
LightShed: Defeating Perturbation-based Image Copyright Protections

Hanna Foerster
University of Cambridge∗

Sasha Behrouzi
Technical University of Darmstadt

Phillip Rieger
Technical University of Darmstadt

Murtuza Jadliwala
University of Texas at San Antonio

Ahmad-Reza Sadeghi
Technical University of Darmstadt

Abstract
Recently, image generation models like Stable Diffusion

have gained significant popularity due to their remarkable
achievements. However, their widespread use has raised con-
cerns about potential misuse, particularly regarding acquiring
training data, including using copyright-protected material.
Various schemes have been proposed to address these con-
cerns by introducing inconspicuous perturbations (poisons)
to prevent models from utilizing these samples for training.

We present LightShed, a generalizable depoisoning attack
that effectively identifies poisoned images and removes ad-
versarial perturbations, showing the limitations of current
protection schemes. LightShed exploits the wide availabil-
ity of these protection schemes to generate poisoned exam-
ples and models their characteristics. The fingerprints de-
rived from this process enable LightShed to efficiently ex-
tract and neutralize the perturbation from a protected image.
We demonstrate the effectiveness of LightShed against sev-
eral popular perturbation-based image protection schemes,
including NightShade, recently presented at IEEE S&P 2024,
and Glaze, published at Usenix Security 2023. Our results
show that LightShed can accurately identify poisoned sam-
ples, achieving a TPR of 99.98% and TNR of 100% on detect-
ing NightShade and effectively depoisoning them. We show
that LightShed generalizes across perturbation techniques,
enabling a single model to recognize poisoned images.

1 Introduction

Recently, text-to-image models [7,18,20,35], particularly dif-
fusion models [5, 21, 30], have gained significant popularity
due to their ability to generate diverse, realistic-looking im-
ages from just a short prompt. However, as these models are
trained on vast datasets scraped from various sources, there is
growing concern that artists’ works, including photographs,
paintings, and other creative pieces, may be used in training

*Research was performed during an internship at Technical University of
Darmstadt.

without their consent. This has led to concerns that the models
could (unintentionally) imitate or replicate an artist’s unique
style or work without proper attribution. Consequently, many
creators, especially artists, seek ways to protect their work
from being exploited by these emerging technologies [4, 31].
Image Protection Schemes against Generative Models.
In response to growing concerns that images presented by
artists might be misused for training image generation mod-
els, various protection strategies have been developed to pre-
vent the unauthorized use of these images in model training.
Most of these strategies focus on hindering the fine-tuning of
pre-trained image generators [11, 13, 22], particularly to pre-
vent the imitation of specific artistic styles. Among these,
Glaze [22] has gained significant attention in public me-
dia [4, 31]. More recently, Shan et al. introduced NightShade,
a more advanced approach that goes beyond disrupting fine-
tuning processes by targeting the entire training pipeline of
image generators. Unlike passive fine-tuning protections such
as Glaze, which are designed to prevent the model from using
the protected images for training, NightShade actively inter-
feres with the training process by mapping the target concept
to unrelated concepts or styles. This injected confusion in the
feature space aims to prevent the model from learning essen-
tial functionalities despite the presence of ample clean data
that would typically allow learning the correct behaviors [23],
highlighting the effectiveness of such attacks.
Attacks on Image Protections. The need for artists to pro-
tect their work in combination with the claims made by pro-
posed schemes such as Glaze and NightShade to protect
images reliably has drawn significant attention from the re-
search community. Existing depoisoning attack techniques
have concentrated on mitigating fine-tuning protection tech-
niques [6, 14–16]. They can be categorized into two main
classes: targeted approaches that focus on identifying poi-
soned images and apply modifications on only these, and
untargeted approaches that apply modifications on all images.
Existing targeted approaches have faced accuracy and general-
ization challenges, whereas untargeted approaches can affect
clean images and face significant scalability challenges. Un-

targeted approaches are often developed for smaller datasets
for style mimicry consisting of images of particular artists.
This means that they are impractical for larger datasets. An ex-
ample of a recently proposed attack to overcome fine-tuning
protections in Glaze [22] is proposed by Hönig et al. [6]. How-
ever, the attack does not extend to schemes designed to protect
the entire training process, such as NightShade [23], which
is tailored for broader and larger datasets. Thus, NightShade
provides scalability and effectiveness in full-training scenar-
ios where Glaze may be less effective. The approach of Hönig
et al. leverages the smaller datasets typical of fine-tuning sce-
narios, but faces scalability challenges for datasets consisting
of millions of samples. We will elaborate on these aspects
in sections Sect. 5.6 and Sect. 7.2. In this paper, we design
a more general, robust, and scalable depoisoning attack that
automatically detects and neutralizes adversarial poisoning.
Goals and Contributions. To show the insufficiency of exist-
ing approaches and the need for more robust image protection
techniques, we introduce LightShed, a comprehensive and
general depoisoning attack that effectively detects adversar-
ial perturbations created by image-protection techniques in
datasets and removes poisoning from images. LightShed in-
cludes a Poisoning Reconstruction component, which models
the characteristics of perturbations and extracts the finger-
print of any protection scheme from the analyzed image. Us-
ing poisoned images crafted with protection tools as training
samples, LightShed trains an autoencoder to identify subtle
poisoning perturbations and reconstruct them accurately. We
identify previously unknown poisoned images by analyzing
the entropy of the reconstructed perturbation, effectively dis-
tinguishing them from clean images. LightShed then restores
the original, unpoisoned image by removing residual artifacts
by subtracting the reverse-engineered perturbation, making
it effective not only against training prevention tools but also
against fine-tuning protection techniques.

We note that LightShed can also be used to enhance un-
targeted attacks [6, 10, 15]. Identifying poisoned images and
subtracting the reconstructed perturbations allows a more
targeted application of untargeted techniques to only the af-
fected samples. This allows omitting clean samples from
unnecessary processing and allows the deployment of ex-
isting untargeted techniques at reduced intensities, making
LightShed complementary to these approaches (see Sect. 5.6
and Sect. 7.2 for details). Our contributions include:

• We propose LightShed, which effectively identifies and
cleans poisoned images by learning the perturbation
schemes’ individual characteristics, showing the limi-
tations of current image protection techniques. To the
best of our knowledge, LightShed is the first attack that
considers fine-tuning and training-prevention techniques
against diffusion models. Operating independently of
specific protection schemes makes it comprehensive and
adaptable for future defense strategies (Sect. 4.2).

• We design a novel approach to extract poisoning per-
turbations by modeling the characteristics of image
protection schemes. This enables us to accurately
identify the presence of perturbations in given sam-
ples and reverse-engineer these perturbations. Being
able to recognize the substance of poison it can
generalize to other types of poison without train-
ing on them. By providing different types of poi-
son for training, LightShed can more accurately learn
new types of poisons. This shows its flexibility and
applicability for future defense techniques (Sect. 4.3).

• We extensively evaluate LightShed’s efficiency and ef-
fectiveness, showing its ability to detect and mitigate
state-of-the-art poisoning schemes (NightShade, Glaze,
MetaCloak, Mist), which disrupt fine-tuning or entire
training processes. LightShed accurately identifies poi-
soned samples, achieving a TPR of 99.98% and TNR of
100% on NightShade and successfully unpoisoning train-
ing processes by cleaning the poisoned images (Sect. 5).

• Based on the insights LightShed provides, we analyze
requirements for more resilient protection schemes. Our
findings include the need to make injected perturbation
less structured and predictable, to vary perturbation den-
sity in different image regions, and to show a similar
structure as noising methods to prevent attacks from
modeling and extracting poisons (Sect. 6.3).

2 Background

2.1 Diffusion Models
Diffusion models [5, 30] have recently gained attention as a
leading approach in generative deep learning and have over-
taken the previous dominance of Generative Adversarial Net-
works (GANs) [3] in image generation. Utilizing probabilistic
generative methods, Diffusion models successively add noise
to training input data and recover the input to a clear output im-
age. Diffusion models commonly operate in high-dimensional
pixel space, making their training computationally intensive.
Latent diffusion models [21] addressed this challenge by re-
placing pixel space with the latent space of pretrained varia-
tional autoencoders and reducing input data’s dimensionality,
leading to faster and more efficient training and inference.

However, training the encoder and the UNet from scratch
remains expensive. To mitigate these costs, models often un-
dergo fine-tuning with new images, which allows for refine-
ment and adjustments without the need for complete retrain-
ing. Yet, this fine-tuning process carries the risk of data poi-
soning by possibly including poisoned data.

2.2 Copyright Protection Schemes
With the increasing popularity and wide accessibility of im-
age generators, different approaches have been proposed to

protect artists’ work against being utilized for training image
generators and prevent the artists’ work from being imitated.
In the following, we describe four different approaches that
we exemplary consider in this work [11, 13, 22, 23]. They
cover different use cases, preventing the style of paintings
from being learned but also disturbing the image generators
from learning the concept of an object, e.g., preventing the
generator from learning the concept of a dog [23]. All these
approaches take a clean image as input and modify it to dis-
turb the training process of the diffusion models.

Fine-tuning protection approaches focus on scenarios
where a pre-trained diffusion model is trained to imitate a
specific painting style or to personalize the model, such as
enhancing its ability to generate images of a targeted individ-
ual. Notably, fine-tuning typically involves a small number of
images, in contrast to the millions of samples used for fully
training a model. These images are often sourced from a sin-
gle data source, such as an artist’s website. Therefore, if the
image owner employs protection techniques, it is likely that
all images used in the fine-tuning process will be protected.
This allows the protection to specifically target and prevent
the utilization of these protected images.

Mist uses a checkpoint of the targeted diffusion model to
generate an adversarial example for the current sample. The
attack focuses on the encoder of the diffusion model. A
semantic loss and a textual loss are combined to generate
adversarial examples. While the semantic loss focuses on
maximizing the training loss of the diffusion model, the
textual loss manipulates the encoded representation of
the image to maximize the distance to the original image.
An adversarial pattern is crafted via gradient descent and
overlayed on the source image to maximize the distance
between the original and modified image encodings [11].
Glaze uses style transfer to craft the perturbation pattern
added to the image. First, a style-transferred version of
the input image is created using the chosen target style.
The poisoning pattern is then generated by solving an
optimization problem that minimizes the distance between
the modified image and the style-transferred image while
constraining the lengths of the perturbation vector to be
smaller than a predefined perceptual perturbation budget [22].
MetaCloak also crafts an adversarial example for the
given input image and solves an optimization problem
that maximizes the loss of the diffusion model for the
protected image. However, compared to Mist, MetaCloak
considers different states of the targeted model. Iterating
over the individual checkpoints, it optimizes the input
image to maximize the loss for the current checkpoint of
the diffusion model using Stochastic Gradient Descent
before training the diffusion model with the manipulated
images. MetaCloak uses projection to ensure that the current
version of the image shows at most a predefined distance [13].

Defender

Detection &
Depoison

Diffusion ModelImage 𝒟𝒟efense

+

Image
Dataset

Clean
Image

Poisoned
Image

Internet

𝒜𝒜ttacker

Figure 1: Overview of the considered scenario, where the
defender uses the image defense D, denoted in the image as
Image Defense, to protect the image and the attacker A uses a
detection and denoising algorithm to train a diffusion model.

In contrast to fine-tuning protection techniques, which can
focus on preventing the utilization of protected samples, ap-
proaches targeting the full training of a diffusion model must
be capable of preventing them from learning even fundamen-
tal functionalities related to the targeted concepts. However,
given the large amounts of training data involved from various
sources, not all samples can be poisoned. Therefore, training
prevention methods must actively disrupt the training process
and neutralize large numbers of clean data.
NightShade modifies the input image but also the respective
textual caption to distract the model. Considering given pairs
of images and captions that shall be protected, NightShade
selects a target concept and generates a number of images
for it. Then, it crafts a poisoning pattern that minimizes the
distances between the encoding of the input image and the
generated images for the other concept. Notably, the aim of
NightShade is not only to prevent the model from learning
protected images but to disrupt the training as a whole on a
dataset that contains protected images [23].

An important aspect of image protection mechanisms is
their application before an image is publicly uploaded. After
publishing, the owner loses control, as potential attackers can
download and store it locally. If the applied protection method
is later compromised, the artist may apply an updated defense
to the images and re-upload them. However, the adversary can
still exploit the original, unprotected versions it previously
downloaded, meaning the artist cannot retroactively enhance
the security of those images stored by the adversary [6]. We
will elaborate on this in Sect. 6.1.

3 Problem Setting

3.1 System and Adversary Setting

In the following, we consider a system where a party, referred
to as the defender, uploads images to a public platform. To
protect the copyright/style of the images and prevent them
from being used for training or fine-tuning an image genera-

tion model, the defender first applies a defense algorithm D to
the images. For instance, the defender could be an artist seek-
ing to protect their work, whether it’s paintings, photographs,
or other types of images. The attacker, on the other hand, aims
to train or fine-tune an image generation model using images
downloaded from the internet, including those of the defender,
without obtaining permission from the image owners. To cir-
cumvent image protection techniques, the attacker employs a
depoisoning technique such as LightShed. In cases where the
attacker is fine-tuning a model, it is likely all training images
are poisoned, as parties using a defense like D would likely
apply it to all their images.

When training an image generator, the dataset typically in-
cludes images from various sources, increasing the likelihood
that non-poisoned images are available for each concept. This
scenario allows the attacker to exclude the poisoned images
rather than needing to depoison them. However, in our ap-
proach, we do not restrict the ratio of poisoned samples from
the total dataset. This system is illustrated in Fig. 1.

Given the widespread use of image defense algorithms, the
adversary suspects that some or all of the images may have
been poisoned using a defense technique. While the specific
technique used is unknown to the adversary, they are aware
of commonly employed image protection schemes, which
include the actual defense technique D used by the defender.
To prevent D from negatively impacting the training process,
the adversary must identify the protected images within the
training dataset and remove the poisoned perturbations1.

We make only a few assumptions about the adversary. Due
to the inconspicuousness of the perturbations introduced by
D, the adversary cannot easily identify the poisoned images
through simple methods like visual inspection. Additionally,
the adversary does not know which specific defense technique
is used or even if a defense has been applied at all. We assume
only that the adversary is aware of the existence of poisoning
techniques and has the capability to utilize these techniques,
such as through pre-compiled binary applications provided
by the designers of these methods [24,25] or via web services
where artists can upload and retrieve protected images [25].

3.2 Requirements and Challenges
Practical attacks on image protection schemes posing real
threats to image owners must meet several key requirements:
R1 – Defeat Attacks on Training: The attack must effec-
tively detect and filter out poisoned images that are capable
of disrupting the training process of diffusion models, i.e.,
achieve a high True-Positive-Rate and high True-Negative-
Rate (see Sect. 5.2). This includes images poisoned to pre-
vent fine-tuning [11–13, 22, 32], as well as those subjected to
concept-based poisoning [23]. Further, the attack must be able
to effectively recover the original clean images. Therefore,

1For completeness, when only a small subset of images is poisoned, it
may also be convenient to exclude these samples rather than depoison them.

for detected images, the depoisoned version must show high
similarities with the original clean versions.
R2 – General Applicability: Given that Deep Neural Net-
works (DNNs) have a vast number of parameters, there are
numerous potential strategies to disrupt training. Therefore,
an effective attack must be general enough to counter all state-
of-the-art defenses.
R3 – No Disruption of the Training Process: The attacker’s
goal is to train a diffusion-based image generation model
using images from the internet without any interruptions.
Hence, the defense mechanism should not negatively impact
the training process, such as by excluding a significant
number of clean samples, which could otherwise hinder
model performance.

In recent years, various sophisticated schemes have been
developed to protect artistic style and content within images
from being copied/replicated in an unauthorized fashion by
using image generators. These protection methods, which
typically involve injecting robust, poisoned perturbations into
images, present several challenges for attacks aiming to by-
pass these defenses:
C1 – Inconspicuous Perturbations: A critical requirement
for image perturbations is that they must not affect human per-
ception of the images. Consequently, protection approaches
introduce only subtle modifications, making detecting these
perturbations highly challenging. An effective attack must,
therefore, address the challenge of reliably detecting such
inconspicuous perturbations in images, especially when the
original, unmanipulated version of the image is unknown.
C2 – Structured Patterns: While previous work has primar-
ily focused on developing and mitigating noise-like adver-
sarial examples [11], recent protection approaches for image
generators inject perturbations that are aligned with the nat-
ural structure of the images [22, 23]. As a result, traditional
noise reduction techniques are ineffective. A challenge for
attacks is, therefore, to extract and remove these structured
perturbations from the images.
C3 – Diversity of Protection Tools: Image owners have ac-
cess to a wide range of protection schemes, and an adversary
seeking to detect and remove poisoned perturbations cannot
know in advance which specific perturbation has been applied.
This presents the challenge of developing an attack that is
effective across a variety of protection tools, capable of dy-
namically determining and countering the characteristics of
the applied defense.
C4 – Absence of a Clean Dataset: Many approaches rely
on a clean dataset either for applying perturbations or as a
comparison standard. However, obtaining a clean dataset is
challenging since images sourced from the internet may al-
ready contain poisoning perturbations. Thus, a mitigation
strategy must address the challenge of effectively leveraging
a potentially poisoned dataset during the training process.

Poison
Reconstruction

Poisoned
Image

Subtraction

LightShed

Clean
Image

-

Entropy Cut-Off

>T

Figure 2: Overview of the detection and healing process of LightShed. If a poisoned sample is detected by the reconstructed
poison, subtraction is applied, while an empty reconstructed perturbation indicates a clean input.

4 LightShed

To show the insufficiency of existing copyright protection
tools and the need for more robust perturbations to protect
copyright owners against being imitated by diffusion models,
we propose LightShed that effectively detects the copyrighted
images and also erases the adversarial perturbations.

4.1 Motivation

Poisoned perturbations are designed to disrupt training pro-
cesses while remaining imperceptible to humans through a
specific optimization process, resulting in non-random pat-
terns. Our approach focuses solely on reconstructing the poi-
son rather than the complete image, leveraging two key ad-
vantages: (i) perturbations have significantly lower entropy
than full images, making them easier to learn, and (ii) the
entropy difference between clean and partially reconstructed
perturbations enables reliable detection even with imperfect
reconstruction. Autoencoders, being lightweight and efficient,
excel at learning and reconstructing the perturbations, pro-
viding both detection capabilities and visual insights into the
original perturbation’s nature. We enhanced LightShed with
attention layers to leverage Transformers’ global context un-
derstanding, enabling better detection and isolation of diverse
perturbation patterns. This proved superior to alternatives like
traditional DNNs (which tend to overfit to specific poison-
ing schemes), resource-intensive Transformers, and less sta-
ble and precise GANs. Our method enhances interpretability
and generalization, addressing critical challenges in machine
learning, while maintaining the option to apply techniques
like noisy-upscaling to refine reconstructions if needed.

4.2 High-Level Overview

An overview of LightShed is shown in Fig. 2. The inference
process is formalized in Alg. 1. LightShed extracts adversarial
perturbations from images based on the rationale that they
are distinguishable from the main content, though not easily
visible to human perception. By training a DNN with samples
from the perturbation scheme, LightShed can model their
characteristics, allowing the DNN to detect subtle differences

in the image regions and identify perturbations, even when
they are imperceptible to humans, addressing challenges C1
and C2. LightShed is composed of three components.

The Poisoning Reconstruction component models the char-
acteristics of the protection scheme to reverse-engineer and
extract the image’s poisoning perturbation. In this process, an
autoencoder is employed not to reduce noise as traditionally
used but to isolate and remove the main content of the image,
thereby extracting the perturbation pattern. For clean images,
this process results in an empty output (see Fig. 2), as there is
no perturbation to extract, whereas, for poisoned images, the
generated output approximates the perturbation.

The Entropy Cut-Off component analyzes the extracted
perturbation to determine if the original image was poi-
soned. Since clean images produce an empty perturbation,
the entropy of the extracted output can be measured to verify
whether the image was poisoned.

The Subtraction component is applied only to poisoned
images. By subtracting the extracted perturbation from the
original image, the component reconstructs an approximation
of the clean version of the image.

4.3 Poison Reconstruction

LightShed utilizes an autoencoder to model the characteris-
tics of the poisoning. The underlying assumption is that due
to the popularity and wide availability of the protection tools
(see Sect. 6.2), the attacker can use them for crafting training
samples. Thus, an image dataset is obtained before applying
the targeted copyright protection scheme on the images, as
visualized in Fig. 3. By including samples generated from dif-
ferent defenses, LightShed learns to detect the characteristics
for each of them, addressing challenge C3.

To be able to train the autoencoder to optimally reconstruct
either the poison or an empty image, we design the loss
function L as a combination of several metrics, which
measure the difference between the ground truth perturbation
Pactual and the reconstructed perturbation Preconstr.. Given the
Structural Similarity Index Measure (SSIM) loss LSSIM, the
regularization loss LRegu, the reconstruction loss LReco, the
fine-tuning loss LFineTune, and the fine-tune boundary τ the
combined loss L in epoch e is given by:

L =

{
0.7 ·LSSIM +0.2 ·LRegu +0.1 ·LReco if e < τ

0.7 ·LSSIM +0.2 ·LRegu +0.1 ·LReco +0.3 ·LFineTune otherwise
(1)

The weights were determined through empirical evaluation
to balance the different learning objectives. The SSIM loss is
weighted highest (0.7) as it is crucial for capturing structural
relationships in the perturbations, while the regularization
(0.2) and reconstruction losses (0.1) serve as complementary
terms to ensure stable training and accurate pixel-wise recon-
struction. The fine-tuning loss weight (0.3) was chosen to
provide sufficient influence on the entropy-based separation
between clean and poisoned images without overwhelming
the primary reconstruction objective.

The SSIM loss LSSIM [34] (line 12 in Alg. 2) is preferred
over traditional reconstruction loss as the primary loss compo-
nent because it focuses on the structural relationships between
neighboring pixels rather than merely comparing individual
pixel values and is defined as:

LSSIM = 1−SSIM(Preconstr.,Pactual) (2)

To ensure comprehensive reconstruction quality, we in-
corporate two additional loss terms. The reconstruction loss
LReco provides a direct measure of pixel-wise differences
between the reconstructed and actual perturbations:

LReco = |(Preconstr.−Pactual)| (3)

While the regularization loss LRegu specifically penalizes
large reconstruction errors by increasing quadratically when
differences exceed a threshold ψ:

LRegu = max
(
0,((Preconstr.−Pactual))

2−ψ
)

(4)

Avicenna

Image 𝒟𝒟efense

+
Clean
Dataset

Internet

Reconstructed
Poison

Actual
Poison

Clean
Sample

ℒ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹: -Entropy

ℒ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: 1 - SSIM

ℒ𝑅𝑅𝐹𝐹𝑅𝑅𝑅𝑅: L1-Norm
ℒ: Σ

0.2⋅

0.1⋅

0.7⋅

0.3⋅

ℒ𝑅𝑅𝐹𝐹𝑅𝑅𝐹𝐹: max(0, L2-Norm - 𝜓𝜓)

Poisoned
Sample

Figure 3: Training Process of LightShed and the calculation
of individual loss functions LRegu, LReco, and LSSIM based on
the reconstructed poison and the actual poison. In later epochs,
the reconstructed poison is also used to calculate LFineTune.

Following the initial training phase (τ = 100 epochs), we
introduce an additional fine-tuning loss LFineTune to enhance
the model’s ability to distinguish between clean and poisoned
images (see lines 15-22 in Alg. 2). This loss can only be
applied in later epochs since earlier adoption will disrupt
learning the differentiation between clean and poisoned due
to the contrastive training objectives for each in this loss.
However, later in training this can help push the entropy dis-
tributions of clean and poisoned perturbation reconstructions
more distinctly from each other:

LFineTune =

{
Entropy(Preconstr.) if I is clean
−Entropy(Preconstr.) otherwise

(5)

After the calculation of the individual loss components,
they are combined (see line 24 of Alg. 2) and the autoencoder
is updated using the Adam optimizer (see line 25 of Alg. 2).

The autoencoder utilized in LightShed is a deep convo-
lutional model leveraging residual and attention blocks to
improve its training. The residual blocks, composed of two
3×3 convolutional layers followed by batch normalization
and ReLU activation, help to stabilize the training by allowing
shortcut connections that preserve the flow of gradients. Com-
pared to standard convolutional layers, attention blocks are
incorporated to enable the model to focus on specific regions
of the image. These blocks take a feature map from an earlier
encoder layer and combine it with a gating signal from a later

Algorithm 1 Inference for Detection and Depoisoning
1: Input:
2: A (Trained Autoencoder)
3: Dtest = {Ii | i = 1,2, . . . ,k}
4: Output:
5: Classification results labels
6: (Reconstructed) Clean Images [Ii

c | i = 1,2, . . . ,k]
▷ Poison Reconstruction

7: for each I ∈ Dtest do
8: P′(I)← A(I)
9: H(I)← Entropy(P′(I))

10: end for
▷ Entropy Cut-Off

11: T ← Optimal Threshold from Validation Set
12: labels← []
13: for each I ∈ Dtest do
14: if H(I)> T then
15: labels.append(Poisoned)
16: else
17: labels.append(Clean)
18: end if
19: end for

▷ Subtracting
20: clean_images← []
21: for each I, label ∈ (Dtest, labels) do
22: if label ==Clean then
23: clean_images.append(I)
24: else
25: Ic← I−P′(I)
26: clean_images.append(Ic)
27: end if
28: end for

layer. This helps focus the attention on specific features.
The encoder consists of four convolution layers, each fol-

lowed by batch normalization, ReLU activation, and a residual
block. Each layer downsamples the input feature map by a
factor of 2. The bottleneck layer consists of a convolutional
block that further downsamples the feature maps, followed by
two residual blocks. The decoder, which mirrors the encoder’s
structure, uses transposed convolutions to upsample the fea-
ture maps back to their original size. Each decoding stage
consists of a residual block followed by a transposed convolu-
tion. The input to each decoder layer is the feature map from
the corresponding encoder layer, element-wise multiplied by
the attention map. This process ensures the model focuses on
key regions, preserving crucial spatial features while finding
adversarial perturbations.

4.4 Entropy Cut-Off
To determine whether the image contains a poisoned pertur-
bation, we calculate the entropy of the reconstructed poison
Preconstr.. In the case of the non-poisoned images, the entropy
should be close to zero, whereas for the poisoned images,
Preconstr. should show a significantly higher entropy. To clas-
sify the generated perturbation as black or filled with colored
pixels, we compare the measured entropy against the dynami-
cally determined entropy cut-off threshold T . It is determined
using a validation set to calculate a ROC curve with the cor-

Algorithm 2 Autoencoder Training (D contains clean (Inp) and
poisoned (Ip) training images, Dcor contains the corresponding clean version
of each training image.)

1: Input:
2: D = {Ii

np | i = 1,2, . . . ,n}∪{I j
p | j = 1,2, . . . ,m}

3: Dcor = {Ii
cor | i = 1,2, . . . ,n}

4: Dval = {Ik
val | k = 1,2, . . . , l}

5: yval = {yk
val | k = 1,2, . . . , l}

6: Output: Trained Autoencoder A, Threshold T
7: A→ Init() ▷ Initialize Autoencoder
8: for epoch e = 1 to E do
9: for each (I, Icor) in (D,Dcor) do

10: Preconstr. = A(I)
11: Pactual = I− Icor
12: LSSIM = 1−SSIM(Preconstr.,Pactual)
13: LRegu = max(0,((Preconstr.−Pactual))

2−ψ)
14: LReco = |(Preconstr.−Pactual)|)
15: if e < τ then
16: LFineTune = 0
17: else
18: if I ∈ Inp then ▷ check if I is clean
19: LFineTune← Entropy(Preconstr.)
20: else
21: LFineTune←−Entropy(Preconstr.)
22: end if
23: end if
24: Loss = 0.7 ·LSSIM +0.2 ·LRegu +0.1 ·LReco +0.3 ·LFineTune
25: A← A−∇Loss
26: end for
27: end for
28: Eval = Entropy(A(Dval))
29: T ← Optimal threshold from ROC(yval,Eval)

Dataset # Training Samples # Test Samples
LAION [8] (clean) 42 000 34 500
NightShade [23] Linf 24 150 10 350
NightShade [23] LPIPS random 15 740 0
NightShade [23] 0 8 950
NightShade [23] LPIPS 0.004 0 11 350
MetaCloak [13] 0 224
Mist [11] 1 655 710
NightShade Binary [24] 11 300 1 255
Glaze Binary [25] 2 170 930

Table 1: Size of the utilized datasets, derived from the LAION-
Aesthetics Dataset.

rect labels (clean/poisoned) and the entropy values of each
generated poison image. Taking a minimum constraint of 0.1
for the FPR, we choose the threshold value that maximizes
the TPR for the validation set.

4.5 Poison Subtraction
Reconstructing the poisoning perturbation enables LightShed
to efficiently remove the perturbation from the image. To
reconstruct the original, unpoisoned image, we subtract the
generated perturbation (Preconstr.) from the image. This elimi-
nates most of the poison to the degree that the fine-tuning is
not poisonously affected, and poison artifacts are eliminated.

5 Evaluation

5.1 Experimental Setup
To measure the effectiveness of LightShed. We apply finetun-
ing to a stable diffusion model similarly to Shan et al. [23].
Based on their claim, the poison takes effect on Stable Diffu-
sion XL, Stable Diffusion V2, and DeepFloyd by fine-tuning
with a dataset of 50 000 clean and 300 poisoned images. De-
spite testing various fine-tuning parameters on Stable Diffu-
sion XL, we were unable to replicate the poisoned results.
After attempting to contact the authors without success prior
to submission, we switched to Stable Diffusion V2 and fol-
lowed the fine-tuning instructions in Hönig et al. [6], using
a batch size of 4 and 2 000 epochs. To enable NightShade
disruption in the training, we reduced the number of clean
samples to 10 000 and increased the number of poisoned sam-
ples to 3 000.

All experiments were implemented using PyTorch [17] and
the Diffuser library [33] for training diffusion models. The
experiments were executed on a server with 2 AMD EPYC
7773x CPUs, 5 NVIDIA H100 GPUs, and 2 TB main memory.
For generating poisoned samples using the NightShade and
Glaze binaries, we had to use a different system as these
binaries can be executed only in Windows or MacOS. We
used here 2 computers, each having an Intel Core i7 CPU,
16GB main Memory, and an NVIDIA GeForce RTX 2070
running Windows 10. To automate the GUI-based generation
process, we utilized the software SikuliX [19].

Poison Accuracy TPR TNR Entropy Cut-Off
NightShade 1.0000 0.9998 1.0000 1.7092
NightShade LPIPS p = 0.004 0.9968 0.9987 0.9961 0.1157
NightShade Linf p = 0.04 0.9998 0.9999 0.9998 0.5847
Binary NightShade 0.9298 0.9655 0.9286 0.0036
Glaze 0.9769 0.9726 0.9770 0.0216
Mist 1.0000 0.9984 1.0000 3.4316
MetaCloak 0.8437 0.9177 0.8432 0.0014

Table 2: Detection accuracy comparison across different poi-
sons after training on NightShade, Mist, and Glaze. Night-
Shade, as presented by Shan et al. [23], is highlighted.

Aligned with the work of Shan et al. et al. [23] we used
the LAION-Aesthetics 120M dataset [8]. We leveraged the
published binaries for Glaze [25] and NightShade [24], and
the published code for NightShade [23], Mist [11], and Meta-
Cloak [13]. Notably, as the code of NightShade differs from
the paper by using a different metric and hyperparameters, we
carefully adapted the code accordingly and additionally gen-
erated several variations, resulting in 9 datasets as depicted
in Tab. 1. The original metric and parameter as described in
Shan et al. [23] is LPIPS with a threshold of p=0.07 and is
denoted as NightShade in the table and we have added another
version with a lower threshold of p=0.004. Linf with p=0.04
is the setting used in Shan et al.’s codebase. Due to the time-
intensive nature of the generation process, which can take
up to 7.5 minutes per sample, the datasets for NightShade,
Glaze, Mist, and MetaCloak contain fewer images compared
to the other datasets. The details are described in App. A.
Train/test split was initially set at 70%/30%. Due to the tools’
time-intensive generation, dataset sizes vary across different
approaches (Tab. 1). However, each split contains sufficient
samples to ensure statistically reliable results.

To measure the depoisoning effect, we generated datasets
using the NightShade defense, consisting of 10 000 clean
and 3 000 poisoned samples, with all poisoned perturbations
aimed at the same class. In particular, we introduced per-
turbations into 3 000 dog images, with the target class be-
ing cats. We use NightShade as described in the paper of
Shan et al. [23], which employs perturbations with an LPIPS
budget of 0.07. The NightShade samples generated by the

0.0001 0.001 0.01 0.1 1 2 3 5
0

0.2

0.4

0.6

0.8

1

Entropy

Tr
ue

Po
si

tiv
e

R
at

e
(T

PR
) NightShade

LPIPS 0.004
Linf 0.04
Binary
Glaze
Mist
MetaCloak
TNR

Figure 4: Detection rate of LightShed for different versions
of NightShade and other defense approaches (Glaze, Mist,
MetaCloak), in dependence of the cutoff entropy.

binary application were excluded from the fine-tuning com-
parisons because the intended poison effect by the authors
could not be successfully reproduced for our model, as shown
in Fig. 8. This discrepancy may arise because the binaries
autonomously select poison targets upon processing an image
input with some unknown poison strength threshold, poten-
tially resulting in perturbations that are less impactful than
those generated using our code, thus influencing their efficacy.

5.2 Evaluation Metrics
Detection Accuracy Metrics We evaluated the detection
accuracy of our model using the following metrics:
Accuracy: Proportion of correctly identified images (clean
and poisoned) out of the total number of images.

Accuracy =
True Positives+True Negatives

Total Number of Samples
(6)

True Negative Rate (TNR): The proportion of actual clean
images correctly identified by the model.

TNR =
True Negatives

True Negatives+False Positives
(7)

True Positive Rate (TPR): The proportion of actual poisoned
images correctly identified by the model.

TPR =
True Positives

True Positives+False Negatives
(8)

CLIP Score Evaluation. The Contrastive Language-Image
Pre-Training (CLIP) is a DNN trained on image and text
pairs [18]. The CLIP score is calculated by evaluating the
alignment between the embeddings of an image and text gen-
erated by the CLIP model within a shared vector space, where
higher scores indicate a stronger semantic correspondence
between the two. To assess poisoning effectiveness, we gen-
erated 1000 images with the prompt "a photo of a dog" and
compared CLIP scores for the labels "a photo of a dog" and
"a photo of a cat." Higher "cat" and lower "dog" scores in the
fine-tuned model indicate successful poisoning.
Structural Similarity Index Measure (SSIM). To assess the
quality of poison reconstruction in the depoisoned images,
we calculated the SSIM value differences between the real
and generated poison. We reported the average SSIM value
differences across all test samples.

5.3 Detection Performance of LightShed
The detection performance for various poisoning schemes is
shown in Tab. 2 and Fig. 4. The autoencoder was trained in an
incremental process, where training was initiated with fewer
data, and more were added as more poisoned images were
created. The model was trained for 270 epochs in total, using
samples generated with the published code of Shan et al. with

Poison Accuracy TPR TNR Entropy Cut-Off
NightShade 0.9999 0.9996 1.0000 2.1205
NightShade LPIPS p = 0.004 0.9877 0.9996 0.9842 0.0208
NightShade Linf p = 0.04 0.9998 0.9996 0.9998 1.1513
Binary NightShade 0.9701 0.9682 0.9702 0.0130
Glaze 0.8244 0.7506 0.8263 0.0038
Mist 0.9979 0.9969 0.9980 0.1487
MetaCloak 0.8669 0.9244 0.8665 0.0047

Table 3: Detection performance for different perturbation
schemes when LightShed was only trained to detect Night-
Shade for up to 250 epochs. The results for poisoning schemes
that were not included in the training data are highlighted.

the Linf perturbation set to p=0.04, the corrected NightShade
implementation using LPIPS metric with p between 0.000005
and 0.07, Glaze images, as well as Mist images. To address the
small number of available samples for Glaze and Mist, their
training samples were added in later phases of the training.
Due to not having enough samples for MetaCloak, it was
not used for training but only used for testing. The threshold
for each poison method is tuned using a validation dataset
comprising 10% of unused samples (see Sect. 4.4).

The model achieves almost perfect detection performance
for NightShade LPIPS with p=0.07 being the version that
Shan et al. [22] describe in their paper. Even with a much
lower threshold of p=0.004, we achieve a TPR of 0.9987,
which shows the detection accuracy of LightShed even for
smaller perturbations. NightShade with Linf perturbations
also achieves almost a perfect performance with a TPR of
0.9998. The NightShade binary achieves a performance of a
TPR of 0.9655 and a TNR of 0.9286.

Fig. 4 shows how the different entropy thresholds affect
LightShed’s TPR and TNR. The TNR is approximately up to
the precision of 10−6, the same for each perturbation method
since the entropy of clean generated poisons is very close to
zero because it is a black image. Notably, for the TPR, the
entropy at which the curve goes down is different for each
method as for each dataset a different entropy threshold is
calculated. This shows the average strengths of the poison
perturbations. While LightShed effectively detects the poi-
soned images for all protection techniques, it is most efficient
for the regular NightShade (LPIPS p=0.07), followed by Linf
0.04, LPIPS 0.004, and finally, the NightShade binary. For the
binary, the reason why some images are not detected might
be the low strengths of the applied perturbation. Since we
could not reproduce a poisoned fine-tuning process with these
binary images, we assume the low poison levels to be not very
effective. Thus, missing the weakest 5% of perturbed binary
samples likely will not impact fine-tuning.

Despite training for only 65 epochs on Glaze and Mist
with limited data and none on MetaCloak, the model still
achieved TPRs of 0.9726, 0.9984, and 0.9342, respectively.
Fig. 6 shows that MetaCloak is a more detailed type of poison,
and without having trained on it, it is challenging to recon-

struct the perturbations. Fig. 4 shows that the entropy values
for MetaCloak generated poisons remain below 1.5. However,
the real poisons have much higher entropy values, which can
also be seen in the high entropy difference for MetaCloak in
Figure 5. The low entropy values of the generated poisons
show that the extracted perturbation for MetaCloak is not as
accurate as for the other techniques due to a lack of training
on it. However, even in the absence of training data for Meta-
Cloak, we were still able to detect it with a high TPR of above
90% for all poisoned samples.

To evaluate LightShed’s ability to handle samples being
poisoned with unknown protection schemes, we trained an
autoencoder only for NightShade and evaluated its ability
to detect Glaze, Mist, and MetaCloak. As shown in Table 3,
despite the unrealistic scenario, LightShed still achieves ac-
curacies of above 80% for all methods without the encoder
having seen the type of poison before. This shows that these
perturbations are all similar to some extent, and the autoen-
coder can generalize to a high degree what poison is.

The classification threshold can be automatically tuned us-
ing a validation dataset (Sect. 4.4). Notably, many thresholds
achieve high TPRs and TNRs across all methods (Fig. 4),
allowing a single shared threshold without significant perfor-
mance loss, especially for well-reconstructed perturbations.
To evaluate a shared threshold, we used a validation set com-
prising 10% of unused samples and an equivalent number of
clean samples. To ensure a realistic experiment setting for
assessing LightShed’s generalizability, approaches where no
training data were available (see Tab. 1) were also not in-
cluded in the validation set. When choosing a threshold that
achieves a fixed FPR = 0.005 (TNR = 0.995) on a validation
dataset, we obtained a threshold of 0.07028048 with the val-
idation set. This resulted in an overall TPR of 0.9941 and a
TNR of 0.9959 on the test set and individual results for attacks
as detailed in Tab. 4. With sufficient samples, also separate
autoencoders can be fine-tuned for each method, flagging an
image as poisoned if flagged by any model.

5.4 Effect of Image Augmentation

Compression techniques are commonly applied to images
posted on the internet, and also training pipelines for DNNs
frequently incorporate image augmentation methods such as
rotation, Gaussian noise, and JPEG compression. We evalu-
ated the efficacy of LightShed under these conditions, specif-
ically focusing on its performance against NightShade and
observed its robustness, as shown in Table 5. We included
random rotations of up to 100 degrees in our test and observed
that the autoencoder correctly identifies unperturbed areas of
perturbed images as black areas and does not lose the abil-
ity to differentiate between poison and clean samples. For
Gaussian noise, we tested up to the noise of a standard devia-
tion of 0.1, which is double the standard deviation that Hönig
et al. [6] used to defend against Glaze. Due to the remaining

Clea
n

NightShad
e

LP0.004

Linf0.04
Binary

Glaz
e

Mist

Meta
clo

ak
0

0.5

1

1.5

2

2.5

2.2 ·10−3
0.2 0.16

0.96

0.66

0.92

0.29

1.64

0.97
0.79

0.69 0.71

0.34
0.21

0.69

0.37

Method

V
al

ue
Entropy Differences SSIM Values

Figure 5: Entropy differences and SSIM value differences
between real and generated poison with error bars for images
poisoned with different methods and clean images.

high detection accuracy, we assume that the perturbations
caused by noise must be different enough from those caused
by the poison for the autoencoder to recognize. We tested
JPEG compression down to quality 20 and observed that the
autoencoder still successfully detects these images.

5.5 Quality of Generated Poison
Fig. 6 compares the real poisoning perturbation with the poi-
son that LightShed extracted. The figure shows that the poison
is well reconstructed for regular NightShade and Linf=0.04.
For NightShade LPIPS =0.004, the poison strength varies
by pixel, but the structure remains similar to the original. In
NightShade Binary, the real poison is less visible, leading
to less accurate extraction. The Glaze poison reconstruction
shows that the gist is captured, but our generated poison takes
more into account the structures of the original image, so black
lines can be found along these. Mist is a very strong type of
poison that can be reconstructed almost fully. Finally, Meta-
Cloak is a more detailed poison, with a visible mouse head in
the real image. While our autoencoder captured the structure
and surrounded stronger poison, it missed finer strokes, likely
due to lack of training on MetaCloak.

Figure 5 gives a better overview of the quality of reconstruc-
tion with the SSIM values and entropy difference values on
average of all test samples. For NightShade (regular, LPIPS
0.004, Linf 0.04) and Mist, the SSIM values are quite high,
while the ones for Binary, Glaze, and Metacloak vary more.
We assume that more samples will make the poison genera-
tion better for these poison methods. Especially in MetaCloak,
where the entropy difference is also quite high compared to
the original poison, training on a large set of samples should
improve the reconstruction results drastically.

In Figure 7, the effect of the depoisoning on regular Night-
Shade is shown. Figure 7(c) shows the LightShed cleaned
image, achieved by subtracting the reconstructed poison from
the poisoned image. Below, the real poison, reconstructed
poison, and the difference between the clean and LightShed
cleaned images are displayed, showing most of the large cat
perturbations removed. Though pixel differences in (f) seem
large, they are minor as they are not visible in (c) and represent

Metric N
ig

ht
Sh

ad
e

L
PI

PS
0.

00
4

L
in

f0
.0

4

B
in

ar
y

G
la

ze

M
is

t

M
et

aC
lo

ak

O
ve

ra
ll

TPR (%) 100.00 99.92 100.00 91.69 95.82 100.00 73.66 99.41
TNR (%) 99.59

Table 4: True Positive Rates (TPRs) and True-Negative-Rate
(TNR) of shared classification-threshold when setting FPR to
0.5% on the shared validation set.

small value changes. Our goal of making the poison ineffec-
tive is confirmed through visual inspection. Hönig et al. [6]
suggest noisy upscaling for Glaze, and we similarly tried ap-
plying noisy upscaling to the LightShed cleaned image in (g)
and regular upscaling in (h). Using Gaussian noise with a
0.05 standard deviation, we halved Hönig et al.’s noise pa-
rameter from 320 to 160, yet still saw distorted results. For
the LightShed cleaned and upscaled image in (g), adding the
same noise with an upscaler value of 20 produced an even
cleaner result, as seen in (i).

5.6 Depoisoning Performance of LightShed
Further, as discussed in Sect. 5.2 we evaluate our method on
NightShade in a stronger fine-tuning scenario of 10 000 clean
images and 3 000 poisoned dog images with target poison
cat. Figure 8 shows the results of fine-tuning on different
sets of 3 000 dogs. The original score reflects cat and dog
scores when prompting for a dog with a not fine-tuned Stable
Diffusion v2. The clean result is from fine-tuning on 10 000
clean images and 3 000 clean dogs, with average dog scores
for these around 43 and cat scores between 12.5 and 14.5.
Using 3 000 NightShaded dogs (LPIPS p=0.07), dog and cat
scores converge to 27–30. With binary poison, the scores
resemble the clean scenario, indicating ineffective poisoning.
After applying LightShed cleaning, cat and dog scores align
with the clean and original fine-tuning results.

Further, we tried upscaling the LightShed cleaned image
with a noise parameter of 20 and just applying noisy upscaling
to the poisoned image with a noise parameter of 160 and got
similarly clean results. However, when we just apply noisy
upscaling without LightShed, the maximum score for cat is
at 30.64, much higher than the maximum cat scores for origi-
nal (25.34), clean (22.79), LightShed (26.12) and LightShed
+upscaling (24.09). This indicates that there exists at least one

Augmentation Accuracy TNR TPR
Rotation 0.9998 0.9990 1.0000
Gaussian noise std = 0.01 0.9999 0.9995 1.0000
Gaussian noise std = 0.05 0.9999 0.9995 1.0000
Gaussian noise std = 0.1 0.9998 0.9988 1.0000
JPEG compression q=20 0.9999 0.9995 1.0000

Table 5: Detection accuracy comparison across different im-
age augmentations for NightShade.

Figure 6: Generated and Real Poison Comparison. The upper
row is the real poison, whereas the lower row is the gener-
ated poison from left to right. The poisons are NightShade,
NightShade LPIPS=0.004, NightShade Linf 0.04, NightShade
Binary, Glaze, Mist and Metacloak.

more cat-like-looking image than in the above-mentioned -
settings. Furthermore, generally, the problem with using noisy
upscaling is that this noisy upscaling process takes 55 sec-
onds on average per image on an H100, whereas generating a
poison with LightShed only takes 0.0139 seconds on average.
Upscaling 3000 images took about two whole days on our
server, whereas LightShed takes less than a minute.

Additionally, we conducted noise experiments on the poi-
soned dogs and 10 000 clean images. We added Gaussian
noise with standard deviations of 0.025, 0.05, 0.075 and 0.1.
In case we did not have a detection tool such as LightShed,
noise can also substantially hinder NightShade poisoning
from a noise value of 0.05. However, the quality of all images
is degraded, as can be seen by the lower mean dog and cat
scores of 2 to 3 points. This shows that only noising a large
dataset using a high standard deviation will not be feasible
for the long-term quality of generated images. However, for
poisons, where a not high enough TPR is reached, and poison
reconstruction is poor on the validation set, the TPR and TNR
ratio can be shifted in favor of TPR, and then a larger set being
detected as poisoned can perhaps just be noised instead. Lim-
iting the number of images trained with noise should lighten
the adverse effect of noise on the long-term image quality.

Further, we conducted an experiment fine-tuning on just
3000 NightShaded dogs that were cleaned with LightShed.
The cat and dog scores remained in a clean range, with
the dog score at 42.3801± 2.5190 and the cat score at
12.6305± 2.8173. The maximum cat score also remained
low at 22.0119. This means that even in the stronger scenario
where 100% of the images are poisoned, LightShed can clean
these sufficiently such that the poison effect disappears.

5.7 User Study
To complement the metric-based evaluation with human per-
ception, we conducted a user study to assess the efficiency and
effectiveness of LightShed. The design of the study follows
the previous research on adversarial attacks against image
generators [6]. Using Amazon mTurk, participants were pre-
sented with pairs of images: one clean and one generated
by an image model trained on poisoned samples. They were
asked to evaluate which image better satisfies specific criteria

(a) Clean (b) Poisoned (c) LightShed

(d) Real Poison (e) Reconstr. Poison (f) Diff. LightShed

(g) LightShed +Up. (h) Upscaled (i) Diff. Upscaling

Figure 7: Comparison of different depoisoning options, show-
ing (a) Original clean image, (b) Poisoned image (Night-
Shade) (c) LightShed depoisoned image through subtraction
of generated poison (d) Real Poison (e) Generated Poison (f)
The subtraction of the original clean image and the LightShed
depoisoned image (g) LightShed depoisoned image with sub-
sequent noisy upscaling [21] (h) Depoisoned image by noisy
upscaling [21] (i) The subtraction of the original clean image
and the LightShed depoisoned + noisy upscaled image

as detailed below.
We generated images for five state-of-the-art attack meth-

ods (NightShade [23], NightShade with Linf metric [23],
NightShade Binary [24], Glaze [25], and Mist [11]) and
four defense variations (No Defense, LightShed, Upscaling,
LightShed + Upscaling), resulting in a total of 20 configu-
rations. For each configuration, 15 samples were produced,
with participants assessing each sample based on five criteria:
(i) fit for the prompt "a photo of a dog", (ii) fit for the concept
"dog", (iii) overall quality, (iv) presence of noise/artifacts, and
(v) level of detail. For each criterion, participants selected the
sample they felt better fulfilled the respective requirement.

Images were divided into batches of 60 comparisons and
10 control questions, allowing up to 15 participants per batch.
Each batch included three comparisons for each configuration.
To ensure data reliability, multiple attention checks were ap-
plied, unfortunately, leading to the exclusion of many submis-
sions. At the end, 34 submissions from 26 unique participants
passed these checks, resulting in 102 valid answers for each
measurement. Details on its design (attention checks, criteria,
and questions) are provided in App. B. The study adhered
strictly to the institution’s IRB rules.

Orig
inal

Clea
n

NightShad
e

Ours

N_0.025

N_0.05

N_0.075
N_0.1

Binary

Ours+
Up

Upsca
le0

20

40

60

43.2 42.81

27.87

43.48

32.61

40.32 40.56 40.31 43.14 43.84 42.25

14.37 12.79

29.41

13.32

22.8

11.53 11.01 11.01 12.95 13.53 12.51

Method

A
ve

ra
ge

Sc
or

e

Dog
Cat

Figure 8: Average CLIP Scores with Error Bars of Fine-Tuned
Diffusion Models for Dog and Cat across different settings.
Here N0.025 to N0.1 are the Gaussian noise settings with stan-
dard deviations from 0.025 to 0.1.

In summary, LightShed significantly enhanced image qual-
ity. Across all five criteria, it significantly reduced the users’
likelihood of identifying the clean image to close to 50%
(the performance of a naïve classifier). For the "concept of a
dog", user accuracy in identifying clean images dropped from
64.6% to 53.1%. When assessing overall quality, the selec-
tion of clean images decreased from 71.7% to 59.8%, and for
noise levels, it dropped from 59.9% to 52.5%. Detailed results
for each criterion, separated by attack and defense techniques,
are shown in Fig. 9. Furthermore, the combined application of
LightShed and Upscaling yielded minor additional improve-
ments, e.g., in the noise evaluation, users’ ability to identify
clean images was further reduced to 51.1%.

6 Discussion

We introduced LightShed, which effectively identifies and
cleans poisoned images. In the following, we will discuss
the impact of the attack (Sect. 6.1), its limitations (Sect. 6.2),
as well as directions for more robust protection techniques
(Sect. 6.3). In App. C, we discuss LightShed’s applicability
on cryptographic watermarks. The ethical implications of this
work will be discussed in Sect. 9.

6.1 Impact of LightShed
LightShed models the characteristics of image protection
schemes and leverages this fingerprint to detect even subtle
poisoning artifacts in images. It effectively identifies perturba-
tions from both fine-tuning prevention schemes and training
disruption schemes, efficiently removing these perturbations
through reconstructed poisoning patterns. As demonstrated in
Sect. 5, LightShed is highly effective against state-of-the-art
protection schemes, disrupting not only fine-tuning processes
but also entire training procedures. The denoising compo-
nent of LightShed effectively removes poisons, allowing the
utilization of protected images for training and fine-tuning
image generators, thereby fulfilling requirement R1.

Notably, once images are uploaded to the internet, their
protection cannot be retroactively updated, as described in

Sect. 2.2. If an artist uploads a protected image and an at-
tacker downloads and stores it locally, the attacker can train
LightShed to compromise the protection by analyzing a suf-
ficient number of example images. Even if the artist applies
a new defense and uploads the images again, the previously
stored versions remain unchanged, allowing the attacker to
continue using them for training an image generation model.

To ensure LightShed’s generalizability, it was designed to
recreate poisoning behavior using image samples and to then
tune a detection threshold with a validation set. However, it
does not rely on source code for training, as demonstrated
through the use of precompiled binaries of protection tools
(Sect. 5). Training data for widely used tools can be effort-
lessly obtained by utilizing respective binaries. Leveraging an
autoencoder-based approach, LightShed effectively models
the characteristics of protection schemes, allowing it to dy-
namically adapt to emerging detection techniques. A single
model with a unified threshold is sufficient to classify images
against multiple perturbation methods, including proprietary
solutions such as MetaCloak, even when these methods are
excluded from the training data (Sect. 5.3).

The evaluation further shows LightShed’s capability to gen-
eralize to previously unseen detection techniques, effectively
neutralizing protections without prior exposure (Sect. 5.3).
Moreover, historical trends indicate that algorithms or bina-
ries of protection tools are frequently leaked, reinforcing the
validity of LightShed’s’s training data assumptions. This ca-
pacity to generalize not only fulfills R2 but also addresses
C3, showcasing LightShed’s ’s robust adaptability across a
diverse range of protection mechanisms.

Furthermore, the Entropy Cut-Off mechanism distinguishes
between clean and poisoned inputs. This allows LightShed
to apply the depoisoning algorithm only to poisoned samples
and leave clean samples unchanged. Depending on the appli-
cation scenario, the poisoned samples can either be excluded
or processed by the Subtraction and Denoising component.
This selective approach allows LightShed to protect the train-
ing process by mitigating the poisoning without affecting the
clean samples’ utility, fulfilling requirement R3.

Additionally, LightShed does not rely on any assumptions
about the images used for poisoning and training. When col-
lecting a dataset from the internet, some images may already
be protected. However, LightShed trains its poisoning detec-
tion by comparing the differences between the original and
poisoned versions, with the autoencoder learning to identify
these differences. If the original image is already poisoned,
this pre-existing perturbation does not affect the difference
detected between the two versions. Therefore, LightShed is
robust against pre-poisoned images and does not require a
clean dataset, addressing challenge C4.

These findings show LightShed’s effectiveness in accu-
rately detecting and depoisoning images protected by the most
recent protection schemes. This demonstrates the vulnerabil-
ity of existing protection methods and highlights the need for

more sophisticated techniques to safeguard artists’ work from
being used to train image generators without their consent.

6.2 Limitations of LightShed
While LightShed provides a significant advancement in de-
fending diffusion models against adversarial perturbations,
several limitations should be acknowledged.

A key limitation of LightShed is its data dependence. With-
out a sufficient number of pairs consisting of clean samples
and their corresponding poisoned versions, LightShed cannot
effectively model the characteristics of the image defense
technique. Therefore, a central assumption of LightShed is
that the attacker has the capability to apply protection tech-
niques to specific images in order to create a training dataset.
However, for protection tools to be widely adopted by artists,
they must be easily accessible, typically through pre-compiled
binaries or web services provided by the developers. While
this accessibility is crucial for user adoption, LightShed can
exploit these low accessibility barriers to generate poisoned
training samples. This enables it to effectively learn to de-
tect and neutralize the perturbations that these techniques
are designed to protect against.

However, even when such a tool is available, creating a
sufficient number of training samples can be challenging if the
poisoning process is very time-consuming. For instance, in the
case of MetaCloak, it took approximately 4 hours to poison a
batch of 32 samples, resulting in about 7.5 minutes per sample
on average. While this duration might be acceptable for an
artist who has spent considerable time on an art piece and
wishes to protect it before uploading, it significantly slows
down the generation of training data for an adversary. For
example, generating a dataset of 5 000 images would require
approximately 26 days. On the other hand, the adversary
could download the images once they are published, begin
generating and collecting the necessary training data during
this time, and later unpoison the downloaded images, as the
protection cannot be retroactively updated (see Sect. 6.1).

LightShed efficiently extracts the poisoning perturbation
from a given image by utilizing the previously determined
defense fingerprint. However, the perturbation is also affected
by specific characteristics of the image, such as its structures,
edges, and textures, which can introduce minor variations.
These variations can result in slight noise in both the reverse-
engineered perturbations and the reconstructed images. How-
ever, as demonstrated in Sect. 5.6, LightShed can be effec-
tively combined with various denoising approaches to pre-
cisely recover the original image, even in such cases.

6.3 Incentives for Robust Image Protection
LightShed demonstrates the limitations of existing image
protection techniques by overcoming current state-of-the-art
methods. In Sect. 5.4, we showed LightShed’s robustness

against common image augmentation techniques. Addition-
ally, the Poison Reconstruction component allows dynamic
adaptation to new protection schemes. However, protecting
artistic work remains crucial for creators, and LightShed high-
lights the need for more robust defenses. Future defense strate-
gies must integrate perturbations such that removal without
significant image degradation is infeasible. LightShed is able
to reverse-engineer perturbations due to similarities in per-
turbation characteristics, structural irregularities, and their
distribution across the image. Below, we outline potential
strategies for designing more resilient protection techniques.
Image Specific Perturbation: Less recognizable patterns
could be injected into the images. If poison for each individ-
ual image was constructed in a less structured way but would
be more unique and less predictable, it would be significantly
harder for LightShed to learn the techniques’ characteristics.
Vary Perturbation Density: Another idea includes localizing
the noise to specific regions to make it harder to detect. For ex-
ample, the NightShade binary already adds less noise all over
the image, which made it more challenging for LightShed to
extract the perturbation, though it still detected the poison.
Noise-Aligned Perturbation: Also, the poison could be made
structurally more similar to Gaussian noise. Then, it would
be harder to distinguish this from actual Gaussian noise. For
the poison destruction, obviously, some Gaussian noise might
be able to destroy this type of noise. However, applying noise
to every image may degrade quality in large-scale training.

7 Related Work

In response to the concerns of copyright owners, various
schemes have been developed to protect intellectual prop-
erty. In parallel to this development, various attack methods
have been discussed in the literature to determine the security
of these schemes and show their limitations and the necessity
for more robust defense mechanisms. Notably, existing work
focuses widely on circumventing fine-tuning defenses [6, 15]
or out-of-distribution data [16], while more sophisticated
concept poisoning defenses such as NightShade [23] that
LightShed addresses, were not considered in the existing lit-
erature. In the following, we will analyze and compare ex-
isting fine-tuning protection schemes with LightShed. These
schemes can be categorized into targeted mitigation strategies,
which focus on identifying poisoned samples, and untargeted
strategies, which must be applied universally to all samples.

7.1 Targeted Mitigations

Nguyen et al. propose regenerating captions for poisoned
samples as a defense against attacks that modify the images’
captions. However, this approach does not counteract the ad-
versarial perturbations embedded in the images themselves.
An et al. introduce a method that aims to exploit the objective

of making perturbations imperceptible to humans. They pho-
tograph poisoned images to simulate human perception and
compare these photographs to the original images to detect
perturbations [1]. However, since their method does not in-
clude a mechanism to specifically identify poisoned samples,
applying this approach to large datasets with thousands of
images is impractical. In contrast, LightShed operates fully
automatically, enabling it to both identify poisoned images
and remove the perturbations efficiently, ensuring scalability.

Cao et al. exploit the fact that some style mimicry de-
fense schemes target latent space representations. They train
a diffusion model to process input images and regenerate
the same samples as output, arguing that if the latent space
representations have been manipulated, the output should dif-
fer significantly from the input [2]. However, this approach
assumes that the perturbation prevents the diffusion model
from reproducing the input image accurately, which limits its
applicability to defenses that do not explicitly target the latent
space and do not account for simple adversarial examples.
Pan et al. suggest a method that requires the availability of a
clean dataset in addition to a dataset that is suspected of con-
taining poisoned samples. They employ an asymmetric loss
function that minimizes the loss on the clean dataset while
maximizing the loss on the suspect dataset. By measuring
the loss for each sample, they iteratively move the samples
with the lowest loss to the clean dataset until only 5% of sam-
ples remain [16]. However, without directly identifying the
presence of poisoned samples, this method risks excluding
valuable samples where the model performs poorly, even if
those samples would benefit the model’s training. In contrast,
LightShed accurately identifies poisoned samples and, in the
absence of adversarial perturbations, can accept all samples,
thus preserving the model’s utility.

7.2 Untargeted Mitigations

VA3 is based on the assumption that copyright protection
mechanisms are unreliable, leading to generating the desired
sample when a prompt is repeatedly queried across multiple
iterations. To exploit this, VA3 identifies the best-generated
sample by repeatedly querying the prompt and scoring the
generated images [10]. However, VA3 assumes that the de-
fense mechanism is not robust enough to fully corrupt the
training process, allowing the diffusion model to still gener-
ate appropriate images. Notably, recent attacks even noticed
that when performing a strong attack on one target concept,
this can even affect non-targeted concepts, highlighting the
strengths of state-of-the-art attacks. In contrast, LightShed’s
detection capability allows an attacker to filter out or depoison
the images before training, ensuring that the model can be
trained without being compromised by poisoned samples.

Nie et al. add noise to the images and use diffusion to re-
move the noise [15]. Zhao et al. split the images into several
parts and then used the approach of Nie et al. to denoise the

images [15]. Qin et al. use a combination of image process-
ing techniques such as JPEG and denoising to remove the
perturbation. Hönig et al. [6] reevaluate different existing
techniques such as Gaussian noising, the denoising proposed
of Nie et al. [15], and noisy upscaling [22] to mitigate style
mimicry protections. Based on Impress of Cao et al. [2],
they design a perturbation removal scheme using reverse en-
coder optimization, negative prompting, and the denoising of
Nie et al. [15]. They show that their approach can mitigate
fine-tuning defenses as Glaze but do not consider the more
advanced training-disruptions techniques such as NightShade.
In general, without identifying the poisoned samples, untar-
geted approaches need to be applied to all images in the train
dataset and affect the training quality. In comparison, the de-
tection of LightShed allows the application of the perturbation
removal technique only to images containing a perturbation.
Further, the detection allows the attacker to decide to exclude
these images to prevent any adverse impact or apply recovery
techniques. Notably, the above-mentioned techniques could
also be combined with the detection component of LightShed.

8 Conclusion

Protecting artwork from nonconsensual imitation in text-to-
image models is increasingly vital and various protection
schemes to safeguard creative works have been developed.
Different attacks aimed to demonstrate the insufficiency of
fine-tuning protection schemes. However, these attacks are
impractical or fail to identify poisoned samples directly. In
response, we introduced LightShed, the first solution that
addresses both, fine-tuning protection and training disrup-
tion techniques, effectively overcoming previous attack lim-
itations. LightShed learns the characteristics of protection
schemes and applies this knowledge to detect, extract, and
neutralize adversarial perturbations. We conducted a com-
prehensive evaluation of LightShed across various settings
and considered different state-of-the-art poisoning schemes,
including NightShade, Glaze, Mist, and MetaCloak. Demon-
strating the insufficiencies of current techniques in protecting
artists’ work, we show the need for more resilient protection
techniques. Building on these insights, we propose directions
for more robust detection methodologies, setting the base for
new approaches that can effectively protect creative works.

9 Ethics and Open Science Considerations

LightShed shows the limitations of existing image protection
techniques and the necessity for more robust solutions. How-
ever, by demonstrating these vulnerabilities, LightShed could
potentially be abused by malicious actors to circumvent pro-
tections in case artists or image creators use such techniques
on publicly uploaded images. Therefore, we will first analyze
the ethical dimensions of our research (Sect. 9.1), before dis-

cussing how our efforts to address these ethical considerations
intersect with the principles of open science(Sect. 9.2).

9.1 Ethics Considerations
Our research, which shows the limitations of current image
protection techniques, requires a thorough discussion of im-
portant ethical questions, particularly concerning the intellec-
tual property rights of artists and image owners, as well as its
impact on the creative community.

We carefully analyzed the beneficence of our work prior to
initiating the project, continuously during the research pro-
cess, and before publication. Further, we will continue to eval-
uate the impact of our research, not only its benefits but also
any potential harm in the future. This research is intended as
a demonstration of the need for more robust image protection
methods. Simultaneously, it serves as a benchmark for the
development of future protection techniques, thereby enabling
the creation of more effective measures and supported efforts
to safeguard the work of creative people. Consequently, we
concluded that the potential benefits of enhancing protection
for artists and image owners outweigh the risks of misuse of
our findings, particularly as we will not make the source code
publicly accessible. Access to the source code will be granted
only upon request after a thorough review of the request and
confirmation of its intent (see Sect. 9.2).

Additionally, in our research, we considered pre-compiled
binaries for Glaze and NightShade. To ensure that the de-
velopers of these tools can appropriately respond and make
necessary adaptations, we plan to disclose our findings to
them prior to the publication of this work upon acceptance of
this manuscript.

Regarding justice concerns, we noticed that the websites
offering binaries for Glaze and NightShade do not specify
terms of use [24, 25]. The source code provided by Shan
et al. on GitHub [23] is distributed under the GNU GPLv3
license, which allows for its use and modification. Therefore,
we believe that our research respects justice considerations
and is aligned with legal and public interest standards.

To ensure a comprehensive evaluation, we performed a
user study showing LightShed’s effectiveness. The study was
strictly aligned with the IRB rules of our institution. Besides
the answers to the image-comparison questions, no other data
was collected as part of the user study.

9.2 Open Science Considerations
In our research, we also considered the pre-compiled binary
files for Glaze and NightShade. Although these binaries are
not commercial products, they could be utilized by artists
or image owners. The potential use of these protection tech-
niques, even by a single person, raises significant concerns
regarding the impact of this person’s copyright if LightShed’s
source code were made publicly available.

To ensure that LightShed is used only responsibly for future
research, it is, therefore, essential to prioritize the protection
of copyrighted material and respect the rights of creators. This
involves balancing the advancement of AI capabilities with
the need to protect the interests of content creators and other
stakeholders. Therefore, the source code for LightShed will
only be made available upon request, with the confirmation
that it be used only for responsible research purposes: https:
//zenodo.org/records/14727581

Acknowledgment

This research received funding from the Horizon program of
the European Union under grant agreements No. 101093126
(ACES) and No. 101070537 (CROSSCON), OpenS3 lab, as
well as the Federal Ministry of Education and Research of
Germany (BMBF) within the IoTGuard project. Further, this
research was supported by Tazaki-Cambridge Studentship
as part of the Cambridge Trust funding. Murtuza Jadliwala
was partially supported by UTSA’s Faculty Development
Leave (FDL) program and by the National Science Foun-
dation (NSF) under award number 1943351.

References

[1] Shengwei An, Lu Yan, Siyuan Cheng, Guangyu Shen,
Kaiyuan Zhang, Qiuling Xu, Guanhong Tao, and Xi-
angyu Zhang. Rethinking the invisible protection
against unauthorized image usage in stable diffusion.
In USENIX Security. USENIX Association, 2024.

[2] Bochuan Cao, Changjiang Li, Ting Wang, Jinyuan Jia,
Bo Li, and Jinghui Chen. Impress: evaluating the re-
silience of imperceptible perturbations against unau-
thorized data usage in diffusion-based generative ai.
NeurIPS, 2024.

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial
nets. In NIPS, 2014.

[4] Kashmir Hill. This tool could protect artists from
a.i.-generated art that steals their style. https:
//www.nytimes.com/2023/02/13/technology/ai-
art-generator-lensa-stable-diffusion.html,
2023. Accessed: 2024-08-29.

[5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. In NeurIPS, 2020.

[6] Robert Hönig, Javier Rando, Nicholas Carlini, and Flo-
rian Tramèr. Adversarial perturbations cannot reliably
protect artists from generative ai. In arXiv preprint
arXiv:2406.12027, 2024.

https://zenodo.org/records/14727581
https://zenodo.org/records/14727581
https://www.nytimes.com/2023/02/13/technology/ai-art-generator-lensa-stable-diffusion.html
https://www.nytimes.com/2023/02/13/technology/ai-art-generator-lensa-stable-diffusion.html
https://www.nytimes.com/2023/02/13/technology/ai-art-generator-lensa-stable-diffusion.html

[7] Tero Karras, Samuli Laine, and Timo Aila. A style-
based generator architecture for generative adversarial
networks. In CVPR, 2019.

[8] LAION. Laion-aesthetics dataset. https://laion.ai/
blog/laion-aesthetics/, 2022-08-16. Accessed:
2024-08-31.

[9] Liangqi Lei, Keke Gai, Jing Yu, and Liehuang Zhu.
Diffusetrace: A transparent and flexible watermark-
ing scheme for latent diffusion model. arXiv preprint
arXiv:2405.02696, 2024.

[10] Xiang Li, Qianli Shen, and Kenji Kawaguchi. Va3: Vir-
tually assured amplification attack on probabilistic copy-
right protection for text-to-image generative models. In
CVPR, 2024.

[11] Chumeng Liang and Xiaoyu Wu. Mist: Towards im-
proved adversarial examples for diffusion models. arXiv
preprint arXiv:2305.12683, 2023.

[12] Hanwen Liu, Zhicheng Sun, and Yadong Mu. Counter-
ing personalized text-to-image generation with influence
watermarks. In CVPR, 2024.

[13] Yixin Liu, Chenrui Fan, Yutong Dai, Xun Chen, Pan
Zhou, and Lichao Sun. Metacloak: Preventing unau-
thorized subject-driven text-to-image diffusion-based
synthesis via meta-learning. In CVPR, 2024.

[14] Thao Nguyen, Samir Yitzhak Gadre, Gabriel Ilharco,
Sewoong Oh, and Ludwig Schmidt. Improving mul-
timodal datasets with image captioning. In NeurIPS,
2024.

[15] Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao,
Arash Vahdat, and Anima Anandkumar. Diffusion
models for adversarial purification. arXiv preprint
arXiv:2205.07460, 2022.

[16] Minzhou Pan, Zhengting Wang, Xin Dong, Vikash Se-
hwag, Lingjuan Lyu, and Xue Lin. Finding needles in a
haystack: A black-box approach to invisible watermark
detection. arXiv preprint arXiv:2403.15955, 2024.

[17] Pytorch, 2019. https://pytorch.org.

[18] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. In ICML. PMLR, 2021.

[19] RaiMan. SikuliX, 2019. www.sikulix.com/ Accessed:
2024-07-03.

[20] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya
Sutskever. Zero-shot text-to-image generation. In ICML.
PMLR, 2021.

[21] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In CVPR, 2022.

[22] Shawn Shan, Jenna Cryan, Emily Wenger, Haitao Zheng,
Rana Hanocka, and Ben Y Zhao. Glaze: Protecting
artists from style mimicry by Text-to-Image models. In
USENIX Security. USENIX Association, 2023.

[23] Shawn Shan, Wenxin Ding, Josephine Passananti, Stan-
ley Wu, Haitao Zheng, and Ben Y Zhao. Nightshade:
Prompt-specific poisoning attacks on text-to-image gen-
erative models. In S&P. IEEE Computer Society, 2024.

[24] Shawn Shan, Josephine Passananti, and Stan-
ley Wu. Download nightshade. https:
//nightshade.cs.uchicago.edu/downloads.html.
Accessed: 2024-07-03.

[25] Shawn Shan, Stanley Wu, Josephine Passananti, Ronik
Bhaskar, and Lynds Gallant. Glaze. https://
glaze.cs.uchicago.edu/. Accessed: 2024-08-27.

[26] Sunpreet Sharma, Ju Jia Zou, and Gu Fang. A novel
multipurpose watermarking scheme capable of protect-
ing and authenticating images with tamper detection and
localisation abilities. IEEE Access, 10:85677–85700,
2022.

[27] Sunpreet Sharma, Ju Jia Zou, and Gu Fang. A single wa-
termark based scheme for both protection and authenti-
cation of identities. IET Image Processing, 16(12):3113–
3132, 2022.

[28] Sunpreet Sharma, Ju Jia Zou, Gu Fang, Pancham Shukla,
and Weidong Cai. A review of image watermarking for
identity protection and verification. Multimedia Tools
and Applications, 83(11):31829–31891, 2024.

[29] Kareem Shehata, Aashish Kolluri, and Prateek Saxena.
Clue-mark: Watermarking diffusion models using clwe.
arXiv preprint arXiv:2411.11434, 2024.

[30] Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In
ICML. PMLR, 2015.

[31] Catherine Thorbecke. ‘it gave us some
way to fight back’: New tools aim to pro-
tect art and images from ai’s grasp. https:
//edition.cnn.com/2023/08/12/tech/ai-images-
photos-protection/index.html, 2023. Accessed:
2024-08-29.

https://laion.ai/blog/laion-aesthetics/
https://laion.ai/blog/laion-aesthetics/
https://pytorch.org
www.sikulix.com/
https://nightshade.cs.uchicago.edu/downloads.html
https://nightshade.cs.uchicago.edu/downloads.html
https://glaze.cs.uchicago.edu/
https://glaze.cs.uchicago.edu/
https://edition.cnn.com/2023/08/12/tech/ai-images-photos-protection/index.html
https://edition.cnn.com/2023/08/12/tech/ai-images-photos-protection/index.html
https://edition.cnn.com/2023/08/12/tech/ai-images-photos-protection/index.html

[32] Thanh Van Le, Hao Phung, Thuan Hoang Nguyen, Quan
Dao, Ngoc N Tran, and Anh Tran. Anti-dreambooth:
Protecting users from personalized text-to-image syn-
thesis. In ICCV, 2023.

[33] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pe-
dro Cuenca, Nathan Lambert, Kashif Rasul, Mishig
Davaadorj, Dhruv Nair, Sayak Paul, William Berman,
Yiyi Xu, Steven Liu, and Thomas Wolf. Diffusers: State-
of-the-art diffusion models. https://github.com/
huggingface/diffusers, 2022.

[34] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error vis-
ibility to structural similarity. IEEE transactions on
image processing, 13(4):600–612, 2004.

[35] Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang,
Daxin Jiang, and Nan Duan. Nüwa: Visual synthesis pre-
training for neural visual world creation. In European
conference on computer vision. Springer, 2022.

A Dataset Generation

We aligned our dataset selection with the work of Shan
et al. [23] by using the LAION-Aesthetics 120M dataset [8]
as the source for generating datasets for each attack scheme.
While we focus primarily on NightShade, other protection
schemes such as Glaze, Mist, and MetaCloak are also in-
cluded. We generated the poisoned images using the offi-
cial repositories for MetaCloak [13], Mist [11], and Night-
Shade [23]. Notably, the NightShade repository, although
published by the authors, differs from the algorithm described
in the paper. As the repository states, the provided source
code uses the Linf metric. We carefully replaced the Linf
metric with the LPIPS metric that is described in the Night-
Shade paper [23]. We generated images using a p-value of
0.07 as defined by Shan et al. (denoted in the following as
NightShade), but also evaluated LightShed’s effectiveness for
different variations, using p=0.004 (denoted as NightShade
LPIPS 0.004) and Linf (referred to as NightShade Linf). Fur-
ther, we generated another set of protected images by utilizing
the compiled binary applications for NightShade and Glaze
being provided by their authors [24, 25]. To speed up the
generation of poisoned images, we automated running these
binary applications using the SikuliX automation tool [19].
These datasets are used for training and evaluating LightShed,
facilitating a comprehensive evaluation of its detection ca-
pabilities as detailed in Sect. 5.3, and the effectiveness of
various depoisoning methods, which are further investigated
in Sect. 5.6.

The separation between the training and test datasets is
shown in Table 1. Due to the time-intensive nature of gen-
erating poisoned images, the datasets for NightShade and
Glaze binary applications, Mist, and MetaCloak contain less

images. For instance, creating poisoned images with binary
applications is implemented on computers with an Intel Core
i7 CPU, 16GB main Memory, and an NVIDIA GeForce RTX
2070. Generating each poisoned image takes approximately
5 minutes. Generating MIST-poisoned images takes around
2 minutes per image, and NightShade poisoned images with
provided code using Linf and LPIPS require approximately
48 seconds on our main server. For a batch size of 32 images,
generating a batch of MetaCloak images took approx. 4 hours
on this server.

B Details on User Study

B.1 Study Design
Following the methodology established in prior work on at-
tacks against image generators [6], we conducted a user study
through Amazon Mechanical Turk (mTurk). The user study
was performed strictly following the institution’s IRB rules.
We recruited participants who had achieved Master status on
mTurk and maintained an approval rate of at least 50%. Each
batch contained 60 image pairs for comparison. Each pair
consisted of one image from a clean model and another from
a model fine-tuned on attacked data. The study evaluated four
defense approaches (No Defense, Upscaling, Denoising, and
LightShed) against five attack techniques (NightShade [23],
NightShade with Linf metric [23], NightShade Binary [24],
Glaze [25], and Mist [11]), with three samples per configu-
ration in each batch. This resulted in 60 comparison images
per batch. We incorporated 10 additional control comparisons
to verify participant attention. Within each comparison, we
randomized the positioning of the clean and attacked-model
images. Participants who successfully completed the attention
checks received $9.99 per batch. We allocated 30 seconds for
evaluating each sample and 5 minutes for reading instructions
and reviewing training samples, initially setting a total time
limit of 40 minutes. Based on participant feedback about tim-
ing constraints near completion, we extended the total allowed
time to 60 minutes.

The participants assessed the images using five criteria:

• Less Noise: Which image has less noise/background
noise/salt pepper noise/background artifacts?

• More Detail: Which image has more detail?

• Concept Fit: Which image fits the description "dog"
better?

• Prompt Fit: Overall, ignoring quality, which image bet-
ter fits the prompt "photo of a dog"?

• Overall Quality: Based on noise, artifacts, detail,
prompt fit, and your impression, which image looks more
like a realistic photo of a dog?

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

Plain Attack Upscaling LightShed LightShed + Upscaling

Prom
pt

Fit

Con
ce

pt
Fit

Ove
ral

l Q
ua

lity

Less
Nois

e

M
ore

Deta
il

0

20

40

60

80

100

Evaluation Criteria

Pe
rc

en
ta

ge
(%

)

(a) Overall Comparison

Prom
pt

Fit

Con
ce

pt
Fit

Ove
ral

l Q
ua

lity

Less
Nois

e

M
ore

Deta
il

0

20

40

60

80

100

Evaluation Criteria

Pe
rc

en
ta

ge
(%

)

(b) NightShade

Prom
pt

Fit

Con
ce

pt
Fit

Ove
ral

l Q
ua

lity

Less
Nois

e

M
ore

Deta
il

0

20

40

60

80

100

Evaluation Criteria

Pe
rc

en
ta

ge
(%

)

(c) NightShade Linf

Prom
pt

Fit

Con
ce

pt
Fit

Ove
ral

l Q
ua

lity

Less
Nois

e

M
ore

Deta
il

0

20

40

60

80

100

Evaluation Criteria

Pe
rc

en
ta

ge
(%

)

(d) NightShade Binary

Prom
pt

Fit

Con
ce

pt
Fit

Ove
ral

l Q
ua

lity

Less
Nois

e

M
ore

Deta
il

0

20

40

60

80

100

Evaluation Criteria

Pe
rc

en
ta

ge
(%

)

(e) Glaze

Prom
pt

Fit

Con
ce

pt
Fit

Ove
ral

l Q
ua

lity

Less
Nois

e

M
ore

Deta
il

0

20

40

60

80

100

Evaluation Criteria

Pe
rc

en
ta

ge
(%

)

(f) Mist

Figure 9: Results of user study for individual attacks as well as overall comparison. The results indicate the likelihood (in
percentages) that participants selected the clean image as better fitting across evaluation criteria, showing LightShed’s ability to
mitigate the perturbations.

At the start of the survey, we provided detailed explanations
and 7 example comparisons, covering all 5 questions.

To generate the samples, we trained diffusion models for
2 000 epochs. For the NightShade scenarios, our training
dataset consisted of 200 manipulated dog images combined
with 800 clean samples. For other attack approaches focusing
on full dataset control, we used only 200 manipulated samples.
The clean diffusion model was trained using 1000 unmodified
samples.

Using the unified threshold of 0.07028048 from our gen-
eralization experiments (see Sect. 5.3), we evaluated the de-
tection performance across all images. From the 800 clean
images, 6 were falsely flagged as poisoned. All 200 images
poisoned by NightShade, NightShade Linf, and Mist were
correctly identified as poisoned. For NightShade Binary and
Glaze Binary, 8 and 7 images respectively were incorrectly
classified as clean. Based on these detection results, we sub-
sequently applied the depoisoning techniques.

B.2 Attention Checks

We inserted a number of attention checks to verify that users
answered carefully:

1. Before the first comparisons, we placed a checkbox ask-
ing the users to confirm that they read the instructions as
well as the training samples and understand them.

2. At the end of the instructions, we provided a codeword
"image". After the first checkbox, we asked them to type
the code word.

3. We repeated the checkbox after 35 samples.

4. We introduced control questions, where a clean dog im-
age is compared to a different concept (car, human, and
hat), contains obvious artifacts, or is modified through a
salt-and-pepper noise. We considered this criterion to be
failed if more than 2 control questions were answered
wrong.

We excluded a submission from our evaluation if any indi-
vidual attention check criterion was not met. We declined
compensation if either (1) participants failed two or more
attention check criteria or (2) incorrectly answered more than
three control questions comparing dogs to different concepts.

B.3 Detailed Study Results
We present the study results in Fig. 9, which shows the proba-
bility of users preferring images generated by models trained
on clean data versus those generated by models trained on
defended data. For each attack and defense configuration, par-
ticipants compared outputs from two models: one fine-tuned
on clean data and another fine-tuned on data processed by
different defense methods. Fig. 9a summarizes these compar-
isons across all perturbation techniques. When we applied

our defense methods (Upscaling, LightShed, or LightShed +
Upscaling) to detect and process poisoned training data, the
resulting fine-tuned models produced images of comparable
quality to those trained on clean data. The decreasing prefer-
ence for images from clean-trained models over those from
defended-trained models indicates successful mitigation of
poisoning effects. Among the defense methods, LightShed
showed better and more efficient performance at removing
poison than plain Upscaling.

Individual results for each perturbation technique are
shown in the remaining subfigures. For the NightShade attack
(Fig. 9b), all defense methods improved the quality of gen-
erated images, with LightShed + Upscaling yielding the best
results in terms of reduced noise and overall image quality.
This aligns with our discussion in Sect. 4 about the benefits
of combining these two approaches. For the NightShade Linf
attack (Fig. 9c), while all defense methods showed improve-
ment, LightShed alone achieved the best performance. The
relatively lower performance of Upscaling in this case may
be attributed to artifacts introduced during Upscaling when
stronger parameters are applied for higher denoising effects.

Results for NightShade Binary and Glaze Binary attacks
are shown in Figures 9d and 9e. Both perturbation techniques
demonstrated limited effectiveness, with generated images
showing minimal quality differences compared to those from
clean-trained models. This aligns with our automated CLIP-
based detection results (Fig. 8). The suboptimal performance
of Upscaling can likely be attributed to artifacts generated
during the process, while the minor variations across all de-
fense methods likely stem from the stochastic nature of the
image generation process.

Finally, Fig. 9f shows the results for Mist. Although the
methods did not completely eliminate the impact of the at-
tack, they performed notably well in reducing noise. Observ-
ing images generated by models fine-tuned with Mist images
suggests that the residual effects are due to line noise arti-
facts introduced during the process (see Fig. 10i). Moreover,
for Mist, we had access to significantly fewer samples for
training LightShed. This suggests that increasing the num-
ber of training samples might further improve LightShed’s
performance.

B.4 Sample Images

Fig. 10 shows images being generated using the different
perturbation techniques and defense combinations in the user
study. As the figure shows, while without defense or with plain
upscaling, the images contain artifacts or are not concept-
aligned, the use of LightShed effectively mitigates the impact
of the perturbation.

C Applicability to Cryptographic Watermarks

Watermarking techniques for diffusion models can be cate-
gorized into two groups: output protection and training data
protection. In the following, we discuss the applicability of
LightShed’s to both categories.

Output Protection: Some watermarking techniques, such
as DiffuseTrace [9] and CLUE-MARK [29], incorporate cryp-
tographic methods for protecting model outputs. These tech-
niques aim to ensure the traceability of AI-generated content
by allowing the model trainers to embed watermarks in the
outputs. However, these techniques focus on post-generation
protection and are applied by the party training the diffusion
model. Since they are applied by the party that is training the
model during the training and not on the data-owning party,
they fall outside the scope of this paper.

Training Data Protection: Cryptographic watermarking
methods, such as the approach by Sharma et al. [26], use
encryption keys to embed robust watermarks via the Fisher-
Yates shuffle algorithm. These watermarks are embedded in
the frequency domain, and the same key is required for extrac-
tion and verification. Similarly, Kamili et al. [27] propose a
method that embeds watermarks in both frequency and spatial
domains using chaotic and DNA-based encryption keys for
enhanced security. As noted by Sharma et al. [28], the encryp-
tion keys are fundamental for securely embedding, accurately
extracting, and proving ownership of the watermark.

When cryptographic watermarking is applied to diffusion
model inputs, the persistence of the watermark during model
training depends heavily on its configuration. Using a sin-
gle trapdoor key for all inputs might allow the watermark
to be generalized by the model but would also enable our
approach LightShed to identify and remove the watermark,
and even non-ML methods might achieve this. To avoid this,
unique keys for each input would be required. However, this
approach would prevent the diffusion model from general-
izing the watermarking process, as it would need to learn
the encryption scheme, generate new keys, and embed them
in generated images. Therefore, the model would either (i)
fail to learn any watermark or (ii) produce patterns that lack
meaningful content. In the first scenario, where the diffusion
model fails to learn any watermark it will be unable to em-
bed any perturbations to the image. In the second scenario,
the diffusion model might introduce perturbations into the
generated images. However, these perturbations would not
contain interpretable content when using the watermarking
key. In comparison, if the watermark’s characteristics enable
the diffusion model to generate new watermarks, LightShed
could also generalize the watermarking scheme and efficiently
extract the embedded watermarks.

(a) Binary No Defense (b) Binary LightShed (c) Binary LightShed + Upscaled (d) Binary Upscaled

(e) Glaze No Defense (f) Glaze LightShed (g) Glaze LightShed + Upscaled (h) Glaze Upscaled

(i) Mist No Defense (j) Mist LightShed (k) Mist LightShed + Upscaled (l) Mist Upscaled

(m) NightShade No Defense (n) NightShade LightShed (o) NightShade LightShed + Upscaled (p) NightShade Upscaled

(q) Linf No Defense (r) Linf LightShed (s) Linf LightShed + Upscaled (t) Linf Upscaled

Figure 10: Comparison of images generated as for the user-study using different perturbation techniques and defense combina-
tions.

	Introduction
	Background
	Diffusion Models
	Copyright Protection Schemes

	Problem Setting
	System and Adversary Setting
	Requirements and Challenges

	LightShed
	Motivation
	High-Level Overview
	Poison Reconstruction
	Entropy Cut-Off
	Poison Subtraction

	Evaluation
	Experimental Setup
	Evaluation Metrics
	Detection Performance of LightShed
	Effect of Image Augmentation
	Quality of Generated Poison
	Depoisoning Performance of LightShed
	User Study

	Discussion
	Impact of LightShed
	Limitations of LightShed
	Incentives for Robust Image Protection

	Related Work
	Targeted Mitigations
	Untargeted Mitigations

	Conclusion
	Ethics and Open Science Considerations
	Ethics Considerations
	Open Science Considerations

	Dataset Generation
	Details on User Study
	Study Design
	Attention Checks
	Detailed Study Results
	Sample Images

	Applicability to Cryptographic Watermarks

