
Private Set Intersection and other Set Operations in the Third Party Setting

Foo Yee Yeo
Seagate Technology

Jason H. M. Ying
Seagate Technology

Abstract
We present a collection of protocols to perform privacy-
preserving set operations in the third-party private set in-
tersection (PSI) setting. This includes several protocols for
multi-party third party PSI. In this model, there are multiple
input parties (or clients) each holding a private set of elements
and the receiver is an external party (termed as third-party)
with no inputs. Multi-party third party PSI enables the re-
ceiver to learn only the intersection result of all input clients’
private sets while revealing nothing else to the clients and the
receiver. Our solutions include constructions that are provably
secure against an arbitrary number of colluding parties in the
semi-honest model. Additionally, we present protocols for
third-party private set difference and private symmetric differ-
ence, whereby the learned output by the inputless third-party
is the set difference and symmetric difference respectively
of two other input parties, while preserving the same privacy
guarantees. The motivation in the design of these protocols
stems from their utilities in numerous real-world applications.
We implemented our protocols and conducted experiments
across various input and output set sizes.

1 Introduction

Conventional private set intersection (PSI) allows two par-
ties, each holding a private set of items, to learn the inter-
section of the sets and nothing else. Enormous strides have
been made to advance the progress of two-party PSI over the
years [2,4,11–15,17,21–24,33,35,38,40,41,47–55,62,65,66].
Multi-party PSI can be regarded as a generalization of conven-
tional two-party PSI, whereby the intersection functionality is
over sets held by multiple parties. Many approaches for two-
party PSI do not extend to the multi-party setting. As such,
other techniques have been developed to provide such solu-
tions. The initial multi-party PSI protocols proposed by Freed-
man et al. [20] and Kissner & Song [37] utilize an additive ho-
momorphic encryption such as the Paillier cryptosystem [45]
which involves expensive public key operations. Since then,

much progress have been made in the development of more
efficient multi-party PSI protocols [3, 6, 10, 27, 32, 34, 39, 44].

Recently, Yeo and Ying [63, 64] introduced a new model
for PSI, known as third party PSI (TP-PSI), in which the inter-
section of sets held by two different parties are privately com-
puted and revealed to a third-party Q. This problem admits a
natural generalization to more parties; namely, given datasets
S1, . . . ,SN held by N different parties P1, . . . ,PN , we would
like to privately compute the intersection of these datasets
and reveal the result only to an inputless third-party Q. We
shall call this problem multi-party third party PSI.

A naive construction for multi-party third party PSI is to
apply a multi-party PSI solution whereby Q is assigned a set
containing the entire universe of possible elements. However,
this is not feasible except when the universe is small, since
the computation and communication cost of such a solution
will at least be linear in the size of the universe. On the other
hand, an efficient solution should depend polynomially on the
sizes of the input sets and polylogarithmically on the size of
the universe.

Multi-party third party PSI brings unique challenges that
are different from those in conventional multi-party PSI. A
significant difficulty to achieving efficient third party PSI is
due to the fact that the third-party has no private information
that allows him to constrain the possible elements in the inter-
section. In contrast, in the conventional setting, the receiver
can use his own private input set to help determine the inter-
section since elements in the intersection lie in every private
input set. This heavily restricts the possible intersection ele-
ments from the universe of all elements to a much smaller set,
and gives rise to techniques of designing the protocol that is
not possible in the third-party setting.

The solutions presented in [63] and [64] for third party
PSI with 2 input parties rely on tools such as commutative
ciphers and key exchange, and do not generalize to the multi-
party setting. In this paper, we present novel solutions to this
problem which works regardless of the number N of input
parties, including some solutions that are secure in the semi-
honest model against any number of colluding parties.

There are numerous applications for multi-party third party
PSI. For example, it can be applied to investigate cyber intru-
sions of several organizations suspected to be performed by
the same attacker. In such an event, authorities can perform
an initial investigation by engaging in a multi-party TP-PSI
(MP-TP-PSI) with the affected parties whereby each input is
a list of suspicious IP addresses captured within a specified
period of interest.

There are two natural approaches to handle scenarios such
as the above. The simplest solution is for each organization
to submit a list of suspicious IP addresses to an investigat-
ing entity. The investigating entity can then simply perform
a multi-set intersection of all lists in the clear to obtain the
outcome. A critical drawback of this straightforward method
is that collective lists of all IP addresses provided by the or-
ganizations are exposed to the investigating authority which
results in an unnecessary breach of privacy. An alternative
approach which does not expose the entire list of IP addresses
to the investigation entity is for the participating parties to
designate one party to be the receiver in a multi-party PSI
setting. Existing conventional multi-party PSI protocols can
then be applied to enable the designated receiver to obtain
the outcome which can then be forwarded to the investiga-
tive entity. However, this is once again not ideal since the
receiving party will then have access to the intersection list
of IP addresses from all the other organizations. A motivation
to develop MP-TP-PSI stems from achieving a solution to
satisfy such tight privacy constraints.

Another use case application arises in marketing whereby
a group of shop owners intends to collaboratively launch a
promotional campaign. The input parties are the shop owners
who each has a list of customers while the marketing agency
is the third party. The marketing agency is able to obtain the
list of common customers to target from the intersection out-
put and the shop owners maintain the confidentiality of their
customers from the rest of the competitors. More generally,
MP-TP-PSI can be applied in settings whereby an inputless
external party seeks to obtain only the necessary informa-
tion of common items from the set of all other parties in a
privacy-preserving manner.

We provide a series of protocols to achieve the multi-set
intersection functionality in the third-party setting. We first
show in Section 3 that it is feasible to construct protocols
having low communication overhead with the assumption
that only certain types of collusion are present. We proceed to
present two of our main protocols in Section 4 and Section 5
which are secure against arbitrary collusion. Protocol 2 incurs
a slightly lower communication cost compared to Protocol 3,
while Protocol 3 has a significantly lower computational cost
compared to Protocol 2.

We also introduce third-party private set difference (TP-
PSD) and third-party private symmetric difference (TP-
PSymD) and present protocols to achieve these desired func-
tionalities. In these settings, parties P1 and P2 have datasets

S1 and S2 respectively. Private set difference is the function-
ality of privately computing S1 \ S2, i.e. the set of elements
that lie in S1 but not in S2, while symmetric difference is the
functionality of privately computing S1△S2. In both models,
the receiver is an inputless third-party Q.

In the conventional two-party setting, private set difference
is equivalent to PSI with P1 as receiver, since S1 \S2 = S1 \
(S1 ∩ S2), and also equivalent to private set union with P2
as receiver since S1 \ S2 = (S1 ∪ S2) \ S2. However, there is
no such equivalence between third-party PSI and third-party
private set difference.

The formulation of TP-PSD is motivated by recent criti-
cal real-world applications. During a pandemic, individuals
may hold location data of others who are within proximity
for a certain period via contact tracing tokens. In the event
an individual is known to be infected, the public health au-
thority (PHA) is required to notify the close contacts of that
individual on the risk of potential exposure. However, there
is a time lapse between the onset of infection to diagnosis,
especially for an asymptomatic individual. During this period,
an asymptomatic individual might have come into contact
with numerous people, many of whom might have already
undergone testing during that time frame.

Ideally, the PHA should only need to notify close contacts
of the infected individual who have not undergone testing dur-
ing the specified time frame. In such settings, each individual
assumes the role of P1, while the entire list of close contacts in
the relevant time frame corresponds to S1. The testing centers
assume the role of P2, while the database of all individuals
who have undergone testing during the same time frame cor-
responds to S2. The PHA assumes the role of the third party
which does not have any input. TP-PSD enables the PHA to
achieve the required objective in a privacy-preserving manner.

The functionality of privately computing the symmetric
difference S1△S2 also arises naturally in practical settings.
We examine a scenario that occurs often in medical research,
where a research institution seeks to obtain relevant patient
information to study the effectiveness of a single round treat-
ment procedure. In this scenario, specialized medical facilities
P1 and P2 which can administer such treatment procedures
hold a set of records S1 and S2 respectively. S1 contains the
set of patients who have undergone exactly one round of treat-
ment procedure at P1, while S2 contains the set of patients
who have undergone exactly one round of treatment proce-
dure at P2. The research institution is the third-party which
assumes the role of Q. The private set symmetric difference
outcome enables the research institution to obtain the required
data in a privacy-preserving manner without gaining more
information than required, while also safeguarding the patient
records of each medical facility from the other.

Building on our third-party private set difference protocol,
we present a TP-PSymD protocol that privately computes the
symmetric difference S1△S2 in the third-party setting.

1.1 Organization
In Section 2, we formalize the functionality requirement in
the third-party model, and review the cryptographic primi-
tives that are used as building blocks in our constructions. In
Section 3, we present a basic version of our multi-party third-
party PSI protocol. Then, in Sections 4 and 5, we present our
main multi-party private set intersection protocols which are
secure against collusions of any subset of parties. The pro-
tocols to achieve the functionalities of private set difference
and private symmetric difference are provided in Section 6
and Section 7 respectively. In Section 8, we report the perfor-
mance evaluations of our protocols. Finally, we conclude in
Section 9.

2 Preliminaries

2.1 Definitions
We start by giving definitions for the various types of proto-
cols we will introduce in this paper.

Definition 1 (Multi-party third party private set intersection
protocol). In a multi-party third party private set intersection
(MP-TP-PSI) protocol, N parties P1, . . . , PN hold datasets
S1, . . . , SN respectively with elements in {0,1}∗, while a third-
party Q has no input. At the end of the protocol, Q outputs⋂︁N

i=1 Si, and the other parties output ⊥.

Definition 2 (Third-party private set difference protocol). In
a third-party private set difference (TP-PSD) protocol, two
parties P1 and P2 hold datasets S1 and S2 respectively with
elements in {0,1}∗, while a third-party Q has no input. At the
end of the protocol, Q outputs S1 \S2, and the other parties
output ⊥.

Definition 3 (Third-party private symmetric difference pro-
tocol). In a third-party private symmetric difference (TP-
PSymD) protocol, two parties P1 and P2 hold datasets S1 and
S2 respectively with elements in {0,1}∗, while a third-party
Q has no input. At the end of the protocol, Q outputs S1△S2,
and the other parties output ⊥.

Ideal-world/real-world simulation-based definitions can be
used to define the security of such protocols. For example, a
MP-TP-PSI protocol is secure if it achieves the ideal function-
ality shown in Figure 1.

2.2 Oblivious PRFs
Oblivious PRFs (OPRFs) were introduced by Naor and Rein-
gold in [43]. There are two parties in an oblivious PRF pro-
tocol, a sender S with a key, and a receiver R who holds a
private input. An OPRF allows R to obtain an evaluation of
the PRF, without S learning the input nor R learning the key.
The ideal functionality of an OPRF is described in Figure 2.

Parameters: The number of parties N and the size n of
each dataset.
Functionality:

1. For i ∈ [N], get Pi’s input set Si of size n.

2. Send
⋂︁N

i=1 Si to Q.

Figure 1: Multi-party third party PSI ideal functionality

Parameters: A pseudorandom function F : K × I → O
with key space K , input space I and output space O.
Functionality:

1. Get key k ∈K from S.

2. Get input x ∈ I from R.

3. Send F(k,x) to R.

Figure 2: Oblivious PRF ideal functionality

Many other OPRF constructions have been proposed since
its introduction in [43]. Some of these constructions [19,
38] achieve slightly weaker security guarantees, while other
constructions [13, 47] allow for the evaluation of the PRF
at multiple points at once. OPRFs have been successfully
applied to PSI in several works [13, 38, 47, 55].

2.3 Homomorphic Encryption

Homomorphic encryption is a form of encryption that allows
computations to be performed on encrypted data. It is broadly
classified into partially homomorphic encryption, which sup-
ports the evaluation of circuits consisting of only one type
of gate, and fully homomorphic encryption, which supports
evaluation of arbitrary circuits (possibly of bounded size).

Partially homomorphic encryption schemes can be further
classified into two broad types depending on the type of opera-
tion supported. Additively homomorphic encryption schemes,
such as Paillier [45], support addition, while multiplicatively
homomorphic encryption schemes, such as RSA or ElGa-
mal [18], support multiplication.

An important property that greatly enhances the usefulness
of a homomorphic encryption scheme is circuit privacy, the
property where a ciphertext obtained via evaluations is statisti-
cally indistinguishable from a fresh ciphertext. Many partially
homomorphic encryption schemes can be easily modified to
achieve circuit privacy via re-randomization techniques. This
includes Paillier, RSA and ElGamal, which have circuit pri-
vacy for the class of all circuits that can be evaluated by each
respective encryption scheme.

Circuit privacy can also be achieved for many fully homo-
morphic encryption schemes using techniques such as noise

flooding [25], bootstrapping or adding a small noise in each
step of homomorphic evaluation [7].

Finally, a weaker, but still useful notion, is that of input
privacy where a ciphertext obtained via evaluations reveals no
information about the inputs except for what can be deduced
from the output (i.e. the decrypted ciphertext).

3 A Basic Multi-Party Third Party PSI Proto-
col

3.1 An overview
In this section, we will present a basic version of our multi-
party third party PSI protocol, which is secure against collu-
sions of any subset of parties that do not include Q, or against
a corrupt Q.

Our protocol combines the zero-sharing technique intro-
duced by Kolesnikov et al. [39] with the technique of encoding
intersection elements into a polynomial introduced in [63].
Furthermore, we improve the analysis of the error probability
in [63] for our protocol, thus allowing us to select smaller
parameters and achieve a linear communication complexity.1

The main idea behind our protocol is for the parties to
create shares of zero for each element in the intersection.
Once the parties exchange some keys, these shares of zero
can be created by evaluating a PRF.

Each party Pi then encodes his share of zero (corresponding
to an element s) into a polynomial pi at the point s. The
polynomials pi from the various parties Pi are then sent to
Q, who can determine the desired intersection by finding the
points where the sum of the pi’s evaluate to 0.

However, the above will fail to produce the correct output
when the parties have identical sets, as the sum of the pi’s will
then be the zero polynomial, and hence evaluate to 0 at all
elements. To handle this edge case, we use a trick introduced
in [64], and have the parties choose a polynomial with degree
that is one higher than is seemingly necessary. This additional
randomness means that the sum of the pi’s will be a non-zero
polynomial with high probability, thus allowing Q to correctly
compute the intersection.

As discussed in the introduction, it can be more difficult
to design a multi-party PSI protocol in the third-party set-
ting since Q has no private information that can be used
to constrain the intersection elements. In fact, this is why
the technique of encoding intersection elements as roots of
a polynomial is used here so that Q, who does not possess
any information about any of the private input sets, can still
determine the intersection using root finding.

Note that, even with this technique of encoding intersec-
tion elements as roots of a polynomial, efficiency also differs
between the conventional setting and third-party setting. In-
deed, if we were to give P1 a polynomial which has roots at

1The communication complexity for the protocol in [63] is quasilinear.

the intersection elements, he can simply use a multi-point
evaluation to evaluate the elements of his private input set S1
at this polynomial to determine the intersection, and this is
significantly cheaper than root finding.

3.2 Details of the protocol
Suppose there are N parties P1, . . . ,PN , each with a dataset
Si ⊆ {0,1}ℓ of size n. Let λ > 0 be the correctness parameter
and let F be a finite field with |F|> 2ℓ+λ. We fix an injective
map ι : {0,1}ℓ ↪→ F with image S, fix some a0 ∈ F\S and let
F : K ×S→ F be a PRF. For ease of notation, we implicitly
identify {0,1}ℓ with its image S⊆ F under the map ι.

1. For each i, j ∈ [N] with j ̸= i, Pi generates a key
ki, j ∈K , and sends ki, j to Pj.

2. For i ∈ [N], Pi picks a random ri ← F and com-
putes the polynomial pi(X) of degree≤ n such that
pi(a0) = ri and

pi(s) = ∑
j∈[N]\{i}

(F(ki, j,s)−F(k j,i,s))

for all s ∈ Si, and sends pi(X) to Q.

3. Q solves ∑
N
i=1 pi(X) = 0 and outputs{︁

s ∈ S : ∑
N
i=1 pi(s) = 0

}︁
.

Protocol 1: A semi-honest MP-TP-PSI protocol

The communication complexity of Protocol 1 is

O
(︁
N2 log |K |+Nn log |F|

)︁
= O

(︁
N2 log |K |+Nn(ℓ+λ)

)︁
.

As for the computation cost, we note that each party Pi gen-
erates (N−1) keys for the PRF F , invokes the PRF 2n(N−1)
times and interpolates a polynomial of degree n, while Q
needs to find the roots of a single polynomial of degree n.
Since the computational complexities of certain operations
depend on whether F has prime order, we shall assume that
|F| is prime when stating the computational complexities.2

Under this assumption, multiplication in F has
O(log |F| log log |F|) bit complexity, hence polynomial
interpolation has a bit complexity of

O
(︁
n(logn)2(log logn) log |F| log log |F|

)︁
,

while Kedlaya-Umans has a bit complexity of

O
(︂

n1.5+o(1) log1+o(1) |F|+n1+o(1) log2+o(1) |F|
)︂
.

Thus, ignoring the generation of keys (which has insignificant
costs) and using Kedlaya-Umans [36] for root finding, this
gives a total computational complexity of

O
(︁
N2nccomp,F +Nn(logn)2(log logn) log |F| log log |F|

2By Bertrand’s postulate, there always exists a finite field F of prime
order such that 2ℓ+λ < |F|< 2ℓ+λ+1.

+n1.5+o(1) log1+o(1) |F|+n1+o(1) log2+o(1) |F|
)︂

where ccomp,F is the cost of a single invocation of F .

3.3 Correctness and security
Lemma 1. In Protocol 1, ∑

N
i=1 pi(X) is indistinguishable

from a polynomial chosen uniformly from the set{︄
r(X) ∈ F[X] : deg(r)≤ n and r(s) = 0 for all s ∈

N⋂︂
i=1

Si

}︄
.

Proof. Let the above set be U , p(X) = ∑
N
i=1 pi(X) and I =⋂︁N

i=1 Si. If s ∈ I, then

p(s) =
N

∑
i=1

pi(s) =
N

∑
i=1

∑
j∈[N]\{i}

(F(ki, j,s)−F(k j,i,s))

= ∑
i, j∈[N], i ̸= j

(F(ki, j,s)−F(k j,i,s)) = 0,

hence p(X) ∈U .
Next, we show that p(X) is indistinguishable from a uni-

formly random element of U . To do so, we first change how
the polynomials pi(X) are defined. For each s ∈

⋃︁N
i=1 Si, we

generate uniformly random values αs,i ∈ F for i ∈ [N] subject
to the constraint ∑

N
i=1 αs,i = 0. Then we pick independent

and uniformly random r1, . . . ,rN ∈ F, and let pi(X) be the
unique polynomial of degree ≤ n such that pi(a0) = ri and
pi(s) = αs,i for all s ∈ Si. Since F is a PRF, the joint distribu-
tions of pi(X) after this change is indistinguishable from that
of the real protocol.

We claim that, after this change, p(X) = ∑
N
i=1 pi(X) is a

uniformly random element of U . Let S1 \ I = {t1, . . . , tn−|I|}.
Since a polynomial of degree ≤ n is uniquely determined
by its values at any n + 1 points, it suffices to prove that
p(t1), . . . , p(tn−|I|), p(a0) are jointly uniformly random (re-
call that p(X) evaluates to 0 at the elements of I).

Since t1, . . . , tn−|I| /∈ I, for each k ∈ [n− |I|], there exists
ik such that tk /∈ Sik , which means that pik(X) is indepen-
dent of αtk,ik . Therefore, p1(tk) = αtk,1 is independent of
p2(tk), . . . , pN(tk), which proves that p(tk) = ∑

N
i=1 pi(tk) =

αtk,1 +∑
N
i=2 pi(tk) is uniformly random.

Furthermore, if k ̸= k′, then αtk,i and αtk′ ,i are indepen-
dent by the definition of αs,i, from which it follows that
p(t1), . . . , p(tn−|I|) are jointly uniformly random. It is clear
also that p(a0) is uniformly random and independent of
p(t1), . . . , p(tn−|I|), proving the claim.

Proposition 2. In Protocol 1, Q outputs
⋂︁N

i=1 Si except with
probability negligible in λ.

Proof. Let I =
⋂︁N

i=1 Si and p(X) = ∑
N
i=1 pi(X). By Lemma 1,

p(X) is indistinguishable from a uniformly random element
of the set

{r(X) ∈ F[X] : deg(r)≤ n and r(s) = 0 for all s ∈ I},

so p(X) = q(X)∏s∈I(X− s) where q(X) is indistinguishable
from a uniformly random polynomial of degree ≤ n−|I|.

If s /∈ I, then the probability that q(s), or equivalently p(s),
equals 0 is negligibly close to 1/|F|. By the union bound, the
probability that p(s) = 0 for some s /∈ I is bounded above by

n−|I|
|F|

≤ n
2ℓ+λ

≤ 2ℓ

2ℓ+λ
= 2−λ,

which is negligible in λ, as required.

Proposition 3. Protocol 1 is secure in the semi-honest model
against collusion of any number of parties Pi.

Proof. This is clear. The only messages exchanged between
the parties Pi are the keys ki, j, which are independent of the
inputs S1, . . . ,SN .

Proposition 4. Protocol 1 is secure in the semi-honest model
against Q.

Proof. By the proof of Lemma 1, if s /∈
⋂︁N

i=1 Si, the values
pi(s) are indistinguishable from uniformly random, and if s ∈⋂︁N

i=1 Si, the values pi(s) are indistinguishable from uniformly
random values that satisfy the constraint ∑

N
i=1 pi(s) = 0.

Hence, we can simulate the messages received by Q as fol-
lows. For each s ∈

⋂︁N
i=1 Si, pick random values αs,1, . . . ,αs,N

that sum to zero. Then, for each i ∈ [N], pick a random qi(X)
of degree ≤ n such that qi(s) = αs,i for all s ∈

⋂︁N
i=1 Si. The

message received by Q from Pi is then simulated using the
polynomial qi(X).

However, we note that Protocol 1 will not be secure against
a collusion of some party Pi with Q. Suppose, for some i, the
parties Pi and Q collude. Then, the corrupt parties will know
whether an element s ∈

⋂︁
j∈[N]\{i} S j by checking if

∑
j∈[N]\{i}

p j(s)+ ∑
j∈[N]\{i}

(F(ki, j,s)−F(k j,i,s)) = 0.

4 An Improved Multi-Party Third Party PSI
Protocol

4.1 An overview
In this section, we introduce a multi-party third party PSI
protocol that is secure in the semi-honest model against collu-
sions of any subset of parties.

We noted previously, in Section 3.3, that Protocol 1 is in-
secure against a collusion of some party Pi and Q. This is be-
cause Pi can determine if an element s ∈ S lies in

⋂︁
j∈[N]\{i} Si

even when s /∈ Si. A more careful look at the attack reveals
that it works as Pi can easily compute F(k j,i,s) for any s ∈ S.

We modify Protocol 1 so that each Pi can only obtain ex-
actly n evaluations of F under the key k j,i, and we achieve
this with the use of an OPRF. This change not only disables
the above attack, but it also makes the protocol secure against
any collusion.

4.2 Details of the protocol
We use the same setup as Section 3.2. Furthermore, let F F

OPRF
be an OPRF protocol for F .

1. For each i, j ∈ [N] with j ̸= i, Pi generates a key
ki, j ∈K .

2. For each i, j ∈ [N] with j ̸= i, and each s ∈ S j, Pi
and Pj invoke F F

OPRF where

• Pi is sender with input ki, j,

• Pj is receiver with input s.

3. For i∈ [N], Pi picks a random ri← F, computes the
polynomial pi(X) of degree≤ n such that pi(a0) =
ri and

pi(s) = ∑
j∈[N]\{i}

(F(ki, j,s)−F(k j,i,s))

for all s ∈ Si, and sends pi(X) to Q.

4. Q solves ∑
N
i=1 pi(X) = 0 and outputs{︁

s ∈ S : ∑
N
i=1 pi(s) = 0

}︁
.

Protocol 2: A semi-honest MP-TP-PSI protocol secure
against any collusion

The communication complexity of Protocol 2 is

O
(︁
N2nccomm,F +Nn log |F|

)︁
= O

(︁
N2nccomm,F +Nn(ℓ+λ)

)︁
where ccomm,F is the communication cost of the OPRF proto-
col F F

OPRF. For the computation cost, we note that each party
Pi invokes F F

OPRF a total of (N − 1)n times as sender and
(N−1)n times as receiver, and interpolates a single polyno-
mial of degree n. As in Protocol 1, Q needs to find the roots of
a single polynomial of degree ≤ n. So the total computational
complexity is

O
(︁
N2nccomp,F +Nn(logn)2(log logn) log |F| log log |F|

+n1.5+o(1) log1+o(1) |F|+n1+o(1) log2+o(1) |F|
)︂

where ccomp,F is the computation cost of F F
OPRF.

4.3 Correctness and security
Proposition 5. In Protocol 2, Q outputs

⋂︁N
i=1 Si except with

probability negligible in λ.

Proof. For each i ∈ [N], the polynomial pi(X) sent by Pi to Q
in Protocol 2 is identical to that in Protocol 1. The correctness
of Protocol 2 follows.

Proposition 6. Protocol 2 is secure in the semi-honest model
against collusion of any number of parties Pi with Q.

Proof. Let H = {i ∈ [N] : Pi is honest} be the set of indices
of the honest parties, and C = {i ∈ [N] : Pi is corrupt} be the
set of indices of the corrupt parties except Q. We show how
to simulate the view of the corrupt parties. First, the simulator
chooses the keys ki, j for the honest parties (i.e. for i ∈H), and
follows step 2 of the protocol.

Note that, for any s ∈ {0,1}ℓ,

∑
i∈H

∑
j∈[N]\{i}

(F(ki, j,s)−F(k j,i,s))

+∑
i∈C

∑
j∈[N]\{i}

(F(ki, j,s)−F(k j,i,s)) = 0.

We now consider 3 separate cases.

Case 1: s ∈
⋂︁N

i=1 Si. In this case, the above constraint is
equivalent to

∑
i∈H

pi(s)+∑
i∈C

pi(s) = 0,

hence the values pi(s) for i∈H are indistinguishable from uni-
formly random values that satisfy the constraint ∑i∈H pi(s) =
−∑i∈C pi(s).

Case 2: s /∈ Si0 for some i0 ∈ H. For any i ∈ H such that s /∈
Si, Pi did not interpolate a value for pi(X) at s, hence pi(s)
is indistinguishable from uniformly random. On the other
hand, for any i ∈ H with s ∈ Si, F(ki,i0 ,s) and hence pi(s)
are indistinguishable from uniformly random to the corrupt
parties.

Case 3: s /∈
⋂︁N

i=1 Si but s ∈ Si for all i ∈ H. In this case,
there must exist some i0 ∈ C such that s /∈ Si0 . The above
constraint now becomes

∑
i∈H

pi(s)+∑
i∈C

∑
j∈[N]\{i}

(F(ki, j,s)−F(k j,i,s)) = 0.

For all j ∈H, the values of F(k j,i0 ,s) are unknown to the cor-
rupt parties, hence pi(s) for i ∈ H are again indistinguishable
from uniformly random values.

Therefore, we can simulate the polynomials pi(X) for i ∈
H as follows. Fix any j ∈ H. Now, for i ∈ H \ { j}, pick a
polynomial pi(X) of degree≤ n uniformly at random. Finally,
let p j(X) be a random polynomial of degree ≤ n such that

p j(s) =− ∑
i∈[N]\{ j}

pi(s)

for all s ∈
⋂︁N

i=1 Si.

5 A Quasilinear Multi-Party Third-Party PSI
Protocol

5.1 An overview
While the protocol in the previous section has a communica-
tion complexity that is linear in n, its computational complex-
ity is slightly higher at O(n1.5+o(1)). In this section, we further

improve the protocol to achieve a quasilinear computational
complexity.

Recall that, in Protocol 2, Q uses the information obtained
from the parties Pi to form a polynomial which has roots
at the intersection elements. However, this polynomial is of
degree n and thus has other irreducible factors, which are
almost always non-linear. Finding the roots of such a polyno-
mial is significantly more costly than finding the roots of a
polynomial which splits into distinct linear factors.

Indeed, this is because many polynomial factorization al-
gorithms such as the Cantor-Zassenhaus algorithm [9] work
via a three-step process, namely square-free factorization,
distinct-degree factorization and equal-degree factorization.
Square-free factorization factorizes the input polynomial into
powers of square-free polynomials, distinct degree factoriza-
tion then takes as input a monic square-free polynomial and
factorizes it into polynomials where the i-th polynomial is a
product of degree i irreducible polynomials (or is equal to 1),
and finally equal-degree factorization takes as input a polyno-
mial whose irreducible factors are degree i polynomials for
some fixed i and outputs its irreducible factors.

Of these three steps, the second step of distinct-degree fac-
torization is the most costly. Kedlaya-Umans [36] achieves a
complexity which is near-linear in the degree of the polyno-
mial for square-free factorization and equal-degree factoriza-
tion, but which however is non-linear for distinct-degree fac-
torization. Furthermore, factorization of a polynomial which
splits into distinct linear factors has even lower computational
complexity. In fact, the Cantor-Zassenhaus algorithm [9] has
quasilinear complexity in this special case.

Therefore, we introduce a technique that allows Q to
cheaply obtain a polynomial which splits into distinct linear
factors, where each linear factor corresponding to an intersec-
tion element. This lets Q find the roots of the polynomial, and
hence obtain the intersection result, in quasilinear time. We
achieve this by allowing Q to obtain two different random
polynomials q1 and q2, both of which have roots at the inter-
section elements. By taking the greatest common divisor of
q1 and q2 (the gcd can be computed in quasilinear time), Q
then obtains a polynomial q which has no extraneous factors,
and thus can be solved in quasilinear time.

Furthermore, for a fixed error probability, this new tech-
nique allows the use of a smaller field (see Proposition 7
and the following discussion), and this also contributes to the
communication and computational efficiency of the protocol.

5.2 Details of the protocol

We use a similar setup as Section 4.2, but replacing F by a
PRF F : K × S→ F2. Let πi : F2 → F (for i = 1,2) be the
projection onto the i-th coordinate, and let Fi = πi ◦F . As
before, we let F F

OPRF be an OPRF protocol for F .

1. For each i, j ∈ [N] with j ̸= i, Pi generates a key
ki, j ∈K .

2. For each i, j ∈ [N] with j ̸= i, and each s ∈ S j, Pi
and Pj invoke F F

OPRF where

• Pi is sender with input ki, j,

• Pj is receiver with input s.

3. For i ∈ [N], Pi picks random ri,1,ri,2← F, and com-
putes the polynomials pi,1(X) and pi,2(X), each of
degree ≤ n, such that pi,h(a0) = ri,h and

pi,h(s) = ∑
j∈[N]\{i}

(Fh(ki, j,s)−Fh(k j,i,s))

for all s ∈ Si, and sends pi,1(X) and pi,2(X) to Q.

4. Q computes the polynomial

q(X) = gcd

(︄
N

∑
i=1

pi,1(X),
N

∑
i=1

pi,2(X)

)︄
.

5. Q solves q(X) = 0 and outputs {s ∈ S : q(s) = 0}.

Protocol 3: A quasilinear semi-honest MP-TP-PSI protocol
secure against any collusion

Note that, although the PRF F used in this protocol has an
output length that is twice as long as the PRF used in Protocol
2, running F F

OPRF can be, and is often, significantly cheaper
than two evaluations of an OPRF with output space F. This
means that, although Protocol 3 has increased computational
and communication costs for the parties Pi as compared to
Protocol 2, these costs are likely less than twice the corre-
sponding costs for Protocol 2.

Furthermore, as alluded to earlier, when compared to Proto-
col 2, we can use a smaller field in Protocol 3 while achieving
the same error probability, thus leading to a further reduction
in the computational and communication costs in practice.

The communication complexity of Protocol 3 is

O
(︁
N2nccomm,F +Nn(ℓ+λ)

)︁
which is linear in n, where ccomm,F is the communication cost
of the OPRF protocol F F

OPRF. Using the Cantor-Zassenhaus
algorithm [9] with fast integer multiplication [31] and fast
polynomial multiplication [30] for the root finding step, its
computational complexity is

O
(︂

n log(n log |F|) logn log |F|(logn+ log |F|)

· 4max(0, log∗ n−log∗ |F|)+n log |F|(log log |F|)2
)︂

where log∗ is the iterated logarithm. Hence, the computational
complexity of Protocol 3 is

O
(︂

n log(n log |F|) logn log |F|(logn+ log |F|)

· 4max(0, log∗ n−log∗ |F|)+n log |F|(log log |F|)2

+ Nn(logn)2(log logn) log |F| log log |F|+N2nccomp,F

)︂
which is quasilinear in n, where ccomp,F is the computation
cost of F F

OPRF.

5.3 Correctness and security
Proposition 7. In Protocol 3, Q outputs

⋂︁N
i=1 Si except with

probability negligible in λ.

Proof. Let I =
⋂︁N

i=1 Si and ph(X) = ∑
N
i=1 pi,h(X) for h = 1,2.

By Lemma 1,

ph(X) = qh(X)∏
s∈I

(X− s)

where q1(X) and q2(X) are independent and uniformly ran-
dom polynomials of degree ≤ n−|I|.

For any monic irreducible polynomial r(X) ∈ F[X], we
have r(X) | qh(X) if and only if qh(X) = r(X) f (X) for some
f (X) ∈ F[X] of degree ≤ n−|I|−deg(r). Therefore, writing
d = deg(r),

Pr[r(X) | gcd(q1(X),q2(X))]

= Pr[r(X) | q1(X) and r(X) | q2(X)]

= Pr[r(X) | q1(X)]Pr[r(X) | q2(X)]

=

(︄
|F|n−|I|−d

|F|n−|I|

)︄2

=
1
|F|2d .

Note that gcd(q1(X),q2(X)) ̸= 1 if and only if there ex-
ists some monic irreducible polynomial r(X) such that r(X) |
gcd(q1(X),q2(X)). Since there are at most |F|d monic irre-
ducible polynomials r(X) of degree d, by the union bound,

Pr[gcd(q1(X),q2(X)) ̸= 1]≤
n−|I|

∑
d=1

|F|d

|F|2d <
∞

∑
d=1

1
|F|d

=
1

|F|−1
≤ 1

2ℓ+λ−1
,

which is negligible in λ.
In all other cases, we have gcd(q1(X),q2(X)) = 1, hence

q(X) = gcd(p1(X), p2(X))

= gcd

(︄
q1(X)∏

s∈I
(X− s), q2(X)∏

s∈I
(X− s)

)︄
= ∏

s∈I
(X− s).

Comparing the proofs of Propositions 5 and 7, we see that a
smaller field can be used in Protocol 3 as compared to Protocol
2 while achieving the same error probability. Indeed, the error
probability for Protocol 2 is bounded above by 2−λ, while that

for Protocol 3 is bounded above by (2ℓ+λ−1)−1. For example,
with ℓ= 32, in order to achieve an error probability of 2−40,
we require |F|⪆ 272 in Protocol 2, but we only require |F|⪆
240 in Protocol 3. Intuitively, this can be explained by the fact
that it is much less likely for two random polynomials to both
have the same root in S than for a single random polynomial
to have a root in S.

Proposition 8. Protocol 3 is secure in the semi-honest model
against collusion of any number of parties Pi with Q.

Proof. Let H = {i∈ [N] : Pi is honest} be the set of indices of
the honest parties. The proof is similar to that of Proposition
6, except that we need to simulate two sets of polynomials
pi,1(X) and pi,2(X) for i∈H. This is done in a similar manner
as in the proof of Proposition 6.

Fix any j ∈ H. For i ∈ H \{ j}, pick polynomials pi,1(X)
and pi,2(X) of degree≤ n independently and uniformly at ran-
dom. Finally, let p j,1(X) and p j,2(X) be independent random
polynomials of degree ≤ n such that

p j,1(s) =− ∑
i∈[N]\{ j}

pi,1(s) and p j,2(s) =− ∑
i∈[N]\{ j}

pi,2(s)

for all s ∈
⋂︁N

i=1 Si.

6 Third-Party Private Set Difference via Ra-
tional Functions

6.1 An overview

In this section, we introduce a protocol for third-party private
set difference which is based on the works of Minsky et al.
[42] and Ghosh and Simkin [26]. In particular, we build upon a
threshold PSI protocol in [26] to obtain our TP-PSD protocol.

Let pS1(X) and pS2(X) be the polynomials with roots given
by the sets S1 and S2 respectively. First, P1 and P2 choose ran-
dom polynomials r1(X) and r2(X). Then, using an additively
homomorphic encryption scheme, they provide Q with evalua-

tions of the rational function f (X) =
r1(X)pS1 (X)+r2(X)pS2 (X)

pS1 (X) at
various αi’s. With these values, Q can then reconstruct the ra-
tional function f (X), which has poles exactly at the elements
of S1 \S2.3

As compared to the protocol in [26], we have replaced
their use of oblivious linear evaluation with an additive ho-
momorphic encryption scheme. Furthermore, we introduced
additional randomness to the evaluations of the polynomi-
als defining the rational function so that the third-party Q
does not learn any additional information about S1 beyond
the elements of S1 \S2.

3The poles of a rational function are the zeros of its denominator when
the rational function is written in its reduced form.

6.2 Details of the protocol
Let the size of each of P1 and P2’s datasets be n, and let S1 =
{s1, . . . ,sn} ⊆ {0,1}ℓ and S2 = {t1, . . . , tn} ⊆ {0,1}ℓ. Let λ >
0 be the correctness parameter. We embed {0,1}ℓ into a finite
field F with |F| ≥ max

(︁
2ℓ+3n+1, 2λ

)︁
using an injective

map ι : {0,1}ℓ ↪→ F. Let S be the image of {0,1}ℓ under ι.
Fix 3n+1 points α1, . . . ,α3n+1 ∈ F\S, and let E : F→ C

be an asymmetric additively homomorphic encryption scheme
with input privacy. For any subset T ⊆ {0,1}ℓ, we denote by
pT (X) the polynomial pT (X) = ∏t∈T (X− ι(t)) ∈ F[X].

1. Q generates a key pair (sk,pk) for E and sends pk
to P1 and P2.

2. P1 and P2 pick β1, . . . ,β3n+1 ∈ F uniformly at ran-
dom.

3. P1 chooses a random polynomial r1(X) of degree
≤ n, computes ct1,i = E(pk,βir1(αi)pS1(αi)) and
sends ct1,i to P2 for i ∈ [3n+1].

4. P2 chooses a random polynomial r2(X) of degree
≤ n and computes ct2,i = E(pk,βir2(αi)pS2(αi))
for i ∈ [3n+1].

5. For each i ∈ [3n+ 1], P2 performs homomorphic
addition on ct1,i and ct2,i to obtain a ciphertext ct0,i,
and sends ct0,i to Q.

6. P1 computes di = βi pS1(αi) and sends di to Q, for
i ∈ [3n+1].

7. For each i ∈ [3n+1], Q decrypts ct0,i to obtain ni.

8. Q uses rational function interpolation to find the
unique rational function f (X) with numerator of
degree ≤ 2n and denominator of degree ≤ n such
that f (αi) = ni/di for i ∈ [3n+1].

9. Let f (X) = q1(X)/q2(X) where q1(X) and q2(X)
are coprime polynomials. Q outputs

{ι−1(x) : x ∈ F such that q2(x) = 0}.

Protocol 4: A semi-honest TP-PSD protocol

6.3 Communication and computational com-
plexity

Assuming that the ciphertexts for E are at most a constant
factor larger than the plaintexts, we easily see from the de-
scription of Protocol 4 that it has a communication complexity
of O(n log |F|) = O

(︁
n log(2ℓ+n+2λ)

)︁
, which, as a function

of n, is O(n logn), hence quasilinear.
For large n, the most computational expensive steps in

the above protocol are steps 8 and 9, which involve rational

function interpolation and finding the roots of a polynomial
in F[X] respectively.

Rational function interpolation can be performed by solv-
ing a linear system of 3n + 1 equations in 3n + 2 vari-
ables [42]. It is well known that this problem has the
same asymptotic complexity as matrix multiplication, i.e.
its complexity is O(nω+o(1)) F-operations, or equivalently
O(nω+o(1) log |F| log log |F|) bit operations, where ω is the
exponent of matrix multiplication. Trivially, we have 2 ≤
ω ≤ 3. A long line of work on fast matrix multiplication
algorithms has gradually improved known upper bounds
on ω [1, 16, 46, 57, 61], and it has recently been shown by
Williams et al. [61] that ω≤ 2.371552. In practice, depend-
ing on the size of n, we can either apply Gaussian elimination
which has a complexity of O(n3) F-operations, or Strassen’s
algorithm [57] which has a complexity of O(nlog7+o(1)) ≈
O(n2.8074+o(1)) operations.

As for root finding, we note that q2(X) factorizes into a
product of distinct linear factors (see the proof of Proposi-
tion 13), hence the Cantor-Zassenhaus algorithm [9] has a
quasilinear complexity of

O
(︂

n log(n log |F|) logn log |F|(logn+ log |F|)

· 4max(0, log∗ n−log∗ |F|)+n log |F|(log log |F|)2
)︂

in this special case (refer to the discussion follow-
ing Protocol 3 for more details). Noting that |F| >
n, the above is O

(︁
n log(n log |F|) logn log2 |F|

)︁
, which is

O
(︁
n log(n logn) log3 n

)︁
as a function of n.

Therefore, the computational complexity of Protocol 4 is
dominated by rational function interpolation, and it has a bit
complexity in n that is

O
(︂

nω+o(1) logn log logn
)︂
= O

(︂
nω+o(1)

)︂
.

6.4 Correctness and security
The following is a lemma of Kissner and Song [37], which
shows that linear combinations of coprime polynomials of the
same degree by uniformly random polynomials give rise to a
uniformly random polynomial.

Lemma 9. Let F be a finite field, p1(X), p2(X) ∈ F[X] be
coprime polynomials of degree d. If r1(X),r2(X) ∈ F[X] are
uniformly random polynomials of degree≤ n, and d ≤ n, then
r1(X)p1(X)+ r2(X)p2(X) is a uniformly random polynomial
of degree ≤ d +n.

We also require the following lemma by Ghosh and Simkin,
which is stated in [26] for finite prime fields. However, the
lemma is true even if the field is not prime, and we shall state
and prove the more general version here.

Lemma 10. Let d > 0 be some fixed integer, and let F be
a finite field with log |F| = Θ(κ). If p(X) ∈ F[X] is a fixed

non-zero polynomial and r(X) ∈ F[X] is a uniformly random
polynomial of degree ≤ d, then Pr[gcd(p(X),r(X)) ̸= 1] is
negligible in κ.

Proof. Let
p(X) = p1(X) · · · pk(X)

be the factorization of p(X) in F[X] into irreducible polyno-
mials. Then

Pr[gcd(p(X),r(X)) ̸= 1]
=Pr[gcd(pi(X),r(X)) ̸= 1 for some i]

≤
k

∑
i=1

Pr[gcd(pi(X),r(X)) ̸= 1].

Since pi(X) is irreducible in F[X],

gcd(pi(X),r(X)) ̸= 1
⇐⇒ pi(X) | r(X)

⇐⇒ r(X) = pi(X)qi(X) for some qi(X) ∈ F[X],

from which it follows that

Pr[gcd(pi(X),r(X)) ̸= 1] =
|F|d−deg(pi)+1

|F|d+1 =
1

|F|deg(pi)
.

Therefore,

Pr[gcd(p(X),r(X)) ̸= 1]≤
k

∑
i=1

1
|F|deg(pi)

≤ k
|F|
≤ deg(p)

2Θ(κ)
,

which is negligible in κ, as required.

Finally, the following lemma by Minsky et al. [42] shows
that a large enough number of evaluations of a rational func-
tion uniquely determines the rational function.

Lemma 11. Given n1 + n2 pairs (xi,yi) ∈ F2, there is at
most one rational function f (X) = f1(X)/ f2(X) (up to equiv-
alence) with f1(X), f2(X) ∈ F[X] monic polynomials of de-
grees n1 and n2 respectively, that satisfies f (xi) = yi for all
i ∈ [n1 +n2].

We now state the following lemma, which is a variant of,
and follows from Lemma 11. The result in this lemma appears
to have been used implicitly in [26], although it does not
appear there.

Lemma 12. Given n1 + n2 + 1 pairs (xi,yi) ∈ F2, there is
at most one rational function f (X) = f1(X)/ f2(X) (up to
equivalence) with f1(X), f2(X) ∈ F[X] of degrees n1 and n2
respectively, that satisfies f (xi) = yi for all i ∈ [n1 +n2 +1].

Proof. Suppose f (X) is a rational function satisfying the
above conditions. Note that yi ̸= 0 for some i ∈ [n1 +n2 +1]
since f (X) has at most n1 roots in F. We may assume, without
loss of generality, that y1 ̸= 0.

The rational function g(X) = f (X +x1) satisfies g(x′i) = yi,
where x′i = xi− x1. In particular, we have g(0) = f (x1) = y1.
Writing

g(X) =
∑

n1
i=1 aiX i

∑
n2
i=1 biX i ,

it follows that a0/b0 = y1. Replacing g(X) by an equivalent
rational function with b0 = 1, we then have a0 = y1. Consider
the rational function

h(X) =
y−1

1 ∑
n1
i=1 aiXn1−i

∑
n2
i=1 biXn2−i .

Note that h(X) is monic, and

h
(︁
(x′i)
−1)︁= y−1

1 ∑
n1
i=1 ai(x′i)

−(n1−i)

∑
n2
i=1 bi(x′i)−(n2−i)

=
y−1

1 ∑
n1
i=1 ai(x′i)

i

(x′i)n1−n2 ∑
n2
i=1 bi(x′i)i

= (x′i)
n2−n1y−1

1 g(x′i) = (x′i)
n2−n1 y−1

1 yi

for all i ∈ [n1 +n2 +1]\{1}.
Now, by Lemma 11, there is at most one such rational

function h(X), which proves the uniqueness of g(X), and
hence the uniqueness of f (X).

6.4.1 Correctness

Proposition 13. In Protocol 4, Q outputs S1 \S2 except with
probability negligible in λ.

Proof. Since E is additively homomorphic, for each i ∈ [3n+
1], ct0,i decrypts to

βi(r1(αi)pS1(αi)+ r2(αi)pS2(αi)).

Therefore, by the uniqueness in Lemma 12, we have

f (X) =
r1(X)pS1(X)+ r2(X)pS2(X)

pS1(X)

=
r1(X)pS1\S2(X)pS1∩S2(X)+ r2(X)pS2\S1(X)pS1∩S2(X)

pS1\S2(X)pS1∩S2(X)

=
r1(X)pS1\S2(X)+ r2(X)pS2\S1(X)

pS1\S2(X)
.

By Lemmas 9 and 10, over the random choices of r1(X) and
r2(X), the polynomials r1(X)pS1\S2(X)+r2(X)pS2\S1(X) and
pS1\S2(X) are coprime except with probability negligible in
λ. Hence, in step 9, we have q2(X) = pS1\S2(X) (up to multi-
plication by an element of F∗), from which the correctness of
the protocol follows.

From the proof of Proposition 13, we note that
Protocol 4 always produces a correct output unless
gcd
(︁

pS1\S2(X), r(X)
)︁
̸= 1, where r(X) = r1(X)pS1\S2(X) +

r2(X)pS2\S1(X).

Let d = deg(pS1\S2). Then r(X) is a uniformly random
polynomial of degree ≤ n+ d. An analysis following the
same argument as in the proof of Lemma 10 shows that

Pr
[︁
gcd
(︁

pS1\S2(X), r(X)
)︁
̸= 1
]︁
≤ d
|F|
≤ n
|F|

.

For example, in order to obtain an error probability that is less
than 2−40, it suffices to pick F such that log |F|> 40+ logn.

6.4.2 Security

Proposition 14. Protocol 4 is secure against a semi-honest
P1.

Proof. This is clear since the only message received by P1 is
the public key pk, which does not depend on S2.

Proposition 15. Assume that E is IND-CPA secure. Then
Protocol 4 is secure against a semi-honest P2.

Proof. The only messages that P2 receives are ct1,i =
E(pk,βir1(αi)pS1(αi)) for i ∈ [3n+1]. Since E is IND-CPA
secure, we can simulate these by encryptions of any 3n+1
arbitrarily chosen plaintexts.

Proposition 16. Assume that E has input privacy. Then Pro-
tocol 4 is secure against a semi-honest Q.

Proof. In a real protocol execution, ni =
βi(r1(αi)pS1(αi)+ r2(αi)pS2(αi)) and di = βi pS1(αi).
Since βi ∈ F is chosen uniformly at random, ni and di are
uniformly random elements that satisfy

ni

di
=

r1(αi)pS1(αi)+ r2(αi)pS2(αi)

pS1(αi)

=
r1(αi)pS1\S2(αi)+ r2(αi)pS2\S1(αi)

pS1\S2(αi)
.

By Lemma 9, r1(X)pS1\S2(X)+ r2(X)pS2\S1(X) is a uni-
formly random polynomial of degree ≤ n+ |S1 \S2|. Hence,
the simulator can simulate the messages received by Q as
follows. First, it picks a random polynomial u(X) of degree
≤ n+ |S1 \ S2| uniformly at random. It then picks elements
γ1, . . . ,γ3n+1 ∈ F uniformly at random, sets di = γi pS1\S2(αi)
and ct0,i to be the result of applying homomorphic addition to
E(pk,γiu(αi)) and E(pk,0). By input privacy, this interaction
is indistinguishable from the real interaction.

6.5 Implementation considerations
Protocol 4 requires an additively homomorphic encryption
scheme E : F→ C with plaintext space a finite field. How-
ever, the plaintext spaces for many additively homomorphic
encryption schemes are rings (but not fields).

For example, the Paillier cryptosystem [45] has plaintext
space Z/NZ, where N is a product of two large primes. One

possible way to make the Paillier cryptosystem work with our
scheme is to choose F to be a finite prime field Fp, and use
the natural set inclusion Fp ↪→ Z/N to identify Fp as a subset
of Z/NZ (this map is, however, not a ring homomorphism).

In step 5 of Protocol 4, P2 performs a homomorphic addi-
tion on two ciphertexts ct1,i, ct2,i, and the result ct0,i is then
sent to Q for decryption. If N ≥ 2p−1, the ciphertext received
by Q can indeed be decrypted to give the correct result in Fp.

However, this approach does leak a small amount of infor-
mation since it does reveal whether or not the two summands,
when viewed as integers, sum to a value < p or to a value
≥ p. Therefore, while we are not aware that this translates
into an actual attack of the protocol, we cannot recommend
the use of the Paillier cryptosystem for our protocol.

Instead, although we only require an additively homomor-
phic encryption scheme, a better solution is to use a fully
homomorphic encryption scheme for E.

For example, the BGV scheme [8], introduced by Brak-
erski, Gentry and Vaikuntanathan, has plaintext space
Zp[X]/Φd(X), where p is prime and Φd(X) is the d-th cy-
clotomic polynomial. Let k be the order of p modulo d and
let ϕ be Euler’s totient function. Then Φd(X) factorizes into
ϕ(d)/k distinct irreducible factors s1(X), . . . ,sd/k(X), each of
degree k, in Zp[X]. Hence, by the Chinese remainder theorem,

Zp[X]

Φd(X)
∼=

ϕ(d)/k

∏
i=1

Zp[X]

(si(X))
≈

ϕ(d)/k

∏
i=1

Fpk

is a product of finite fields.
Since our protocol does not require multiplication of ci-

phertexts, BGV should have reasonably good performance
in practice. Furthermore, as the plaintext space of BGV is
a product of ϕ(d)/k copies of Fpk , a single homomorphic
addition performed using BGV corresponds to addition of
ϕ(d)/k pairs of ciphertexts in step 5 of Protocol 4.

While BGV does not have input privacy in general, homo-
morphic addition of ciphertexts in BGV is input private, and
thus using it does not affect the security of Protocol 4.

7 Third-Party Private Symmetric Difference
via Rational Functions

7.1 An overview
In this section, we will present our third-party private symmet-
ric difference (TP-PSymD) protocol that is based on rational
functions.

Since S1△S2 = (S1 \ S2)∪ (S2 \ S1), using the ideas in-
troduced in Protocol 4, one obvious way to obtain a TP-
PSymD protocol is as follows. First, we pick random poly-
nomials r1(X) and r2(X), and have P1 and P2 jointly com-
pute encrypted evaluations of the rational function f1(X) =
r1(X)pS1 (X)+r2(X)pS2 (X)

pS1 (X) , which has poles exactly at the ele-

ments of S1 \S2. Next, using the same evaluation points, they

jointly compute encrypted evaluations of the rational func-

tion f2(X) =
r3(X)pS1 (X)+r4(X)pS2 (X)

pS2 (X) , where r3(X) and r4(X)

are again random polynomials. The encrypted evaluations
of f1(X) and f2(X) (at the same evaluation point) are then
homomorphically multiplied before they are sent to Q, who
can use them to reconstruct a rational function which, with
high probability, has poles exactly at S1△S2.

While the above indeed correctly and privately computes
the symmetric difference, it is expensive in practice as it
requires the use of a fully homomorphic encryption scheme
to perform both addition and multiplication of ciphertexts.

In order to achieve an efficient TP-PSymD protocol, we
would like to avoid the use of fully homomorphic encryp-
tion. Hence, we design a different rational function f (X) =
r1(X)p2

S1
(X)+r2(X)p2

S2
(X)

pS1 (X)pS2 (X) (where r1(X) and r2(X) are random
polynomials) which has, with high probability, poles exactly
at the elements of S1△S2. By having P1 and P2 provide Q
with evaluations of f (X) at various αi’s, Q can reconstruct
f (X), and hence determine S1△S2.

Observe that, due to the design of the rational function
f (X), fully homomorphic encryption is not needed to allow Q
to obtain encrypted evaluations of f (X). Indeed, P1 and P2 can
jointly compute evaluations of the numerator of f (X) using an
additively homomorphic encryption scheme, while they can
jointly compute evaluations of the denominator using a multi-
plicatively homomorphic encryption scheme. Thus, by using
two different homomorphic encryption schemes (which are,
respectively, additively and multiplicatively homomorphic),
we avoid the need to use an expensive fully homomorphic
encryption scheme.

7.2 Details of the protocol
As in Section 6, let S1 = {s1, . . . ,sn} ⊆ {0,1}ℓ, S2 =
{t1, . . . , tn} ⊆ {0,1}ℓ, and λ > 0 be the correctness param-
eter. We embed {0,1}ℓ into a finite field F with |F| ≥
max

(︁
2ℓ+6n+1, 2λ

)︁
using a map ι : {0,1}ℓ ↪→F, and let S be

the image of {0,1}ℓ under ι. Fix 6n+1 points α1, . . . ,α6n+1 ∈
F \ S, and let Ea : F→ C (respectively, Em : F→ C ′) be an
asymmetric additively homomorphic (respectively, multiplica-
tively homomorphic) encryption scheme with input privacy.

1. Q generates key pairs (ska,pka) and (skm,pkm) for
Ea and Em respectively, and sends pka and pkm to
P1 and P2.

2. P1 and P2 pick β1, . . . ,β6n+1 ∈ F uniformly at ran-
dom.

3. P1 chooses a random polynomial r1(X) of degree
≤ 2n, computes ct1,i = Ea

(︂
pka,βir1(αi)p2

S1
(αi)

)︂
and sends ct1,i to P2 for i ∈ [6n+1].

4. P2 chooses a random polynomial r2(X) of degree≤
2n and computes ct2,i = E

(︂
pka,βir2(αi)p2

S2
(αi)

)︂
for i ∈ [6n+1].

5. For each i ∈ [6n+ 1], P2 performs homomorphic
addition on ct1,i and ct2,i to obtain a ciphertext ct0,i,
and sends ct0,i to Q.

6. P1 computes ct′1,i = Em(pkm,βi pS1(αi)) and sends
ct′1,i to P2 for i ∈ [6n+1].

7. P2 computes ct′2,i = Em(pkm, pS2(αi)) for i ∈ [6n+
1].

8. For each i ∈ [6n+ 1], P2 performs homomorphic
multiplication on ct′1,i and ct′2,i to obtain a cipher-
text ct′0,i, and sends ct′0,i to Q.

9. For each i ∈ [6n+ 1], Q decrypts ct0,i and ct′0,i to
obtain ni and di respectively.

10. Q uses rational function interpolation to find the
unique rational function f (X) with numerator of
degree ≤ 4n and denominator of degree ≤ 2n such
that f (αi) = ni/di for i ∈ [6n+1].

11. Let f (X) = q1(X)/q2(X) where q1(X) and q2(X)
are coprime polynomials. Q outputs

{ι−1(x) : x ∈ F such that q2(x) = 0}.

Protocol 5: A semi-honest TP-PSymD protocol

7.3 Communication and computational com-
plexity

Using an analysis similar to that in Section 6.3, we can show
that Protocol 5 has the same communication and computa-
tional complexity as Protocol 4, i.e. its communication com-
plexity is O

(︁
n log(2ℓ+n+2λ)

)︁
, which is quasilinear in n, and

its computational complexity is

O
(︂

n log(n log |F|) logn log2 |F|+nω+o(1) log |F| log log |F|
)︂
,

which is O(nω+o(1)) as a function of n.

7.4 Correctness and security

We now state the correctness and security guarantees of Pro-
tocol 5.

7.4.1 Correctness

Proposition 17. In Protocol 5, Q outputs S1△S2 except with
probability negligible in λ.

Proof. By Lemma 12,

f (X) =
r1(X)p2

S1
(X)+ r2(X)p2

S2
(X)

pS1(X)pS2(X)

=
r1(X)p2

S1\S2
(X)p2

S1∩S2
(X)+ r2(X)p2

S2\S1
(X)p2

S1∩S2
(X)

pS1\S2(X)pS2\S1(X)p2
S1∩S2

(X)

=
r1(X)p2

S1\S2
(X)+ r2(X)p2

S2\S1
(X)

pS1\S2(X)pS2\S1(X)
.

By Lemmas 9 and 10, r1(X)p2
S1\S2

(X) + r2(X)p2
S2\S1

(X)

and pS1\S2(X)pS2\S1(X) are coprime except with probabil-
ity negligible in λ. Hence, in step 9, we have q2(X) =
pS1\S2(X)pS2\S1(X) = pS1△S2(X) (up to multiplication by an
element of F∗), as required.

7.4.2 Security

Proposition 18. Protocol 5 is secure against a semi-honest
P1.

Proof. This is clear since pka and pkm are independent of
S2.

Proposition 19. Assume that Ea and Em are IND-CPA secure.
Then Protocol 5 is secure against a semi-honest P2.

Proof. The only messages that P2 receives are ct1,i =

Ea

(︂
pka,βir1(αi)p2

S1
(αi)

)︂
and ct′1,i = Em(pkm,βi pS1(αi)) for

i ∈ [6n+1]. Since both Ea and Em are IND-CPA secure, we
can simulate these by encryptions of any 6n+ 1 arbitrarily
chosen plaintexts under Ea and Em respectively.

Proposition 20. Assume that Ea and Em have input privacy.
Then Protocol 5 is secure against a semi-honest Q.

Proof. We use a similar argument as in the proof of Propo-
sition 16. Observe that, in the real interaction, ni and di are
uniformly random elements that satisfy

ni

di
=

r1(αi)p2
S1
(αi)+ r2(αi)p2

S2
(αi)

pS1(αi)pS2(αi)

=
r1(αi)p2

S1\S2
(αi)+ r2(αi)p2

S2\S1
(αi)

pS1△S2(αi)
.

Since r1(X)p2
S1\S2

(X)+ r2(X)p2
S2\S1

(X) is a uniformly ran-
dom polynomial of degree ≤ 2(n + |S1 \ S2|) by Lemma
9, we can simulate the messages received by Q as fol-
lows. First, pick a uniformly random polynomial u(X) of
degree≤ 2(n+ |S1\S2|) and pick uniformly random elements
γ1, . . . ,γ6n+1 ∈ F. Let ct0,i be the result of homomorphically
adding Ea(pka,γiu(αi)) and Ea(pka,0), and ct′0,i be the result
of homomorphically multiplying Em(pkm,γi pS1△S1(αi)) and
Em(pkm,1). By input privacy, this is indistinguishable from
the real interaction.

7.5 Implementation considerations
As in Protocol 4, we can use BGV for the additively homo-
morphic encryption scheme Ea. As for the multiplicatively ho-
momorphic encryption scheme Em, we can use ElGamal [18]
over a finite field K. For ElGamal to be secure, |K| needs to
be large (for example, 3072 bits). However, in most cases, the
field F used in Protocol 5 will be much smaller, and hence we
must choose K to be a suitably large extension field of F.

Another possible option is to also use BGV for the multi-
plicatively homomorphic encryption scheme Em, and this has
the advantage of being quantum-safe. Since BGV does not
provide input privacy by default, it is necessary to augment
it. One possible way to do so is to use noise flooding [25] to
achieve circuit privacy. Augmenting BGV for input privacy,
however, does result in an additional performance penalty.

8 Performance Evaluation

For multi-party third party PSI, we implemented Protocol 3,
which is secure against arbitrary collusion, in C++ using the
NTL library [56]. The NTL library provides various classes
(ZZ_p and ZZ_pE) that support arithmetic over any finite field.
However, for performance reasons, we use the zz_p class that
only supports modular arithmetic for a modulus p of up to
60 bits. For the implementation of Protocol 3, we used 32-bit
elements and target an error probability of < 2−40.

We give an outline of some of the optimizations used in our
implemention of the protocol. First, we implemented a fast
polynomial interpolation algorithm with quasilinear complex-
ity. This is essential as the built-in polynomial interpolation
from the NTL library quickly becomes impractical as it has
complexity O(n2).

As for the OPRFs required by the protocol, we use the
multi-point OPRF protocol introduced by Chase and Miao
[13], which mostly uses symmetric key, bitwise operations
and hashing, hence is very efficient in practice.

Next, in order to optimize the root finding step, we choose
the prime p = 180143985094819841 = 5 ·255 +1, which al-
lows us to apply the tangent Graeffe method for root find-
ing. The tangent Graeffe method is introduced by Grenet et
al. [28] with important practical improvements by van der Ho-
even and Monagan [58, 59]. This root finding method works
over finite fields Fp for primes p of the form σ2k +1 with σ

small.4 While the complexity of the tangent Graeffe method is
quasilinear just like the Cantor-Zassenhaus algorithm, both its
complexity and practical performance are superior to Cantor-
Zassenhaus when p is of this prescribed form.

For third party private set difference and symmetric differ-
ence, we implement Protocols 4 and 5 using the NTL library
and the HElib library [29]. The BGV encryption scheme is

4It is an open problem whether it is always possible to find a suitable
prime of this form that is arbitrarily large. However, for practical purposes,
this question is of little importance.

Party
Size N

Set
Size n

Output
Size t

Running Time (s) Comm.
Cost
(MB)

OPRF
Eval.

Inter-
polation

Root
Finding Total

2

218
0 2.06 3.47 3.40 9.10 46.48

217 2.08 3.43 5.68 11.36 46.48
218 2.13 3.48 7.64 13.43 46.48

220
0 7.36 16.72 16.52 41.25 187.29

219 7.34 16.76 25.40 50.06 187.29
220 7.35 16.76 32.75 57.45 187.29

222
0 29.95 81.90 81.78 195.65 755.04

221 29.47 82.05 115.12 228.72 755.04
222 29.62 81.85 140.79 254.33 755.04

3

218
0 2.49 3.45 3.39 9.62 127.45

217 2.55 3.40 5.54 11.77 127.45
218 2.64 3.43 7.63 14.00 127.45

220
0 8.93 16.80 16.49 43.11 513.88

219 8.87 16.76 24.81 51.38 513.88
220 8.66 16.73 32.67 58.96 513.88

222
0 35.49 81.70 81.73 202.72 2073.13

221 35.85 83.57 114.76 235.75 2073.13
222 37.25 82.26 140.59 263.40 2073.13

4

218
0 2.97 3.47 3.40 10.20 246.89

217 3.06 3.47 5.59 12.48 246.89
218 3.04 3.42 7.65 14.45 246.89

220
0 10.99 16.71 16.55 45.60 995.76

219 11.35 16.73 24.80 54.05 995.76
220 11.09 16.74 32.66 61.79 995.76

222
0 42.68 81.73 82.02 211.66 4018.26

221 45.58 81.47 112.63 245.12 4018.26
222 46.54 81.85 140.02 273.51 4018.26

6

218
0 3.80 3.43 3.41 11.23 601.23

217 3.78 3.43 5.58 13.35 601.23
218 3.82 3.41 7.70 15.50 601.23

220
0 14.18 16.85 16.30 49.43 2425.42

219 14.22 16.76 24.66 57.77 2425.42
220 14.20 16.80 32.45 65.44 2425.42

222
0 60.40 82.15 80.68 232.01 9789.66

221 60.58 81.84 111.65 262.99 9789.66
222 60.57 81.90 138.34 289.63 9789.66

Table 1: Running times and communication costs of Protocol 3 for N = 2,3,4,6

Party
Size N

Set
Size n

Output
Size t

Running Time (s) Comm.
Cost
(MB)

OPRF
Eval.

Inter-
polation

Root
Finding Total

8

218
0 5.28 3.51 3.41 12.95 1109.49

217 5.29 3.60 5.59 15.17 1109.49
218 5.27 3.46 7.66 17.16 1109.49

220
0 19.88 16.93 16.27 55.97 4476.24

219 19.89 16.75 24.72 64.34 4476.24
220 19.88 16.74 32.52 72.13 4476.24

222
0 84.92 81.97 80.69 260.02 18069.28

221 84.88 81.88 111.93 291.17 18069.28
222 84.84 81.97 138.78 318.43 18069.28

Table 2: Running times and communication costs of Protocol 3 for N = 8

Set
Size n

Output
Size t

Running Time (s) Comm.
Cost
(MB)

Cipher
Operations Interpolation Root Finding Total

210
0 0.39 7.27 0 13.47 0.99
29 0.39 7.27 0.05 13.52 0.99
210 0.39 6.34 0.12 12.66 0.99

211
0 0.78 55.25 0 62.03 1.34

210 0.78 54.79 0.12 61.70 1.34
211 0.78 47.21 0.30 54.31 1.34

212
0 1.18 430.28 0 438.29 1.71

211 1.18 425.39 0.30 433.63 1.71
212 1.17 364.38 0.71 373.05 1.71

Table 3: Running times and communication costs of Protocol 4

Set
Size n

Output
Size t

Running Time (s) Comm.
Cost
(MB)

Cipher
Operations Interpolation Root Finding Total

29
0 50.16 7.26 0 63.10 5.94
28 50.24 7.39 0.02 63.31 5.94
29 49.99 7.27 0.05 62.99 5.94

210
0 99.82 55.15 0 160.83 11.23
29 100.02 55.84 0.05 161.76 11.23
210 99.74 54.65 0.12 160.38 11.23

211
0 199.72 428.58 0 634.85 21.49

210 199.72 433.25 0.12 639.66 21.49
211 199.43 423.35 0.29 629.65 21.49

Table 4: Running times and communication costs of Protocol 5

chosen as the additively homomorphic encryption scheme for
both protocols and the ElGamal encryption scheme is chosen
as the multiplicatively homomorphic encryption scheme for
Protocol 5. Our implementations of both protocols use 32-bit
elements and have an error probability of < 2−40.

We briefly discuss the choice of parameters for our imple-
mentation. First, an ideal choice of p for the finite field Fp
will have ≈ 60 bits to allow the use of the zz_p class, and yet
result in a small probability of error for the protocols.

Recall that the BGV scheme has plaintext space
Zp[X]/Φd(X), where Φd(X) is the d-th cyclotomic polyno-
mial. For the BGV scheme, we would like to choose parame-
ters p and d that provide at least 128 bits of security and has
a large number of plaintext slots (which will mean that each
ciphertext addition corresponds to many plaintext additions).

The level of security is roughly determined by the size of d,
and we require a value of d that is in the thousands to get our
desired level of security. Since the number of plaintext slots
is equal to ϕ(d)/k, where k is the order of p modulo d, we
would like k to be small. One way to achieve this is to choose
d such that p≡ 1 (mod d), i.e. such that d | (p−1). Hence,
we search for values of p such that p−1 has a factor d that is
roughly of the correct size.

Next, for ElGamal, we would like to use an extension field
Fpα of Fp that has size at least 3072 bits. Based on the size
of p, we choose α = 53. In order to efficiently check if an
element g∈ F∗p53 is a generator for the group, it is necessary to

know the prime factorization of p53−1 = (p−1)(p52+ p51+
· · ·+ p+ 1), which in general, is a difficult computational
problem. We solve this by choosing p such that p53−1

p−1 is
prime. Based on all the above considerations, we perform a
search for suitable values of p and d which yields the choice
of p = 576460752303765851 and d = 7015.

Our benchmarks for Protocol 3 are run on two identical
machines, each with two Intel Xeon Silver 4214 processors.5

For 4 or fewer input parties, all parties (including Q) run on a
single machine. For larger numbers of input parties, parties
Pi for i≥ 5 run on the second machine. The input parties Pi
are assigned four cores each while Q runs on a single core.

For Protocols 4 and 5, a single machine is used. All parties
run on a single core for Protocol 4, while for Protocol 5, each
party (inclusive of the third-party) is assigned four cores.

The total running times and communication costs of Proto-
cols 3, 4 and 5 are presented in Tables 1–2, Table 3 and Table
4 respectively. The times taken for several key steps are also
presented. The results are recorded based on an average of 5
runs. The number of parties, not including the receiver Q, is
denoted as N, the set size of each input party is denoted as n,
and the output size is denoted as t (set at 50% and 100% of
n).

The TP-PSI works of [63] and [64] are more theoretical in
nature and do not come with any implementations or bench-

5Each processor has 12 cores and a base frequency of 2.20 GHz.

Party
Size N

Set
Size n

Running
Time (s)

Comm.
Cost (MB)

3
218 11.10 556.45
220 43.66 2225.59
222 170.77 9582.31

4
218 12.49 1252.00
220 46.87 5007.58
222 186.64 21560.20

6
218 19.74 3477.77
220 76.71 13909.92
222 307.49 59889.42

Table 5: Running times and comm. costs of [39]

marks. As such, we are unable to perform experimental com-
parisons with their works. Nevertheless, in the case of two
input parties, we expect Protocol 3 to significantly outperform
all these previous protocols due to their heavy use of public
key operations. Indeed, all previous protocols require at least
2n public key operations (such as exponentiations), where n
is the size of each input dataset.

To better understand the performance of Protocol 3 in the
context of other works, we will instead look at a state-of-the-
art semi-honest multi party PSI protocol in the conventional
setting that is secure against the maximal number of corrupt
parties. Some of these works include [39], [5] and [60]. [5]
is designed for the specific scenario of a large number of
parties and small input set sizes, while [60] is optimized for
the special case where the universe of all possible elements
is small. Since both the use cases of [5] and [60] differ from
ours, [39] emerged as the most suitable work to compare our
protocol to. As above, we assign each party four cores and we
record the results based on an average of 5 runs. We run the
benchmark only for N = 3,4,6 as the code accompanying [39]
does not support multiple machines. The results are presented
in Table 5.

We note that the running times of Protocol 3 are competitive
with the protocol in [39]. Indeed, although our protocol works
in the slightly different third-party setting, which as explained,
limits the breadth of techniques that we can apply and thus has
the potential to adversely affect efficiency, all the run times of
Protocol 3 are within 1.55× of those listed in Table 5 that are
achieved by [39]. Furthermore, for larger number of parties N
and smaller set sizes n, Protocol 3 actually achieves superior
performance compared to [39]. The communication costs of
Protocol 3 are also significantly better than that of [39].

We interpret the experimental results in the context of the
previously described applications, such as for investigating
cyber intrusions. Indeed, the results in Tables 1–2 demonstrate
the practicality of Protocol 3 for input sizes of up to several
million, which is more than sufficient for these applications.

As our protocol achieves performance close to that of [39],

and with better performance in certain cases, our protocol is
the ideal choice when the desired functionality is that of third-
party PSI, due to the additional privacy advantages afforded by
our solution compared to running a multi-party PSI protocol
with one of the input parties as the receiver.

9 Conclusion

We design a series of protocols for performing privacy-
preserving set operations in the third-party setting.

The various multi-party third party PSI protocols are de-
signed to cater for different requirements, depending on vari-
ability of compute resources, communication cost and the
likelihood of arbitrary collusion. Protocol 1 has low commu-
nication costs, but is secure only against certain collusions.
On the other hand, Protocols 2 and 3 are secure against an
arbitrary number of collusions, but comes at the cost of sig-
nificantly more communication. Compared to Protocol 2, Pro-
tocol 3 significantly reduces the computational cost for Q at
the cost of additional communication and computation for the
Pi’s. Overall, it greatly reduces the total computational costs.
Hence all three protocols can be useful in practice depending
on the specific use case.

In addition, we present protocols for private computations
of the set difference functionality and the symmetric differ-
ence functionality in the third-party setting, and demonstrate
the practicalities of these protocols for small sets.

10 Acknowledgements

We thank the shepherd and the reviewers for their valuable
feedback.

11 Ethics Considerations

The datasets used in the experiments are randomly generated
and do not infringe on confidentiality or privacy of any in-
dividual or organization. No human subjects were involved.
One segment of our implementation in Protocol 3 adapts mod-
ifications of an OPRF code. We obtained approvals from the
author of this code to modify and utilize in our performance
benchmarking. Similarly, we also obtained approvals from
the authors of the tangent Graeffe root finding code for use in
our implementations.

12 Open Science

We are committed for our research results to be made avail-
able to the public. In addition, we are committed to openly
share our research artifacts to enable reproducibility and
replicability of our work. Artifacts include the source code
used to benchmark Protocols 3, 4 and 5, and are available at
https://zenodo.org/records/14729415.

References

[1] Josh Alman and Virginia Vassilevska Williams. A re-
fined laser method and faster matrix multiplication. In
Proceedings of the Thirty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 522–539,
2021.

[2] Diego F. Aranha, Chuanwei Lin, Claudio Orlandi, and
Mark Simkin. Laconic private set-intersection from
pairings. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security,
pages 111–124. ACM, 2022.

[3] Saikrishna Badrinarayanan, Peihan Miao, Srinivasan
Raghuraman, and Peter Rindal. Multi-party threshold
private set intersection with sublinear communication.
In IACR International Conference on Public-Key Cryp-
tography, pages 349–379. Springer International Pub-
lishing, 2021.

[4] Saikrishna Badrinarayanan, Peihan Miao, and
Tiancheng Xie. Updatable private set intersection.
Proceedings on Privacy Enhancing Technologies,
(2):378–406, 2022.

[5] Aslı Bay, Zekeriya Erkin, Jaap-Henk Hoepman, Simona
Samardjiska, and Jelle Vos. Practical multi-party pri-
vate set intersection protocols. IEEE Transactions on
Information Forensics and Security, 17:1–15, 2022.

[6] Aner Ben-Efraim, Olga Nissenbaum, Eran Omri, and
Anat Paskin-Cherniavsky. PSImple: Practical multiparty
maliciously-secure private set intersection. In Proceed-
ings of the 2022 ACM on Asia Conference on Computer
and Communications Security, pages 1098–1112. ACM,
2022.

[7] Florian Bourse, Rafaël Del Pino, Michele Minelli, and
Hoeteck Wee. FHE circuit privacy almost for free. In
Advances in Cryptology – CRYPTO 2016, pages 62–89.
Springer Berlin Heidelberg, 2016.

[8] Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. (Leveled) fully homomorphic encryption with-
out bootstrapping. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, pages 309–
325. Association for Computing Machinery, 2012.

[9] David G. Cantor and Hans Zassenhaus. A new algorithm
for factoring polynomials over finite fields. Mathematics
of Computation, 36(154):587–592, 1981.

[10] Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai
Lakshmi Bhavana Obbattu, Sruthi Sekar, and Akash
Shah. Efficient linear multiparty PSI and extensions to
circuit/quorum PSI. In Proceedings of the 2021 ACM

https://zenodo.org/records/14729415

SIGSAC Conference on Computer and Communications
Security, pages 1182–1204. ACM, 2021.

[11] Nishanth Chandran, Divya Gupta, and Akash Shah.
Circuit-PSI with linear complexity via relaxed batch
OPPRF. In Proceedings on Privacy Enhancing Tech-
nologies, vol. 2022, no. 1, pages 353–372, 2022.

[12] Melissa Chase, Sanjam Garg, Mohammad Hajiabadi,
Jialin Li, and Peihan Miao. Amortizing rate-1 OT and
applications to PIR and PSI. In Theory of Cryptography:
19th International Conference, TCC 2021, pages 126–
156. Springer International Publishing, 2021.

[13] Melissa Chase and Peihan Miao. Private set intersection
in the internet setting from lightweight oblivious PRF.
In Advances in Cryptology – CRYPTO 2020, pages 34–
63. Springer International Publishing, 2020.

[14] Hao Chen, Kim Laine, and Peter Rindal. Fast private set
intersection from homomorphic encryption. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, pages 1243–
1255. Association for Computing Machinery, 2017.

[15] Wutichai Chongchitmate, Yuval Ishai, Steve Lu, and
Rafail Ostrovsky. PSI from ring-OLE. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 531–545. ACM, 2022.

[16] Don Coppersmith and Shmuel Winograd. Matrix multi-
plication via arithmetic progressions. Journal of Sym-
bolic Computation, 9(3):251–280, 1990.

[17] Changyu Dong, Liqun Chen, and Zikai Wen. When
private set intersection meets big data: an efficient and
scalable protocol. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications
security, pages 789–800. ACM, 2013.

[18] Taher Elgamal. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. IEEE Trans-
actions on Information Theory, 31(4):469–472, 1985.

[19] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and
Omer Reingold. Keyword search and oblivious pseudo-
random functions. In Theory of Cryptography, pages
303–324. Springer Berlin Heidelberg, 2005.

[20] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas.
Efficient private matching and set intersection. In Ad-
vances in Cryptology - EUROCRYPT 2004, pages 1–19.
Springer, Berlin, Heidelberg, 2004.

[21] Gayathri Garimella, Payman Mohassel, Mike Rosulek,
Saeed Sadeghian, and Jaspal Singh. Private set opera-
tions from oblivious switching. In IACR International
Conference on Public-Key Cryptography, pages 591–
617. Springer International Publishing, 2021.

[22] Gayathri Garimella, Benny Pinkas, Mike Rosulek,
Ni Trieu, and Avishay Yanai. Oblivious key-value stores
and amplification for private set intersection. In Ad-
vances in Cryptology – CRYPTO 2021: 41st Annual
International Cryptology Conference, CRYPTO 2021,
pages 395–425. Springer International Publishing, 2021.

[23] Gayathri Garimella, Mike Rosulek, and Jaspal Singh.
Structure-aware private set intersection, with applica-
tions to fuzzy matching. In Advances in Cryptology –
CRYPTO 2022: 42nd Annual International Cryptology
Conference, CRYPTO 2022, pages 323–352. Springer
Nature Switzerland, 2022.

[24] Gayathri Garimella, Mike Rosulek, and Jaspal Singh.
Malicious secure, structure-aware private set intersec-
tion. In Advances in Cryptology – CRYPTO 2023: 43rd
Annual International Cryptology Conference, CRYPTO
2023, pages 577–610. Springer Nature Switzerland,
2023.

[25] Craig Gentry. A fully homomorphic encryption scheme.
PhD thesis, Stanford University, 2009.

[26] Satrajit Ghosh and Mark Simkin. The communication
complexity of threshold private set intersection. In Ad-
vances in Cryptology – CRYPTO 2019: 39th Annual In-
ternational Cryptology Conference, Santa Barbara, CA,
USA, August 18–22, 2019, Proceedings, Part II, pages
3–29. Springer-Verlag, 2019.

[27] S. Dov Gordon, Carmit Hazay, and Phi Hung Le. Fully
secure PSI via MPC-in-the-head. Proceedings on Pri-
vacy Enhancing Technologies, (3):291–313, 2022.

[28] Bruno Grenet, Joris van der Hoeven, and Grégoire
Lecerf. Randomized root finding over finite FFT-fields
using tangent Graeffe transforms. ISSAC ’15, pages
197–204. Association for Computing Machinery, 2015.

[29] Shai Halevi and Victor Shoup. Algorithms in HElib. In
Advances in Cryptology – CRYPTO 2014, pages 554–
571. Springer Berlin Heidelberg, 2014.

[30] David Harvey and Joris van der Hoeven. Faster polyno-
mial multiplication over finite fields using cyclotomic
coefficient rings. Journal of Complexity, 54, 2019.

[31] David Harvey and Joris van der Hoeven. Integer mul-
tiplication in time O(n logn). Annals of Mathematics,
193:563–617, 2021.

[32] Carmit Hazay and Muthuramakrishnan Venkitasubrama-
niam. Scalable multi-party private set-intersection. In
IACR international workshop on public key cryptogra-
phy, pages 175–203. Springer Berlin Heidelberg, 2017.

[33] Jingwei Hu, Junyan Chen, Wangchen Dai, and Huax-
iong Wang. Fully homomorphic encryption-based pro-
tocols for enhanced private set intersection functionali-
ties. IACR Cryptology ePrint Archive, Paper 2023/1407,
2023. https://eprint.iacr.org/2023/1407.

[34] Roi Inbar, Eran Omri, and Benny Pinkas. Efficient
scalable multiparty private set-intersection via garbled
bloom filters. In International Conference on Secu-
rity and Cryptography for Networks, pages 235–252.
Springer International Publishing, 2018.

[35] Ferhat Karakoç and Alptekin Küpçü. Linear complexity
private set intersection for secure two-party protocols.
In International Conference on Cryptology and Network
Security, pages 409–429. Springer International Publish-
ing, 2020.

[36] Kiran S. Kedlaya and Christopher Umans. Fast poly-
nomial factorization and modular composition. SIAM
Journal on Computing, 40(6):1767–1802, 2011.

[37] Lea Kissner and Dawn Song. Privacy-preserving set
operations. In Advances in Cryptology – CRYPTO 2005,
pages 241–257. Springer Berlin Heidelberg, 2005.

[38] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek,
and Ni Trieu. Efficient batched oblivious PRF with appli-
cations to private set intersection. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS’16), pages 818–829. ACM,
2016.

[39] Vladimir Kolesnikov, Naor Matania, Benny Pinkas,
Mike Rosulek, and Ni Trieu. Practical multi-party pri-
vate set intersection from symmetric-key techniques. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1257–
1272. Association for Computing Machinery, 2017.

[40] Jack P. K. Ma and Sherman S. M. Chow. Friendly
private set intersection from oblivious compact graph
evaluation. In Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security,
pages 1086–1097. ACM, 2022.

[41] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth,
and Moti Yung. Two-sided malicious security for pri-
vate intersection-sum with cardinality. In Advances
in Cryptology – CRYPTO 2020: 40th Annual Interna-
tional Cryptology Conference, CRYPTO 2020, pages
3–33. Springer International Publishing, 2020.

[42] Y. Minsky, A. Trachtenberg, and R. Zippel. Set reconcil-
iation with nearly optimal communication complexity.
IEEE Transactions on Information Theory, 49(9):2213–
2218, 2003.

[43] Moni Naor and Omer Reingold. Number-theoretic con-
structions of efficient pseudorandom functions. In Pro-
ceedings 38th Annual Symposium on Foundations of
Computer Science, pages 458–467, 1997.

[44] Ofri Nevo, Ni Trieu, and Avishay Yanai. Simple, fast
malicious multiparty private set intersection. In Proceed-
ings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pages 1151–1165. ACM,
2021.

[45] Pascal Paillier. Public-key cryptosystems based on com-
posite degree residuosity classes. In Advances in Cryp-
tology — EUROCRYPT ’99, pages 223–238. Springer
Berlin Heidelberg, 1999.

[46] V. Ya. Pan. Strassen’s algorithm is not optimal: Trilin-
ear technique of aggregating, uniting and canceling for
constructing fast algorithms for matrix operations. In
19th Annual Symposium on Foundations of Computer
Science (SFCS 1978), pages 166–176, 1978.

[47] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. SpOT-light: lightweight private set intersection
from sparse OT extension. In Advances in Cryptology –
CRYPTO 2019: 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18–22,
2019, Proceedings, Part III 39, pages 401–431. Springer
International Publishing, 2019.

[48] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. PSI from PaXoS: fast, malicious private set
intersection. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 739–767. Springer International Publishing, 2020.

[49] Benny Pinkas, Thomas Schneider, Gil Segev, and
Michael Zohner. Phasing: Private set intersection us-
ing permutation-based hashing. In 24th USENIX Secu-
rity Symposium (USENIX Security ’15), pages 515–530,
2015.

[50] Benny Pinkas, Thomas Schneider, Oleksandr
Tkachenko, and Avishay Yanai. Efficient circuit-
based PSI with linear communication. In Advances in
Cryptology – EUROCRYPT 2019: 38th Annual Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques, pages 122–153. Springer
International Publishing, 2019.

[51] Benny Pinkas, Thomas Schneider, Christian Weinert,
and Udi Wieder. Efficient circuit-based PSI via cuckoo
hashing. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques,
pages 125–157. Springer International Publishing, 2018.

https://eprint.iacr.org/2023/1407

[52] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster private set intersection based on OT extension. In
23rd USENIX Security Symposium (USENIX Security
’14), pages 797–812, 2014.

[53] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Scalable private set intersection based on OT extension.
ACM Transactions on Privacy and Security (TOPS),
21(2):1–35, 2018.

[54] Srinivasan Raghuraman and Peter Rindal. Blazing fast
PSI from improved OKVS and subfield VOLE. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 2505–2517.
ACM, 2022.

[55] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast
OPRF and circuit-PSI from vector-OLE. In Advances
in Cryptology – EUROCRYPT 2021, pages 901–930.
Springer International Publishing, 2021.

[56] Victor Shoup. NTL: A library for doing number theory.
https://libntl.org/.

[57] Volker Strassen. Gaussian elimination is not optimal.
Numerische Mathematik, 13:354–356, 1969.

[58] Joris van der Hoeven and Michael Monagan. Imple-
menting the tangent Graeffe root finding method. Math-
ematical Software — ICMS 2020, pages 482–492, 2020.

[59] Joris van der Hoeven and Michael Monagan. Computing
one billion roots using the tangent Graeffe method. ACM
Commun. Comput. Algebra, 54(3):65–85, 2021.

[60] Jelle Vos, Mauro Conti, and Zekeriya Erkin. Fast multi-
party private set operations in the star topology from
secure ANDs and oRs. IACR Cryptology ePrint Archive,
Paper 2022/721, 2022. https://eprint.iacr.org/
2022/721.

[61] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu,
and Renfei Zhou. New bounds for matrix multiplication:
from alpha to omega. arXiv preprint arXiv:2307.07970,
2023. https://arxiv.org/abs/2307.07970.

[62] Yaxi Yang, Jian Weng, Yufeng Yi, Changyu Dong,
Leo Yu Zhang, and Jianying Zhou. Predicate private
set intersection with linear complexity. In International
Conference on Applied Cryptography and Network Se-
curity, pages 143–166. Springer Nature Switzerland,
2023.

[63] Foo Yee Yeo and Jason H. M. Ying. Third-party private
set intersection. In 2023 IEEE International Symposium
on Information Theory (ISIT), pages 1633–1638. IEEE,
2023.

[64] Foo Yee Yeo and Jason H. M. Ying. A round-optimal
near-linear third-party private set intersection protocol.
IACR Cryptology ePrint Archive, Paper 2024/566, 2024.
https://eprint.iacr.org/2024/566.

[65] Yongjun Zhao and Sherman S. M. Chow. Are you
the one to share? Secret transfer with access struc-
ture. Proceedings on Privacy Enhancing Technologies,
2017(1):149–169, 2017.

[66] Yongjun Zhao and Sherman S. M. Chow. Can you find
the one for me? In Proceedings of the 2018 Workshop
on Privacy in the Electronic Society, pages 54–65, 2018.

https://libntl.org/
https://eprint.iacr.org/2022/721
https://eprint.iacr.org/2022/721
https://arxiv.org/abs/2307.07970
https://eprint.iacr.org/2024/566

	Introduction
	Organization

	Preliminaries
	Definitions
	Oblivious PRFs
	Homomorphic Encryption

	A Basic Multi-Party Third Party PSI Protocol
	An overview
	Details of the protocol
	Correctness and security

	An Improved Multi-Party Third Party PSI Protocol
	An overview
	Details of the protocol
	Correctness and security

	A Quasilinear Multi-Party Third-Party PSI Protocol
	An overview
	Details of the protocol
	Correctness and security

	Third-Party Private Set Difference via Rational Functions
	An overview
	Details of the protocol
	Communication and computational complexity
	Correctness and security
	Correctness
	Security

	Implementation considerations

	Third-Party Private Symmetric Difference via Rational Functions
	An overview
	Details of the protocol
	Communication and computational complexity
	Correctness and security
	Correctness
	Security

	Implementation considerations

	Performance Evaluation
	Conclusion
	Acknowledgements
	Ethics Considerations
	Open Science

