ maintains a corpus for each pair of entry points
and sink locations. When a seed updates the distance to the
corresponding sink location or increases code coverage from
the entry point, the seed is added to the corresponding corpus.
Once WDFUZZ sampled and determined the current target
entry point and sink location to cover, it sequentially retrieves
seeds from the corresponding corpus based on a first-in, first-
out (FIFO) circular queue. The number of times each seed
should be mutated and tested, i.e., its energy, is calculated
based on the AFLGo score [16]. In general, the AFLGo score
would favor those seeds that are closer to the selected sink, so
as to achieve the capability of directed fuzzing. Here, we adopt
the original version of AFLGo score, and make necessary
implementation customization to make it comply with our
fuzzing framework. Specifically, given a seed s, its AFLGo
score, denoted as p(s), is calculated by the below formula,

p(s) = pafl ·210·p−5, (4)

where pafl is the standard AFL power. p is an annealing-based
power scheduling factor calculated by

p = (1− d̄) · (1−Texp)+0.5Texp, (5)

where d̄ is the normalized distance of the seed s to the selected
sink. The temperature Texp gradually decreases from 1 to 0
with time, which is defined by

Texp = 1/
(

1+19 · t
tx

)
, (6)

where t is the elapsed time since the start of the fuzzing
campaign, and tx is the exploration time which is set to 10
minutes as suggested by AFLGo.

4.2.2 Request Tree Mutator

Once a seed is selected, WDFUZZ employs three distinct
mutation operators to transform the concrete nodes within the
seed’s tree structure, listed below.

1 Constraint Value Injection. This operator directly applies
extracted constraint values to the node’s actual value. If the
node has value constraints, there is a probabilistic chance that
the mutation will use one of these constraint values.

2 Type-Based Mutation. This involves creating random
variations of the node’s value based on its type. Our mutation
strategies are carefully designed for each type of value. For
string values, WDFUZZ inserts escape characters and com-
mon payloads, such as single quotes, to test for SQL injection,
path traversal, and other common vulnerabilities. Addition-
ally, we perform common case transformations, and random
insertions and deletions to further diversify the input varia-
tions. For numerical values, WDFUZZ leverages Benford’s
Law [15] to generate values that mimic the natural distribu-
tion of numbers. We also tailor the value mutation process for

Table 1: Vulnerability detection results for WDFUZZ. The names and versions of the commercial closed-source web applications
are anonymized due to legal reasons.

Application Version Known
Vuln.

Detected
Entries

Vulnerable
Entries

WDFUZZ Witcher

Detected
Vuln. Recall Avg.

TTE/s
Unknown

Vuln.
Detected

Vuln. Recall Avg.
TTE/s

Unknown
Vuln.

1 jeecg-boot 3.2.0 5 693 53 5 100.0% 30.0 16 2 40.0% 1560.5 0
2 jeesite 1.2.6 3 202 10 1 33.3% 3.0 5 0 0.0% - 0
3 jshERP 2.3 8 70 52 7 87.5% 78.3 23 0 0.0% - 0
4 MCMS 5.2.4 12 161 60 12 100.0% 34.3 4 1 8.3% 3481.0 0
5 RuoYi 4.5.1 11 160 18 11 100.0% 120.0 0 0 0.0% - 0
6 SpringBlade 3.6.0 1 128 1 1 100.0% 1.0 0 1 100.0% 67.0 0
7 Halo 1.4.9 1 217 5 1 100.0% 30.0 0 0 0.0% - 0
8 DreamerCMS 4.0.1 2 108 12 2 100.0% 13.5 0 0 0.0% - 0
9 PublicCMS 4.0 6 170 12 4 66.7% 44.0 0 0 0.0% - 0

10 Yudao 2.0.0 0 938 5 0 - - 1 0 - - 0
11 lamp-boot 3.10.0 0 102 3 0 - - 1 0 - - 0

12 Commercial-1 *** 3 27816 1265 3 100.0% 98.0 30 0 0.0% - 0
13 Commercial-2 *** 1 2482 569 1 100.0% 120.0 8 0 0.0% - 0
14 Commercial-3 *** 3 10634 36 3 100.0% 233.3 4 0 0.0% - 0

15 WebGoat 2023.9 12 40 15 12 100.0% 3.2 0 11 91.7% 64.8 0

Total 68 43921 2116 63 92.6% 60.6 92 15 22.1% 492.1 0

specific types, such as dates and booleans, to produce random
values.

3 Type-Changing Mutation. This mutation operator ran-
domly changes the type of a value node and generates a
new value based on the new type. This can lead to signif-
icant changes in the input structure, potentially revealing
type-related vulnerabilities during the processing of input
parameters.

Since the sink location to be tested is determined before
the mutation, WDFUZZ will probabilistically mute the pa-
rameters that are not related to the sink location under test.
This approach helps further reduce the exploration space. The
stage (c) in Figure 3 illustrates how WDFUZZ mutates a re-
quest tree with the above-mentioned operators and translates
it into a concrete request.

4.3 Implementation

The implementation of WDFUZZ is divided into distinct
static, dynamic, and instrumentation components, each con-
tributing to the overall efficacy of the fuzzing process. For the
static preparation phase, we implement the various modules
described in §4.1 as plugins of Tai-e [40], a program analysis
framework for Java. The static analysis component comprises
20.2k lines of Java code.

The dynamic fuzzing component is built on top of libAFL
[26], a fuzzing framework. We implement the scheduling and
mutation strategies in §4.2 with 4.7k lines of Rust code and
1.5k lines of Python code. We conducted a sensitivity test-
ing over the hyper-parameters of our hierarchical scheduling
technique using a dataset of 10 known vulnerabilities to fine-
tune the parameters. The final parameter settings used in our
experiments are: α = 0.3, β = 0.3, γ = 0.3, δe = 3.

The instrumentation serves two primary purposes: feed-
back collection and bug oracle. For feedback, we insert in-
strumentation at basic blocks along the vulnerable paths to
provide distance information using a Java agent. The bug ora-

cle of WDFUZZ employs two detection strategies: error-based
and invocation-based. The error-based approach, similar to
Witcher’s fault escalation [42], captures error messages by in-
tercepting system calls such as write, execve, and send with
a preload shared library. However, there do exist some excep-
tions or errors that would be captured at the application layer
(i.e., the Java layer) and cannot be observed at the system call
layer. Hence, it is also essential to instrument Java methods
to monitor whether their runtime arguments are controlled
by malicious inputs. Considering the above, WDFUZZ incor-
porates an invocation-based oracle that instruments sensitive
Java methods and exception constructors to detect attacker-
controlled argument values. For example, to identify arbitrary
file read/write vulnerabilities, WDFUZZ examines whether
the web application opens arbitrary files specified in the input
web parameters by checking the arguments of Java file APIs
(e.g., File.<init>). Our bug oracle mechanism supports the
detection of a wide range of vulnerabilities, including SQL
injection, command execution, arbitrary file read/write, SSRF,
and SSTI. The instrumentation component includes 4.7k lines
of Java and 430 lines of C code.

5 Evaluation

In this section, we aim to answer the following research ques-
tions to evaluate the effectiveness and efficiency of WDFUZZ.

RQ1: How does WDFUZZ compare to state-of-the-art
web fuzzer, i.e., Witcher [42], in terms of vulnerability de-
tection capabilities? In order to evaluate the vulnerability de-
tection capability of WDFUZZ, we conduct a comprehensive
comparison between WDFUZZ and Witcher on a benchmark
dataset of real-world vulnerabilities collected from diverse
Java web applications.

RQ2: Can WDFUZZ identify previously unknown real-
world vulnerabilities? This evaluation involves deploying
WDFUZZ on various applications to detect previously un-

known zero-day exploits, thereby demonstrating its effective-
ness in practical scenarios.

RQ3: What is the contribution of each component of WD-
FUZZ to its overall performance? This research question
aims to analyze the individual components of WDFUZZ, i.e.,
the vulnerable path extraction module, the semantic constraint
extraction module, and the hierarchical scheduling algorithm,
to assess their contributions to the overall effectiveness.

5.1 Dataset Construction
To convincingly evaluate the effectiveness of WDFUZZ, we
selected representative and popular Java web applications
as our evaluation targets, mainly including both open-source
ones and closed-source commercial ones. For the open-source
applications, we considered popular Java web applications
that were actively maintained by the open-source commu-
nity. To be specific, we finally selected 11 applications with
over 2,000 stars on GitHub, indicating a significant level of
community interest and usage. Notably, these applications
are all implemented using common web frameworks that are
technically supported by WDFUZZ. In terms of closed-source
applications, we considered 3 target applications that are de-
veloped using common web frameworks and have publicly
disclosed vulnerabilities. Besides, to further improve the diver-
sity of target applications, we also incorporated the WebGoat
project [4], an intentionally curated vulnerable application for
security training purposes.

Given the above 15 target applications, we further curated
a robust dataset of known vulnerabilities that affect these ap-
plications. Specifically, we conducted an extensive search on
the CVE databases, and collected all the publicly disclosed
vulnerabilities supported by our bug oracles. We attempted to
manually reproduce these vulnerabilities, and those that could
be successfully replicated were all included in our dataset.
In total, our dataset comprises 68 known vulnerabilities, in-
cluding diverse vulnerability types such as SQL injection,
command injection, arbitrary file read/write, SSRF, and SSTI.

5.2 Result Overview
We evaluated WDFUZZ on the dataset to answer the previ-
ously mentioned research questions. In terms of vulnerabil-
ity discovery capability (§5.3), WDFUZZ achieved a recall
rate of 92.6% for known vulnerabilities, detecting 3.2 times
more vulnerabilities compared to Witcher. Regarding the
time-to-exposure for vulnerability reproduction, WDFUZZ
also demonstrated a 87.69% reduction in time compared to
Witcher. Furthermore, the efficiency of vulnerability discov-
ery is 7.1 times greater than that of Witcher.

In terms of discovering unknown vulnerabilities in real-
world web applications, WDFUZZ has identified 92 previ-
ously unknown vulnerabilities (§5.4). We have responsibly
reported all the vulnerabilities, and 19 have been confirmed

and fixed by vendors so far. Besides, ablation studies indicate
that each module of WDFUZZ contributes positively to the
effectiveness of web vulnerability detection (§5.5).

5.3 RQ1: Reproducing Known Vulnerabilities
To evaluate the vulnerability detection capability of WD-
FUZZ, we conducted a series of experiments on the known
vulnerability dataset described in §5.1. Each entry point under
test is allocated with a fuzzing time budget of 2 minutes for
both WDFUZZ and Witcher, as suggested in [42]. Meanwhile,
we provided Witcher with the results of our static analysis for
attack surface identification, as we found that the entry points
identified by its crawler were too limited to obtain mean-
ingful comparative results. Therefore, we actually enhanced
Witcher’s original approach for our comparative experiments.

At first glance, as shown in Table 1, the vulnerable path
extraction technique has reduced the initial pool of 43,921
entry points under test to only 4.8% (2,116) of the entries,
significantly narrowing the search space of web applications.

As for the recall of known vulnerabilities, WDFUZZ suc-
cessfully identified 92.6% (63/68) of the known vulnerabili-
ties. In contrast, Witcher was only able to find 15 vulnerabili-
ties, which means WDFUZZ demonstrated 3.2 times greater
effectiveness in vulnerability discovery. We analyzed the 5
vulnerabilities missed by WDFUZZ and found that these vul-
nerabilities were all high-order vulnerabilities, which required
sequentially triggering multiple web entries to exploit. WD-
FUZZ is not designed to detect high-order vulnerabilities, but
we believe that it is a promising future research area.

Furthermore, we compared the average time-to-exposure
(TTE) of vulnerabilities between WDFUZZ and Witcher. As
illustrated in Table 1, WDFUZZ not only discovered more
vulnerabilities but also reduced 87.69% of the time required
to expose the known vulnerabilities.

Finally, we evaluated the overall vulnerability discovery
efficiency by measuring the number of vulnerabilities discov-
ered per hour. WDFUZZ could identify 59.39 vulnerabilities
per hour, which is 7.1 times faster than Witcher.

In summary, these findings prove that WDFUZZ outper-
forms existing state-of-the-art web fuzzers in terms of both
effectiveness (finding more vulnerabilities) and efficiency
(finding vulnerabilities faster).

5.4 RQ2: Identifying Unknown Vulnerabilities
As illustrated in Table 1, WDFUZZ successfully identified 92
previously unknown vulnerabilities. These vulnerabilities lie
in high-risk categories, including 83 SQL injections, 4 SSRFs,
4 arbitrary file reads/writes, and 1 SSTI, which pose signifi-
cant threats including sensitive data breaches, disruption of
web services, and potential takeover of operating systems. In
contrast, the benchmark fuzzer, Witcher, failed to report any
of these vulnerabilities.

1 @PostMapping("/user/pageAll")
2 public R page(@RequestBody PageParams params) {
3 // model must be a BaseEmployeePageQuery object
4 BaseEmployeePageQuery model = params.getModel();
5 // scope must equal BIND or UNBIND
6 if (StrUtil.equalsAny(model.getScope(), SCOPE_BIND,

↪→ SCOPE_UN_BIND) && model.getRoleId() != null) {
7 // insecure concatenation of SQL statement
8 String sql = "select employee_id from err where employee_id =

↪→ e.id and role_id = " + model.getRoleId();
9 // scope must equal BIND (1)

10 if (SCOPE_BIND.equals(model.getScope())) {
11 // SQL injection sink location
12 wrap.inSql(BaseEmployee::getId, SQL);
13 }}
14 // ...

(a) The vulnerable code.

1 {"size": 1, "current": 1, "sort": "id",
2 "model": {
3 "scope": "1",
4 "roleId": "’payload",
5 "isDefault": false,
6 "state": false,
7 "userId": 1,
8 "positionId": 1,
9 "orgIdList": [],

10 "email": "fuzz@example.com",
11 "realName": "A1bc"
12 }}

(b) The payload of the vulnerability.

Figure 5: A real-world vulnerability discovered by WDFUZZ
in lamp-boot.

We have taken a proactive and responsible approach to
report all discovered vulnerabilities to the corresponding de-
velopers and stakeholders. As of now, 19 of the vulnerabilities
have been confirmed by the application developers. Here, we
also analyzed the root causes of the 19 CVE-/CNVD-indexed
vulnerabilities, as listed below.

• Root cause 1: Direct concatenation of parameters
(16/19). Among these cases, user inputs are directly con-
catenated into SQL queries, URLs, or other sensitive param-
eters, consequently causing injection vulnerabilities. The
vulnerability illustrated in Figure 5 is a typical example of
this root cause.

• Root cause 2: Misuses of framework APIs (3/19). This
root cause arises when framework APIs are improperly used.
For instance, when configuring MyBatis framework, if de-
velopers pass an input parameter into a SQL query using
#{input}, the query will be guarded by prepared statement
technique [41] provided by MyBatis, which safely parame-
terize the input. However, some developers may mistakenly
use ${input} in the query which allows MyBatis to insert
the user input directly, resulting in SQL injections.

A Real-world Case Study from lamp-boot. As shown in
Figure 5a, the vulnerability arises from an insecure SQL state-
ment concatenation in the page method in line 8. The vulner-
ability requires the fuzzer to construct a complex JSON pay-
load whose fields must adhere to specific semantic constraints,

as illustrated in Figure 5b. The input must be structured in
such a way that it binds to the PageParams class, with the
model field being an instance of BaseEmployeePageQuery.
Crucially, to trigger the SQL injection vulnerability in line 12,
the scope field within the model object must be exactly set
to the string “1”, indicating the constant BIND.

The full version of WDFUZZ successfully discovered this
vulnerability, while Witcher failed to detect it. The primary
reason lies in the fuzzer’s ability to accurately generate the re-
quired nested JSON structure while also satisfying the seman-
tic constraints on the fields such as email, state, userId,
and orgIdList, which must be an email address, a boolean,
an integer, and a JSON list, respectively. Furthermore, WD-
FUZZ also managed to extract the constraints for the scope
field and pass the validation of the application, thereby expos-
ing the SQL injection effectively.

5.5 RQ3: Ablation Studies
In our ablation study, we systematically evaluate the contri-
bution of each module within WDFUZZ by incrementally
reintroducing them to assess their impact on performance.
Our approach involves structuring the experiments around
three core modules: the vulnerable path extraction, the se-
mantic constraint extraction, and the hierarchical scheduling
strategy. By isolating these modules, we aim to quantify their
individual effects on the overall effectiveness of WDFUZZ.
The detailed configurations are listed below.

• WDFUZZb (baseline): This setup applies CrawlerGo [3],
an industrial web crawler, to find entries and parameters,
with a fixed scheduling strategy that fuzzes every entry for
2 minutes, serving as the baseline of the ablation study.

• WDFUZZe (entry extraction): This configuration uses the
statically extracted vulnerable web entries and parameters
without structure and constraint information, and applies
the fixed scheduling strategy in baseline, to assess the vul-
nerable path extraction module.

• WDFUZZc (constraint extraction): This variant incorpo-
rates the parameter structure and semantic constraint ex-
traction module, as well as the fixed scheduling strategy
to evaluate how the semantic constraint extraction module
affects the vulnerability detection performance.

• WDFUZZ (The full version): This full version of WDFUZZ
combines all the parameter structure, the constraint extrac-
tion, and the hierarchical scheduling strategy modules.

The results of our ablation study are summarized in Table 2.
Each module contributes to a notable increase in recall rates
for known vulnerabilities, with improvements ranging from
20% to 30%. A detailed analysis below reveals the underlying
reasons for these efficiency gains.

Firstly, the implementation of static analysis for vulnerabil-
ity entry point extraction (WDFUZZe) significantly expands
the attack surfaces compared to the crawler-based approach

Table 2: Ablation study results for WDFUZZ. The names and versions of the commercial closed-source web applications are
anonymized due to legal reasons. The two web applications with no known vulnerabilities are hided in this table.

Application Version Known
Vuln.

WDFUZZb WDFUZZe WDFUZZc WDFUZZ

Detected
Vuln. Recall Avg.

TTE/s
Detected

Vuln. Recall Avg.
TTE/s

Detected
Vuln. Recall Avg.

TTE/s
Detected

Vuln. Recall Avg.
TTE/s

1 jeecg-boot 3.2.0 5 0 0.0% - 0 0.0% - 2 40.0% 1380.0 5 100.0% 30.0
2 jeesite 1.2.6 3 0 0.0% - 1 33.3% 729.0 1 33.3% 481.0 1 33.3% 3.0
3 jshERP 2.3 8 3 37.5% 928.7 3 37.5% 1040.3 7 87.5% 256.0 7 87.5% 78.3
4 MCMS 5.2.4 12 0 0.0% - 2 16.7% 1140.5 3 25.0% 488.3 12 100.0% 34.3
5 RuoYi 4.5.1 11 7 63.6% 107.7 0 0.0% - 11 100.0% 98.3 11 100.0% 120.0
6 SpringBlade 3.6.0 1 0 0.0% - 1 100.0% 1.0 1 100.0% 1.0 1 100.0% 1.0
7 Halo 1.4.9 1 0 0.0% - 1 100.0% 246.0 1 100.0% 259.0 1 100.0% 30.0
8 DreamerCMS 4.0.1 2 0 0.0% - 0 0.0% - 2 100.0% 48.5 2 100.0% 13.5
9 PublicCMS 4.0 6 0 0.0% - 4 66.7% 180.3 4 66.7% 151.3 4 66.7% 44.0

12 Commercial-1 *** 3 0 0.0% - 0 0.0% - 0 0.0% - 3 100.0% 98.0
13 Commercial-2 *** 1 0 0.0% - 0 0.0% - 0 0.0% - 1 100.0% 120.0
14 Commercial-3 *** 3 0 0.0% - 3 100.0% 1120.7 3 100.0% 884.3 3 100.0% 233.3

15 WebGoat 2023.9 12 0 0.0% - 12 100.0% 110.1 12 100.0% 9.8 12 100.0% 3.2

Total 68 10 14.7% 354.0 27 39.7% 436.4 47 69.1% 240.7 63 92.6% 60.6

(WDFUZZb), resulting in a 2.7 times increase in the number
of discovered vulnerabilities. This increase in entry points and
vulnerabilities inevitably leads to longer testing times, with
a slight decrease in the number of vulnerabilities discovered
per hour, which is an expected trade-off.

Building upon the extraction of entry points, we further
enhanced our fuzzer’s capabilities by incorporating parame-
ter structure and semantic constraint extraction (WDFUZZc).
This modification led to an additional 74.07% increase in vul-
nerability discovery, while the overall TTE even experienced
a slight reduction. Specifically, the rate of vulnerabilities de-
tected per hour improved by 81.33%. The underlying reason
for this efficiency is that with parameter structure and se-
mantic constraint information, the fuzzer can generate more
complex structures, such as JSON formats, as well as values
that align with the conditions necessary for vulnerability ex-
ploitation. Consequently, the additional constraints facilitate
the discovery of deeper, more complex vulnerabilities, while
also accelerating the identification of shallow vulnerabilities.

Additionally, by integrating hierarchical scheduling, the
full version of WDFUZZ achieved a further 34.04% increase
in vulnerabilities discovered, with a corresponding 66.24%
decrease in TTE. The hourly discovery rate of vulnerabilities
improved by 2.97 times. This enhancement is contributed
by the hierarchical scheduling strategy, which prioritizes the
allocation of energy to the easiest-to-trigger vulnerabilities in
the first place. Once these vulnerabilities are successfully trig-
gered, the scheduling algorithm reallocates resources to target
more difficult vulnerabilities, thereby ensuring that these chal-
lenging cases receive more focused testing energy compared
to the fixed scheduling approaches. As a result, the hierar-
chical scheduling strategy enables quicker exposure of sim-
pler vulnerabilities while testing complex vulnerabilities with
more resources, ultimately maximizing both the effectiveness
and efficiency of vulnerability detection.

Interestingly, we observed some anomalies in the RuoYi
application (Application 5). The baseline method WDFUZZb
yielded a higher number of vulnerabilities compared to the en-

try point extraction method WDFUZZe. This disparity arises
because the crawler can capture a few nested structures pre-
filled in the front end, such as params[dataScope], which
the WDFUZZe method cannot generate due to the lack of
structural information. However, it is important to note that
despite the crawler’s ability to occasionally uncover certain
structures, its overall capability to discover the attack surface
remains significantly inferior. Consequently, the number of
vulnerabilities detected by the crawler-based approach is far
fewer than those revealed by static analysis-based approaches.
Besides, once we incorporated the ability to extract and gen-
erate complex structures and constraints, WDFUZZ demon-
strated significantly superior overall performance compared
to the crawler-based approach, further emphasizing the effec-
tiveness of our enhancements in vulnerability discovery.

6 Discussion

Generalization of WDFUZZ. Although we implemented
a prototype of WDFUZZ in Java, our methodology can be
easily adapted to other programming languages. For instance,
when testing PHP web applications, one can simply utilize
static analysis tools like PHPJoern [13] and instrumentation
tools like Xdebug [8], thereby replacing the toolchain in our
prototype to facilitate fuzzing of PHP applications.

Detection of High-order Vulnerabilities. WDFUZZ cur-
rently do not have the capability to identify the high-order
vulnerabilities which require sequentially triggering various
web entries to exploit. Detecting source-to-sink flows that
span across several entry points is generally a challenging
problem. Therefore, we focus on vulnerabilities that can be
triggered by a single request in this paper. This type of single-
step vulnerability represents the vast majority of all the known
vulnerabilities, making up 92.6% of our dataset. We believe
that detecting high-order vulnerabilities is a great research
topic and consider it an important direction for future research.

Limitations of Static Preparation Phase. Due to the inher-

ent limitations of static analysis, the static preparation phase
of WDFUZZ (see §4.1) would inevitably report some inac-
curate results. For example, to achieve a satisfactory trade-
off between scalability and precision of semantic constraint
extraction (see §4.1.3), WDFUZZ would simplify loops by
considering only their single iterations. Hence, it may produce
inaccurate results when analyzing validation functions involv-
ing complex loops. Besides, for the vulnerable path extraction
(see §4.1.2), WDFUZZ would miss some vulnerable paths
with complex dynamic language features (e.g., reflections
and native interfaces in Java). However, the evaluation results
show that the current version of WDFUZZ can successfully
identify 63 of 68 benchmark vulnerabilities, indicating that
the impact of erroneous results from static analysis is limited.
In the future, WDFUZZ can be enhanced by incorporating
more advanced static analysis techniques [29, 35, 48].

7 Related Work

Static Analysis. Static analysis techniques aim to iden-
tify potentially vulnerable paths from user-controlled inputs
(sources) to security-sensitive operations (sinks) in the source
code without executing the program [9–11, 14, 25, 33, 39, 43,
46]. To address the challenges posed by large and heteroge-
neous codebases in enterprise Java web applications, Wang
et. al. proposed ANTaint [46], which employed lazy load-
ing of library APIs to construct large-scale call graphs while
dynamically transforming code to support various web frame-
works. TChecker [33] further improved the static analysis
approach with a context-sensitive inter-procedural taint analy-
sis, constructing accurate call graphs based on type inference
and incorporating a context selection algorithm to reduce
overhead. However, static analysis is often plagued by high
false positive rates, which lead to significant manual efforts
to double-check the reports. Additionally, these techniques
typically cannot generate actual PoCs, limiting their usability
in the scenarios of vulnerability detection and mitigation.

Black-Box Scanning. Black-box scanning approaches ana-
lyze web applications from an external perspective without
access to the source code [2, 5, 7, 12, 21–24]. These methods
include several general-purpose vulnerability scanners, such
as Burp Suite [2], Wapiti [7], and OWASP ZAP [5], which
provide comprehensive vulnerability detection capabilities. In
addition, some researches have focused on testing RESTful
APIs and leveraged OpenAPI specifications to guide the test-
ing [12, 22]. Another notable approach, Black Widow [24],
established a web application navigation model and injected
unique identifiers into inputs to detect cross-site scripting
(XSS) vulnerabilities through inter-page dependencies. Ad-
ditionally, ReScan [23] functioned as a middleware proxy
between scanners and web applications, enhancing the scan-
ning capabilities of existing black-box scanners by enabling
functionalities like re-login and page relationship discovery.

However, black-box techniques face several limitations, in-
cluding low coverage rates that hinder the exploration of
deeper vulnerabilities, and the reliance on complex front-end
interactions to obtain feedback.

Grey-Box Fuzzing. Grey-box fuzzing represents a hybrid
approach that combines aspects of both static and dynamic
analysis [27, 28, 38, 42, 45, 49]. For instance, webFuzz [45]
modified PHP files directly to obtain coverage feedback, guid-
ing the detection of XSS vulnerabilities. CeFuzz [49] used
paths from entry PHP files to known vulnerability locations as
inputs and prioritized seeds with the most bypassed condition
checks along those paths. Witcher [42] employed interpreter
instrumentation to provide coverage feedback and enhance
generalization across different web application languages,
while utilizing error messages as bug oracles. Atropos [28]
instrumented PHP comparison functions to obtain expected
key-value pairs as feedback, while providing eight compre-
hensive bug oracles. Nevertheless, existing grey-box web
fuzzers exhibit shortcomings, such as the very low coverage
rates inherited from the use of black-box crawlers and incom-
patibility with web framework development patterns. More-
over, coverage-based feedback often leads to the exploration
of numerous irrelevant paths, and the scheduling strategies
are naive, lacking considerations for selecting optimal entry
points to maximize vulnerability detection efficiency.

8 Conclusion

Fuzzing for web applications is a vital research area, while ex-
isting web fuzzers were limited in effectiveness and efficiency.
In this paper, we introduce a novel web application fuzzer,
WDFUZZ, that can effectively extract parameter structures
and semantic constraints and employs a novel hierarchical
scheduling strategy to prioritize the seeds. By applying WD-
FUZZ to real-world web applications, we find WDFUZZ out-
performs state-of-the-art web fuzzers, discovering 3.2 times
more vulnerabilities while reducing the time for vulnerability
identification by 87.69%. To date, WDFUZZ has successfully
identified 92 previously unknown vulnerabilities in real-world
applications, with 19 CVE or CNVD ID assignments.

Acknowledgement

We thank the anonymous reviewers for the helpful comments
and feedback. This work was supported in part by the National
Natural Science Foundation of China (U2436207, 62172105,
62402116, 62202106, 62102093). Yuan Zhang and Min Yang
are the corresponding authors. Yuan Zhang was supported
in part by the Shanghai Pilot Program for Basic Research -
Fudan University 21TQ1400100 (21TQ012). Min Yang is
a faculty of Shanghai Institute of Intelligent Electronics &
Systems, and Engineering Research Center of Cyber Security
Auditing and Monitoring, Ministry of Education, China.

Ethics Considerations

This work poses no ethical concerns. All testing activities
were conducted within our locally set up offline environment,
ensuring that there was no interaction with or impact on any
real-world systems or user data. We have proactively reported
all vulnerabilities we discovered and assisted developers in
fixing these vulnerabilities. As a result, 19 vulnerability iden-
tifiers have been assigned as a confirmation for our efforts.

Open Science

In alignment with the open science policy, we are committed
to fully following the conference’s artifact evaluation guide-
lines. We release the artifact9 including the source code of
WDFUZZ, the datasets and baselines used for evaluation in
our research. This initiative aims to enhance the reproducibil-
ity and replicability of scientific findings, ensuring that our
work can be verified and built upon by other researchers in
the field.

References

[1] AFL documents - Understanding the status screen.
https://github.com/google/AFL/blob/master/
docs/status_screen.txt#L219.

[2] Burp Suite - Application Security Testing Software.
https://portswigger.net/burp.

[3] CrawlerGo. https://github.com/Qianlitp/
crawlergo.

[4] OWASP webgoat. https://owasp.org/
www-project-webgoat/.

[5] Owasp zed attack proxy (zap). https://www.zaproxy.
org/.

[6] Spring dominates the Java ecosystem with 60% using it
for their main applications. https://snyk.io/blog/
spring-dominates-the-java-ecosystem-with%
2D60-using-it-for-their-main-applications/.

[7] Wapiti: a free and open-source web-application vulner-
ability scanner. https://wapiti-scanner.github.
io/.

[8] Xdebug - Debugger and Profiler Tool for PHP. https:
//xdebug.org/.

[9] Anastasios Antoniadis, Nikos Filippakis, Paddy Krish-
nan, Raghavendra Ramesh, Nicholas Allen, and Yannis
Smaragdakis. Static analysis of java enterprise applica-
tions: frameworks and caches, the elephants in the room.

9https://zenodo.org/records/14718601

In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
794–807, London, UK, June 2020.

[10] Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel. Flow-
droid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. ACM
sigplan notices, 49(6):259–269, June 2014.

[11] Steven Arzt, Siegfried Rasthofer, Robert Hahn, and Eric
Bodden. Using targeted symbolic execution for reduc-
ing false-positives in dataflow analysis. In Proc. ACM
SIGPLAN International Workshop on State of the Art
in Program Analysis (SOAP), pages 1–6, Portland, OR,
USA, June 2015.

[12] Vaggelis Atlidakis, Patrice Godefroid, and Marina Pol-
ishchuk. Restler: Stateful REST API fuzzing. In Proc.
ACM/IEEE International Conference on Software Engi-
neering (ICSE), pages 748–758, Montreal, Canada, May
2019.

[13] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben
Stock, and Fabian Yamaguchi. Efficient and flexible
discovery of php application vulnerabilities. In Proc.
IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pages 334–349, Paris, France,
April 2017.

[14] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy
Liang. Active learning of points-to specifications. In
Proc. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 678–
692, Philadelphia, PA, USA, June 2018.

[15] Frank Benford. The law of anomalous numbers.
Proceedings of the American philosophical society,
78(4):551–572, March 1938.

[16] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing. In
Proc. ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), pages 2329–2344, Dallas
Texas USA, November 2017.

[17] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jian-
chao Guo, and Wenqian Liu. A systematic review of
fuzzing techniques. Computers & Security, 75:118–137,
June 2018.

[18] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen,
Xiaofei Xie, Xiuheng Wu, and Yang Liu. Hawkeye:
Towards a desired directed grey-box fuzzer. In Proc.
ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), pages 2095–2108, New York,
NY, October 2018.

https://github.com/google/AFL/blob/master/docs/status_screen.txt#L219
https://github.com/google/AFL/blob/master/docs/status_screen.txt#L219
https://portswigger.net/burp
https://github.com/Qianlitp/crawlergo
https://github.com/Qianlitp/crawlergo
https://owasp.org/www-project-webgoat/
https://owasp.org/www-project-webgoat/
https://www.zaproxy.org/
https://www.zaproxy.org/
https://snyk.io/blog/spring-dominates-the-java-ecosystem-with%2D60-using-it-for-their-main-applications/
https://snyk.io/blog/spring-dominates-the-java-ecosystem-with%2D60-using-it-for-their-main-applications/
https://snyk.io/blog/spring-dominates-the-java-ecosystem-with%2D60-using-it-for-their-main-applications/
https://wapiti-scanner.github.io/
https://wapiti-scanner.github.io/
https://xdebug.org/
https://xdebug.org/
https://zenodo.org/records/14718601

[19] Miao Chen, Tengfei Tu, Hua Zhang, Qiaoyan Wen, and
Weihang Wang. Jasmine: A static analysis framework
for spring core technologies. In Proc. IEEE/ACM Inter-
national Conference on Automated Software Engineer-
ing (ASE), pages 1–13, Rochester, MI, USA, January
2022.

[20] Maria Christakis and Christian Bird. What develop-
ers want and need from program analysis: an empirical
study. In Proc. IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 332–343,
Singapore, Singapore, September 2016.

[21] Davide Corradini, Michele Pasqua, and Mariano Cec-
cato. Automated black-box testing of mass assign-
ment vulnerabilities in restful apis. In 2023 IEEE/ACM
45th International Conference on Software Engineering
(ICSE), pages 2553–2564, Melbourne, Australia, May
2023.

[22] Gelei Deng, Zhiyi Zhang, Yuekang Li, Yi Liu, Tianwei
Zhang, Yang Liu, Guo Yu, and Dongjin Wang. NAU-
TILUS: Automated RESTful API Vulnerability Detec-
tion. In Proc. USENIX Security Symposium, pages 5593–
5609, Anaheim, CA, August 2023.

[23] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis.
ReScan: A Middleware Framework for Realistic and
Robust Black-box Web Application Scanning. In Proc.
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, USA, February 2023.

[24] Benjamin Eriksson, Giancarlo Pellegrino, and Andrei
Sabelfeld. Black Widow: Blackbox Data-driven Web
Scanning. In Proc. IEEE Symposium on Security and
Privacy (S&P), pages 1125–1142, Los Alamitos, Cali-
fornia, May 2021.

[25] Pratik Fegade and Christian Wimmer. Scalable pointer
analysis of data structures using semantic models. In
Proc. International Conference on Compiler Construc-
tion, pages 39–50, New York, NY, United States, Febru-
ary 2020.

[26] Andrea Fioraldi, Dominik Christian Maier, Dongjia
Zhang, and Davide Balzarotti. LibAFL: A framework
to build modular and reusable fuzzers. In Proc. ACM
SIGSAC Conference on Computer and Communications
Security (CCS), pages 1051–1065, Los Angeles, CA,
USA, November 2022.

[27] François Gauthier, Behnaz Hassanshahi, Benjamin
Selwyn-Smith, Trong Nhan Mai, Max Schlüter, and
Micah Williams. Experience: model-based, feedback-
driven, greybox web fuzzing with BackREST. In Proc.
European Conference on Object-Oriented Programming
(ECOOP), Berlin, Germany, June 2022.

[28] Emre Güler, Sergej Schumilo, Moritz Schloegel, Nils
Bars, Philipp Görz, Xinyi Xu, Cemal Kaygusuz, and
Thorsten Holz. Atropos: Effective fuzzing of web appli-
cations for server-side vulnerabilities. In Proc. USENIX
Security Symposium, Philadelphia, PA, August 2024.

[29] Minseok Jeon and Hakjoo Oh. Return of cfa: call-site
sensitivity can be superior to object sensitivity even for
object-oriented programs. In Proc. ACM on Program-
ming Languages (POPL), pages 1–29, New York, NY,
January 2022.

[30] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill,
and Robert Bowdidge. Why don’t software developers
use static analysis tools to find bugs? In Proc. Inter-
national Conference on Software Engineering (ICSE),
pages 672–681, San Francisco, California, USA, May
2013.

[31] Rana Fouad Khalil. Why Johnny Still Can’t Pentest:
A Comparative Analysis of Open-Source Black-box
Web Vulnerability Scanners. PhD thesis, Université
d’Ottawa/University of Ottawa, 2018.

[32] Hongliang Liang, Yini Zhang, Yue Yu, Zhuosi Xie, and
Lin Jiang. Sequence coverage directed greybox fuzzing.
In Proc. International Conference on Program Com-
prehension (ICPC), pages 249–259, Montreal, Quebec,
Canada, May 2019.

[33] Changhua Luo, Penghui Li, and Wei Meng. Tchecker:
Precise static inter-procedural analysis for detecting
taint-style vulnerabilities in php applications. In Proc.
ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), pages 2175–2188, Los Angeles,
U.S.A., November 2022.

[34] Changhua Luo, Wei Meng, and Penghui Li. Select-
Fuzz: Efficient directed fuzzing with selective path ex-
ploration. In Proc. IEEE Symposium on Security and
Privacy (S&P), pages 2693–2707, San Francisco, CA,
May 2023.

[35] Wenjie Ma, Shengyuan Yang, Tian Tan, Xiaoxing Ma,
Chang Xu, and Yue Li. Context sensitivity without con-
texts: A cut-shortcut approach to fast and precise pointer
analysis. In Proc. ACM on Programming Languages
(PLDI), pages 539–564, New York, NY, June 2023.

[36] Valentin JM Manès, HyungSeok Han, Choongwoo Han,
Sang Kil Cha, Manuel Egele, Edward J Schwartz, and
Maverick Woo. The art, science, and engineering of
fuzzing: A survey. IEEE Transactions on Software
Engineering, 47(11):2312–2331, October 2019.

[37] M Muralidharan, Keshav Balaji Babu, and G Sujatha.
W3bnnr: An automated tool for information gathering,

vulnerability scanning, attacking and reporting for injec-
tion attacks on web application. In Proc. Advanced Com-
puting and Communication Technologies for High Per-
formance Applications (ACCTHPA), pages 1–4, Cochin,
Kerala, India, January 2023.

[38] Sebastian Neef, Lorenz Kleissner, and Jean-Pierre
Seifert. What all the phuzz is about: A coverage-guided
fuzzer for finding vulnerabilities in php web applica-
tions. In Proc. ACM Asia Conference on Computer and
Communications Security, pages 1523–1538, Singapore,
Singapore, July 2024.

[39] Mathias Romme Schwarz. Design and analysis of web
application frameworks. PhD thesis, Datalogisk Institut,
Aarhus Universitet, 2013.

[40] Tian Tan and Yue Li. Tai-e: A developer-friendly static
analysis framework for Java by harnessing the good de-
signs of classics. In Proc. ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA),
pages 1093––1105, Seattle, WA, July 2023.

[41] Stephen Thomas, Laurie Williams, and Tao Xie. On
automated prepared statement generation to remove sql
injection vulnerabilities. Information and Software tech-
nology, 51(3):589–598, March 2009.

[42] Erik Trickel, Fabio Pagani, Chang Zhu, Lukas Dresel,
Giovanni Vigna, Christopher Kruegel, Ruoyu Wang,
Tiffany Bao, Yan Shoshitaishvili, and Adam Doupé.
Toss a fault to your witcher: Applying grey-box
coverage-guided mutational fuzzing to detect SQL and
command injection vulnerabilities. In Proc. IEEE Sym-
posium on Security and Privacy (S&P), pages 2658–
2675, San Francisco, CA, May 2023.

[43] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Srid-
haran, and Omri Weisman. Taj: effective taint analysis
of web applications. ACM Sigplan Notices, 44(6):87–97,
June 2009.

[44] Akshay Utture, Shuyang Liu, Christian Gram Kalhauge,
and Jens Palsberg. Striking a balance: pruning false-
positives from static call graphs. In Proc. IEEE/ACM In-
ternational Conference on Software Engineering (ICSE),
pages 2043–2055, Pittsburgh, Pennsylvania, May 2022.

[45] Orpheas van Rooij, Marcos Antonios Charalambous,
Demetris Kaizer, Michalis Papaevripides, and Elias
Athanasopoulos. webFuzz: Grey-Box fuzzing for web
applications. In Computer Security - ESORICS 2021,
pages 152–172, Darmstadt, Germany, October 2021.

[46] Jie Wang, Yunguang Wu, Gang Zhou, Yiming Yu,
Zhenyu Guo, and Yingfei Xiong. Scaling static taint
analysis to industrial SOA applications: A case study

at alibaba. In Proc. ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE),
pages 1477–1486, Virtual Event USA, November 2020.

[47] Gebrehiwet B Welearegai, Max Schlueter, and Christian
Hammer. Static security evaluation of an industrial
web application. In Proc. ACM/SIGAPP Symposium on
Applied Computing (SAC), pages 1952–1961, Limassol,
Cyprus, April 2019.

[48] Yifan Zhang, Yuanfeng Shi, and Xin Zhang. Learning
abstraction selection for bayesian program analysis. In
Proc. ACM on Programming Languages (OOPSLA),
pages 954–982, New York, NY, April 2024.

[49] Jiazhen Zhao, Yuliang Lu, Kailong Zhu, Zehan Chen,
and Hui Huang. Cefuzz: An directed fuzzing framework
for php rce vulnerability. Electronics, 11(5):758, March
2022.

A Sink List

The sinks WDFUZZ used to find common security-sensitive
operations are listed in Table 3, with all overloaded methods
included.

Table 3: Sink Types and Corresponding Sinks

Command Injection
java.lang.ProcessBuilder.<init>
java.lang.ProcessBuilder.command
java.lang.ProcessBuilder.start
java.lang.ProcessBuilder.startPipeline
java.lang.Runtime.exec
SQL Injection
java.sql.DriverManager.getConnection
java.sql.PreparedStatement.executeQuery
java.sql.Statement.execute
java.sql.Statement.executeUpdate
java.sql.Statement.executeQuery
org.hibernate.impl.SessionImpl.createQuery
org.hibernate.Query.list
org.hibernate.Session.createQuery
org.hibernate.Session.createSQLQuery
SSRF
java.awt.Desktop.browse
java.awt.Desktop.mail
java.awt.Desktop.open
java.net.URI.create
java.net.URL.getContent
java.net.URL.openConnection
java.net.URL.openStream
java.net.URLClassLoader.findClass
java.net.URLClassLoader.findResource
java.net.URLClassLoader.getResourceAsStream
java.net.URLClassLoader.newInstance
Arbitrary File Reading
java.io.BufferedReader.read
java.io.FileInputStream.read
java.io.FileInputStream.<init>
Arbitrary File Writing
java.io.BufferedWriter.write
java.io.File.createNewFile
java.io.File.createTempFile
java.io.FileOutputStream.write
java.io.FileOutputStream.<init>
java.nio.channels.AsynchronousByteChannel.write
java.nio.channels.AsynchronousFileChannel.write
java.nio.channels.DatagramChannel.write
java.nio.channels.FileChannel.write
java.nio.channels.GatheringByteChannel.write
java.nio.channels.SeekableByteChannel.write
java.nio.channels.SocketChannel.write
java.nio.channels.WritableByteChannel.write
java.nio.file.Files.write
java.nio.file.FileSystems.newFileSystem

B Fuzzing Loop Algorithm

Algorithm 1 Fuzzing Loop
1: Input: Web Application A
2: Output: Detected Vulnerabilities V
3: Initialize V ← /0

4: Initialize distances D←{Initial distances}
5: Initialize Corpus←{Initial seeds}
6: Initialize time t← 0
7: Initialize start_time← CurrentTime()
8: while t < TIME_BUDGET do
9: Se← EntryScoring(A,D)

10: e← SampleEntryPoint(Se)
11: Sl ← SinkLocationScoring(e,A,D)
12: l← SampleSinkLocation(Sv)
13: s← NextSeed(Corpuse,v)
14: mutation_count← AFLGoScore(s)
15: for i← 1 to mutation_count do
16: s′←MutateSeed(s)
17: Execute s′ against A
18: if vulnerability detected then
19: V ←V ∪{detected vulnerability}
20: end if
21: if distance of e and v updated to d then
22: De,v← d
23: Corpuse,v←Corpuse,v ∪{s′}
24: end if
25: end for
26: t← CurrentTime()− start_time
27: end while
28: return V

	Introduction
	Background and Motivation
	Web Application Security
	Existing Work and Limitations

	WDFuzz Overview
	Challenges
	Our Main Idea
	Workflow

	Design and Implementation
	Static Preparation Phase
	Entry and Sink Discovery
	Vulnerable Path Extraction
	Semantic Constraint Extraction
	Request Tree Generation

	Fuzzing Phase
	Hierarchical Scheduling
	Request Tree Mutator

	Implementation

	Evaluation
	Dataset Construction
	Result Overview
	RQ1: Reproducing Known Vulnerabilities
	RQ2: Identifying Unknown Vulnerabilities
	RQ3: Ablation Studies

	Discussion
	Related Work
	Conclusion
	Sink List
	Fuzzing Loop Algorithm

