
A Mixed-Methods Study of Open-Source Software Maintainers On
Vulnerability Management and Platform Security Features

Jessy Ayala, Yu-Jye Tung, Joshua Garcia
University of California, Irvine

Abstract
In open-source software (OSS), software vulnerabilities have
significantly increased. Although researchers have investi-
gated the perspectives of vulnerability reporters and OSS
contributor security practices, understanding the perspectives
of OSS maintainers on vulnerability management and plat-
form security features is currently understudied. In this paper,
we investigate the perspectives of OSS maintainers who main-
tain projects listed in the GitHub Advisory Database. We
explore this area by conducting two studies: identifying as-
pects through a listing survey (n1 = 80) and gathering insights
from semi-structured interviews (n2 = 22). Of the 37 identi-
fied aspects, we find that supply chain mistrust and lack of
automation for vulnerability management are the most chal-
lenging, and barriers to adopting platform security features
include a lack of awareness and the perception that they are
not necessary. Surprisingly, we find that despite being previ-
ously vulnerable, some maintainers still allow public vulner-
ability reporting, or ignore reports altogether. Based on our
findings, we discuss implications for OSS platforms and how
the research community can better support OSS vulnerability
management efforts.

1 Introduction

The open-source software (OSS) ecosystem invites different
kinds of reporters, contributors, and maintainers, creating a
deeply integrated ecosystem crucial to the modern software
supply chain. OSS projects range from software on which
many others depend on to software that depends on many
others. The pervasiveness of OSS is evident in a recent re-
port by Synopsys [94], where they found that 96% of 1,067
codebases they scanned across 17 industries contained use of
OSS.

Given the pervasiveness of OSS, OSS software vulnera-
bilities deep within the software supply chain can have a
crippling effect on society [33, 37, 42]. At the forefront of
defending against these vulnerabilities are OSS maintainers
who oversee those projects, where many may not have ex-

perience handling a security incident [101]. OSS platforms
such as GitHub offer various platform security features (e.g.,
dependency management [52]), but these features have been
underutilized [11, 12, 14, 15]. With the many responsibili-
ties of being a maintainer, some have felt burned out [67]
or left their project completely [63]. The recent xz-utils
incident [80] in which an XZ Utils maintainer, who joined
the project two years earlier, maliciously introduced a vulner-
ability in the project further highlights the challenges existing
maintainers face in vulnerability management and mistrust in
the software supply chain. While several studies focus on the
perspectives of vulnerability reporters [4,6,39,60,71,75,108]
and the security practices of OSS contributors [57,101], there
exist knowledge gaps concerning the perspectives of OSS
maintainers, especially those who own previously vulnerable
projects.

In this paper, we conduct a mixed-methods study that sys-
tematically identifies and quantifies the factors that affect OSS
project maintainers’ involvement in conducting vulnerabil-
ity management. Unlike prior work, we focus on recruiting
OSS maintainers who maintain previously vulnerable projects,
sourced from the GitHub Advisory Database and focusing on
underused platform security features, and share experiences
to allow researchers and OSS platforms to prioritize exploring
efforts for improving the vulnerability management lifecycle,
i.e., for those with little or no security background. To do so,
we explore the following research questions:

RQ1: How do OSS maintainers with previously vulnerable
OSS projects currently conduct vulnerability management?
What are the challenges they face?

RQ2: Why are platform security features underutilized in
previously vulnerable OSS projects? What are the chal-
lenges and barriers to adopting such features?

We conduct two studies, described in Section 3, to address
our RQs: a survey (n1 = 80) to list current practices, general
vulnerability management challenges, platform security fea-
ture challenges, platform security feature barriers, and wanted

features or improvements, and conduct semi-structured inter-
views (n2 = 22) study to contextualize overall survey results.
Our primary contributions are as follows:

• We are the first to investigate vulnerability management
challenges that OSS maintainers, whose projects have
a history of patched vulnerabilities, face regarding plat-
form security features using GitHub Advisory Database.

• We confirm previously discovered challenges, and fur-
ther unveil novel challenges and barriers, OSS maintain-
ers face when using current platform security features.
Further, we systematically determine the breadth of se-
curity tooling and practices OSS maintainers use.

• We provide an in-depth discussion, including sugges-
tions and actionable items, which have corresponding in-
sights to improve the OSS maintainer security processes,
and have made our questionnaires for both studies pub-
licly available [2] to facilitate future research.

Section 4 describes participant demographics and their
backgrounds. We present results in Section 5. In summary,
supply chain trust and a lack of understanding are the top
general challenges. Limited automation, vulnerability scor-
ing, and missing CI processes or features for vulnerability
management, are particularly challenging and understudied
for platform security features. The most prominent barriers
to adopting platform security features are a lack of aware-
ness, poor usability of such features, the complexity of their
setup and usage, and the perception that they are unnecessary.
We also report wants from OSS maintainers to improve vul-
nerability management efforts, the most listed being assisted
analysis and triaging, e.g., to automatically triage false pos-
itives, assisted platform security feature setup, e.g., setting
up a security policy, and funding to be specifically used for
security efforts, e.g., a bounty pool.

In Section 6, we discuss implications, i.e., based on sig-
nificant challenges and barriers, for stakeholders involved in
the vulnerability management lifecycle and future work that
encourages researchers to develop tooling that minimizes re-
gressions in the security context, advances current approaches
working towards automated vulnerability scoring, and im-
proving the usability of platform security features so that
OSS maintainers have purpose to adopt them. Finally, we
conclude in Section 7.

2 Related Work

The openness of OSS invites various areas of studies, includ-
ing automatic commit message generation [30, 70, 73], the
pull-request development model [43, 55, 98, 107], and histori-
cal analysis of vulnerabilities [38, 59]. To position our work
in the body of literature on OSS, we focus our discussion
of prior work through the following lenses: (1) vulnerability
management in the OSS ecosystem; (2) the role that platform
security features (PSFs) play in vulnerability management of
the OSS ecosystem, including their benefits and challenges in
adoption; and (3) challenges and support for OSS maintainers.

Vulnerability management in the OSS ecosystem Our
study centers around vulnerability management since it plays
an important role in OSS. Lack of effective vulnerability
management can affect trust [9, 45], causing maintainers and
users to abandon a project. Prior work had found current
OSS vulnerability management to be insufficient by mining
repositories [11, 12, 14, 17, 69] and analyzing commits [17]
and analyzing security patches [25, 69]. Ayala et al. [11]
found a lack of security policy for many GitHub repositories.
Bandara et al. [17] and Li et al. [69] found that initial security
fixes are often insufficient, requiring multiple fixes. Li et al.
[69] further found that a third of the security issues remain in
repositories for three years before remediation, indicating a
potential lack of effective vulnerability management practices.

Prior work had also studied vulnerability management by
interviewing security practitioners [9] and OSS maintain-
ers [101]. Alomar et al. [9] studied vulnerability discovery
and management processes from the perspective of organiza-
tions. They found that organizations may take on vulnerability
management for compliance reasons rather than improving
the security of their products, with some organizations even
asking pen-testers (external security experts) to lower the
severity rating of vulnerabilities they discovered. Wermke et
al. [101] interviewed 27 OSS maintainers to understand their
behind-the-scene processes (e.g., vulnerability management,
processes for security and trust). Wermke found that most
maintainers include a disclosure policy or contact for secu-
rity issues in their projects. However, security plays a minor
role in the many hats that maintainers wear: Only a small
number of maintainers (5/27) knew of a security role in their
projects, four maintainers did not have a disclosure policy
or contract for security issues, and few maintainers had dealt
with security incidents. Our work focuses on maintainers who
have experienced security incidents and aims to understand
how platforms like GitHub can better support vulnerability
management and secure the OSS ecosystem.

The role of OSS platform security features (PSFs) in vul-
nerability management PSFs offered directly on the OSS
platforms provide easy access for OSS maintainers to use for
vulnerability management. PSFs such as dependency manage-
ment tools (e.g., Dependabot [52], Renovate Bot [76], Green-
keeper [24]) notify maintainers of dependency updates (e.g.,
vulnerability fixes, version updates). Prior work [7, 40, 81]
found Dependabot to be helpful in vulnerability management,
where most vulnerable dependencies identified by Depend-
abot were addressed within several days [81] or a day [7].
GitHub also found that 60% more vulnerability-related, auto-
mated pull requests were merged in 2023 than in 2022 [53].
Mirhosseini et al. [79] found that maintainers update depen-
dencies 1.6x more frequently with Greenkeeper than without
because of the automated pull requests feature. However, they
also found that the automated pull request feature can cre-
ate too many pull requests, generating significant noise and
causing notification fatigue. Others also found that the noise

from dependency management tools to be a significant pain
point for OSS maintainers despite their benefits [22, 56, 103].
Wessel et al. [102] introduced the idea of a meta-bot to miti-
gate noise. He et al. [56] found that Renovate Bot is a popular
migration target from Dependabot. One reason for this is Ren-
ovate Bot’s auto-merge feature, which automatically merges
pull requests for minor or patch dependency updates.

Aside from dependency management tools that retrospec-
tively fix security issues, PSFs such as static code analysis
tools can be used to proactively detect security issues; how-
ever, Ayala et al. [11] found that they are underutilized by OSS
maintainers. One plausible explanation is the noise or false
positives that static code analysis tools generate [64,100,105].
Our work confirms the aforementioned challenges of using
PSFs, unveils further challenges, and provides suggestions to
improve PSF adoption.

Two popular forms of support for OSS maintainers prior
work studied are gamification [31, 82, 97] and donations [87,
92]. Dabbish [31] found that maintainers appreciate “signals
of attention,” e.g., visible cues letting maintainers know that
someone found their projects interesting. Trockman et al. [97]
also found the use of gamification to be positive. In particular,
badges such as quality assurance badges positively correlate
with developers improving their test suites. They also specu-
late the usefulness of badges for bug fixing, stating, “One can
imagine other badges with gamification value [e.g., around
bug fixing] being used in the future to encourage desirable
practices.” However, Molden et al. [82] cautioned the use
of gamification on GitHub, such as the daily activity streak
features. They found that gamification may elicit unwanted
behaviors, e.g., making contributions only to maintain activity
streak. Besides gamification, another popular form of support
is monetary incentives [87,92]. Prior work found that GitHub
Sponsors [92], a service provided by GitHub for maintainers
to accept donations, are more effective than GitHub maintain-
ers asking for donations using other donation platforms (e.g.,
PayPal, Patreon, Flattr) [87]. Our work provides guidance on
how gamification and funding can be used to promote PSF
adoption and improve vulnerability management practices.

Challenges and support for OSS maintainers Besides the
challenges that afflict PSF usage, OSS maintainers face other
challenges: toxicity [13, 63, 67, 77, 88] and limited person-
power [67, 101]. Similar to other platforms such as Reddit,
OSS platforms are also plagued by toxicity [77]. Toxic secu-
rity reporters, even with good intentions, may jeopardize the
timeliness of maintainers fixing reported issues [34]. Toxicity
can strain maintainers emotionally [77], causing maintainers
to burn out [67] or even leave the project [63]. In the context
of dealing with bug bounty reports, the authors of [13] un-
cover that OSS maintainers find the diverted focus on money
or CVEs from bug hunters and pressure to review reports the
most challenging to deal with, especially with the threat of
early vulnerability disclosures prior to patching. In addition
to dealing with toxic reporters, which includes other maintain-

ers [77], OSS projects, particularly smaller ones, are generally
limited in personpower. On how to attract new contributors
to increase personpower, Balali et al. [16] detailed 13 strate-
gies. However, most of the one-time contributors have no
intention to become a long-time contributor [68]. Unlike the
aforementioned studies, our mixed-methods study focuses on
the challenges arising for OSS maintainers with vulnerability
management, especially platform security features involving
the GitHub Advisory Database.

3 Methodology

In this section, we provide an overview of our study approach
and the outline of the semi-structured interviews. We
also discuss ethics, the qualitative coding process, report
on our data collection, and discuss study limitations. We
designed and conducted two studies to investigate our
research questions. A listing survey study to determine
factors (collected from 04/2024 to 07/2024) and an interview
study (conducted from 05/2024 to 08/2024). The listing
study allows us to understand current practices, challenges
associated with, and needs of OSS project maintainers. We
conduct a follow-up interview study to contextualize results.
Ethics To comply with GitHub’s terms of service [50], we
only reached out to maintainers who have publicly available
contact information advertised as reachable to the general
public, e.g., in text as a part of their profile introduction mark-
down, or through an external website, e.g., a personal home-
page. Our institution’s ethics review board approved both
studies. Participants signed consent forms detailing study
plans and participant rights before data collection. Further,
our study is GDPR-compliant. We discuss ethics in recruiting
specialized OSS maintainer populations in Section 8.

3.1 Listing survey study
To identify factors, e.g., challenges, that impact OSS vulnera-
bility management practices, we conducted an online survey
on OSS maintainers who own previously vulnerable projects
using entries from the GitHub Advisory Database (n1 = 80).

3.1.1 Participant recruitment and piloting

Before reaching out to OSS project maintainers who maintain
projects with reviewed GitHub security advisories, we scrape
the most recent 1,450 advisories per severity category, i.e.,
Low, Medium, High, and Critical, resulting in 5,096 advisories
since there were under 1,450 Low reviewed advisories listed.

We filtered the advisories that were tied to projects hosted
on GitHub using advisory metadata, resulting in just over
2,000 unique GitHub projects. Two researchers then manually
examined project organizations and profiles for metadata, dis-
carding projects that do not fall under our IRB-approved proto-
col, which excludes subjects who reside in OFAC-sanctioned
countries and regions, e.g., the qq.com email suffix. Thus,
leaving us with 1,920 unique GitHub projects to potentially

recruit from. To further comply with GitHub’s terms of ser-
vice [50], two researchers then manually examined GitHub
profiles, discarding subjects who do not have publicly avail-
able contact information advertised as reachable to the general
public, through an external website, or social media.

We piloted the survey with ten respondents and reviewed
the quality of responses, i.e., making sure the instructions
were clear to create a list for each free-response question, for
the listing survey study described in Section 3.1.2. We then
made wording updates to gather as many listing responses as
possible to generate codes for categories shown in Table 2.

3.1.2 Survey details

For each question, we informed that study participants should
list all tooling and factors they use when conducting vulnera-
bility management. We use an open-ended listing approach
for free-response questions called free-listing [18], common
in research when a domain is understudied, to elicit a full
breadth of responses. Next, we asked participants to self-
report OSS maintenance and industry experience, if they have
a security background, project funding, and how often their
vulnerability management process is reviewed. We ended with
demographic questions to understand our population. The full
outline and questions asked can be found in our artifact [2].

Prior work has not systematically determined the breadth of
security tooling and practices OSS maintainers use. Instead,
it has studied specific tooling in specific contexts, e.g., de-
pendency tooling [8, 56, 79], static code analysis [65, 100,
105], and what OSS stakeholders implement for incident-
handling [11, 101], while we focus on OSS maintainers since
they are the primary point-of-contact for handling vulner-
abilities. Prior work informs our survey design, which ex-
plores the breadth of approaches, challenges, and tooling
GitHub OSS maintainers use to improve their projects’ se-
curity, which is currently understudied; our survey addition-
ally draws from the Getting started GitHub security features
guide [49] and established initiatives that inform OSS main-
tainers on how to approach vulnerability management, e.g.,
guides from OpenSSF [91].

3.1.3 Data analysis

We analyzed listing survey responses with exploratory open-
coding [90]. Two researchers independently coded batches
of ten responses at a time; further, resolving differences and
updating the codebook after each batch. Because the survey
lent itself to multiple listings per category, we were able to
create an initial codebook from 27/80 (33.8%) respondents,
resulting in 23/37 (62.2%) factors in Table 2. In particular,
two researchers analyzed the same 34 participant responses
by engaging in open coding [27] and discussing the initial
emerging themes, meeting five times. Both researchers then
independently coded the remaining 46 responses in batches of
6 and met frequently to discuss findings and reach a consensus,
resulting in 14 emerging codes after the initial analysis. The

final 11 responses were received after the final codebook was
established, i.e., coders met synchronously to fit them within
the appropriate existing codes,containing 37 codes in Table 2.

3.2 Interview study
We asked consenting and interested listing study participants
to participate in remote semi-structured interviews to learn
more about why the identified factors and tooling listed are es-
pecially important to them and how such listings fit in current
vulnerability management practices (n2 = 22).

3.2.1 Participant recruitment and piloting

Interviewees were a subset of the initial Listing survey study
described in Section 3.1. If respondents were interested in
participating in the interview study, they were directed to a
Calendly [1] space where they could join a publicly available
Zoom link during specified time ranges and, if so, provide the
GitHub project they oversee. Of the 35/80 who responded Yes,
19/35 scheduled a Calendly meeting. Using emails for recruit-
ment, we contacted the other 16/35: 6 scheduled a meeting,
and 10 did not respond. Of the 25 who scheduled a meeting,
3 were no-shows, resulting in 22 interviews.

We conducted pilots with three OSS project maintainers
to test our semi-structured interview protocol, which can be
found in our artifact [2]. We revised our interview questions
based on the interviewees’ quality of responses to narrow our
research focus. Details about participants regarding project in-
formation and interviews can also be found in our artifact [2].

3.2.2 Interview details and structure

We conducted semi-structured interviews with 22 OSS project
maintainers, averaging 51 minutes and 59 seconds. Although
survey participants were not compensated, interviewees were
thanked with a virtual Visa $20 gift card.

For reporting, we group the interview into six sections, each
consisting of 1-2 opening questions, corresponding follow-up
questions, and circling back to earlier ideas when applica-
ble. Before the main interview portion, we introduced our
institution affiliations, an overall project overview, and our
motivations. We went over how we only intended to keep
audio, gathered consent for recording, and enabled closed
captions and transcription. We proceeded as follows:
0. Project maintainer duties This section is intended to ease
nervous participants into the interview and establish initial
context to later combine with actual repository data.
1. Current vulnerability management practices This sec-
tion explores structures that are not easily visible, such as
who is involved in handling vulnerabilities, how vulnerabili-
ties are actually handled, and participant perceptions of why
approaches are appropriate for them (Section 5.1).
2. Challenges with vulnerability management This section
explores past vulnerability management challenges encoun-
tered by our participants, e.g., through experiences, and how
they have dealt with such challenges (Section 5.2).

3. Challenges with platform security features This section
explores what overhead participants face with the PSFs they
use and how such challenges affect their overall vulnerability
management practices (Section 5.3).
4. Barriers to adopting platform security features This
section explores why participants refrain from using PSFs and
their perceptions of what such features offer (Section 5.4).
5. Opportunities for improvement and support This sec-
tion explores participants’ wants and needs for improving
current PSFs and vulnerability management practices in gen-
eral (Section 5.5).

3.2.3 Data analysis

All 22 audio-recorded interviews were transcribed and were
checked for quality and accuracy by the researchers. Data
was analyzed using thematic analysis [19], starting with open
coding [27] using each transcript, and developing thematic
codes with axial coding [27] to describe common arising
themes, e.g., Lack of awareness. Two researchers then en-
gaged in memo writing and constant comparison [54], and
inductive analysis based on grounded theory [27]. Both re-
searchers analyzed the same 6 transcripts by engaging in open
coding [27] and discussing the initial emerging themes, meet-
ing four times. During the analysis and iteratively discussing
emerging themes across the 6 transcripts, both researchers
engaged in axial coding [27], analyzing the remaining 16 tran-
scripts in parallel, and met frequently to discuss findings and
reach consensus. Researchers were open to emerging themes;
if a theme was adopted after discussion, researchers returned
to previous interviews and re-coded accordingly.

3.3 Limitations
Our methodology relies on self-reported data, which often
entails substantial noise. To mitigate this, we investigate our
research questions using two studies, consisting of one sur-
vey study and one interview study; meanwhile, we maximize
face validity by piloting each stage of the study, and revis-
ing procedures with feedback. Further, not all of our sample
participants likely have extensive experience with OSS vul-
nerability management; however, we expect some participants
with less OSS vulnerability management participation will
have similar experiences or various perspectives.

While we had a sufficient number of participants to conduct
our studies, i.e., 80 survey respondents and 22 interviewees,
we cannot claim our results can be necessarily generalized to
the OSS project maintainer demographic. To mitigate this, we
conduct two studies to ensure a holistic perspective, and our
sample population varies in range regarding education level
and years of involvement in managing OSS projects, as shown
in Table 1. Further, although the GitHub Advisory Database is
our primary source of recruitment for the listing and interview
studies, 1,920 unique GitHub projects are sampled and range
in popularity, some with as many as 185 thousand stars and
400 thousand listed dependent GitHub projects.

4 Participants

Table 1 summarizes participants’ self-reported demographics
and experiences. We had 80 participants in the listing study
and 22 interviewees. Participants were mainly from Europe
and North America and were overwhelmingly male. This is
consistent with other qualitative studies with OSS stakehold-
ers as participants, e.g., [61, 72]. Further, security experts
from industry recommend organizations revisit their security
policies and processes at least once a year [26, 95], which is
consistent with half of our study participants.

In the listing survey and interview studies, our participants
are OSS project maintainers who have received and patched
vulnerabilities as seen in the GitHub Advisory Database [51].
We are especially curious about this subset of OSS project
maintainers because although they have experience triaging
vulnerabilities for projects they own, easily configurable plat-
form security features are generally underused [12].

5 Results

In the following section, we report and discuss the results for
22 semi-structured interviews with open-source maintainers.
In our reporting, we adhere to the structure of the interview
guide described in Section 3.2. We report quotes as tran-
scribed with minor grammatical corrections and omissions.
e.g., using “[...]”, for readability.

We identified 37 factors from OSS project maintainers,
whose projects have a history of vulnerabilities, regarding
their vulnerability management efforts using five categories:
current practices, general challenges, platform security feature
challenges, platform security feature barriers, and platform
security feature wants. The curated codes can be found in Ta-
ble 2 and list relevant prior work for each code, if applicable.

Our study is closely related to a recent paper that investi-
gated OSS security and trust practices of contributors, own-
ers, and maintainers [101], i.e., general OSS stakeholders,
regardless of vulnerability history or contributions; however,
we are the first to investigate vulnerability management
challenges that OSS maintainers, whose projects have a
history of patched vulnerabilities, face regarding platform
security features involving the GitHub Advisory Database,
i.e., by recruiting maintainers whose projects are linked from
GitHub security advisories. This particular perspective is im-
portant as OSS project maintainers typically do not have
a security background, so learning from maintainers who
have a history of vulnerability triaging provides a glimpse of
progress towards security-awareness trickling throughout the
OSS ecosystem. Further, using recommended platform secu-
rity features and practices are key components of transparency
and vulnerability awareness, e.g., by publishing security ad-
visories after patching vulnerabilities, for OSS stakeholders.
We hope to learn more about how and why such adoption is
present, or not, in previously vulnerable projects.

L I

Gender Man 71 19
Woman 6 1
Non-binary 3 2

Age 18-29 12 3
30-39 28 8
40-49 32 6
50+ 8 5

Residence Australia 0 0
Africa 1 0
Europe 39 12
Middle East 3 1
North America 27 7
South America 2 1
South Asia 1 0
Southeast Asia 1 0
Other 6 1

Education ≤ Completed high school 3 1
Trade/technical/vocational 1 1
College, no degree 8 2
Associate’s degree 1 1
Professional degree 5 0
Bachelor’s degree 29 8
Graduate degree 33 9

Years working < 1 year 4 1
in industry 1-5 years 10 2

5-10 years 4 1
10+ years 62 18

Years in OSS < 1 year 1 0
maintainence 1-5 years 16 4

5-10 years 18 5
10+ years 45 13

Has a security Yes 29 9
background No 51 13

Vulnerabilty Every 1-3 months 10 1
management Every 6 months 11 3
process review Every year 19 4
or update Every 2+ years 8 1
frequency Never 32 13

OSS project has Yes 31 7
funding No 49 15

of participants 80 22

Table 1: The number of participants across the two stud-
ies along with their respective demographics, various back-
grounds, and project details. Acronyms listed represent, re-
spectively: listing (L) survey study and interview (I) study.

5.1 Current practices used for vulnerability
management

Both of our studies reflect that OSS project maintainers use
a variety of tooling both in and out of the GitHub platform.
Most encourage using a private avenue for reporting vulnera-
bilities while some are okay with using public channels, e.g.,
GitHub issues, for security bugs. Two listing study respon-
dents indicated that they ignore vulnerabilties altogether.
Emails and external tooling or reports (F1 & F7) Using
a form of a security contact email or mailing list consisting
of project maintainers was the most listed form of current
vulnerability management practices (L = 50, I = 11). This
is consistent with a finding from Wermke et al., where au-
thors identified that having a security contact point was the
commonly mentioned aspect of a security policy [101].

Participants indicated that using email for security reports
is sufficient because it discourages reporters from creating
a public issue and acts as a private avenue for report resolu-
tion (L = 11, I = 4), e.g., “we’ll take time to really have a
discussion and not just here’s my report, okay, I dismiss it or I
accept it. It’s more like a conversation” (P4). Others mention
having security experts on their maintenance team (L = 3).

“With the projects I’ve been a part of, we just use one
email address everybody can log into, which I suppose
is just not a super secure way of managing that point
of contact, but we all trust each other as maintainers.
We have like a shared password on that email account,
and that’s just kind of how we do things.” (P12).

Listing participants and interviewees also mentioned using
tooling outside of GitHub, including internal tools for static
analysis (L = 2, I = 3), e.g., Coverity [93], and receiving ex-
ternal reports from companies (L = 1, I = 2). One interviewee
described their relationship with a company that sends bun-
dled vulnerability reports for their OSS project semi-annually:

“They send me a lot of bugs I never knew about and they
give me time to fix it. Once fixed, they publish, and then
they come back next year [...] I’m surprised with what
they can find, I would like to know why they do that
but I never complain. Be grateful, you know?” (P17).

Proactive disclosure process (F2) Having an established
disclosure process after patching vulnerabilities consisting
of project maintainers was the second-highest form of cur-
rent vulnerability management practices (L = 46, I = 7). This
demonstrates a sense of responsibility within the OSS commu-
nity since it ensures affected dependent client projects within
reach are notified to upgrade [81].

Listing participants use different mediums to let the com-
munity know about the need to upgrade, which include send-
ing messages to mailing lists and backchannels (L = 7), cre-
ating GitHub security advisories (L = 6), and in some cases,
quickly requesting a CVE (L = 5). Interviewee participants
were also wary of making sure users are aware of vulnerabili-
ties (I = 7), two of which felt that creating a CVE is enough
to ensure visibility to users and dependents. One interviewee

F# Factors and tooling Description RW L I

C
ur

re
nt

pr
ac

tic
es

F1 Email or mailing list Uses a private email or mailing list for vulnerabilities. [68, 101] 50 11
F2 Proactive disclosure Established disclosure process after a vulnerability patch. [101] 46 7
F3 Security policy Instructs users how to report vulnerabilities. [101] 37 10
F4 GitHub private reporting A built-in feature for privately reporting vulnerabilities. 20 9
F5 Automation tooling E.g., Dependabot, code scanning, secret scanning. [7,35,56,79,81,86] 16 12
F6 GitHub Issues Vulnerabilities are reported publicly with GitHub Issues. [29] 9 6
F7 External tooling Utilizes tooling or reports outside of GitHub. [40, 56, 101] 3 2
F8 Ignores vulnerabilties Ignores vulnerability reports or does nothing in response. 2 –

G
en

er
al

ch
al

le
ng

es

F9 Supply chain trust E.g., waiting for upstream dependencies to deploy a fix. [9, 31, 45, 85, 101] 36 6
F10 Lack of understanding E.g., knowledge gaps, how to start developing a patch. [9, 13] 35 12
F11 Lack of time Balancing vulnerability priority with other OSS tasks. [13, 67, 101] 25 9
F12 Lack of resources E.g., “I do almost everything myself” (P4). [25, 101] 23 11
F13 CVE relationships Negative experiences with CVE-assigned vulnerabilities. 8 9
F14 Lack of procedure Maintainers are not sure how to deal with vulnerabilities. [101] 7 5
F15 Disclosure coordination How to reach out to all users and what to disclose. [9] 7 4
F16 Negative attitudes Past negative interactions with reporters or companies. [34, 36, 63, 67, 77,

88]
6 9

PS
F

ch
al

le
ng

es

F17 Not enough automation More automation needed in PSF functionality. [23, 66] 39 11
F18 Too much noise E.g., too many false positives. [22, 56, 79, 100–

103, 105]
24 10

F19 Vulnerability scoring E.g., having a hard time calculating CVSS scores. 21 9
F20 CI processes are missing GitHub Actions & tests are not available in private forks. 8 7
F21 Broken tests & builds Failing builds & tests after vulnerability patch is applied. [22, 79, 89, 105] 6 7
F22 Cluttered notifications E.g., vulnerable dependencies presentation is cluttered. 4 4
F23 Too much manual setup E.g., manually enabling PSFs on all projects. 3 3

PS
F

ba
rr

ie
rs

F24 Lack of awareness E.g., not knowing about private vulnerability reporting. [12] 33 12
F25 Complex to set up or use PSFs are too complex for maintainers with limited time. 26 7
F26 They are unnecessary Perception that using PSFs is not needed. 23 6
F27 Reputation concerns Past vulnerabilities reflect a negative project reputation. 11 4
F28 Bad UI presentation Hard to find or hidden, “second-class features” (P10). [32, 40, 64] 8 6
F29 Lack of motivation Feeling burned out from other OSS tasks. [10, 44, 67, 74, 88] 5 4
F30 Not sure what they do Unsure of PSFs’ functionality, benefits, etc. 4 2

M
ai

nt
ai

ne
r

w
an

ts F31 Assisted triaging Automation for impact analysis, patch development, etc. [23, 66, 102] 39 9
F32 Assisted PSF setup More guidance for the PSF setup process. 37 10
F33 Security-specific funding Opportunities for funding OSS security efforts. [101] 32 7
F34 User-friendly resources Tailored for those without a security background. 17 8
F35 Gamification for projects E.g., a green shield for projects with proper PSFs set up. [31, 82, 97] 13 6
F36 PSF checklist To-do list for enabling easily configurable PSFs. 15 3
F37 Nudges or reminders Nudges reminding maintainers to consider using PSFs. 12 5

Table 2: 37 factors and tooling codes, shortened to preserve space, identified from the listing survey study and interview study
divided into five categories as a result of software vulnerability management efforts. Acronyms listed represent, respectively:
platform security features (PSF), existing related work (RW), the number of listing (L) survey study mentions (n1 = 80), and the
number of interview (I) study mentions (n2 = 22). The extended table without omitted codes can be found in our artifact [2].

felt that disclosure is only necessary when a vulnerability is
particularly important because there is “a lot of bandwidth on
security disclosures to begin with.” (P6).

Security policies (F3) The next current practice most listed
is having a project security policy (L = 37, I = 10). OSS se-
curity policies have mostly been used to inform reporters how
to properly communicate vulnerabilities to maintainers via

security contact [101], but they are generally underused [11].

Although most listing participants mention using security
policies to simply provide a security contact (L= 11), in some
cases, maintainers link an organization-specific security pol-
icy published outside of GitHub (L = 3). One interviewee
mentioned how they use security policies to explicitly dis-
courage contributors from reporting vulnerabilities publicly

and provide multiple methods of private communication:
“We have a security policy in place where we say please
do not report it publicly but try to contact me person-
ally via email or send a mail to our security mailing
list or create a security advisory on GitHub.” (P13).

Private vulnerability reporting (F4) Another GitHub plat-
form security feature listing participants mentioned frequently
is private vulnerability reporting (L = 20, I = 9). This partic-
ular feature allows contributors to privately report vulnera-
bilities within the GitHub platform. OSS maintainers can
then review a report with functionalities to update its severity,
invite others to develop a fix, and decide whether or not to
request a CVE.

Listing survey participants and interviewees mention us-
ing the private forks from private vulnerability reporting to
quietly develop fixes (L = 6, I = 7). Four interviewees men-
tioned how they like this feature because it provides an easy
method of reporting security bugs and is quick to set up, i.e.,
by clicking enable. One interviewee describes private vulner-
ability reporting as “very comfortable and very easy to use.”
(P9). Others expressed satisfaction with private vulnerability
reporting because everything is in a central space (I = 2), i.e.,
submitted reports are contained in GitHub.
Automation tooling (F5) Another method of current practices
listing and interviewees mention is the usage of automated de-
pendency analysis tooling and code scanning (L= 16, I = 12).
Dependency analysis provides alerts of library upgrades, e.g.,
patched versions, while code scanning can reveal vulnerabili-
ties, e.g., secrets, as a result of running static analysis.

Listing participants and interviewees mentioned using De-
pendabot as a primary source of upgrading dependencies
(L = 12, I = 6). Others mentioned using the Renovate bot that
can allow dependencies to be auto-merged if there are no code
conflicts (L = 4, I = 3), reducing manual overhead:

“The first one that I use quite often is Renovate, that is a
tool in Github easily available where you can config-
ure: I want this and this upgraded like that, and you
can have all kinds of settings and then it automatically
gives you a pull request [...] with a dependency update
and automatically, the test pipeline fires.” (P1).

However, participants describe how platform security fea-
tures, which are recommended for effective vulnerability man-
agement, pose still too much manual effort (Section 5.3).
GitHub Issues (F6) Some listing participants and intervie-
wees indicate using GitHub issues for reporting vulnerabilities
(L= 9, I = 6). When a GitHub Issue is submitted, it is publicly
accessible in the Issues tab located at the top of the project
landing page.

Two listing participants in particular do not mind having
vulnerabilities being reported publicly because of visibility,
while one listing participant described how they use “the same
public PR process I use for any other issue.” One interviewee
described how they do not mind using GitHub issues when a
security bug is not determined to be severe to get help from the

public, while another interviewee explained their rationale:
“If somebody reports a security issue [publicly], I don’t
really see a problem with it. Obviously it can be prob-
lematic, but I don’t really care that much about how it
is reported as long as I fix it in a short time.” (P19).

Ignoring vulnerabilties (F8) Two listing participants men-
tion how they ignore vulnerabilities. One attributed this behav-
ior to a lack of motivation for setting up any security features
or tooling and indicated that “financial support or sponsor-
ship” would be most beneficial for them to improve their
vulnerability management practices. The other respondent
listed “unless the project is extremely sensitive - avoid imple-
menting any policy” and expressed the perception that having
security features enabled for projects is unnecessary. Though
this respondent listed that they were interested in participating
in our interview study, they did not respond with any contact
information or reach out to us directly.

Û Takeaway: Most OSS maintainers in our study take vul-
nerability management seriously, citing dedicated emails
for private vulnerability reporting and established disclo-
sure processes for informing affected projects after patching.
However, built-in PSFs are not primarily used, indicating a
need for usability improvement and further awareness.

5.2 Challenges with vulnerability management
All interviewees described wearing many hats when it comes
to OSS maintenance, some of who are lone maintainers
(I = 11). General vulnerability management challenges OSS
maintainers face range from trusting the software supply chain
to lack of time and resources to issues with CVEs. Partici-
pants also describe how a lack of standardized vulnerability
handling procedures and implementing proper coordinated
disclosure are prominent challenges. Some bring up the idea
of having “imposter syndrome” when receiving vulnerability
reports, while others share negative reporter experiences.
Supply chain trustworthiness (F9) Supply chain trust was
the most listed challenge with vulnerability management
(L = 36, I = 6). Use cases and duties related to the software
supply chain in OSS include adopting upstream dependencies,
tracking the status of dependencies, and updating dependen-
cies in a timely manner, e.g., when a vulnerability is patched.

Specific challenges that the participants mentioned include
the burden of keeping updated with dependencies and the
latest vulnerabilities (L = 20) and dealing with unmaintained
dependencies or delays in pushing a vulnerability fix (L = 12),
which can be time-consuming and resource-intensive. One in-
terviewee was particularly concerned about scenarios “where
people purposefully like to put security vulnerabilities into
[OSS projects]” (P6), highlighting the risk of malicious actors
deliberately introducing vulnerabilities into upstream depen-
dencies, e.g., the xz-utils incident (CVE-2024-3094) [80].
Lack of understanding (F10) The second most listed chal-
lenge for conducting vulnerability management is a lack of

understanding (L = 35, I = 12). Not being able to effectively
understand reported vulnerabilities can lead to delays in patch-
ing and disclosure to affected dependent client projects.

Factors reported affecting a lack of understanding include
complexity (L = 19, I = 4), developing a patch (L = 7, I = 7),
testing (L = 6, I = 6), and knowledge gaps (L = 5, I = 8). One
participant listed that “some vulnerabilities can be complex
and require extensive investigation and testing to ensure they
are fully resolved without introducing new issues,” reflecting
platform security feature challenges we explore in Section 5.3,
while one interviewee said “my brain is far too small to under-
stand [vulnerabilities]” (P9). We explore potential avenues
maintainers believe OSS platforms can take to minimize such
knowledge gaps and awareness in Section 5.5.
Lack of time and resources (F11 & F12) The next most
listed software vulnerability management challenges are the
lack of time (L = 25, I = 9) and resources (L = 23, I = 11).
The time OSS maintainers spend on developing and man-
aging projects is limited, e.g., hobbyists. Further, resources
are scarce, e.g., large-scale software ecosystems like Python
Package Index and NPM are primarily made up of projects
with a single maintainer [20, 21].

Challenges associated with a lack of time and resources
include balancing prioritizing vulnerabilities with ongoing
development tasks (L = 21, I = 16), the ability to triage re-
ports promptly (L = 15, I = 11), and getting help from others
(L = 8, I = 5). One interview participant summarizes:

“While I prioritize addressing vulnerabilities immedi-
ately, balancing this with ongoing development tasks
can sometimes be challenging [...] There are limited
resources and time available to address every reported
vulnerability quickly.” (P17).

Negative relationships with CVEs (F13) Participants also
expressed bad relationships with CVEs and the overall CVE
process as a challenge when conducting vulnerability man-
agement (L = 8, I = 9). CVEs play an important role in the
overall disclosure process and help promote transparency in
the OSS ecosystem, e.g., upgrade notifications.

One listing participant explains their stance on CVEs:
“The CVE program suffers from many single points of
failures: managed by the USA (not 24/7) hence a CVE
ID cannot be delivered fast. CISA analysts backlog and
[don’t] have enough time and understanding of the
system’s complexity to properly analyze reports; thus,
publish poor quality content. The whole process is out-
dated and must be reformed to a distributed approach
to enable international sources of trust to work.”

Others described experiences where fixes were put on hold
because of pending CVEs (L = 3) or feel intimidated by the
nature of CVEs (L = 2, I = 2). In particular, one interviewee
described their negative perception of CVEs and observation
of other project maintainers’ handling of CVEs:

“I’m incentivized to lie to make the CVE [severity] lower
because it makes my project look bad, you have to be

really, really honest [...] I noticed a lot of people like
downgrade their CVEs.” (P15).

This quote highlights potential ethical dilemmas and pres-
sures faced by OSS maintainers when dealing with CVEs,
which can negatively affect the accuracy and reliability of
severity metrics throughout the OSS ecosystem.
Lack of procedures and coordinated disclosure (F14 &
F15) Though established procedures can help alleviate the
receive-to-resolve timeline, the lack of procedures is a chal-
lenge OSS maintainers also face (L = 7, I = 5). Further, par-
ticipants also express challenges with being able to effectively
reach affected dependent projects and users (L = 7, I = 4).

OSS maintainers express a lack of recommended standard-
ized processes for handling vulnerabilities (L = 5, I = 1) due
to limited experience (L = 2), some even feeling intimidated
(L = 2). Two interviewees described a sense of imposter syn-
drome when receiving vulnerabilities because “there are so
many things we need to watch out for, it’s hard to stay con-
fident that you’re doing the right thing.” (P13). Further, par-
ticipants expressed concerns about effectively disclosing the
nature of the vulnerabilities (L = 4, I = 7) and a sense of
mistrust with upstream projects not disclosing vulnerabilities
properly (L = 2, I = 2). These perspectives suggest needs for
clearer guidelines and better support for OSS maintainers in
handling vulnerabilities, reported in Section 6, as well as fur-
ther research on the adoption of and improving attestation
practices, e.g., software-bill-of-materials, to foster upstream
trust within the software supply chain [83, 84, 104].
Negative attitudes (F16) The least listed challenge of vul-
nerability management is negative attitudes from reporters
(L = 6, I = 9). The OSS ecosystem is human-centered, e.g.,
via community and collaboration, and is not new to toxic inter-
actions [77, 88]. One interviewee described experiences with
companies demanding pentests. Participants mention the ar-
gumentative nature with vulnerability reporters (L = 3, I = 7)
and those with sole intentions to make money (L = 3, I = 5).

“They give me this list of vulnerabilities in an email and
then say, we’re going to make it public in a week. And
I think it’s not so bad to make it public; in fact, both
times I said go ahead and make it public right now.
But the way people give you this problem and say fix it
or else, it’s not a very conducive environment.” (P2).

Û Takeaway: Aside from knowledge gaps and lack of
time/resources, most OSS maintainers in our study are wary
of adopting dependencies due to supply chain risks. Ethi-
cal dilemmas around disclosure and reporters/companies
demanding fixes further complicate OSS responsibilities.

5.3 Challenges with platform security features
The adoption of platform security features (PSFs) promotes a
robust vulnerability management process, especially if they
are usable for OSS maintainers without a security background.
In this section, we report various challenges and first-hand

experiences as a result of adopting such features, revealing
why some maintainers may choose to disable them as a result.
Not enough automation (F17) The most listed PSF challenge
described is that there is not enough automation (L = 39, I =
11). As described earlier in Section 5.2, OSS maintainers
have limited time and resources to address every reported
vulnerability quickly. Automation for security-oriented tasks
helps promote easy security without additional overhead.

Participants express challenges regarding automation to
update dependencies (L = 24, I = 7). In particular, five inter-
viewees are okay with auto-merging dependency upgrades
as much as possible, while others would prefer to do so on
a library-by-library basis (I = 2). One interview participant
mentioned auto-merging private vulnerability report fixes if
the build does not break; however, private forks do not have CI
integration and participants describe experiences with broken
builds and tests, which we report later in this section.

One interviewee describes how they are okay with merg-
ing automated pull requests regardless of testing: “Go ahead
and merge the PR. I don’t even really test it.” (P5). This per-
spective reflects a desire for streamlined processes, even if it
comes at the cost of rigorous testing, underscoring the tension
between automation convenience and careful oversight needs.
Too much noise and vulnerability scoring issues (F18 &
F19) Listing participants mentioned that too much noise from
PSFs (L = 24, I = 10) and issues from vulnerability scores
(L = 21, I = 9), e.g., inaccuracy, are particularly challenging
to deal with. Participants describe noise as many false alarms,
different from spam or low-quality reports, and how noise can
take time away from general OSS tasks and in some cases,
overwhelm or scare OSS maintainers (L = 4, I = 6).

It is common knowledge that noises from dependency man-
agement [56, 79] and static analysis [64, 100] tools are prob-
lematic. A majority of noise mentioned is from dependency
false positives (L = 8, I = 6), while others said it is from static
analysis tooling (L = 4, I = 2), e.g., code scanning, and a gen-
eral sense of annoyance from notifications (L = 2, I = 2). One
interviewee mentioned how even proprietary scanners pro-
duce too much noise – we report remediations to help improve
PSF setup and reduce noise in Section 5.5. Two interviewees
mentioned how noise negatively impacts their motivation to
continue maintaining OSS projects, one described:

“I left this project, I’m not doing this anymore [...] I
think there’s a lot of noise [...] and then the dedication,
the love and the passion, the patience, going over it,
and taking care of it, it’s not easy at all. So security is
kind of a second thought to most of us.” (P8).

In addition to noise, participants describe issues with vul-
nerability scores from reported vulnerabilities, e.g., CVE
scores are inflated (L = 5, I = 4) and unsure how to correctly
calculate or adjust CVSS scores (L = 3, I = 8). One interview
participant summarizes their past experiences with attempting
to properly calculate security metrics:

“I always have issues with calculating CVSS [scores].
All the documentation I found seems to be like for secu-

rity researchers, or people who have experience with
security incidents. There’s nothing that just describes
it in everyday terms that I can really wrap my head
around, so that’s one of the biggest difficulties.” (P3).

Absent CI processes in private forks, failing tests and
broken builds in the public eye (F20 & F21) The next most
listed challenge with PSFs is the lack of CI processes when
developing fixes on a private fork (L = 8, I = 7), i.e., as a
result of adopting the built-in private vulnerability reporting
feature. Although private forks are recommended for working
on fixes with reporters, not being able to run CI processes on
such fixes in the same environment as merging pull requests
on the main branch can be problematic, resulting in overhead.

To get around the lack of CI processes in private forks,
participants have resorted to hosting additional private repos-
itories outside of GitHub that mimic their public presence
(L = 2, I = 1) or running potential fixes through build pro-
cesses on personal machines (I = 4). Both of these solutions,
while functional, introduce additional challenges and com-
plexities, e.g., maintaining parallel environments and ensuring
consistency across different setups. One interview participant
described an elaborate approach:

“We have [someone], our traffic controller, and their
role is to check that the incoming security reports [...]
If they consider it something we need to be concerned
with, they create an issue in a private project [...] It
really slows the process down, because we have to
merge one patch, then we have to go to our repo, pull
in commits to the new one we need to release.” (P14).

Participants report experiences of failed tests or broken
builds after patches are merged to the main public repository
(L = 6, I = 7), so OSS maintainers must thoroughly ensure
fixes do not introduce new issues. “The biggest problem for
us is the fact we can’t run our automated tests on the fixes that
we make on those forks.” (P14). This emphasizes a develop-
ment workflow issue caused by the lack of automated testing
capabilities in private forks, which is crucial for program re-
pair and preventing regressions – a current multi-dimensional
and challenging research area [23, 66, 78].

Cluttered notifications, setup and usage is too manual
(F22 & F23) The least listed PSF challenges are cluttered
notifications (L = 4, I = 4) and too much manual effort (L =
3, I = 3), i.e., usability challenges. Interviewees describe that
the best security is “easy security” (I = 6), including the
ease of use for PSFs. When security features are user-friendly
and require minimal effort to manage, they can be effectively
utilized by OSS maintainers without additional overhead.

Participants describe how dependency notifications are too
cluttered (L = 2, I = 3), and how there should be a merge-all
button, i.e., to reduce manual effort, for dependency upgrades
that do not cause merge code conflicts (L = 1, I = 3).

“They are all grouped together at the bottom of your
notification panel and they appear only if all the others
are marked as done [...] just terrible to deal with [...]

There is like a cron job that runs then delivers you all
of those once a week, they’re all bundled.” (P10).

Other tasks described as too manual by interviewees in-
clude having to individually enable PSFs for each project
(I = 4), e.g., as opposed to a centralized approach where all
projects are presented on a single screen, and having to man-
ually add the same collaborators to a private fork every time
a vulnerability is privately reported (I = 3).

Û Takeaway: PSFs often rely on manual intervention and
are noisy, requiring maintainers to sift through and triage
security risks without sufficient automated support. Further,
some PSFs are missing core CI processes, cause broken
tests/builds, and are not UI-friendly, resulting in overhead.

5.4 Barriers hindering adoption of platform
security features

Despite the importance of actively practicing secure coding
practices and being knowledgeable about general security
concerns, OSS developers typically do not have a security
background. A majority of our participants also lack such
background (L = 50, I = 15). In this section, we report
possible barriers that hinder PSF adoption, including lack of
awareness, complex setup procedures, concerns about project
reputation, and perceptions that they are unnecessary.
Lack of awareness and bad UI presentation (F24 & F28)
The most listed PSF barrier is lack of awareness (L = 33, I =
12). PSFs are available for usage so that OSS projects can
have robust vulnerability management processes and proper
disclosure upon vulnerability patching. This lack of aware-
ness implies that although tools and processes are available
to help promote a thriving secure OSS ecosystem, they are
underutilized as indicated in prior work [11].

Participants mentioned how they were not aware of secu-
rity policies (L = 43, I = 8), private vulnerability reporting
(L= 43, I = 10), and public security advisories (L= 34, I = 4)
or the GitHub advisory database (L = 13, I = 6). Further,
26.7% (21/80) of listing participants indicated that they have
none of the three previously mentioned PSFs enabled. One in-
terviewee expresses how “the main problem is just that many
people don’t know about it” (P18), and another interviewee,
who has had eight CVE-assigned vulnerabilities in a project
they manage, expressed curiosity after learning about what
private vulnerability reporting has to offer:

“It’s on my list to actually research now. Yeah, it looks
like they’ve got a pathway to disclosure in CVEs that’s
integrated and seems like a good tool for us.” (P20).

Related to lack of awareness, bad UI presentation is an-
other PSF barrier participants mentioned (L = 8, I = 6). In
particular, participants feel that PSFs are too hidden or hard
to find (L = 5, I = 6) and that there are just too many fea-
tures to potentially configure (L = 2, I = 3). One interviewee
described how PSFs feel like “second-class features” (P10).

This perception can discourage maintainers from exploring
PSFs’ capabilities, further contributing to their underuse.

“I mean, I’m just looking at how to or for a way to roll
stuff out, but it’s pretty hidden. I can roll out a policy
that allows private vulnerability and a lot of other stuff,
but you have to really click through and find it.” (P11).

Complex to set up or use, not sure what they do (F25 &
F30) Listing participants mentioned that PSFs are too com-
plex to set up or use (L = 26, I = 7). Though not nearly listed
as much, participants are “not sure what they do in the first
place” (L = 4, I = 2). These perceptions reflect a barrier of
adoption since OSS maintainers question their overhead and
purpose. Interviewees express a sense of excessive overhead
with setting up PSFs (I = 4). Others cite general ignorance
as to why they are not aware of what particular PSFs do
(L = 3, I = 7). As a result, they did not bother using PSFs.If
users are unclear about what these features do or how they
can benefit their projects, they are less likely to invest effort in
setting them up, especially if they are perceived as complex.

“The biggest reason I never used them is they’ve never
been pushed or the benefits of them sold to me [...] If
it’s really easy and simple to use, it’d be nice if that is
kind of turned on by default on all projects.” (P12).

Participants also reference previous experiences with
trying out PSFs but refuse to look into additional offered
tooling because of usage complexity (L = 11, I = 4), e.g.,
with dependency graphs (L = 2). These insights suggest
simplifying the setup process and providing clearer informa-
tion about the purpose and use of PSFs for OSS maintainers
looking to adopt them to manage vulnerabilities.
Perception that they are unnecessary (F26) The next most
listed PSF adoption barrier is the perception that they are
unnecessary (L = 23, I = 6). When OSS maintainers perceive
PSFs as not adding value to their current processes, they will
likely refrain from investing additional time and resources into
learning about or implementing these tools; thus, undermining
recommended efforts to promote a secure OSS ecosystem.

Participants mention how PSFs are unnecessary for a va-
riety of reasons, including the perception that projects lack
importance (L= 16, I = 6), adding PSFs is overkill (L= 5, I =
3), or that maintainers do not value security (I = 2). These
perceptions highlight a need for more documentation on the
value of security measures (L = 17, I = 8) and mechanisms
for PSFs to be tailored to fit specific project needs and scale.

“I haven’t really needed anything more involved than
GitHub issues [...] Security isn’t something that we
worry too much about. We’re not ready to hear that
message, even if GitHub does push me, I’ll probably
just skim over them, because I’m not ready to actually
to, you know, get that message [...] We worry, we kind
of have it in mind, but it’s not our main goal.” (P8).

Project reputation and a lack of motivation (F27 & F29)
The remaining barriers to PSF adoption OSS maintainers men-
tion are concerns with project reputation (L = 11, I = 4) and a
lack of motivation (L = 5, I = 4). Concerns about maintaining

a positive public perception can deter OSS maintainers from
implementing PSFs, that would otherwise enhance security,
while those without motivation to adopt PSFs may deprioritize
or ignore the use of PSFs. The attitude concerning reputation
is not unique to maintainers. Alomar et al. [9] observed this
attitude at the organizational level, where organizations try to
lower the severity ratings of vulnerabilities in their products.

Participants point out fear of negative project reputation
as a reason to not adopt PSFs (L = 3, I = 3), e.g., owning a
project with previous high or critical CVE-assigned vulnera-
bilities (I = 1). On the other hand, some interviewees consider
a project without vulnerabilities as suspicious (I = 2), i.e.,
patched vulnerabilities are a good sign of a “healthy project”
(P14). One interviewee reflected on such a dilemma:

“It’s always in the back of my mind when looking at an
issue and seeing, should this go through the security
advisory process? Or should it just be a normal PR and
fix? That’s the end of it. But that’s wrong, and I know
it. It still feels like, you know, hurting the reputation of
my project. But it’s wrong, I know it.” (P3).

When it comes to lack of motivation, participants cite
“maintainer burnout” as the primary reason for not wanting to
deal with vulnerabilities (L = 3, I = 4). This burnout can lead
to a reduced willingness to engage with vulnerabilities, as
maintainers may already be overwhelmed by other OSS tasks,
e.g., high-stress levels from frequent demands for features
and bug fixes [88]. Further, others see no benefit for improv-
ing project reputation through a security lens (L = 1, I = 2),
leading them to deprioritize or disregard the adoption of PSFs.

Û Takeaway: Most OSS maintainers are not aware of
PSFs; there are too many to look through and understand
their relevance. Further, project reputation concerns, e.g.,
past vulnerabilities make projects look bad, and lack of mo-
tivation to manage vulnerabilities also hinder PSF adoption.

5.5 Opportunities for improvement & support
Lastly, we asked participants about success stories or positive
outcomes as a result of their continuous vulnerability manage-
ment efforts, if applicable, as well as supplemental features or
improvements to current PSFs that would benefit their current
vulnerability management approaches the most.
Assisted vulnerability analysis and triaging (F31) Partici-
pants expressed the most need for assisted vulnerability anal-
ysis and triaging (L = 39, I = 9), i.e., via automation mecha-
nisms. In particular, participants felt that this would be useful
for understanding vulnerabilities and their actual impact on
OSS projects (L = 34, I = 7) to reduce false positives and
noise described in Section 5.3, e.g., “I hope a tool can take a
context into consideration and it should help tooling avoid the
false positives, and to trigger only this stuff when [vulnerable]”
(P7). Further, participants express a need for assistance with
developing fixes and generating tests (L = 21, I = 6), which
could streamline the remediation process and ensure more ef-

fective vulnerability management, e.g., “generate, you know,
tests with test cases or something like that, maybe as a way
to lighten the burden of actually developing tests” (P5).

PSF setup assistance, checklists, and nudges (F32, F36, &
F37) Participants also showed interest in having assisted PSF
setup (L = 37, I = 10). In particular, interviewees mention
needs for assistance generating security policy content using
project scope (I = 3), security tooling recommendations based
on project contents (I = 6), and interactive guidance through-
out the setup process (I = 7), e.g., “it’s a little bit not easy to
use [...] I need to figure out, okay, what is the proper setup for
my project [since] I’m of the mindset that brevity is king.” (P9).
Further, participants mention wanting checklists and sugges-
tions of things to do for recommended PSFs (L = 15, I = 3),
alongside nudges or reminders and “easy” configurations as
methods of encouraging others to strengthen their projects’
security posture (L = 16, I = 5). One interview elaborates on
their view of overall PSFs: “It’s pretty overwhelming, and you
might just be like, why do I need any of these? Like, why is
this important? Having a single button that just says, enable
best practices, would go a long way.” (P16).

Security funding and cyber defense gamification (F33 &
F35) The next most-listed want for participants is security-
specific funding (L = 32, I = 7), i.e., funding to be used for
security-related tasks and efforts. In particular, participants
mention using funds for maintainers and reporters to get paid
(L = 18, I = 6), funding a dedicated bounty pool for valid
vulnerabilities (I = 3), or requesting annual reviews from
security experts (I = 2). There was also interest in cyber de-
fense gamification (L = 13, I = 6), i.e., to recognize projects
that adopt vulnerability management processes. Four intervie-
wees mention how they use reporter reputation to determine
vulnerability report legitimacy. Such participants and others
expressed interest in project reputation icons, e.g., a “green
shield” (I = 3), for projects that adopt recommended PSFs
and tooling (I = 7); thus, recognizing and rewarding projects
that exhibit a proper security posture. “Everyone wants to
have the green shield [...] This community health status peo-
ple see, stuff like that, like you’ll be surprised by how many
people want to feel those bars.” (P10).

User-friendly resources and documentation (F34) Lastly,
participants expressed interest in having more user-friendly
documentation and resources (L = 17, I = 8), some citing gen-
eral “ignorance” of proper OSS security (I = 6). In particular,
participants mention OSS recommended training material for

“normie developers” (L = 3, I = 4), e.g., free webinars (I = 2),
redirection to related projects with implemented security prac-
tices (L = 7, I = 3), and “easier directions” for setting up and
what to expect from PSFs (I = 6), e.g., not being “scared” of
false positives (I = 3). “Security best practices and tooling
and all of that is tribal knowledge, and it shouldn’t be.” (P12).

Û Takeaway: Most OSS maintainers want automated vul-
nerability triaging and PSF support for less overhead when
managing vulnerabilities. Further, gamification and context-
aware checklists can help simplify security efforts and en-
courage proactive engagement with security best practices.

6 Discussion

In this section, we present additional analyses of the chal-
lenges identified and presented in Section 5,implications for
OSS platforms and OSS maintainers to alleviate prominent
challenges we discovered, explore areas for reducing PSF
barriers, and expand the benefits participants expressed as
helpful for vulnerability management. Further, we present
potential research directions aimed at supporting OSS project
maintainers during the vulnerability management lifecycle.

6.1 Bridging factors to reveal underlying issues
OSS maintainers described challenges from vulnerability
management and their experiences with PSFs. Uncovering un-
derlying issues can help identify areas of need, why particular
PSFs may not be adopted, and inform future solutions.

OSS maintainers described challenges that hinder their
ability to take necessary actions from PSF output rooted in
overwhelming security duties and missing PSF support that
would help vulnerability triaging. Dependency trust issues
(F9), e.g., too many false positives from upstream dependen-
cies (F18) and cluttered update notifications (F22 & F28),
cause fatigue (F29) and a disinclination to continue PSF adop-
tion. Further, maintainers expressed struggle with developing
patches (F10, F14, & F31) since core CI/CD processes are
missing from some PSFs (F20) that cause broken tests/builds
(F21); thus, leading maintainers to deem PSFs as unnecessary
(F26), deploy custom behind-the-scenes processes that can
cause burnout (F29), and become overwhelmed in the CVE
process (F13, F15, & F16). Without any clear prioritization
or impact analysis, some PSFs may seem more like distrac-
tions, and the lack of trust demonstrated by maintainers is a
reinforcing factor in the perception that PSFs are unnecessary,
especially if they seem to add little value to the project. Ad-
dressing this concern means incorporating features that would
be perceived to provide real value, e.g., timely patching, and
the use of gamification or funding (F33 & F35) and checklists
(F36) can also be used to reframe these tasks as rewarding
and meaningful, promoting a positive narrative for security.

OSS maintainers also described challenges that hinder their
ability to adopt PSFs rooted in misunderstanding and misin-
terpretation of PSFs’ configurations, use cases, and purposes.
Knowledge gaps (F10), e.g., around vulnerability scoring pro-
cedures (F19), hinder effective prioritization and remediation
efforts. Resource constraints (F12), including limited time
(F11) and lack of automation (F17), exacerbate these diffi-
culties, often leading to delays in addressing vulnerabilities
or adopting PSFs; further, the complexity (F25) and lack of

awareness (F24) surrounding PSFs create additional barriers.
If OSS maintainers do not fully understand the benefits or
use cases for PSFs (F30), or find them confusing, they are
unlikely to explore or enable them (F37). Training resources
that simplify security concepts and integrate clear documenta-
tion (F32 & F34) for PSFs could bridge this gap, empowering
maintainers to overcome these hurdles and integrate PSFs
effectively into their workflow.

6.2 Implications & future directions based on
collective challenges

OSS maintainers mentioned supply chain trust and lack of
understanding as the most generally challenging in our listing
study, while not enough automation and too much noise were
the most listed PSF-specific challenges.

When maintainers wait for upstream dependencies to fix
a vulnerability, there is a delay in addressing security issues
within their projects, thus exposing OSS projects to poten-
tial exploits. Tools that automate identifying and prioritizing
vulnerabilities can help maintainers quickly determine which
issues require immediate attention and which can be deferred.
To support assisted vulnerability analysis and triaging, tooling
should be explored that implements mechanisms for automat-
ically identifying the impact of vulnerabilities using source
code as context, i.e., to reduce noise from security tooling.
To that end, future research can leverage LLMs to (1) help
OSS maintainers with interpreting reported vulnerabilities,
e.g., by leveraging OSS security datasets like those curated by
OpenSSF [44], and (2) help OSS maintainers generate patches
for reported vulnerabilities with minimized regression tests
by using the contents of disclosed reports. Although LLMs
are useful for tasks like code summarization and generation
[3, 106], uses of LLMs pose challenges. For instance, LLMs
may misinterpret security reports or generate incomplete/i-
naccurate patches, leading to regressions; further, there may
be hesitance to trust AI-generated suggestions because LLMs’
decision-making processes are uninterpretable [58].OSS plat-
forms should consider providing CI feature capabilities in
private forks so OSS maintainers can expedite fixing vulner-
abilities and reduce costs of regression tests, which can be
very high [28, 62], indicating a need for research focused on
regression testing for security. GitHub disallows private forks
from using CI features for security purposes [48], but OSS
maintainers desire such features in our studies, especially
for fixing vulnerabilities, suggesting the need for further re-
search on secure CI features for vulnerability management.
This might involve sandboxing or access controls, e.g., where
private forks can use CI features under controlled conditions.

Other prominent vulnerability management challenges
OSS project maintainers face are negative CVE relationships
and vulnerability scoring. Collectively, these aspects may lead
to undermining or misreporting critical vulnerabilities; as a
consequence, polluting the software supply chain with incon-
sistencies. Tooling that can take context into account when a

vulnerability exists, including the deployment environment,
the project’s purpose, and how the vulnerability interacts with
other components, would be especially beneficial for working
toward problems in automated vulnerability scoring, which is
particularly understudied, as far as we are aware.

6.3 Implications & future directions based on
PSF adoption barriers

The most listed PSF barriers by OSS maintainers were lack of
awareness, complexity, and perception of being unnecessary
were the most prominent barriers; thereby, preventing PSF
adoption as a part of vulnerability management processes.
Notably, of the twelve interview participants who described a
lack of PSF awareness, five said they would enable them as a
result of just learning about their existence.

We encourage OSS maintainers to enable PSFs, e.g., es-
pecially those that are togglable by nature, such as private
vulnerability reporting, and recommend OSS platforms pro-
vide an Enable best practices button for PSFs that require
no-to-minimal setup and include links to respective PSFs
that are user-friendly for OSS maintainers without security
backgrounds. Research challenges for enabling such a but-
ton include automatically analyzing the context of the OSS
project, including its application-specific code and its depen-
dencies. Another research challenge of such a button would
be conducting a developer study to determine the best man-
ner in which to incorporate developer preferences into the
automation of best PSF practices provided by the button.

Our study further demonstrates a wide variety of OSS main-
tainers’ views as to the extent to which vulnerabilities should
be publicized, especially before a fix is provided. That spec-
trum includes a preference for using email due to the more
inherent privacy compared to public GitHub issues or having
to deal with the usability issues involving PSFs. Although
GitHub discourages public vulnerability reporting [47] and,
hence, encourages using the private vulnerability reporting
PSF [96], our study provides little evidence to back up such a
recommendation from OSS maintainers’ perspectives.

Nevertheless, preventing premature disclosure of a poten-
tially severe and easily exploitable vulnerability, which may
even be particularly difficult to fix, is a potentially strong
argument backing GitHub’s recommendation. To that end,
feature research can help automatically identify opportunities
for beneficial PSF usage. For example, when a user tries to
submit a public issue mentioning keywords like “vulnerabil-
ity” or “security”, OSS platforms could display a warning
and automatically nudge maintainers to encourage enabling
lightweight PSFs that require minimal effort to implement.

Other future research opportunities encouraging the use of
private vulnerability reporting include producing a convincing
means or incentive of recommending using PSF features (e.g.,
by gamifying the PSFs with badges or achievements) or even
enforcing the use of PSFs that OSS platform providers recom-
mend. As an example of such enforcement, future research

can automatically convert issues submitted to the public that
are likely vulnerabilities or may simply be bugs that, as iden-
tified through static reachability analysis, are reachable on the
project’s attack surface. Such research would go beyond the
coarse-grained identification of vulnerabilities in a GitHub
project’s dependencies by helping maintainers triage poten-
tial vulnerabilities as early as possible with higher confidence
(e.g., as provided through a static or dynamic analysis during
report submission). Such a future approach would help allevi-
ate the steep learning curve of understanding software security
while promoting the adoption of PSF features that can reduce
exploitation of publicly-reported OSS vulnerabilities.

OSS platforms and researchers should also consider work-
ing towards functionalities that (1) improve the quality and
presentation of security notifications; (2) automatically in-
form contributors about if their issue should be filed as a
vulnerability report based on past OSS vulnerabilities; (3) pro-
vide PSF setup assistance, e.g., generating a context-aware se-
curity policy;and (4) gamification features to reward projects
with recommended security posture and be designed in such a
way that creates a positive reputation. Research in such direc-
tions can focus on creating better-designed PSFs to provide
more value to OSS maintainers, such that PSFs are easier
to use, provide guidance to reporters, and promote positivity
with their adoption. Future research can also investigate how
to effectively use gamification to disseminate user-friendly
resources on proper OSS security, allowing any maintain-
ers to effortlessly learn security best practices. For example,
a project reputation icon, e.g., “green shield”, for enabling
best-practices PSFs can come with documentation on why
each PSF should be enabled. Further, PSFs can have a leader-
board of many kinds: maintainers who followed security best
practices most, reporters who provide the best-rated (e.g.,
by maintainers) vulnerability-oriented issues, reporters who
provide the easiest-to-understand and most convincing fixes
(e.g., avoiding regressions while ensuring security), and even
OSS projects with the best security-focused documentation.
This can further motivate maintainers to engage with security-
related gamification features and available security resources.

7 Conclusion

In this paper, we conduct a mixed-methods study, i.e., one list-
ing survey and semi-structured interviews, to investigate chal-
lenges and barriers by systematically identifying and quantify-
ing the factors that affect how OSS maintainers, who manage
previously vulnerable projects, conduct vulnerability manage-
ment. OSS project maintainers find trusting the supply chain
and lack of automation to be the most challenging aspects
of vulnerability management. Further, a lack of awareness,
complexity, and perception of being unnecessary are the most
prominent barriers to setting up platform security features.
Based on our findings, future work should investigate secure
CI features for vulnerability management, improving PSF
usability, and automated vulnerability management tooling.

8 Ethics considerations

Our institution’s ethics review board approved both studies.
Participants signed consent forms detailing study plans and
participant rights before data collection. Further, our study
is GDPR-compliant. We exclude subjects who reside in an
OFAC-sanctioned region and/or are affiliated with an OFAC-
sanction entity, as required by our institution’s ethics review
board for the nature of an international, online study.

Participants were asked to familiarize themselves with con-
sent and data handling information on a study information
sheet before agreeing to participate in our studies. Consider-
ing the nature of our questions regarding vulnerability-related
incidents, in particular to interviewee participants, we state
upfront how participants skip any questions, e.g., that they
may not be comfortable with answering, or end the interview
anytime. Lastly, we shared a preprint of our study to ensure
they were okay with our use of their quotes and referencing
respective conversations.

We did not monetarily compensate survey participants be-
cause of (1) our funding limits as academic researchers, and
(2) similar to other qualitative studies, compensating inter-
national participants is logistically difficult. We focused on
creating a study that provided intrinsic value to participants
through meaningful engagement and insights. Further, (3)
we reduced the time cost of completing our survey by al-
lowing participants to skip any free-response questions and
encouraged them not to spend more than 15 minutes filling
out our survey, and (4) survey participation is voluntary, OSS
participants often support academic research out of intrinsic
motivation [5, 41, 46] to help improve the security posture
of the OSS ecosystem through our study’s results. This ap-
proach ensured that participation gives a sense of purpose and
contributing to the greater good, i.e., for further securing the
OSS ecosystem, despite the lack of monetary compensation
for survey participants. However, each of our 22 interviewees
was monetarily compensated $20.

The most recent human-centered security paper that re-
cruited GitHub subjects, published at PETS, mined commit
information for maintainer emails [99]. After consulting with
ethics reviewers, they concluded that moving forward, re-
searchers should “only use contact information that has vis-
ibly been made public by the individuals themselves with
the intention of allowing the general public to contact them
[since] GitHub’s email address mechanics and users’ lack
of knowledge about them had neither been mentioned nor
addressed by previous work that used public GitHub reposito-
ries for recruitment” [99]. To comply with GitHub’s terms of
service [50] and following the PETS paper statement, we only
reached out to maintainers who have publicly available con-
tact information advertised as reachable to the general public,
e.g., in text as a part of their profile introduction markdown,
or through a self-hosted website, e.g., a personal homepage.

9 Open science

We make our listing study survey questions, semi-structured
interview guide, detailed interview participants’ information,
and an extended table of codes available in our artifact [2].

References

[1] Calendly. https://calendly.com/.

[2] Repository for open science. https://zenodo.org/
records/14721125, 2024.

[3] Toufique Ahmed and Premkumar Devanbu. Few-shot
training llms for project-specific code-summarization.
In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, ASE
’22, New York, NY, USA, 2023. Association for Com-
puting Machinery.

[4] Omer Akgul, Taha Eghtesad, Amit Elazari, Omprakash
Gnawali, Jens Grossklags, Michelle L. Mazurek,
Daniel Votipka, and Aron Laszka. Bug hunters’ per-
spectives on the challenges and benefits of the bug
bounty ecosystem. In Proceedings of the 32nd USENIX
Conference on Security Symposium, SEC ’23, USA,
2023. USENIX Association.

[5] Shaosong Ou Alexander Hars. Working for free? moti-
vations for participating in open-source projects. Inter-
national Journal of Electronic Commerce, 6(3):25–39,
2002.

[6] Nikolaos Alexopoulos, Andrew Meneely, Dorian
Arnouts, and Max Mühlhäuser. Who are vulnerabil-
ity reporters?: A large-scale empirical study on floss.
pages 1–12, 10 2021.

[7] Mahmoud Alfadel, Diego Elias Costa, Emad Shihab,
and Mouafak Mkhallalati. On the use of dependabot
security pull requests. In 2021 IEEE/ACM 18th Inter-
national conference on mining software repositories
(MSR), pages 254–265. IEEE, 2021.

[8] Mahmoud Alfadel, Diego Elias Costa, Emad Shihab,
and Mouafak Mkhallalati. On the use of dependabot
security pull requests. In 2021 IEEE/ACM 18th Inter-
national Conference on Mining Software Repositories
(MSR), pages 254–265, 2021.

[9] Noura Alomar, Primal Wijesekera, Edward Qiu, and
Serge Egelman. " you’ve got your nice list of bugs,
now what?" vulnerability discovery and management
processes in the wild. In Sixteenth Symposium on
Usable Privacy and Security (SOUPS 2020), pages
319–339, 2020.

https://calendly.com/
https://zenodo.org/records/14721125
https://zenodo.org/records/14721125

[10] Idan Amit and Dror G. Feitelson. A large scale survey
of motivation in software development and analysis of
its validity, 2024.

[11] Jessy Ayala and Joshua Garcia. An empirical study
on workflows and security policies in popular github
repositories. In 2023 IEEE/ACM 1st International
Workshop on Software Vulnerability (SVM), pages 6–9,
2023.

[12] Jessy Ayala, Steven Ngo, and Joshua Garcia. Poster:
Towards understanding the underuse of security fea-
tures in open-source repositories. In Proceedings of
the 33rd USENIX Conference on Security Symposium,
2024.

[13] Jessy Ayala, Steven Ngo, and Joshua Garcia. A deep
dive into how open-source project maintainers review
and resolve bug bounty reports. In 2025 IEEE Sympo-
sium on Security and Privacy (SP), 2025.

[14] Jessy Ayala, Yu-Jye Tung, and Joshua Garcia. Poster:
A glimpse of vulnerability disclosure behaviors and
practices using github projects. In Proceedings of the
45th IEEE Symposium on Security and Privacy (S&P),
2024.

[15] Jessy Ayala, Yu-Jye Tung, and Joshua Garcia. Inves-
tigating vulnerability disclosures in open-source soft-
ware using bug bounty reports and security advisories,
2025.

[16] Sogol Balali, Umayal Annamalai, Hema Susmita
Padala, Bianca Trinkenreich, Marco A Gerosa, Igor
Steinmacher, and Anita Sarma. Recommending tasks
to newcomers in oss projects: How do mentors handle
it? In Proceedings of the 16th International Symposium
on Open Collaboration, pages 1–14, 2020.

[17] Vinuri Bandara, Thisura Rathnayake, Nipuna
Weerasekara, Charitha Elvitigala, Kenneth Thi-
lakarathna, Primal Wijesekera, and Chamath
Keppitiyagama. Fix that fix commit: A real-world
remediation analysis of javascript projects. In 2020
IEEE 20th International Working Conference on
Source Code Analysis and Manipulation (SCAM),
pages 198–202. IEEE, 2020.

[18] H.R. Bernard. Research Methods in Anthropology:
Qualitative and Quantitative Approaches. Rowman &
Littlefield Publishers, 2017.

[19] Virginia Braun and Victoria Clarke. Using thematic
analysis in psychology. Qualitative research in psy-
chology, 3(2):77–101, 2006.

[20] Josh Bressers. npm maintainers bar
chart of maintainers. https://user-
images.githubusercontent.com/1692786/
169064720-aeb04238-c618-4d5e-a964-
0f563b87210e.png, 2022.

[21] Josh Bressers. Pypi maintainers bar
chart of maintainers. https://user-
images.githubusercontent.com/1692786/
169667411-0107650f-deb2-4a4a-ae32-
5f5f785cc3d1.png, 2022.

[22] Chris Brown and Chris Parnin. Sorry to bother you:
Designing bots for effective recommendations. In 2019
IEEE/ACM 1st International Workshop on Bots in Soft-
ware Engineering (BotSE), pages 54–58. IEEE, 2019.

[23] Quang-Cuong Bui, Ranindya Paramitha, Duc-Ly Vu,
Fabio Massacci, and Riccardo Scandariato. Apr4vul:
an empirical study of automatic program repair tech-
niques on real-world java vulnerabilities. Empirical
Software Engineering, 29(18), 2024.

[24] Stephan Bönnemann and Christoph Witzko. Green-
keeper. https://github.com/greenkeeperio/
greenkeeper, 2015.

[25] Gerardo Canfora, Andrea Di Sorbo, Sara Forootani,
Antonio Pirozzi, and Corrado Aaron Visaggio. Investi-
gating the vulnerability fixing process in oss projects:
Peculiarities and challenges. Computers & Security,
99:102067, 2020.

[26] Foster Charles. Knowing when your security policies
need updating. https://blog.charlesit.com/knowing-
when-your-security-policies-need-updating, 2022.

[27] Kathy Charmaz. Constructing grounded theory. 2014.

[28] Pavan Kumar Chittimalli and Mary Jean Harrold. Re-
computing coverage information to assist regression
testing. IEEE Transactions on Software Engineering,
35(4):452–469, 2009.

[29] Kattiana Constantino, Mauricio Souza, Shurui Zhou,
Eduardo Figueiredo, and Christian Kästner. Percep-
tions of open-source software developers on collabo-
rations: An interview and survey study. In Journal of
Software: Evolution and Process, 2021.

[30] Luis Fernando Cortés-Coy, Mario Linares-Vásquez,
Jairo Aponte, and Denys Poshyvanyk. On automati-
cally generating commit messages via summarization
of source code changes. In 2014 IEEE 14th Interna-
tional Working Conference on Source Code Analysis
and Manipulation, pages 275–284. IEEE, 2014.

https://user-images.githubusercontent.com/1692786/169064720-aeb04238-c618-4d5e-a964-0f563b87210e.png
https://user-images.githubusercontent.com/1692786/169064720-aeb04238-c618-4d5e-a964-0f563b87210e.png
https://user-images.githubusercontent.com/1692786/169064720-aeb04238-c618-4d5e-a964-0f563b87210e.png
https://user-images.githubusercontent.com/1692786/169064720-aeb04238-c618-4d5e-a964-0f563b87210e.png
https://user-images.githubusercontent.com/1692786/169667411-0107650f-deb2-4a4a-ae32-5f5f785cc3d1.png
https://user-images.githubusercontent.com/1692786/169667411-0107650f-deb2-4a4a-ae32-5f5f785cc3d1.png
https://user-images.githubusercontent.com/1692786/169667411-0107650f-deb2-4a4a-ae32-5f5f785cc3d1.png
https://user-images.githubusercontent.com/1692786/169667411-0107650f-deb2-4a4a-ae32-5f5f785cc3d1.png
https://github.com/greenkeeperio/greenkeeper
https://github.com/greenkeeperio/greenkeeper

[31] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim
Herbsleb. Social coding in github: transparency and
collaboration in an open software repository. In Pro-
ceedings of the ACM 2012 conference on computer
supported cooperative work, pages 1277–1286, 2012.

[32] Anastasia Danilova, Alena Naiakshina, and Matthew
Smith. One size does not fit all: a grounded theory and
online survey study of developer preferences for secu-
rity warning types. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineer-
ing, pages 136–148, 2020.

[33] Baden Delamore and Ryan KL Ko. A global, em-
pirical analysis of the shellshock vulnerability in web
applications. In 2015 IEEE Trustcom/BigDataSE/ISPA,
volume 1, pages 1129–1135. IEEE, 2015.

[34] Giuseppe Destefanis, Marco Ortu, Steve Counsell,
Stephen Swift, Michele Marchesi, and Roberto Tonelli.
Software development: do good manners matter? PeerJ
Computer Science, 2:e73, 2016.

[35] Jens Dietrich, Shawn Rasheed, Alexander Jordan,
and Tim White. On the security blind spots
of software composition analysis. arXiv preprint
arXiv:2306.05534, 2023.

[36] Alan Diggs. ‘windows is sh*t:’ linux users
and the technical superiority problem. https:
//medium.com/linuxforeveryone/windows-
is-sh-t-linux-users-and-the-technical-
superiority-problem-196a597aa860, 2021.

[37] Zakir Durumeric, Frank Li, James Kasten, Johanna
Amann, Jethro Beekman, Mathias Payer, Nicolas
Weaver, David Adrian, Vern Paxson, Michael Bailey,
et al. The matter of heartbleed. In Proceedings of the
2014 conference on internet measurement conference,
pages 475–488, 2014.

[38] Nigel Edwards and Liqun Chen. An historical exami-
nation of open source releases and their vulnerabilities.
In Proceedings of the 2012 ACM conference on Com-
puter and communications security, pages 183–194,
2012.

[39] Ryan Ellis and Yuan Stevens. Bounty everything:
Hackers and the making of the global bug marketplace.
SSRN Electronic Journal, 01 2022.

[40] Felix Fischer, Jonas Höbenreich, and Jens Grossklags.
The effectiveness of security interventions on github.
In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, pages
2426–2440, 2023.

[41] Konstantin Fischer, Ivana Trummová, Phillip Gajland,
Yasemin Acar, Sascha Fahl, and Angela Sasse. The
challenges of bringing cryptography from research
papers to products: Results from an interview study
with experts. In 33rd USENIX Security Symposium
(USENIX Security 24), pages 7213–7230, Philadelphia,
PA, 2024. USENIX Association.

[42] Benjamin Fogel, Shane Farmer, Hamza Alkofahi, An-
thony Skjellum, and Munawar Hafiz. Poodles, more
poodles, freak attacks too: how server administrators
responded to three serious web vulnerabilities. In En-
gineering Secure Software and Systems: 8th Interna-
tional Symposium, ESSoS 2016, London, UK, April 6–8,
2016. Proceedings 8, pages 122–137. Springer, 2016.

[43] Denae Ford, Mahnaz Behroozi, Alexander Serebrenik,
and Chris Parnin. Beyond the code itself: How
programmers really look at pull requests. In 2019
IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Society (ICSE-
SEIS), pages 51–60. IEEE, 2019.

[44] The Linux Foundation. Open secure soft-
ware foundation (openssf) working groups.
https://openssf.org/community/openssf-
working-groups/, 202.

[45] Marcel Fourné, Dominik Wermke, William Enck,
Sascha Fahl, and Yasemin Acar. It’s like flossing
your teeth: On the importance and challenges of re-
producible builds for software supply chain security.
In 2023 IEEE Symposium on Security and Privacy
(SP), pages 1527–1544. IEEE, 2023.

[46] Marco Aurélio Gerosa, Igor Wiese, Bianca Trinkenre-
ich, Georg Link, Gregorio Robles, Christoph Treude,
Igor Steinmacher, and Anita Sarma. The shifting sands
of motivation: Revisiting what drives contributors in
open source. CoRR, abs/2101.10291, 2021.

[47] GitHub. About coordinated disclosure of secu-
rity vulnerabilities. https://docs.github.com/
en/code-security/security-advisories/
guidance-on-reporting-and-writing-
information-about-vulnerabilities/about-
coordinated-disclosure-of-security-
vulnerabilities#standard-process.

[48] GitHub. Collaborating in a temporary private
fork to resolve a repository security vulnera-
bility. https://docs.github.com/en/code-
security/security-advisories/working-
with-repository-security-advisories/
collaborating-in-a-temporary-private-
fork-to-resolve-a-repository-security-
vulnerability.

https://medium.com/linuxforeveryone/windows-is-sh-t-linux-users-and-the-technical-superiority-problem-196a597aa860
https://medium.com/linuxforeveryone/windows-is-sh-t-linux-users-and-the-technical-superiority-problem-196a597aa860
https://medium.com/linuxforeveryone/windows-is-sh-t-linux-users-and-the-technical-superiority-problem-196a597aa860
https://medium.com/linuxforeveryone/windows-is-sh-t-linux-users-and-the-technical-superiority-problem-196a597aa860
https://openssf.org/community/openssf-working-groups/
https://openssf.org/community/openssf-working-groups/
https://docs.github.com/en/code-security/security-advisories/guidance-on-reporting-and-writing-information-about-vulnerabilities/about-coordinated-disclosure-of-security-vulnerabilities#standard-process
https://docs.github.com/en/code-security/security-advisories/guidance-on-reporting-and-writing-information-about-vulnerabilities/about-coordinated-disclosure-of-security-vulnerabilities#standard-process
https://docs.github.com/en/code-security/security-advisories/guidance-on-reporting-and-writing-information-about-vulnerabilities/about-coordinated-disclosure-of-security-vulnerabilities#standard-process
https://docs.github.com/en/code-security/security-advisories/guidance-on-reporting-and-writing-information-about-vulnerabilities/about-coordinated-disclosure-of-security-vulnerabilities#standard-process
https://docs.github.com/en/code-security/security-advisories/guidance-on-reporting-and-writing-information-about-vulnerabilities/about-coordinated-disclosure-of-security-vulnerabilities#standard-process
https://docs.github.com/en/code-security/security-advisories/guidance-on-reporting-and-writing-information-about-vulnerabilities/about-coordinated-disclosure-of-security-vulnerabilities#standard-process
https://docs.github.com/en/code-security/security-advisories/working-with-repository-security-advisories/collaborating-in-a-temporary-private-fork-to-resolve-a-repository-security-vulnerability
https://docs.github.com/en/code-security/security-advisories/working-with-repository-security-advisories/collaborating-in-a-temporary-private-fork-to-resolve-a-repository-security-vulnerability
https://docs.github.com/en/code-security/security-advisories/working-with-repository-security-advisories/collaborating-in-a-temporary-private-fork-to-resolve-a-repository-security-vulnerability
https://docs.github.com/en/code-security/security-advisories/working-with-repository-security-advisories/collaborating-in-a-temporary-private-fork-to-resolve-a-repository-security-vulnerability
https://docs.github.com/en/code-security/security-advisories/working-with-repository-security-advisories/collaborating-in-a-temporary-private-fork-to-resolve-a-repository-security-vulnerability
https://docs.github.com/en/code-security/security-advisories/working-with-repository-security-advisories/collaborating-in-a-temporary-private-fork-to-resolve-a-repository-security-vulnerability

[49] GitHub. Github security features. https:
//docs.github.com/en/code-security/getting-
started/github-security-features.

[50] GitHub. Github terms of service. https://
docs.github.com/en/site-policy/acceptable-
use-policies/github-acceptable-use-
policies.

[51] GitHub. Github security advisory database. https:
//github.com/advisories, 2017.

[52] GitHub. Dependabot: Automated dependency updates
built into github. https://github.com/dependabot,
2019.

[53] GitHub. The state of the octoverse. https://
octoverse.github.com/, 2023.

[54] Barney G Glaser. The constant comparative method of
qualitative analysis. Social problems, 12(4):436–445,
1965.

[55] Georgios Gousios, Martin Pinzger, and Arie van
Deursen. An exploratory study of the pull-based soft-
ware development model. In Proceedings of the 36th in-
ternational conference on software engineering, pages
345–355, 2014.

[56] Runzhi He, Hao He, Yuxia Zhang, and Minghui Zhou.
Automating dependency updates in practice: An ex-
ploratory study on github dependabot. IEEE Trans-
actions on Software Engineering, 49(8):4004–4022,
2023.

[57] Stephen Hendrick and Ashwin Ramaswami. Main-
tainer perspectives on open source software security.
https://www.linuxfoundation.org/hubfs/LF

[58] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong
Wang, Li Li, Xiapu Luo, David Lo, John Grundy, and
Haoyu Wang. Large language models for software en-
gineering: A systematic literature review. ACM Trans.
Softw. Eng. Methodol., 33(8), December 2024.

[59] Allen D Householder, Jeff Chrabaszcz, Trent Novelly,
David Warren, and Jonathan M Spring. Historical anal-
ysis of exploit availability timelines. In 13th USENIX
Workshop on Cyber Security Experimentation and Test
(CSET 20), 2020.

[60] Keman Huang, Michael D. Siegel, Stuart E. Madnick,
Xiaohong Li, and Zhiyong Feng. Poster: Diversity or
concentration? hackers’ strategy for working across
multiple bug bounty programs. In 37th IEEE Sympo-
sium on Security and Privacy (S&P), 2016.

[61] Yu Huang, Denae Ford, and Thomas Zimmermann.
Leaving my fingerprints: Motivations and challenges of
contributing to oss for social good. In 2021 IEEE/ACM
43rd International Conference on Software Engineer-
ing (ICSE), pages 1020–1032, 2021.

[62] Yu-Chi Huang, Kuan-Li Peng, and Chin-Yu Huang.
A history-based cost-cognizant test case prioritization
technique in regression testing. Journal of Systems and
Software, 85(3):626–637, 2012.

[63] Bryan Hughes. Why i’m leaving the node.js
project. https://medium.com/@nebrius/why-im-
leaving-the-node-js-project-bff946845a77,
2017.

[64] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill,
and Robert Bowdidge. Why don’t software develop-
ers use static analysis tools to find bugs? In 2013
35th International Conference on Software Engineer-
ing (ICSE), pages 672–681. IEEE, 2013.

[65] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill,
and Robert Bowdidge. Why don’t software develop-
ers use static analysis tools to find bugs? In 2013
35th International Conference on Software Engineer-
ing (ICSE), pages 672–681, 2013.

[66] Vinay Kabadi, Dezhen Kong, Siyu Xie, Lingfeng Bao,
Gede Artha Azriadi Prana, Tien-Duy B. Le, Xuan-
Bach D. Le, and David Lo. The future can’t help fix
the past: Assessing program repair in the wild. In 2023
IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pages 50–61, 2023.

[67] Nolan Lawson. What it feels like to be an open-source
maintainer, 2017.

[68] Amanda Lee, Jeffrey C Carver, and Amiangshu Bosu.
Understanding the impressions, motivations, and bar-
riers of one time code contributors to floss projects: a
survey. In 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering (ICSE), pages 187–197.
IEEE, 2017.

[69] Frank Li and Vern Paxson. A large-scale empirical
study of security patches. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 2201–2215, 2017.

[70] Jiawei Li, David Faragó, Christian Petrov, and Iftekhar
Ahmed. Only diff is not enough: Generating commit
messages leveraging reasoning and action of large lan-
guage model. Proceedings of the ACM on Software
Engineering, 1(FSE):745–766, 2024.

https://docs.github.com/en/code-security/getting-started/github-security-features
https://docs.github.com/en/code-security/getting-started/github-security-features
https://docs.github.com/en/code-security/getting-started/github-security-features
https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies
https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies
https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies
https://docs.github.com/en/site-policy/acceptable-use-policies/github-acceptable-use-policies
https://github.com/advisories
https://github.com/advisories
https://github.com/dependabot
https://octoverse.github.com/
https://octoverse.github.com/
https://medium.com/@nebrius/why-im-leaving-the-node-js-project-bff946845a77
https://medium.com/@nebrius/why-im-leaving-the-node-js-project-bff946845a77

[71] Yuni Li and Ling Zhao. Collaborating with bounty
hunters: How to encourage white hat hackers’ participa-
tion in vulnerability crowdsourcing programs through
formal and relational governance. Information & Man-
agement, 59(4):103648, 2022.

[72] Jenny T. Liang, Thomas Zimmermann, and Denae Ford.
Understanding skills for oss communities on github. In
Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2022,
page 170–182, New York, NY, USA, 2022. Association
for Computing Machinery.

[73] Mario Linares-Vásquez, Luis Fernando Cortés-Coy,
Jairo Aponte, and Denys Poshyvanyk. Changescribe: A
tool for automatically generating commit messages. In
2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 2, pages 709–712.
IEEE, 2015.

[74] Johan Linåker, Georg J. P. Link, and Kevin Lumbard.
Sustaining maintenance labor for healthy open source
software projects through human infrastructure: A
maintainer perspective, 2024.

[75] Thomas Maillart, Mingyi Zhao, Jens Grossklags, and
John Chuang. Given enough eyeballs, all bugs are
shallow? Revisiting Eric Raymond with bug bounty
programs. Journal of Cybersecurity, 3(2):81–90, 10
2017.

[76] Mend.io. Renovate bot. https://github.com/
renovatebot/renovate, 2017.

[77] Courtney Miller, Sophie Cohen, Daniel Klug, Bogdan
Vasilescu, and Christian KaUstner. " did you miss
my comment or what?" understanding toxicity in open
source discussions. In Proceedings of the 44th Inter-
national Conference on Software Engineering, pages
710–722, 2022.

[78] Nasir Mehmood Minhas, Thejendar Reddy Kop-
pula, Kai Petersen, and Jürgen Börstler. Using
goal–question–metric to compare research and practice
perspectives on regression testing. Journal of Software:
Evolution and Process, 35(2), 2023.

[79] Samim Mirhosseini and Chris Parnin. Can automated
pull requests encourage software developers to upgrade
out-of-date dependencies? In 2017 32nd IEEE/ACM
international conference on automated software engi-
neering (ASE), pages 84–94. IEEE, 2017.

[80] MITRE. Xz utils vulnerability. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2024-3094, 2024.

[81] Hamid Mohayeji, Andrei Agaronian, Eleni Constanti-
nou, Nicola Zannone, and Alexander Serebrenik. Inves-
tigating the resolution of vulnerable dependencies with
dependabot security updates. In 2023 IEEE/ACM 20th
International Conference on Mining Software Reposi-
tories (MSR), pages 234–246. IEEE, 2023.

[82] Lukas Moldon, Markus Strohmaier, and Johannes
Wachs. How gamification affects software develop-
ers: Cautionary evidence from a natural experiment on
github. In 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering (ICSE), pages 549–561.
IEEE, 2021.

[83] Sabato Nocera, Simone Romano, Massimiliano Di
Penta, Rita Francese, and Giuseppe Scanniello. Soft-
ware bill of materials adoption: A mining study from
github. In 2023 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages
39–49, 2023.

[84] Eric O’Donoghue, Ann Marie Reinhold, and Clemente
Izurieta. Assessing security risks of software supply
chains using software bill of materials. In 2024 IEEE
International Conference on Software Analysis, Evo-
lution and Reengineering - Companion (SANER-C),
pages 134–140, 2024.

[85] Chinenye Okafor, Taylor R. Schorlemmer, Santiago
Torres-Arias, and James C. Davis. Sok: Analysis of
software supply chain security by establishing secure
design properties. In Proceedings of the 2022 ACM
Workshop on Software Supply Chain Offensive Re-
search and Ecosystem Defenses, SCORED’22, page
15–24, New York, NY, USA, 2022. Association for
Computing Machinery.

[86] Hassan Onsori Delicheh, Alexandre Decan, and Tom
Mens. Quantifying security issues in reusable
javascript actions in github workflows. In Proceed-
ings of the 21st International Conference on Mining
Software Repositories, pages 692–703, 2024.

[87] Cassandra Overney, Jens Meinicke, Christian Kästner,
and Bogdan Vasilescu. How to not get rich: An empir-
ical study of donations in open source. In Proceedings
of the ACM/IEEE 42nd international conference on
software engineering, pages 1209–1221, 2020.

[88] Naveen Raman, Minxuan Cao, Yulia Tsvetkov, Chris-
tian Kästner, and Bogdan Vasilescu. Stress and burnout
in open source: toward finding, understanding, and mit-
igating unhealthy interactions. In Proceedings of the
ACM/IEEE 42nd International Conference on Software
Engineering: New Ideas and Emerging Results, ICSE-
NIER ’20, page 57–60, New York, NY, USA, 2020.
Association for Computing Machinery.

https://github.com/renovatebot/renovate
https://github.com/renovatebot/renovate
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-3094
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-3094
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2024-3094

[89] Thomas Rausch, Waldemar Hummer, Philipp Leitner,
and Stefan Schulte. An empirical analysis of build fail-
ures in the continuous integration workflows of java-
based open-source software. In 2017 IEEE/ACM 14th
International Conference on Mining Software Reposi-
tories (MSR), pages 345–355. IEEE, 2017.

[90] Johnny Saldaña. The coding manual for qualitative
researchers (4th edition). pages 1–440, 2021.

[91] Open secure software foundation (OpenSSF).
Guide to implementing a coordinated vulnerabil-
ity disclosure process for open source projects.
https://github.com/ossf/oss-vulnerability-
guide/blob/main/maintainer-guide.md, 2022.

[92] Naomichi Shimada, Tao Xiao, Hideaki Hata, Christoph
Treude, and Kenichi Matsumoto. Github sponsors:
exploring a new way to contribute to open source. In
Proceedings of the 44th International Conference on
Software Engineering, pages 1058–1069, 2022.

[93] Synopsys. Coverity scan static analysis. https://
scan.coverity.com/, 2006.

[94] Synopsys. 2024 open source security and risk anal-
ysis report. https://www.synopsys.com/software-
integrity/engage/ossra/ossra-report, 2023.

[95] Sagacent Technologies. How often should
you update your cyber security policies.
https://sagacent.com/blog/how-often-should-you-
update-your-cyber-security-policies, 2021.

[96] Eric Tooley and Kate Catlin. Private vul-
nerability reporting now generally available.
https://github.blog/2023-04-19-private-
vulnerability-reporting-now-generally-
available/, 2023.

[97] Asher Trockman, Shurui Zhou, Christian Kästner, and
Bogdan Vasilescu. Adding sparkle to social coding:
an empirical study of repository badges in the npm
ecosystem. In Proceedings of the 40th international
conference on software engineering, pages 511–522,
2018.

[98] Jason Tsay, Laura Dabbish, and James Herbsleb. In-
fluence of social and technical factors for evaluating
contribution in github. In Proceedings of the 36th in-
ternational conference on Software engineering, pages
356–366, 2014.

[99] Christine Utz, Sabrina Amft, Martin Degeling,
Thorsten Holz, Sascha Fahl, and Florian Schaub. Pri-
vacy rarely considered: Exploring considerations in
the adoption of third-party services by websites. arXiv
preprint arXiv:2203.11387, 2022.

[100] Fadi Wedyan, Dalal Alrmuny, and James M Bieman.
The effectiveness of automated static analysis tools
for fault detection and refactoring prediction. In 2009
International Conference on Software Testing Verifica-
tion and Validation, pages 141–150. IEEE, 2009.

[101] Dominik Wermke, Noah Wöhler, Jan H. Klemmer,
Marcel Fourné, Yasemin Acar, and Sascha Fahl. Com-
mitted to trust: A qualitative study on security & trust
in open source software projects. In 2022 IEEE Sympo-
sium on Security and Privacy (SP), pages 1880–1896,
2022.

[102] Mairieli Wessel, Ahmad Abdellatif, Igor Wiese, Tayana
Conte, Emad Shihab, Marco A Gerosa, and Igor Stein-
macher. Bots for pull requests: The good, the bad, and
the promising. In Proceedings of the 44th International
Conference on Software Engineering, pages 274–286,
2022.

[103] Mairieli Wessel, Igor Wiese, Igor Steinmacher, and
Marco Aurelio Gerosa. Don’t disturb me: Challenges
of interacting with software bots on open source soft-
ware projects. Proceedings of the ACM on Human-
Computer Interaction, 5(CSCW2):1–21, 2021.

[104] Boming Xia, Tingting Bi, Zhenchang Xing, Qinghua
Lu, and Liming Zhu. An empirical study on software
bill of materials: Where we stand and the road ahead.
In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pages 2630–2642, 2023.

[105] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto,
Gerardo Canfora, and Massimiliano Di Penta. How
open source projects use static code analysis tools in
continuous integration pipelines. In 2017 IEEE/ACM
14th International Conference on Mining Software
Repositories (MSR), pages 334–344. IEEE, 2017.

[106] Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu,
Bingchao Wu, Bei Guan, Yongji Wang, and Jian-Guang
Lou. Large language models meet nl2code: A survey.
In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki
Okazaki, editors, Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 7443–7464, 2023.

[107] Xunhui Zhang, Yue Yu, Georgios Gousios, and Ayushi
Rastogi. Pull request decisions explained: An empir-
ical overview. IEEE Transactions on Software Engi-
neering, 49(2):849–871, 2022.

[108] Ling Zhao and Yun Li. Collaborating with white hat
hackers: A study of vulnerability crowdsourcing pro-
gram from control perspective. In Pacific Asia Confer-
ence on Information Systems, 2020.

https://github.com/ossf/oss-vulnerability-guide/blob/main/maintainer-guide.md
https://github.com/ossf/oss-vulnerability-guide/blob/main/maintainer-guide.md
https://scan.coverity.com/
https://scan.coverity.com/
https://www.synopsys.com/software-integrity/engage/ossra/ossra-report
https://www.synopsys.com/software-integrity/engage/ossra/ossra-report
https://github.blog/2023-04-19-private-vulnerability-reporting-now-generally-available/
https://github.blog/2023-04-19-private-vulnerability-reporting-now-generally-available/
https://github.blog/2023-04-19-private-vulnerability-reporting-now-generally-available/

	Introduction
	Related Work
	Methodology
	Listing survey study
	Participant recruitment and piloting
	Survey details
	Data analysis

	Interview study
	Participant recruitment and piloting
	Interview details and structure
	Data analysis

	Limitations

	Participants
	Results
	Current practices used for vulnerability management
	Challenges with vulnerability management
	Challenges with platform security features
	Barriers hindering adoption of platform security features
	Opportunities for improvement & support

	Discussion
	Bridging factors to reveal underlying issues
	Implications & future directions based on collective challenges
	Implications & future directions based on PSF adoption barriers

	Conclusion
	Ethics considerations
	Open science

