
System Register Hijacking: Compromising Kernel Integrity By Turning System
Registers Against the System

Jennifer Miller∗, Manas Ghandat∗, Kyle Zeng∗, Hongkai Chen∗, Abdelouahab (Habs) Benchikh∗

Tiffany Bao∗, Ruoyu Wang∗, Adam Doupé∗, Yan Shoshitaishvili∗
∗Arizona State University

{jmill,mghandat,zengyhkyle,hongkai.chen,abenchik,tbao,fishw,doupe,yans}@asu.edu

Abstract
The Linux kernel has been a battleground between security
researchers identifying new exploitation techniques and those
developing mitigations to protect the kernel from exploitation.
This is an ongoing battle: last year, Google’s KernelCTF Vul-
nerability Research Program paid out 44 bounties for unique
exploitation techniques submitted to the program, many of
which targeted control flow hijacking vulnerabilities. How-
ever, the era of control flow hijacking exploits in the kernel
may be coming to an end: FineIBT, now the default Control
Flow Integrity measure in the Linux kernel, blocks all known
control flow hijacking exploitation techniques.

In this paper, we propose System Register Hijacking, a
previously overlooked frontier in the exploitation of control
flow hijacking vulnerabilities in the kernel context. Our ap-
proach provides a comprehensive examination of typically
overlooked system registers, leading us to propose several
powerful exploitation techniques targeting different x86-64
system registers (e.g., cr0, cr3, and gs) and aarch64 system
registers (e.g., pan, elr_el1, and vbar_el1) to break ker-
nel security in different ways. While all of our techniques
present new avenues for attackers, one in particular, which
leverages the x86-64 swapgs instruction, requires neither gen-
eral purpose register nor stack control, making it one of the
most powerful kernel exploitation primitives currently known.
Moreover, to our knowledge, this is the first exploitation primi-
tive capable of bypassing the FineIBT mitigation, demonstrat-
ing not only the power of our technique but also the continued
relevance of control flow hijacking vulnerabilities.

In addition to developing these techniques, we propose mit-
igations to defend against most of them. Though some of our
techniques appear challenging to mitigate, our swapgs miti-
gation restores FineIBT’s security posture at a performance
cost of just under 1%.

1 Introduction

Linux powers an increasingly large number of systems and
devices worldwide: over 85% of smartphones, 40% of servers,

and 90% of cloud infrastructure run Linux [33, 39]. This pop-
ularity makes Linux an increasingly interesting and profitable
target for attackers. At the same time, the complexity of the
Linux kernel means that it is never free from vulnerabilities.
As of September 2024, 1,250 Linux kernel vulnerabilities
have been published as CVEs [18], many of which would
allow attackers to hijack control flow in Linux kernels upon
successful exploitation.

Control-flow hijacking techniques can convert a memory
corruption vulnerability into a powerful exploit. While finding
and eliminating these vulnerabilities is important, it is also
crucial to secure the Linux kernel to make the exploitation of
these vulnerabilities more difficult. As a response, the devel-
opment of defenses in the Linux kernel against exploitation
has gained momentum in the past decade, leading to many
mitigations being widely deployed to hamper successful and
reliable exploitation efforts. Over time, defenders have pro-
posed and developed many mitigations to thwart control-flow
hijacking techniques: Mitigations like Supervisor Mode Exe-
cution Prevention (SMEP), Supervisor Mode Access Preven-
tion (SMAP), Kernel Address Space Layout Randomization
(KASLR), CR-Pinning, and NX-Physmap have raised the bar
for successful exploitation of control flow hijacking.

However, despite the introduction of such exploit mit-
igations in the Linux kernel, attackers continue to dis-
cover new techniques to bypass them. To name a few
well-known exploitation techniques: returning to user-space
code (ret2usr [44]), stack pivoting to a user-space stack
(pivot2usr [20]), returning to user-space code in “physmap”
(ret2dir [36]), and reusing userspace data spilled to the ker-
nel stack (retspill [62]). Because these techniques can fun-
damentally change the level of threat posed by vulnerabili-
ties (e.g., by making previously unexploitable vulnerabilities
exploitable), they are of significant interest to both the re-
search and industry communities. One result of this interest
is Google’s KernelCTF Vulnerability Reward Program [25],
which rewards security researchers based on novel applica-
tions of exploitation techniques rather than the underlying
vulnerabilities themselves (that is, one can earn a kCTF re-



ward with a new exploitation technique on a known vulnera-
bility). Over the last year, Google’s kCTF has seen 44 unique
successful exploits against their “mitigations” instance of the
Linux kernel, which deploys even experimental mitigations
(i.e., these mitigations do not exist or are not enabled by de-
fault in mainline kernels) to defend against popular attack
vectors.

Several years ago, the Google Project Zero team published
a Linux exploit that overwrote the cr4 system register [23] to
disable SMAP and SMEP, allowing kernel control flow to be
redirected to userspace-controlled memory regions. Though
it was recognized at the time as a powerful technique, we
realized that it was actually a glimpse at a different style
of thought about exploitation in the Linux kernel. Most ex-
ploits in the kernel look, at an instruction level, like userspace
exploits: they use general-purpose registers to index ker-
nel memory or pass arguments to internal kernel APIs (e.g.,
commit_creds or copy_from_user). However, the kernel
uses additional registers that userspace does not: System Reg-
isters. These registers influence CPU features (such as SMAP
and SMEP), memory structure (e.g., page tables, thread-local
storage), and critical CPU operations (e.g., interrupt handlers).
Most of these registers, such as cr0 and cr4, are completely
inaccessible from userspace. Some, such as EFLAGS, exist in
userspace but have special meaning in kernel mode (the AC
flag in EFLAGS disables SMAP). Driven by the insight that
Google’s use of cr4 was not the only exploitation implica-
tion of system registers, we hypothesized that other system
registers could be leveraged for similar effects.

In this paper, we present an in-depth analysis of System
Register Hijacking (SRH), a novel class of exploitation tech-
niques that bypasses many mitigations in the Linux kernel. We
systematically evaluate all system register-accessing x86-64
and aarch64 instructions in the Linux kernel, analyze poten-
tial effects that attackers can achieve by using them in control
flow hijacking, demonstrate the feasibility of these techniques
(and their variants), understand their prerequisites, and mea-
sure their prevalence (in terms of the number of gadgets) in
the kernel. Of our resulting seven exploitation techniques on
x86-64 and aarch64 (the known cr4 hijack described above,
plus six new ones), four techniques require only register con-
trol at the control flow hijack site, two require some stack
control, and one requires neither stack nor register control,
representing a “worst-case scenario” exploitation technique
in the Linux kernel and thus being applicable to any control
flow hijacking vulnerability on x86-64. Moreover, this last
technique, relying on the swapgs instruction and hijacking
the KERNEL_GSBASE_MSR system register, bypasses FineIBT
mitigations. To the best of our knowledge, our swapgs SRH
technique is the first and only general technique applicable
to exploiting control flow hijacking vulnerabilities in kernels
with FineIBT enabled.

Contributions. In summary, our paper makes the following
contributions:

• We propose System Register Hijacking, a category of
exploitation techniques that leverage kernel-only system
registers to achieve attacker goals. We also measure the
prevalence of gadgets that can enable these techniques
in many recent Linux kernel images.

• Furthermore, we demonstrate the viability of SRH tech-
niques by developing PoCs based on vulnerable kernel
modules and showcasing the effectiveness of the swapgs
technique by exploiting real-world vulnerabilities, pre-
senting the first-ever generic forward-edge bypass for
the recent FineIBT mitigation.

• We propose mitigations for most of our SRH techniques
and discuss the challenges inherent in mitigating these
weaknesses.

2 Background

Before discussing the details of our attack, we provide a brief
overview of the Linux kernel’s security mechanisms and the
architectural features that are relevant to our proposed SRH
attacks.

2.1 Control Flow Hijacking
A common exploitation technique used to achieve Local Priv-
ilege Escalation in the Linux kernel is to use a memory cor-
ruption vulnerability to corrupt a function pointer or a pointer
to a function table on the kernel heap. This enables the at-
tacker to hijack the control flow of an indirect jump or call
from its intended target to an attacker-controlled target, thus
corrupting a forward control flow edge.

However, even having hijacked control flow, it can be dif-
ficult to maintain control for long enough to escalate priv-
ileges. The traditional approach for transferring forward
control flow hijacking to a ROP chain in the Linux ker-
nel involves pivoting the stack pointer to a controlled ad-
dress on the kernel heap. This requires a stack-pivoting
gadget such as a pop rsp; ret; gadget or a mov rsp,
<attacker-controlled-reg>; ret; gadget. The pivot-to-
heap technique can be difficult to implement in practice be-
cause the viable pivoting gadgets are dependent on the sys-
tem state at the site of control flow hijacking. Therefore, we
consider pivot-to-heap to have significantly complex precon-
ditions.

For example, using the gadget mov rsp, rax; ret; has
the preconditions that (1) rax holds the address of the attacker-
controlled stack, and (2) the attacker controls enough memory
at rax to implement the ROP payload.

ret2dir [36] found, at the time it was published, that the ker-
nel’s physical memory map (physmap) region was located at



a fixed address and was entirely read-write-execute memory.
At the time, the SMEP mitigation (which prevents redirecting
kernel control flow to user space) was still fairly new, and
this technique presented a clear bypass of the mitigation by
returning to a synonym address in the kernel’s physmap cor-
responding to a userspace page containing a payload rather
than the userspace address.

KEPLER [57] proposed a two-part attack that used con-
trol flow hijacking to induce a stack overflow. The technique
involves first inducing a disclosure of the contents of the ker-
nel stack by targeting a copy_to_user call. The disclosure
would provide the value of the kernel’s stack canary, which
could then be used in a copy_from_user-based gadget to
overflow the stack.

RetSpill [62] improved upon pivot-to-heap by relaxing the
preconditions to successfully pivot control flow. The idea is
that pivoting to controlled memory on the kernel stack has
considerably easier-to-satisfy preconditions than pivoting to
the heap. This technique is possible because of the existence
of ROP gadgets that perform stack adjustments, such as add
rsp, x; ret; and where attacker-controlled data is spilled
to the kernel stack at rsp+x. Furthermore, this can be used as
a short ROP chain to perform privilege escalation or to pivot
to a longer ROP chain elsewhere.

2.2 Control Flow Integrity

The Linux kernel supports a software-based Control Flow In-
tegrity (CFI) solution, called kCFI [45], which is intended to
protect against forward control flow hijacking. kCFI assigns
tags at compile time to functions and sites where indirect
control flow occurs, then compares the tag of the call site with
the tag of the target to ensure it is a valid target. Previous
work [62] found that some indirect control flows under kCFI
do not validate their targets, making kCFI an incomplete miti-
gation in that regard. Currently, kCFI is not enabled on major
Linux desktop and server distributions, but it is enabled by
Android.

Modern Intel x86-64 processors support hardware-based
CFI protections: forward edge protection via IBT and back-
ward edge protection via Shadow Stack. IBT works by ensur-
ing that the target of forward edge control flow begins with an
endbr64 instruction and faults otherwise. The Linux kernel
currently supports in-kernel IBT [3], providing sparse but for-
ward edge CFI, and a finer-grained forward edge CFI called
FineIBT [21, 63], which adds software checks to indirect call
sites in addition to enabling IBT.

Shadow Stack works by maintaining a second stack of
return addresses in memory that cannot be modified by normal
memory accesses, and a fault occurs if the return address
popped off the stack does not match the one popped off the
shadow stack. Currently, there is no support for hardware-
accelerated shadow stacks in the kernel. While recent work
proposed a potential implementation [43], it has not been

open-sourced.
There is an implementation of software-only shadow stacks

for aarch64 in Clang [6] and GCC [2]. Previously, there was
a version of Clang’s SoftwareCallStacks for x86-64, but the
Clang documentation clarifies that it was removed due to
performance and security issues [6]. The aarch64 software
call stacks feature is enabled by major distributions such as
Ubuntu.

2.3 KASLR Bypasses

Similar to the userspace security feature ASLR, which ran-
domizes the virtual addresses of memory regions, the Linux
kernel also randomizes the virtual addresses of its various
memory regions. KASLR has been shown many times to be
extremely vulnerable to microarchitectural side channels on
both x86-64 [17, 27, 55] and AArch64 [34]. Thus, for this
work, we consider it irrelevant in our attack scenario of Local
Privilege Escalation.

The Function Granular KASLR (FG-KASLR) mitiga-
tion [42] attempts to add more entropy such that side-
channeling the base address of the kernel is not enough to fully
bypass KASLR for the kernel text area. However, this mitiga-
tion has not been merged into the upstream kernel. Regardless,
the latest FG-KASLR also fails to mitigate our proposed at-
tacks because it does not randomize the entry point code’s
position relative to the base address of the kernel.

2.4 SMAP and PAN Bypasses

Modern x86-64 processors support a protection mechanism
called SMAP (Supervisor Mode Access Prevention), and
aarch64 processors support Privileged Access Never (PAN),
which enforces a policy that the kernel is not allowed to access
user space memory unless explicitly permitted. On x86-64,
the kernel can temporarily access user memory by setting the
Alignment Check (AC) bit in the EFLAGS register or dis-
abling SMAP via a control register. On AArch64, the kernel
can temporarily allow user accesses by writing zero to the
PAN MSR.

The goal of these mechanisms is to prevent exploits that
attempt to fool the kernel into using a forged data struc-
ture or stack that exists in user-controlled memory. Unfor-
tunately, this mitigation can be bypassed using the Linux ker-
nel’s identity-mapped memory region, referred to as physmap,
which is a mapping of all physical memory in the virtual ad-
dress space. To bypass SMAP or PAN and have the kernel
use user-controlled memory, an attacker must probe memory
in physmap that corresponds to memory they control in user
space. Thus, we consider this mitigation irrelevant insofar as
the ability to locate user-controlled memory in physmap is a
given in the context of Local Privilege Escalation.



2.5 Kernel Page Table Isolation
Kernel Page Table Isolation (KPTI) is a mitigation origi-
nally proposed to prevent Prefetch and Fault Timing side-
channels [26]. KPTI attempts to increase the isolation be-
tween user space and kernel space by allocating separate page
tables to be used in kernel and user mode. It was ultimately
upstreamed in the Linux kernel as a software mitigation for
Meltdown [40]. By default, the Linux kernel only enables
KPTI on systems affected by Meltdown: systems with an
Intel CPU from before 2018. Many of the recent transient
execution-based side-channels, such as Retbleed [53], Phan-
tom [54], and BHI [11], have also been unaffected by KPTI.

2.6 x86-64 FSGSBASE Extension
Modern x86-64 CPUs support an extension called FSGS-
BASE [31], which adds instructions for directly reading and
modifying the FSBase and GSBase registers. Notably, this ex-
tension also provides instructions for unprivileged use in user
applications. Prior to FSGSBASE, the arch_prctl syscall,
which performs integrity checks, was the primary method of
writing the GSBase and FSBase registers. With the FSGS-
BASE extension enabled, as it is on modern Linux systems,
there are no integrity checks on what value is written to either
GSBase or FSBase via the wrgsbase or wrfsbase instruc-
tions, respectively. The capability to arbitrarily set the GSBase
register has led to security issues in x86-64-based operating
systems in the past [32].

2.7 x86-64 Per-CPU Variables
The Linux kernel uses the x86-64 gs segment for access-
ing per-cpu variables, using instructions such as mov rax,
gs:0x28. Accesses that use offsets from the gs segment reg-
ister are calculated based on the value of the GSBase register.
Important values and structures are stored in per-cpu variables,
such as the current thread’s stack address, stack canary, and
task struct (which stores the current thread’s credentials and
other security-relevant data). As mentioned in Section 2.6,
the GSBase register is also available for use in user applica-
tions via wrgsbase. When entering and exiting the kernel, the
swapgs instruction is used to switch between the user gsbase
and kernel gsbase.

2.8 Privileged Instructions for ROP
The use of privileged instructions in ROP is not itself novel;
however, in modern kernel exploitation, only a few privileged
instructions are ever targeted. In the past, Google’s Project
Zero proposed an attack that would disable SMEP and SMAP
by returning to native_write_cr4 [23]; however, this tech-
nique was later mitigated via CR-Pinning. With this gadget
mitigated, new techniques involving other privileged instruc-
tions have not been observed. The instructions swapgs, popf,

iret, and sysret are the only system instructions commonly
seen in modern ROP chains. Their use is entirely focused on
gracefully terminating a ROP chain by switching back to user
mode rather than expanding the capabilities of the exploit.

2.9 System Registers
General-purpose registers (GPRs) and system registers are
integral components of a CPU’s architecture, serving distinct
but complementary roles. General-purpose registers are ver-
satile, high-speed storage locations within the CPU that hold
data temporarily during the execution of instructions. They
are used for a wide range of operations, such as arithmetic,
logic, and data manipulation. Typically, these registers are di-
rectly accessible by the CPU’s instruction set, allowing for ef-
ficient processing of data. System registers, on the other hand,
are specialized registers that control or monitor the CPU’s
internal operations, such as managing system state, configura-
tion, and control of hardware resources. They often include
status registers, control registers, and other special-purpose
registers that are crucial for system management tasks, such
as interrupt handling, memory management, and operating
mode configuration.

3 Threat Model

In our threat model, we consider three different attack scenar-
ios:
Base. The Base scenario is targeting a Linux kernel with
common mitigations deployed, such as: SMEP, SMAP, KPTI,
NX-physmap, CR Pinning, STATIC_USERMODE_HELPER,
RANDKSTACK, and STACK CANARY. This set of mitiga-
tions is modeled after stock desktop kernel configurations,
such as Ubuntu’s kernel configuration.

Due to the rapid and active development of control-flow
integrity (CFI) schemes in the Linux kernel, described in Sec-
tion 2.2, the deployment of CFI schemes to stock kernels is
imminent. In this research, besides stock kernels, we also ex-
plore the security impact of system registers on CFI-enabled
kernels.
FineIBT-Protected. The kernel has all mitigations enabled
in the Base scenario in addition to FineIBT.
kCFI-Protected. The kernel has all mitigations enabled in
the Base scenario in addition to kCFI.

4 System Register Hijacking

We propose a class of techniques, called System Register Hi-
jacking, in which a control flow hijacking primitive is used to
execute an instruction that modifies a security-sensitive sys-
tem register. In studying the x86-64 instruction set, we found
that system registers are typically security-sensitive for one
of two reasons: either they control a security feature’s status,



or they control the address of a security-critical structure in
memory.

Hijacking registers that control security features may tem-
porarily or permanently disable that feature on a given CPU
thread, making future steps in an exploit easier. An example
is the cr4 register, which can permanently disable several
security features, including SMEP and SMAP, on the CPU
thread.

Compromising registers that control the addresses of struc-
tures can be used to redirect their address to a forged structure,
leading to capabilities that depend on the structure in question.
These structures may contain either code or data addresses
that the system uses during execution. An example of a struc-
ture register is the IDTR (Interrupt Descriptor Table Register),
which contains the address of the IDT, a structure that speci-
fies what code addresses to use when various interrupts, traps,
and exceptions occur. If an attacker can modify the address
stored in the IDTR, they can control the descriptors and point
them to any code address of their choosing.

To identify the instructions capable of modifying security-
sensitive system registers on x86-64, we first identified the
existing system registers by referencing the Intel SDM Vol-
ume 3A, Section 2.1.6, “System Registers” [30]. We then
narrowed down which of those registers relate to security
features or structure addresses. Finally, we identified which
instructions can be used to modify the security-relevant por-
tions of those registers. For example, the lmsw instruction can
only modify the lower 16 bits of cr0, none of which affect
security-related features. From this, we identified 15 instruc-
tions that modify security-sensitive registers, which can be
seen in the first column of Table 1.

For aarch64, we had to take a different approach. There
are many different versions of aarch64; rather than choosing
one implementation to support, we support the set of system
registers used by the Linux kernel. We gathered this set of
registers by scanning several kernel images for occurrences
of the MSR instruction, which is used when writing system
registers in aarch64. From the set of system registers written
to by the kernel, we consulted ARM architecture manuals [8]
to identify which of those registers are security-sensitive and
can be written from EL1 (Kernel Mode). We identified eight
instructions that modify security-sensitive registers, which
can be seen in the first column of Table 1.

5 Measurement

To evaluate the prevalence of potential gadgets that modify
system registers in a typical Linux kernel, we wrote a script
on top of the Rust bindings for the Capstone Engine disas-
sembly library to collect all occurrences of instructions that
modify Security-Sensitive System Registers for a given ker-
nel image. The script accepts memory dumps of the .text
section from a running kernel and scans through them, at-
tempting to disassemble the data at every offset of the section,

then performing a string comparison on each disassembled
instruction to determine if it matches an instruction capable
of modifying a Security-Sensitive System Register. We pur-
posefully made this analysis simple so as not to miss gadgets
that existing ROP gadget finders may exclude due to their
lengths or conditional control flow.

Measuring the number of potential gadgets in a kernel
image is non-trivial due to the complexity of the kernel’s
self-patching mechanisms. The most impactful self-patching
feature with respect to our analysis is “alternatives,” which
allows for CPU feature-dependent instructions to be used only
when the necessary features are available. This means that the
.text sections of kernel images do not contain instructions
like stac and clac since those are dependent on the SMAP
CPU feature being available; instead, they get patched in at
runtime. Statically applying alternatives is possible by using
the .altinstructions section of the kernel image but re-
quires source code parsing and reimplementing the kernel’s
logic for applying alternatives [48]. Rather than trying to accu-
rately apply alternatives and other self-patching mechanisms
statically in our analysis, we opted to use memory dumps of
the .text section, which already have the alternative instruc-
tions applied. We used QEMU (version 6.2.0) with the -cpu
max architecture for a consistent set of CPU features.

We performed a large-scale evaluation of the presence of
these gadgets in four kernel builds: Ubuntu Generic, Ubuntu
AWS, Fedora Core, and Fedora Enterprise Linux Next, for
the five most recent major versions of each.

5.1 Measurement on x86-64
The results of our measurement of potential x86-64 gadgets
are located in Table 5. For this analysis, we include instruc-
tions that can modify EFLAGS.AC, which controls whether
or not the SMAP feature is enforced. We find an extremely
high number of occurrences of the popf instruction due to its
single-byte opcode. However, many gadgets containing popf
are invalid due to being misaligned, resulting in an invalid
opcode exception when executed.

We observed a disproportionate number of wrmsr gad-
gets in Fedora Enterprise Linux Next (ELN) builds. Upon
inspection, unlike the other kernel builds, ELN builds con-
tain many instances of the same functions. For example, the
native_write_msr function, which occurs once in other
builds, has ten distinct occurrences in the 6.11 ELN build.
This code duplication is likely the cause of the increased
number of wrmsr gadgets.

5.2 Measurement on aarch64
The results of our measurement of potential aarch64 gadgets
are located in Table 7. We find significantly fewer potential
gadgets on aarch64 overall due to the 4-byte instruction align-
ment requirement of the architecture.



Instruction/Gadget Register Feature/Structure Precond

x86-64

mov cr0 cr0 WP
mov cr0, rax; mov rax, rbp; popf; pop r15; ret RC + SC
mov cr4 cr4 SMEP/SMAP/UMIP/CET/MPK

mov cr4, rbx; je (taken); jmp r8 RC
popf EFLAGS SMAP∗

popf; ret SC
lidt idtr IDT
lidt [rdi]; xor edi, edi; ret RC
lgdt gdtr GDT
lgdt [rdi]; xor edi, edi; ret RC
swapgs MSR_GSBASE Per-cpu Variables
swapgs; lfence; ret; None
mov cr3 cr3 Page Tables
mov cr3, r9; push r8; ret; RC
wrmsr MSR_EFER + MSR_GSBASE +

MSR_FSBASE
Per-cpu Variables

wrmsr; ret RC
iretq EFLAGS SMAP∗

iretq SC
wrgsbase MSR_GSBASE Per-cpu Variables
wrgsbase rax; jmp; jmp; jmp; ret RC
wrfsbase MSR_FSBASE Per-cpu Variables
stac EFLAGS SMAP∗

clac EFLAGS SMAP∗

ltr tr TSS
ltr word ptr [rbx + 0x5d]; ret RC
lldt ldtr LDT
lldt ax; ret RC

aarch64

msr elr_el1 elr_el1 elr_el1
msr elr_el1, x2; msr spsr_el1, x1; ret RC
msr pan pan PAN
msr pan, #0; ret RC
msr sctlr_el1 sctlr_el1 MTE/EPAN
msr elr_el2, x0; ret RC
msr spsr_el1 spsr_el1 TCO/PAN/UAO
msr spsr_el1, x1; nop; nop; ret RC
msr tcr_el1 tcr_el1 MTE
msr spsr_el1, x1; nop; nop; ret RC
msr ttbr0_el1 ttbr0_el1 ttbr0_el1
msr ttbr0_el1, x0; isb ; msr daif, x1; ret RC
msr ttbr1_el1 ttbr1_el1 ttbr1_el1
msr ttbr1_el1, x0; isb ; msr daif, x1; ret RC
msr vbar_el1 vbar_el1 vbar_el1
msr vbar_el1, x0; ret RC

Table 1: Security-Sensitive System Register modifying instructions identified on x86-64 and aarch64, which mitigations or
structures they control, and the preconditions necessary (SC is Stack Control, RC is Register Control). Representative gadgets for
each instruction where valid gadgets that are short enough to display were present are listed beneath the associated instruction.
∗The iret, popf, stac, and clac instructions are able to modify the AC bit in the EFLAGS register which controls the status of
SMAP.



The most common gadgets are those related to ttbr0_el1
and ttbr1_el1, which are the page table registers for ker-
nel mode. Interestingly, there are very few of these gadgets
present in the Fedora ELN builds compared to the other builds.
Reviewing the sources of these gadgets, it appears that, unlike
ELN, other kernel builds are inlining calls to user-memory
accessor functions such as copy_from_user, which contain
instructions that write to ttbr0_el1 and ttbr1_el1.

5.3 Gadget Verification

To understand how many of these potential gadgets are valid
for exploitation purposes, we ran angrop [7], a symbolic
execution-based ROP gadget analyzer, on all of the poten-
tial gadgets. We added validation passes that run after angrop
to remove cases that are valid ROP gadgets, in that they re-
turn, but do not result in control of the system register being
targeted. This accounts for cases where gadgets contain mul-
tiple writes of different values into the same system register,
nullifying the first write to the register. In such cases, there
would be a valid gadget starting at the last write to the register,
but we would consider the gadget containing both writes to
be invalid.

Since angrop [7] is based on angr [51], which does not have
accurate modeling of system instructions, it is likely that this
analysis has false negatives. For example, the stac and clac
instructions are not currently supported in angr, so symbolic
execution halts at those instructions. To work around this, we
patched angr’s intermediate representation to support those
instructions, but there may be other cases we did not account
for. Unsurprisingly, angrop did not recognize syscall entry
points as valid gadgets, but as we will discuss in Section 6,
they are very strong gadgets. We added pattern matching to
detect code locations that perform a swapgs followed by a
write of the stack pointer from a gs-relative address. These
gadgets are included in the swapgs gadgets in the gadget
validation numbers.

On x86-64, we consider all iret gadgets to be valid be-
cause the instruction both pops the EFLAGS register off the
stack and returns. Additionally, we consider all clac gadgets
invalid because, while they can modify the EFLAGS.AC bit,
they can only clear it. This means clac gadgets can never
disable SMAP enforcement, only re-enable it. Similarly, on
aarch64, we remove gadgets that write one to the PAN MSR
because they cannot be used to disable the security feature.

This verification analysis is intended to represent a lower
bound on the number of valid gadgets, while the measure-
ment results represent the upper bound. Regardless of false
negatives, we find that many valid gadgets are present across
all the kernel builds we analyzed. The results of gadget veri-
fication on x86-64 and aarch64 can be found in Table 6 and
Table 8, respectively. Concerningly, this includes gadgets for
modifying cr4 and cr0 on x86-64, which are meant to be
protected by the CR-Pinning mitigation, as well as gadgets

entry_SYSCALL_64:
<+0>: endbr64
<+4>: swapgs
<+7>: mov QWORD PTR gs:0x6014 ,rsp
<+16>: jmp <entry_SYSCALL_64+36>
<+18>: mov rsp,cr3
<+21>: nop
<+26>: and rsp ,0xffffffffffffe7ff
<+33>: mov cr3,rsp
<+36>: mov rsp,QWORD PTR gs:0x32c98

Figure 1: A snippet of the disassembly of the syscall entry
point.

capable of disabling PAN on aarch64.

6 System Register Hijacking Techniques

Based on our analysis of system registers and gadgets that
allow their modification, we derive new forward control flow
hijacking techniques and find new gadgets for the known
cr4 hijacking technique. The preconditions of the techniques
we propose vary depending on the instruction being targeted
and the specific instances of the gadget. We only propose
techniques for which there are gadgets with few register de-
pendencies that may be met by controlled arguments at the
control flow hijacking site or satisfied in combination with a
stack pivot to a ROP chain.

6.1 x86-64: swapgs Stack Pivoting

The swapgs instruction is commonly found in entry, exit,
and other interrupt handling code in the kernel. It swaps the
values of two system registers: the GSBase register and the
KernelGSBase register. By setting the GSBase register in user
mode through the wrgsbase instruction (which is accessible
to user mode code), the KernelGSBase will be set to the
userspace value on kernel entry when the swapgs instruction,
seen in Figure 1, executes.

The result of executing a swapgs gadget is that the memory
backing per-cpu variables can be redirected to an attacker-
controlled address. Some swapgs gadgets, such as swapgs;
ret, are impractical to use because the stack canary is stored
in a per-cpu variable, so if the caller of the gadget returns, it
will likely fail the stack check and panic the kernel.

We found that in many gadgets, the swapgs instruction was
followed by a write to the stack pointer register of a value
read from a per-cpu variable. This is often done on kernel
entry from user mode to switch to the kernel stack. Hijacking
execution to one of these locations will result in a stack pivot
when the stack pointer register is set based on the controlled
per-cpu variables.

Notably, these gadgets require no general-purpose register
control, relying only on the malicious GSBase register, and



will function for any control flow hijacking primitive that
executes in the context of the thread where the wrgsbase was
performed.

For this technique to work, the attacker must be able to
forge a per-cpu structure in the kernel address space for
GSBase to point to. We satisfy this requirement either by
leaking the address of a controlled page or by Transparent
Huge Page (THP) spraying. THPs are 2 MB aligned in physi-
cal memory, allowing a user to fill a large range of the kernel’s
physical memory map with controlled pages. The ability to
make a stable guess of the address of a controlled page in
the physical memory map is also reliant on knowing the base
address of the kernel’s physical memory map, which is obtain-
able by either leaks or side-channels [17, 28] (as mentioned
in Section 2).

For the technique to be successful, the forged GSBase struc-
ture must contain at least the kernel stack pointer and a pointer
at the offset associated with the task struct to avoid potential
double faults in the page fault handler. We find that a stable
method for this is to purposely cause the code to trigger a
page fault on unmapped memory and overwrite the stack in
the page fault handler near the interrupt return. The stack will
be overwritten as the page fault handler executes, leading to
the return to the handler being hijacked into executing a user-
specified ROP chain. The ROP chain will have to switch back
to the original GSBase value using a swapgs; ret gadget,
then perform the necessary steps for privilege escalation, e.g.,
commit_creds(init_cred), and finally return control flow
to userspace using iret or sysret.

6.2 x86-64: CR0 Hijacking
The cr0 system register contains important bit fields that
are used to enable paging, write protection, and other im-
portant kernel features. A cr0 gadget can be used to bypass
the Write Protect (WP) mitigation, permitting writes to any
memory region that is accessible to the kernel. This includes
inherently read-only regions such as the kernel text section.
The CR-Pinning mitigation, which mitigated cr4 hijacking,
was eventually extended to protect the native_write_cr0
function as well [23], intending to prevent an attacker from
disabling the mitigation. As far as we can tell, no exploits
have ever made use of CR0 hijacking due to the preemptive
mitigation of native_write_cr0. However, we found that
there are still gadgets that can be used to control cr0 outside
the mitigated function. An example is shown in Figure 2.

6.3 x86-64: CR4 Hijacking
In our analysis, we found several occurrences of the mov cr4
instruction outside the mitigated native_write_cr4 func-
tions.

An example gadget that can control cr4 in existing kernels
is found in the assembly function sev_verify_cbit, as seen

virtual_mapped:
<+35>: mov cr0,rax
<+38>: mov rax,rbp
<+41>: popf
<+42>: pop r15
<+44>: pop r14
<+46>: pop r13
<+48>: pop r12
<+50>: pop rbp
<+51>: pop rbx
<+52>: ret

Figure 2: The disassembly of a mov cr0 gadget found in an
Ubuntu 22.04 kernel image we analyzed.

sev_verify_cbit:
<+69>: mov cr4,rsi
<+72>: je sev_verify_cbit+87
<+74>: xor rsp,rsp
<+77>: sub rsp ,0x1000
<+84>: hlt
<+85>: jmp sev_verify_cbit+84
<+87>: mov rax,rdi
<+90>: jmp __x86_return_thunk

Figure 3: The disassembly of a mov cr4 gadget found in an
Ubuntu 22.04 kernel image we analyzed.

in Figure 3. With this gadget, an attacker can permanently dis-
able SMEP, SMAP, and all other security features controlled
by cr4 on the executing CPU thread. This type of gadget
enables a two-step exploitation process, where the attacker
first disables security features and then returns to user space
to execute a ROP chain, as demonstrated by Google Project
Zero [23].

6.4 x86-64: popf Extension + RetSpill
The popf instruction is capable of setting the AC bit in the
EFLAGS register, which is the bit set by the kernel to temporar-
ily prevent SMAP checking when it executes functions such

ret_to_kernel:
<+12>: msr elr_el1 , x21
<+16>: msr spsr_el1 , x22
<+20>: ldp x0, x1, [sp]
<+24>: ldp x2, x3, [sp, #16]
...
<+72>: ldp x26, x27, [sp, #208]
<+76>: ldp x28, x29, [sp, #224]
<+80>: ldr x30, [sp, #240]
<+84>: add sp, sp, #0x150
<+88>: nop
<+92>: eret

Figure 4: The disassembly of the ret_to_kernel gadget
found in an Ubuntu 22.04 kernel image we analyzed.



as copy_from_user. Despite this powerful capability, the in-
struction has not seen use in exploits outside of Capture The
Flag competitions [60].

A recent technique, RetSpill [62], proposed using data
spilled to the kernel stack as ROP gadgets, leveraging a stack
adjustment gadget to pivot the stack to those registers. A
downside of this technique is that the amount of controlled
data on the stack to pivot to is fairly constrained: the paper
claims only 11 gadgets on average. This is often enough to
execute a ROP chain for typical privilege escalation; however,
when the exploit also needs to escape a container or names-
pace sandbox, a longer ROP chain that does not fit in spilled
stack registers is required. In this case, a popf; ret gadget
can be used to extend the ROP chain by temporarily disabling
SMAP checking, and a subsequent gadget can pivot the stack
to a much longer chain in user memory, requiring only 0x18
bytes of controlled data to extend the ROP chain as needed.

6.5 x86-64: IDT Hijacking
Past exploit techniques [46] were able to overwrite Interrupt
Descriptor Table (IDT) entries to gain shellcode execution,
however, this approach no longer functions in modern kernels
because the IDT is read-only memory. There has been some
exploration of relocating the IDT via lidt in the context of
a Xen hypervisor vulnerability [14], however, this technique
was previously unexplored in the context of forward control
flow hijacking. No past work has discussed hijacking the IDT
with both SMEP and SMAP enabled.

We found that several gadgets, including
native_load_idt, can be used to relocate the address
of the IDT. Once the IDT has been hijacked to point to a
user-controlled page, the kernel enters a weird mode where
the IDT is user-controlled while control flow continues in the
kernel. Writing a ROP gadget to the IDT and triggering the
respective interrupt allows the attacker to execute arbitrary
code with almost all registers controlled by the attacker.
In this mode, exceptions or faults that might normally
kill the exploit or panic the kernel can be redirected to
attacker-chosen addresses, potentially nullifying their effects.
For example, the IDT entry for Page Fault exceptions could
be redirected to an attacker-chosen gadget that returns from
the exception immediately, ignoring null-pointer dereferences
and other memory access violations rather than allowing the
kernel to handle them.

6.6 aarch64: PAN Hijacking
We found that some aarch64 kernels contain gadgets like
msr pan, #0, which can be used to disable the Privileged
Access Never (PAN) mitigation. This is similar to techniques
involving popf or mov cr4 to disable SMAP on x86-64. The
technique can be used to perform a pivot2usr [20] attack by
first disabling PAN and then pivoting the stack to userspace

Architecture Technique Success Rate

x86-64 swapgs Stack Pivoting 82%
x86-64 CR0 Hijacking 100%
x86-64 CR4 Hijacking 100%
x86-64 popf Extension + RetSpill 100%
x86-64 IDT Hijacking 100%
aarch64 PAN Hijacking 98%
aarch64 SPSR_EL1 Hijacking 100%

Table 2: Success rate of the Proof of Concept exploits for each
technique across 50 runs.

memory. The case we evaluated on an Ubuntu kernel required
chaining with another gadget to set the Link Register before
it could be used.

6.7 aarch64: SPSR_EL1 Hijacking
This technique uses a specific gadget that sets SPSR_EL1
along with all of the general-purpose registers using data
on the stack and ends with an eret instruction. The gadget
is located in the ret_to_kernel function shown in Figure 4.
This gadget can be used in a Sigreturn Oriented Programming
(SROP) [13] style attack, setting all general-purpose registers
to control the arguments to a desired method. The SPSR_EL1
register is used when the eret instruction executes to restore
the Processor State (PSTATE).

The PSTATE includes the PAN MSR, allowing this gadget
to control not only the general-purpose registers but also the
status of the PAN mitigation. With SPSR_EL1 set to disable
PAN on eret, the elr_el1, which controls what the instruc-
tion pointer is set to on eret, can be set to a gadget that pivots
the stack to userspace. This allows the attacker to continue
ROPing or chaining additional ret_to_kernel executions.

7 Technique Validation

Now that we have discovered several new exploitation tech-
niques using System Register Hijacking, we attempt to vali-
date that each technique can be used by an attacker.

7.1 Proof of Concepts
We evaluated the potential of each SRH technique by develop-
ing a Proof of Concept (PoC) exploit. This involved creating
an intentionally vulnerable kernel module and exploiting the
kernel using the vulnerable module while leveraging the tech-
nique. Some of the techniques require Stack Control as a
precondition, most commonly obtained via ROP, as a starting
point. For example, popf requires stack control because it
sets EFLAGS based on the value at the top of the stack. The
vulnerabilities inserted included primitives to provide ROP,
control flow hijacking, and kernel address disclosures. An



static ssize_t proc_ioctl(
struct file* filep , u
nsigned int cmd,
unsigned long arg

)
{
...

size_t entries = 0;
struct ropchain_req *req = arg;
get_user(entries , &req->entries);
uint64_t *ropchain = memdup_user(

&req->chain ,
entries * sizeof(req->chain[0])

);
asm volatile (

".intel_syntax noprefix;"
"mov rsp , %0;"
"ret;"
".att_syntax prefix;"
: : "r" (ropchain) :

);
...
}

Figure 5: A snippet of an inserted vulnerability which pro-
vides ROP to the attacker.

example of one such inserted vulnerability, intended to pro-
vide ROP, can be seen in Figure 5. We successfully created
a PoC for every technique presented in Section 6. The PoCs
for each technique take advantage of one or more artificial
vulnerabilities in the kernel module to escalate privileges. For
PoCs related to techniques affecting Feature Registers, the
PoC disables a mitigation and then demonstrates that it is dis-
abled by performing an exploitation step that would otherwise
be prevented by the feature (e.g., ret2usr [44] for CR4). For
PoCs related to techniques affecting system data structures,
the PoC hijacks the address of the structure to a controlled
address and uses the forged structure to continue exploitation
(e.g., hijacking the IDT and then causing a divide-by-zero
exception to invoke the malicious Division Error descriptor).
The stability of each of these Proofs of Concept can be found
in Table 2.

7.2 Real-World Evaluation
Next, we analyzed all KernelCTF submissions with public
exploits [24] that perform Local Privilege Escalation. We
then manually identified the class of attack each exploit used
to achieve privilege escalation. We also analyzed whether
the exploits would still work if KERNEL_IBT/FineIBT were
enabled for the kernel. We found that only five of the forty
exploits we analyzed utilized a Data-Only Attack rather than
Control Flow Hijacking. As such, most of the submitted ex-
ploits would no longer work with these mitigations enabled,
thus forcing future submissions away from control flow hijack-
ing, which currently appears to be the path of least resistance.

To demonstrate the applicability of the swapgs Stack Pivot-

CVE Version Original Modified

2021-4154∗ 5.4.120 100% 100%
2023-4623 6.1.36 100% 100%
2023-6111 6.1.60 100% 100%
2023-6817 6.1.63 98% 98%
2024-1085 6.1.70 100% 90%
2024-26925 6.1.81 100% 88%

Table 3: Stability across 50 runs of the original exploits and
modified exploits which use the swapgs Stack Pivoting tech-
nique for six real world vulnerabilities.
∗2021-4154 targeted a version of the Linux kernel prior to ver-
sion 5.9, which introduced support for the FSGSBASE exten-
sion, we patched out the check in the arch_prctl syscall that
prevents setting GsBase to a value outside of the userspace
address range to create the same capability as on modern
kernels where FSGSBASE is enabled.

ing technique (which can bypass IBT/FineIBT), we modified
the KernelCTF exploits for six existing vulnerabilities, listed
in Table 3, to use swapgs Stack Pivoting in place of their orig-
inal stack pivoting techniques. All exploits were successfully
adapted to use the technique, provided that an attacker could
fully control the value of GSBase.

As part of this evaluation, we measured the stability of each
exploit before and after modifying it to support our technique,
finding that in most cases, it did not degrade the exploit’s
stability. In the worst case, stability dropped from 100% to
88% for CVE-2024-26925.

8 Case Studies

In this section, we discuss specific examples of porting exist-
ing exploits to use the swapgs Stack Pivoting technique and
provide an example of using the technique to bypass FineIBT.

8.1 CVE-2024-26925
We ported the existing exploit against the kCTF environment
for CVE-2024-26925 to use the swapgs Stack Pivoting tech-
nique. The changes involved inserting 39 lines, deleting 25
lines, and including a 195-line header file. The header file
contains boilerplate code specific to the technique, including
functions for spraying Transparent Huge Pages, spawning
threads to hijack a return address in the forged stack that is
pivoted to by the technique, and setting the malicious GSBase
value. The header file includes five constants to be updated
according to the target kernel: three values corresponding to
offsets of per-cpu variables, one value representing the ad-
dress of a pop rsp; ret; stack pivot gadget, and one value
indicating the offset to the target return address to overwrite
with the stack pivot gadget. The stack pivot gadget is used
to pivot the stack to a prewritten ROP chain. This approach



pipe_read:
<+407>: mov r11,QWORD PTR [rcx+0x8]
<+411>: mov r13,QWORD PTR [rbp -0x80]
<+415>: mov rdi,r13
<+418>: mov rsi,r14
<+421>: mov r10d ,0x839cb82f
<+427>: sub r11 ,0x10
<+431>: nop DWORD PTR [rax+0x0]
<+435>: call r11

__cfi_anon_pipe_buf_release:
<+0>: endbr64
<+4>: sub r10d ,0x839cb82f
<+11>: je anon_pipe_buf_release
<+13>: ud2

anon_pipe_buf_release:
<+0>: nop WORD PTR [rax]
<+4>: nop DWORD PTR [rax+rax*1+0x0]
<+9>: push rbp
<+10>: mov rbp,rsp

Figure 6: An example of an indirect call and call target when
FineIBT is enabled.

ensures that the threads used to overwrite the return address
only need to write 0x10 bytes for the pivot gadget and the
address of the ROP chain rather than the entire ROP chain,
which is likely much longer than 0x10 bytes.

The changes to the exploit file itself primarily involved
adding approximately eight lines of code invoking the boil-
erplate header file functions. The remaining modifications
consisted of converting the ROP chain to an array format
expected by the boilerplate code and removing the existing
ROP chain code originally used in the exploit.

8.2 CVE-2024-1085
In porting this exploit to use the swapgs Stack Pivoting tech-
nique, we inserted 48 lines and deleted 27 lines in the main
exploit file. We included the same header file described in
Section 8.1 and modified the necessary values. In this case,
neither the per-cpu offsets nor the stack offset differed from
those in the CVE-2024-26925 exploit, so the only required
modification in the header file was updating the address of
the pop rsp; ret; gadget.

Again, most changes involved converting the ROP chain
originally used by the exploit into a format compatible with
the functions in our header file.

8.3 Bypassing [Fine]IBT
In this case study, we discuss the swapgs Stack Pivoting tech-
nique’s ability to bypass KERNEL_IBT and FineIBT mitiga-
tions. Our study found that this technique, beyond requiring
no general-purpose register control, provides a unique capa-
bility: the ability to fully bypass the existing IBT-based kernel

mitigations.
Figure 6 presents an example of the assembly of an indirect

control flow target when FineIBT is enabled. Each control
flow target has a stub function, beginning with __cfi_, which
starts with the endbr64 instruction, making it a valid target
when IBT is enabled. This function also includes a software
check against a hash to ensure that control flow originates
from a valid caller. The stub functions containing endbr64
exist only for functions that are potential indirect call sites,
severely limiting possible control flow targets, with the subse-
quent software check restricting them even further.

We found that when the kernel is compiled with the
FineIBT mitigation enabled, the entry points begin with
endbr64 instructions but lack the software checks to ver-
ify the source of the control flow, as seen in Figure 1. This
omission makes them valid targets under FineIBT.

As of this writing, all Linux kernel versions since the in-
troduction of FineIBT support in version 6.2 are affected by
this bypass. This specific bypass can be addressed in soft-
ware by preventing users from storing kernel addresses in the
GSBase register when calling into kernel code, as discussed
in Section 9. However, the architectural reason this bypass
works - the requirement that kernel entry points begin with
endbr64 when IBT is enabled - is not addressable in software.
In our review, we did not identify any other methods of using
entry points to bypass FineIBT aside from the swapgs Stack
Pivoting technique described.

We demonstrate the ability to bypass FineIBT (and KER-
NEL_IBT by extension) by modifying an existing privilege
escalation exploit [12] for the CVE-2024-41009 [4] vulnera-
bility in the Linux kernel.

Since virtualization support for CET is not yet merged into
KVM, nor is there emulation support for CET in QEMU,
we conducted our experiment on a bare-metal system where
the host kernel had FineIBT enabled. We performed the
experiment on a system with an Intel i7-1185G7 proces-
sor and a self-compiled 6.6.32 kernel with FineIBT en-
abled. We found that our modified exploit, which targets the
entry_SYSCALL_compat entry point to perform a swapgs
Stack Pivot, successfully escalated privileges to root against
the FineIBT-hardened kernel. The exploit succeeded in 100%
of executions across 50 runs with and without FineIBT en-
abled. For comparison, the original exploit also succeeded
100% of the time across 50 runs in the KernelCTF environ-
ment.

9 Mitigations

In this section, we explore and propose mitigations for the
discovered techniques. For systems where IBT is available
(e.g., any recent Intel processor) and FineIBT is enabled (the
new default CFI for mainline x86-64 kernel builds), or kCFI is
enabled, these techniques are mostly mitigated by preventing
attackers from hijacking control through current approaches.



For systems where IBT is not available, such as on ARM
systems or those with older Intel and current AMD processors,
and for kernel distributions that do not want to enable kCFI,
we suggest our own mitigations.

9.1 Mitigating swapgs
To mitigate swapgs Stack Pivoting, we propose implement-
ing checks on the GSBase value coming from userspace. This
technique can be fully mitigated by preventing system calls
from being executed when the GSBase value is outside the
userspace address range. We add a check that performs an
rdmsr instruction to read the KERNEL_GSBASE_MSR and en-
sure that it is in the user address range, returning a new error
EWRGSBASE to userspace otherwise.

We implement our mitigation on Linux Kernel v6.11-rc7
and evaluated its performance by running the Phoronix Bench-
marks [1]. The results can be found in Table 4. As shown,
the mitigation introduces minimal overhead, only 0.91% on
average. Alternative mitigations, such as saving, zeroing, and
restoring the KERNEL_GSBASE_MSR, would keep syscall be-
havior unchanged (e.g., no additional error codes), but addi-
tional rdmsr and wrmsr calls would introduce higher over-
head.

9.2 Mitigating cr0 and cr4
For the unmitigated cr0 and cr4 gadgets, we recommend
extending CR-Pinning to include these cases.

9.3 Mitigating lidt
The lidt gadgets can be mitigated by enforcing that their
value always be set to the constant virtual address where
they are located. On modern PML4 Linux, this is always at
0xfffffe0000000000. Performing a post-check on the value
after any lidt instruction and resetting its value should be
sufficient to prevent its misuse.

9.4 Mitigating MSR pan and MSR spsr_el1
There were very few valid msr pan gadgets in the
kernel builds we analyzed, with several kernel builds
containing zero occurrences of a PAN disable gadget.
The uaccess_enable_privileged function was a com-
mon source of valid PAN hijacking gadgets. Every
uaccess_enable_privileged call should be followed by
a corresponding call to uaccess_disable_privileged.
However, since these functions are not being inlined, it
is possible to misuse the uaccess_enable_privileged
function. A simple mitigation for this gadget would
be to always inline these functions, ensuring that every
uaccess_enable_privileged call is always followed by
a uaccess_disable_privileged call.

The spsr_el1 technique we described in Section 6.7 also
controls the PAN feature’s status. Depending on how the
ret_to_kernel function is used normally, it might be pos-
sible to protect its return target with ARM Pointer Authenti-
cation. This way, an attacker would need to be able to sign a
pointer in order to use the gadget.

9.5 Mitigating popf
Mitigations for the popf based technique are less clear. The
popf technique for temporarily bypassing SMAP in ROP
chains is effectively non-mitigatable, as there are too many
occurrences of the instruction to possibly mitigate them all.
Even in intended instruction locations, it is likely unknowable
whether the AC bit should be set by that specific instance.
It seems that the decision to make the AC bit in EFLAGS
control SMAP’s enforcement was made for ease of implemen-
tation and adoption. However, as an unintended side effect, it
has weakened the feature in contexts where an attacker can
achieve forward control flow hijacking and ROP.

10 Discussion

Gadget Discovery. We do not attempt to design an advanced
gadget scanner for discovering SRH gadgets. Most ROP/JOP
gadget scanners are effective at finding common gadgets but
fail to capture complex control flows. Gadget scanners based
on symbolic execution, such as angrop [7], can better capture
control flows but lack support for handling the semantics of
system instructions. We found that angrop was effective at
measuring the existence of a significant number of valid SRH
gadgets but lacked the ability to capture all the classes of
gadgets we discussed on its own. Hence, we implemented our
own verification passes on top of the results of angrop, as
discussed in Section 5.3.

Unusable or Impractical Gadgets. When evaluating the
exploitability of system registers, we found that some reg-
isters, which are theoretically security-sensitive, are not in
practice. The fsbase register is unused by the kernel, so it is,
of course, unusable, but other instructions such as lldt and
ltr were unusable for less clear reasons. Both lldt and ltr
modify segment selectors, which contain a privilege level in
bits 1 and 0. Bit 2 indicates which table (LDT or GDT) the
selector references, and bits 3 through 15 specify an index
into the relevant descriptor table. Linux allows adding custom
descriptors to the LDT and GDT via the modify_ldt and
set_thread_area system calls. The offset of the selected
descriptor in the specified table is calculated by taking the
index times eight, which architecturally prevents any misuse
by crafting unaligned descriptors through the aforementioned
system calls. Additionally, the segment limits on the LDT and
GDT prevent selectors from being set to values that are out
of bounds of the relevant tables. Ultimately, these properties



Benchmark Unmitigated Mitigated Overhead

PHP(Score) 583037 581918 0.19%
Apache(Reqs/s) 36789.52 36520.26 0.74%

OpenSSL-SHA256(byte/s) 1783513310 1789828323 0.35%
OpenSSL-SHA512(byte/s) 2019532493 2034334743 0.72%
OpenSSL-RSA4096(sign/s) 1576.4 1588.8 0.78%

OpenSSL-RSA4096(verify/s) 103155.3 102974.6 0.18%
Sysbench-RAM(MiB/sec) 4818.16 4760.00 1.22%
Sysbench-CPU(events/sec) 7073.28 7028.56 0.64%

Memcached(ops/s) 876405.11 891076.33 1.65%
PyBench(ms) 1245 1246 0.08%
Nginx(Reqs/s) 24801.42 23980.04 3.42%

Table 4: Performance overheads from proposed mitigations on Phoronix Benchmarks

result in the gadgets that modify the ldt and tr segment
selectors being unexploitable.

A register we deemed impractical to hijack was the cr3 reg-
ister. Page table entries are becoming more popular as targets
for kernel memory corruption [47,56]. However, hijacking the
page table base register, cr3, has not seen the same attention.
We explored the possibility of hijacking cr3 to a forged page
table, but we deemed this technique impractical due to the
high amount of knowledge about the kernel address space
necessary to successfully achieve it.

Limitations of Proposed Techniques. Excluding swapgs
Stack Pivoting, all of the techniques we described rely on
register control or stack control as a precondition. In the case
of register control, some gadgets rely on controlling a regis-
ter that is never or rarely controlled at sites of Control Flow
Hijacking. This would necessitate either using additional gad-
gets to set the register or filtering which target heap objects
are corrupted in the process of turning memory corruption
into control flow hijacking to those that allow the necessary
register to be controlled. In the case of stack control, the at-
tacker must have either already achieved ROP via pivoting
the stack to user-controlled memory or have user-controlled
data stored on the stack by kernel code executed before the
hijacking occurs.

The swapgs Stack Pivoting technique, which does not have
any preconditions, comes with a reduction in exploit stability.
However, as discussed in Section 7.2, in most cases, it remains
quite stable.

Applicability of Proposed Techniques. Under FineIBT,
the only applicable technique for generic forward-edge con-
trol flow hijacking is swapgs Stack Pivoting, but the other
techniques may be combined with this technique to bypass
security features or hijack other system structures.

In cases where kCFI is enabled, the swapgs Stack Pivot-
ing technique is less applicable. It may still be applicable in
forward-edge Control Flow Hijacking if an unprotected indi-
rect call is found. For example, calls into EFI runtime services
are intentionally unprotected by kCFI, either explicitly using

a compiler annotation or by ’hiding’ the indirect control flow
from the compiler using inline assembly [5]. Since kCFI does
not protect against backward-edge Control Flow Hijacking,
the technique could still be applied if an attacker can hijack
a return address. In these cases, though, it would only serve
as a generic stack pivoting technique rather than a bypass to
kCFI.
Improvements to Proposed Techniques. The swapgs Stack
Pivoting technique has proved so generic that it could likely
be applied in an automatic exploit generation scenario. There
is not a significant amount of manual effort required to port
an exploit to use this technique, and it may be possible to
automate that effort. The work that is currently manual in-
cludes identifying a few per-cpu variable offsets, the offset of
the forged stack to overwrite, constructing a ROP chain for
privilege escalation, and swapping out the control flow target
for one of the syscall entry points.

11 Related Work

Bypassing Kernel Security Features. In the past decade,
security issues in kernels have been extensively studied. One
of the main research directions is bypassing kernel security
features. For instance, Chen et al. [15] studied elastic objects
in the kernel to bypass protections such as KASLR, and Liu
et al. [41] managed to bypass KASLR by exploiting design
flaws in Kernel Page Table Isolation (KPTI). Hund et al. [29]
implemented an automated system to bypass kernel code in-
tegrity protection mechanisms. Kemerlis et al. [35] bypassed
kernel isolation protections by leveraging implicit page frame
sharing. Additionally, side-channel attacks have been pro-
posed to bypass kernel security features, such as SMAP and
Kernel ASLR [19, 27].
Escalating Privileges in the Kernel. A number of tech-
niques have been proposed to escalate privileges in the kernel.
For example, DirtyCred [38] was proposed to swap unprivi-
leged and privileged kernel credentials, achieving kernel priv-
ilege escalation. SCAVY [9] automatically discovers memory



corruption targets in the Linux kernel for privilege escalation.
To counter these threats, researchers have proposed various
approaches to mitigate kernel privilege escalation. For in-
stance, PrivGuard [49] protects sensitive kernel data from
privilege escalation attacks. Other works [52, 59] mitigate
kernel privilege escalation by observing system call privilege
changes and randomizing security identifiers.

Kernel Memory Corruption. Significant efforts have
been made to identify kernel memory corruption vulnera-
bilities. For instance, K-Miner [22] is a framework that can
systematically uncover memory corruption vulnerabilities.
SCAVY [10] automatically discovers memory corruption
targets for privilege escalation in the Linux kernel. Corre-
spondingly, approaches have been proposed to mitigate kernel
memory corruption. Multiple Kernel Memory (MKM) [37]
protects kernel code and kernel data from kernel memory cor-
ruption. Kuzuno et al. [50] survey and classify protection and
mitigation technologies against memory corruption attacks.

Upgrading Kernel Exploitation Capabilities. Several
works have aimed to enhance the capabilities of kernel ex-
ploitation. KEPLER [58] facilitates exploit generation by
automatically generating a single-shot exploitation chain.
Zeng et al. [61] improve exploitation reliability by system-
atically studying kernel heap exploit reliability problems.
SLAKE [16] escalates the exploitability of kernel vulner-
abilities by facilitating slab manipulation. Despite these ad-
vancements, none of these works focus on techniques that
compromise system registers, leaving a gap in exploitation
methods that could further elevate the impact and severity of
kernel vulnerabilities.

12 Conclusion

Modern Linux kernel exploitation relies heavily on forward
control flow hijacking. In this research, we find that the intro-
duction of CFI mechanisms endangers forward control flow
hijacking and, therefore, renders most exploitation efforts
that involve it obsolete. After thoroughly exploring system
registers across multiple architectures and their associated in-
structions, we identify a technique that circumvents FineIBT,
the default CFI on x86-64 kernel builds. We also introduce
other techniques that hijack system registers, which, when
combined with ROP, can ease exploitation. Finally, we sug-
gest mitigations that could protect against these techniques.
We conducted a study on the capabilities and stability of
the swapgs Stack Pivoting technique across six real-world
vulnerabilities, demonstrated its ability to bypass FineIBT
on a bare-metal setup, and evaluated a potential approach to
mitigating the technique.

13 Acknowledgements

We would like to thank our anonymous reviewers and
shepherd for their feedback. This material is based upon
work supported by the Defense Advanced Research Projects
Agency (DARPA), Naval Information Warfare Center Pacific
(NIWC Pacific), and Advanced Research Projects Agency
for Health (ARPA-H) under contracts N66001-22-C-4026,
HR001124C0362, and SP4701-23-C-0074, as well as by the
Google PhD Fellowship. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of
DARPA, NIWC Pacific, ARPA-H, or Google.

14 Ethics Considerations

We informed the Linux kernel security team of our findings
and disclosed all the potential security impact responsibly
before submitting this work. The kernel security team evalu-
ated our report and gave us permission to publish it, stating
an explicit preference for discussing mitigations for the tech-
niques on the public kernel-hardening mailing list. During our
discussion with the kernel security team, Linus brainstormed
other potential mitigations for our discovered technique. We
are continuing to collaborate with the kernel-hardening team
to mitigate the exploitation techniques we discovered. Our
research did not involve any experiments that could harm
individuals.

15 Open Science

Our artifacts have been made available at https://doi.org/
10.5281/zenodo.14728440. The artifacts include our scripts
for measuring the occurrences of system instructions that may
serve as SRH gadgets, our kernel module-based PoCs used
to demonstrate individual techniques, the modified exploits
included in our evaluation, the setup for reproducing the case
study on bypassing FineIBT, and our implementation of the
AVX timing side channel [17] used for breaking KASLR.

References

[1] Phoronix test suite. https://www.phoronix-test-
suite.com/.

[2] aarch64: Add compiler support for
shadow call stack, 2022. https://
gcc.gnu.org/git/?p=gcc.git;a=commit;h=
ce09ab17ddd21f73ff2caf6eec3b0ee9b0e1a11e.

[3] [patch v4 00/45] x86: Kernel
ibt. https://lore.kernel.org/all/
20220308153011.021123062@infradead.org/,
2022.

https://doi.org/10.5281/zenodo.14728440
https://doi.org/10.5281/zenodo.14728440
https://www.phoronix-test-suite.com/
https://www.phoronix-test-suite.com/
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=ce09ab17ddd21f73ff2caf6eec3b0ee9b0e1a11e
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=ce09ab17ddd21f73ff2caf6eec3b0ee9b0e1a11e
https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=ce09ab17ddd21f73ff2caf6eec3b0ee9b0e1a11e
https://lore.kernel.org/all/20220308153011.021123062@infradead.org/
https://lore.kernel.org/all/20220308153011.021123062@infradead.org/


[4] Cve 2024-41009, 2024. https://nvd.nist.gov/
vuln/detail/cve-2024-41009.

[5] efi: Add missing __nocfi annotations
to runtime wrappers, 2024. https://
git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/commit/?id=
99280413a5b785f22d91e8a8a66dc38f4a214495.

[6] Shadowcallstack, 2025. https://clang.llvm.org/
docs/ShadowCallStack.html.

[7] angr team. angrop. https://github.com/angr/
angrop, 2024.

[8] ARM. Arm architecture reference manual supple-
ment - armv8, for armv8-r aarch64 architecture pro-
file. https://developer.arm.com/documentation/
ddi0600/latest/.

[9] Erin Avllazagaj, Yonghwi Kwon, and Tudor Dumitras.
SCAVY: Automated discovery of memory corruption
targets in linux kernel for privilege escalation. In
33rd USENIX Security Symposium (USENIX Security
24), pages 7141–7158, Philadelphia, PA, August 2024.
USENIX Association.

[10] Erin Avllazagaj, Yonghwi Kwon, and Tudor Dumitras, .
{SCAVY}: Automated discovery of memory corruption
targets in linux kernel for privilege escalation. In 33rd
USENIX Security Symposium (USENIX Security 24),
pages 7141–7158, 2024.

[11] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert
Bos, and Cristiano Giuffrida. Branch history injection:
On the effectiveness of hardware mitigations against
{Cross-Privilege} spectre-v2 attacks. In 31st USENIX
Security Symposium (USENIX Security 22), pages 971–
988, 2022.

[12] Billy Jheng Bing-Jhong and Muhammad Alifa Ramdhan.
Cve 2024-41009 exploit, 2024. https://github.com/
google/security-research/tree/master/pocs/
linux/kernelctf/CVE-2024-41009_lts_cos.

[13] Erik Bosman and Herbert Bos. Framing signals-a return
to portable shellcode. In 2014 IEEE Symposium on
Security and Privacy, pages 243–258. IEEE, 2014.

[14] Jérémie Boutoille. Xen exploitation part
1: Xsa-105, from nobody to root. https:
//blog.quarkslab.com/xen-exploitation-part-
1-xsa-105-from-nobody-to-root.html, 2016.

[15] Yueqi Chen, Zhenpeng Lin, and Xinyu Xing. A system-
atic study of elastic objects in kernel exploitation. In
Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, pages 1165–
1184, 2020.

[16] Yueqi Chen and Xinyu Xing. Slake: Facilitating slab ma-
nipulation for exploiting vulnerabilities in the linux ker-
nel. In Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
1707–1722, 2019.

[17] Hyunwoo Choi, Suryeon Kim, and Seungwon Shin. Avx
timing side-channel attacks against address space lay-
out randomization. In 2023 60th ACM/IEEE Design
Automation Conference (DAC), pages 1–6, 2023.

[18] CVE Details. Linux: Security vulnerabili-
ties, CVEs published in 2024, 2024. https:
//www.cvedetails.com/vulnerability-list/
vendor_id-33/Linux.html?page=1&year=
2024&order=1.

[19] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. Jump over aslr: Attacking branch predictors
to bypass aslr. In 2016 49th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO),
pages 1–13. IEEE, 2016.

[20] Nicolas FABRETTI. Cve-2017-11176: A step-by-step
linux kernel exploitation (part 4/4), 2018. https:
//blog.lexfo.fr/cve-2017-11176-linux-kernel-
exploitation-part4.html#stack-pivoting.

[21] Alexander J Gaidis, Joao Moreira, Ke Sun, Alyssa
Milburn, Vaggelis Atlidakis, and Vasileios P Kemerlis.
Fineibt: Fine-grain control-flow enforcement with indi-
rect branch tracking. In Proceedings of the 26th Inter-
national Symposium on Research in Attacks, Intrusions
and Defenses, pages 527–546, 2023.

[22] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-
Reza Sadeghi. K-miner: Uncovering memory corruption
in linux. In NDSS, 2018.

[23] Google. Project zero: Exploiting the
linux kernel via packet sockets. https:
//googleprojectzero.blogspot.com/2017/05/
exploiting-linux-kernel-via-packet.html.

[24] Google. https://github.com/google/security-
research/tree/master/pocs/linux/kernelctf,
2024.

[25] Google. kernelctf vrp. https://google.github.io/
security-research/kernelctf/rules.html, 2024.

[26] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard
Fellner, Clémentine Maurice, and Stefan Mangard. Kaslr
is dead: long live kaslr. In Engineering Secure Software
and Systems: 9th International Symposium, ESSoS 2017,
Bonn, Germany, July 3-5, 2017, Proceedings 9, pages
161–176. Springer, 2017.

https://nvd.nist.gov/vuln/detail/cve-2024-41009
https://nvd.nist.gov/vuln/detail/cve-2024-41009
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=99280413a5b785f22d91e8a8a66dc38f4a214495
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=99280413a5b785f22d91e8a8a66dc38f4a214495
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=99280413a5b785f22d91e8a8a66dc38f4a214495
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=99280413a5b785f22d91e8a8a66dc38f4a214495
https://clang.llvm.org/docs/ShadowCallStack.html
https://clang.llvm.org/docs/ShadowCallStack.html
https://github.com/angr/angrop
https://github.com/angr/angrop
https://developer.arm.com/documentation/ddi0600/latest/
https://developer.arm.com/documentation/ddi0600/latest/
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf/CVE-2024-41009_lts_cos
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf/CVE-2024-41009_lts_cos
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf/CVE-2024-41009_lts_cos
https://blog.quarkslab.com/xen-exploitation-part-1-xsa-105-from-nobody-to-root.html
https://blog.quarkslab.com/xen-exploitation-part-1-xsa-105-from-nobody-to-root.html
https://blog.quarkslab.com/xen-exploitation-part-1-xsa-105-from-nobody-to-root.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/Linux.html?page=1&year=2024&order=1
https://www.cvedetails.com/vulnerability-list/vendor_id-33/Linux.html?page=1&year=2024&order=1
https://www.cvedetails.com/vulnerability-list/vendor_id-33/Linux.html?page=1&year=2024&order=1
https://www.cvedetails.com/vulnerability-list/vendor_id-33/Linux.html?page=1&year=2024&order=1
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html#stack-pivoting
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html#stack-pivoting
https://blog.lexfo.fr/cve-2017-11176-linux-kernel-exploitation-part4.html#stack-pivoting
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf
https://github.com/google/security-research/tree/master/pocs/linux/kernelctf
https://google.github.io/security-research/kernelctf/rules.html
https://google.github.io/security-research/kernelctf/rules.html


[27] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. Prefetch side-channel
attacks: Bypassing smap and kernel aslr. In Proceedings
of the 2016 ACM SIGSAC conference on computer and
communications security, pages 368–379, 2016.

[28] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. Prefetch side-channel
attacks: Bypassing smap and kernel aslr. In Proceedings
of the 2016 ACM SIGSAC conference on computer and
communications security, pages 368–379, 2016.

[29] Ralf Hund, Thorsten Holz, and Felix C. Freiling. Return-
oriented rootkits: bypassing kernel code integrity pro-
tection mechanisms. In Proceedings of the 18th Confer-
ence on USENIX Security Symposium, SSYM’09, page
383–398, USA, 2009. USENIX Association.

[30] Intel. Intel® 64 and ia-32 architectures software de-
veloper manuals. https://www.intel.com/content/
www/us/en/developer/articles/technical/
intel-sdm.html.

[31] Intel. Guidance for enabling fsgsbase.
https://www.intel.com/content/www/us/en/
developer/articles/technical/software-
security-guidance/best-practices/guidance-
enabling-fsgsbase.html, 2019.

[32] Intel. Speculative behavior of swapgs and segment reg-
isters / cve-2019-1125, 2019.

[33] Hayden James. 85 https://linuxblog.io/85-of-
all-smartphones-are-powered-by-linux/.

[34] Hyerean Jang, Taehun Kim, and Youngjoo Shin. Sys-
bumps: Exploiting speculative execution in system calls
for breaking kaslr in macos for apple silicon. In Pro-
ceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, pages 64–78,
2024.

[35] Vasileios P Kemerlis, Michalis Polychronakis, and An-
gelos D Keromytis. ret2dir: Rethinking kernel isolation.
In 23rd USENIX Security Symposium (USENIX Security
14), pages 957–972, 2014.

[36] Vasileios P. Kemerlis, Michalis Polychronakis, and An-
gelos Dennis Keromytis. ret2dir: Rethinking kernel
isolation. In USENIX Security Symposium, 2014.

[37] Hiroki Kuzuno and Toshihiro Yamauchi. Mitigation of
kernel memory corruption using multiple kernel mem-
ory mechanism. IEEE Access, 9:111651–111665, 2021.

[38] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. Dirtycred:
Escalating privilege in linux kernel. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 1963–1976, 2022.

[39] Jannik Linder. Linux user statistics: Dominance in
supercomputing, web servers, iot, 2024. https://
wifitalents.com/statistic/linux-user/.

[40] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, et al. Meltdown:
Reading kernel memory from user space. Communica-
tions of the ACM, 63(6):46–56, 2020.

[41] William Liu, Joseph Ravichandran, and Mengjia Yan.
Entrybleed: A universal kaslr bypass against kpti on
linux. In Proceedings of the 12th International Work-
shop on Hardware and Architectural Support for Secu-
rity and Privacy, pages 10–18, 2023.

[42] Alexander Lobakin. Function granular kernel address
space layout randomization (fg-kaslr). https://
lore.kernel.org/lkml/20220209185752.1226407-
1-alexandr.lobakin@intel.com/, 2022.

[43] Lukas Maar, Pascal Nasahl, and Stefan Mangard. Be-
yond the edges of kernel control-flow hijacking protec-
tion with hek-cfi. In Proceedings of the 19th ACM Asia
Conference on Computer and Communications Security,
pages 1214–1230, 2024.

[44] mahaloz. ret2usr, 2021. https://ctf-
wiki.mahaloz.re/pwn/linux/kernel/ret2usr/.

[45] João Moreira, Sandro Rigo, Michalis Polychronakis, and
Vasileios P Kemerlis. Drop the rop fine-grained control-
flow integrity for the linux kernel. Black Hat Asia, 2017,
2017.

[46] Vitaly Nikolenko. Linux kernel 3.2.0-23/3.5.0-
23 (ubuntu 12.04/12.04.1/12.04.2 x64) -
’perf_swevent_init’ local privilege escalation (3).
https://www.exploit-db.com/exploits/33589,
2014.

[47] notselwyn. Flipping pages: An analysis of a new linux
vulnerability in nf_tables and hardened exploitation tech-
niques. https://pwning.tech/nftables/, 2024.

[48] Pawel Wieczorkiewicz. Linux kernel alter-
natives, 2021. https://grsecurity.net/
linux_kernel_alternatives.

[49] Weizhong Qiang, Jiawei Yang, Hai Jin, and Xuanhua
Shi. Privguard: Protecting sensitive kernel data from
privilege escalation attacks. IEEE Access, 6:46584–
46594, 2018.

[50] Takamichi Saito, Ryohei Watanabe, Shuta Kondo, Shota
Sugawara, and Masahiro Yokoyama. A survey of preven-
tion/mitigation against memory corruption attacks. In
2016 19th International Conference on Network-Based

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/guidance-enabling-fsgsbase.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/guidance-enabling-fsgsbase.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/guidance-enabling-fsgsbase.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/guidance-enabling-fsgsbase.html
https://linuxblog.io/85-of-all-smartphones-are-powered-by-linux/
https://linuxblog.io/85-of-all-smartphones-are-powered-by-linux/
https://wifitalents.com/statistic/linux-user/
https://wifitalents.com/statistic/linux-user/
https://lore.kernel.org/lkml/20220209185752.1226407-1-alexandr.lobakin@intel.com/
https://lore.kernel.org/lkml/20220209185752.1226407-1-alexandr.lobakin@intel.com/
https://lore.kernel.org/lkml/20220209185752.1226407-1-alexandr.lobakin@intel.com/
https://ctf-wiki.mahaloz.re/pwn/linux/kernel/ret2usr/
https://ctf-wiki.mahaloz.re/pwn/linux/kernel/ret2usr/
https://www.exploit-db.com/exploits/33589
https://pwning.tech/nftables/
https://grsecurity.net/linux_kernel_alternatives
https://grsecurity.net/linux_kernel_alternatives


Information Systems (NBiS), pages 500–505. IEEE,
2016.

[51] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, et al. Sok:(state of) the art of war: Offensive
techniques in binary analysis. In 2016 IEEE symposium
on security and privacy (SP), pages 138–157. IEEE,
2016.

[52] Lifeng Wei, Yudan Zuo, Yan Ding, Pan Dong, Chenlin
Huang, and Yuanming Gao. Security identifier random-
ization: a method to prevent kernel privilege-escalation
attacks. In 2016 30th International Conference on Ad-
vanced Information Networking and Applications Work-
shops (WAINA), pages 838–842. IEEE, 2016.

[53] Johannes Wikner and Kaveh Razavi. {RETBLEED}:
Arbitrary speculative code execution with return instruc-
tions. In 31st USENIX Security Symposium (USENIX
Security 22), pages 3825–3842, 2022.

[54] Johannes Wikner, Daniël Trujillo, and Kaveh Razavi.
Phantom: Exploiting decoder-detectable mispredictions.
In Proceedings of the 56th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 49–61,
2023.

[55] willsroot. Entrybleed: Breaking kaslr under
kpti with prefetch (cve-2022-4543). https:
//www.willsroot.io/2022/12/entrybleed.html,
2022.

[56] Nicolas Wu. Dirty pagetable: A novel exploitation tech-
nique to rule linux kernel, 2023.

[57] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou.
{KEPLER}: Facilitating control-flow hijacking primi-
tive evaluation for linux kernel vulnerabilities. In 28th
{USENIX} Security Symposium ({USENIX} Security
19), pages 1187–1204, 2019.

[58] Wei Wu, Yueqi Chen, Xinyu Xing, and Wei Zou.
{KEPLER}: Facilitating control-flow hijacking primi-
tive evaluation for linux kernel vulnerabilities. In 28th
USENIX Security Symposium (USENIX Security 19),
pages 1187–1204, 2019.

[59] Toshihiro Yamauchi, Yohei Akao, Ryota Yoshitani,
Yuichi Nakamura, and Masaki Hashimoto. Additional
kernel observer to prevent privilege escalation attacks
by focusing on system call privilege changes. In 2018
IEEE Conference on Dependable and Secure Computing
(DSC), pages 1–8. IEEE, 2018.

[60] Shimizu Yutaro. *ctf 2019 writeup (blind-
pwn, heap master, hack_me). https://shift-
crops.hatenablog.com/entry/2019/04/30/
131154, 2019.

[61] Kyle Zeng, Yueqi Chen, Haehyun Cho, Xinyu Xing,
Adam Doupé, Yan Shoshitaishvili, and Tiffany Bao.
Playing for {K (H) eaps}: Understanding and improving
linux kernel exploit reliability. In 31st USENIX Security
Symposium (USENIX Security 22), pages 71–88, 2022.

[62] Kyle Zeng, Zhenpeng Lin, Kangjie Lu, Xinyu Xing,
Ruoyu Wang, Adam Doupé, Yan Shoshitaishvili, and
Tiffany Bao. Retspill: Igniting user-controlled data to
burn away linux kernel protections. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and
Communications Security, page 3093–3107, 2023.

[63] Peter Zijlstra. x86/ibt: Implement fineibt. https:
//git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/commit/?id=931ab63664f0,
2022.

16 Appendix

16.1 Gadgets on x86-64
The results of our measurements of potential and validated
gadgets on x86-64 across several kernel builds are located in
Table 5 and Table 6.

16.2 Gadgets on aarch64
The results of our measurements of potential and validated
gadgets across several aarch64 kernel builds can be found in
Table 7 and Table 8.

https://www.willsroot.io/2022/12/entrybleed.html
https://www.willsroot.io/2022/12/entrybleed.html
https://shift-crops.hatenablog.com/entry/2019/04/30/131154
https://shift-crops.hatenablog.com/entry/2019/04/30/131154
https://shift-crops.hatenablog.com/entry/2019/04/30/131154
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=931ab63664f0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=931ab63664f0
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=931ab63664f0


Kernel m
ov

cr
0

m
ov

cr
3

m
ov

cr
4

w
rm

sr

lid
t

lg
dt

lld
t

ltr w
rg

sb
as

e

w
rf

sb
as

e

sw
ap

gs

po
pf

q

st
ac

cl
ac

ir
et

q

5.15.0-1073-aws_5.15.0-1073.79 14 44 16 113 8 8 61 137 4 2 23 10629 57 143 204
5.19.0-1029-aws_5.19.0-1029.30 19 45 17 125 13 7 65 51 4 2 24 10008 62 140 223
6.2.0-1018-aws_6.2.0-1018.18 10 45 19 126 7 7 63 74 4 2 23 13503 89 166 168
6.5.0-1024-aws_6.5.0-1024.24 9 46 18 131 7 7 65 66 4 2 23 14132 109 186 231
6.8.0-1021-aws_6.8.0-1021.23 9 48 20 137 17 17 79 67 4 2 23 12842 115 191 228

5.19.0-46-generic_5.19.0-46.47 14 45 19 118 11 7 62 55 4 2 24 10379 62 141 202
6.2.0-39-generic_6.2.0-39.40 19 45 18 127 7 7 63 64 4 2 23 13435 89 166 196
6.5.0-45-generic_6.5.0-45.45 12 47 18 124 16 11 62 63 4 2 23 14119 108 187 204
6.8.0-50-generic_6.8.0-50.51 14 49 17 137 18 17 81 58 4 2 23 12669 113 191 234
6.11.0-12-generic_6.11.0-12.13 8 51 18 137 14 16 102 49 4 2 23 14915 116 199 297

6.8.0-63.eln136.1 11 44 19 526 7 11 24 42 4 2 23 7087 116 184 80
6.9.0-0.rc6.52.eln136 11 46 17 540 6 11 25 34 4 2 23 7281 118 186 105
6.10.0-0.rc7.58.eln141 10 47 17 542 6 12 35 39 4 2 23 9621 118 196 104
6.11.0-63.eln142 9 48 19 548 7 11 42 35 4 2 23 7462 118 196 126
6.12.0-65.eln143 20 48 20 553 6 12 40 38 4 2 23 7576 112 193 103

6.8.0-63.fc41 9 46 18 121 6 9 63 24 4 2 23 8742 117 194 107
6.9.0-64.fc41 12 49 16 123 4 16 74 29 4 2 23 12064 116 201 108
6.10.0-64.fc41 14 49 16 118 4 16 78 27 4 2 23 9635 116 202 129
6.11.0-63.fc42 13 50 19 120 6 14 81 32 4 2 23 10100 116 201 112
6.12.0-65.fc42 10 49 18 121 15 17 70 23 4 2 23 10983 111 198 124

Averages: 12 47 18 229 9 12 62 50 4 2 23 10859 104 183 164

Table 5: Counts of potential x86-64 gadgets for each instruction across five versions of Ubuntu AWS, Ubuntu Generic, Fedora
Enterprise Linux Next, and Fedora Core.



Kernel m
ov

cr
0

m
ov

cr
3

m
ov

cr
4

w
rm

sr

lid
t

lg
dt

lld
t

ltr w
rg

sb
as

e

w
rf

sb
as

e

sw
ap

gs

po
pf

q

st
ac

cl
ac

ir
et

q

5.15.0-1073-aws_5.15.0-1073.79 3 10 3 22 4 2 4 79 2 1 9 385 0 0 204
5.19.0-1029-aws_5.19.0-1029.30 3 9 2 21 9 2 5 36 2 1 10 476 0 0 223
6.2.0-1018-aws_6.2.0-1018.18 3 9 2 23 4 2 3 45 2 1 10 493 0 0 168
6.5.0-1024-aws_6.5.0-1024.24 5 8 2 28 4 2 4 37 2 1 9 520 0 0 231
6.8.0-1021-aws_6.8.0-1021.23 4 9 2 23 14 3 1 31 2 1 9 570 0 0 228

5.19.0-46-generic_5.19.0-46.47 3 9 2 22 7 2 3 42 2 0 10 462 0 0 202
6.2.0-39-generic_6.2.0-39.40 3 9 2 24 4 2 1 42 2 0 10 479 0 0 196
6.5.0-45-generic_6.5.0-45.45 5 9 2 23 11 2 0 30 2 0 9 467 0 0 204
6.8.0-50-generic_6.8.0-50.51 5 9 2 23 15 3 1 28 2 0 9 503 0 0 234
6.11.0-12-generic_6.11.0-12.13 3 10 3 22 8 3 3 20 2 0 9 547 0 0 297

6.8.0-63.eln136.1 5 6 3 184 4 1 4 12 2 0 9 413 0 0 80
6.9.0-0.rc6.52.eln136 5 7 2 199 2 1 1 5 2 0 9 411 0 0 105
6.10.0-0.rc7.58.eln141 4 7 2 201 2 1 1 6 2 0 9 437 0 0 104
6.11.0-63.eln142 3 8 3 206 2 1 1 5 2 0 9 415 0 0 126
6.12.0-65.eln143 3 8 3 207 2 1 1 8 2 0 9 468 0 0 103

6.8.0-63.fc41 4 8 2 31 3 2 0 9 2 0 9 428 1 0 107
6.9.0-64.fc41 3 9 2 30 1 2 2 6 2 0 9 2484 1 0 108
6.10.0-64.fc41 3 9 2 30 1 4 1 4 2 0 9 517 1 0 129
6.11.0-63.fc42 4 10 3 30 1 3 1 7 2 0 9 555 1 0 112
6.12.0-65.fc42 5 10 3 30 6 2 0 3 2 0 9 612 1 0 124

Averages: 4 9 2 69 5 2 2 23 2 0 9 582 0 0 164

Table 6: Counts of validated x86-64 System Register Hijacking gadgets, across five versions of Ubuntu AWS, Ubuntu Generic,
Fedora ELN, and Fedora FC.



Kernel elr_el1 pan sctlr_el1 spsr_el1 tcr_el1 ttbr0_el1 ttbr1_el1 vbar_el1

5.15.0-1073-aws_5.15.0-1073.79 20 31 52 18 27 2570 2586 44
5.19.0-1029-aws_5.19.0-1029.30 21 23 53 20 28 1475 1450 9
6.2.0-1018-aws_6.2.0-1018.18 20 23 50 19 28 1487 1467 10
6.5.0-1024-aws_6.5.0-1024.24 21 23 42 19 25 1673 1651 9
6.8.0-1021-aws_6.8.0-1021.23 23 23 43 21 24 1698 1677 8

5.19.0-46-generic_5.19.0-46.47 21 23 53 20 28 1408 1383 9
6.2.0-39-generic_6.2.0-39.40 20 23 50 19 28 1437 1417 10
6.5.0-45-generic_6.5.0-45.45 21 23 43 19 24 1484 1464 9
6.8.0-50-generic_6.8.0-50.51 23 23 43 21 23 1481 1462 8
6.11.0-12-generic_6.11.0-12.13 26 23 46 24 20 1414 1398 8

6.8.0-63.eln136.1 23 33 39 21 24 25 4 8
6.9.0-0.rc6.52.eln136 23 33 40 21 20 21 4 8
6.10.0-0.rc7.58.eln141 24 33 42 22 21 22 4 8
6.11.0-63.eln142 26 33 42 24 21 22 4 8
6.12.0-65.eln143 26 35 43 24 23 24 6 8

6.8.0-63.fc41 23 23 43 21 24 2801 2780 8
6.9.0-64.fc41 23 23 44 21 21 2819 2801 8
6.10.0-64.fc41 24 23 46 22 20 2807 2790 8
6.11.0-63.fc42 26 23 46 24 20 3146 3129 8
6.12.0-65.fc42 26 25 47 24 22 3147 3130 8

Averages: 23 26 45 21 24 1548 1530 10

Table 7: Count of potential aarch64 gadgets for each system register studied, across five versions of Ubuntu AWS, Ubuntu
Generic, Fedora ELN, and Fedora FC.

Kernel elr_el1 pan sctlr_el1 spsr_el1 tcr_el1 ttbr0_el1 ttbr1_el1 vbar_el1

5.15.0-1073-aws_5.15.0-1073.79 2 0 18 1 7 133 136 38
5.19.0-1029-aws_5.19.0-1029.30 0 1 4 0 6 5 7 2
6.2.0-1018-aws_6.2.0-1018.18 1 1 3 1 6 8 7 2
6.5.0-1024-aws_6.5.0-1024.24 4 1 14 4 6 190 185 5
6.8.0-1021-aws_6.8.0-1021.23 4 1 16 6 8 206 201 3

5.19.0-46-generic_5.19.0-46.47 0 1 4 0 6 4 6 2
6.2.0-39-generic_6.2.0-39.40 1 1 3 1 6 8 7 2
6.5.0-45-generic_6.5.0-45.45 4 1 15 4 6 197 192 5
6.8.0-50-generic_6.8.0-50.51 5 1 16 6 8 222 217 3
6.11.0-12-generic_6.11.0-12.13 3 1 18 4 5 254 250 3

6.8.0-63.eln136.1 6 0 11 7 4 1 0 3
6.9.0-0.rc6.52.eln136 4 0 11 5 3 1 0 3
6.10.0-0.rc7.58.eln141 4 0 13 5 5 4 0 3
6.11.0-63.eln142 4 0 13 5 5 4 0 3
6.12.0-65.eln143 4 1 13 5 6 4 0 3

6.8.0-63.fc41 6 1 15 7 7 113 109 3
6.9.0-64.fc41 3 1 15 4 6 111 107 3
6.10.0-64.fc41 3 1 17 4 4 113 110 3
6.11.0-63.fc42 3 1 17 4 4 137 134 3
6.12.0-65.fc42 3 2 17 4 5 139 136 3

Averages: 3 1 13 4 6 93 90 5

Table 8: Counts of validated aarch64 System Register Hijacking gadgets, across five versions of Ubuntu AWS, Ubuntu Generic,
Fedora Enterprise Linux Next, and Fedora Core.


	Introduction
	Background
	Control Flow Hijacking
	Control Flow Integrity
	KASLR Bypasses
	SMAP and PAN Bypasses
	Kernel Page Table Isolation
	x86-64 FSGSBASE Extension
	x86-64 Per-CPU Variables
	Privileged Instructions for ROP
	System Registers

	Threat Model
	System Register Hijacking
	Measurement
	Measurement on x86-64
	Measurement on aarch64
	Gadget Verification

	System Register Hijacking Techniques
	x86-64: swapgs Stack Pivoting
	x86-64: CR0 Hijacking
	x86-64: CR4 Hijacking
	x86-64: popf Extension + RetSpill
	x86-64: IDT Hijacking
	aarch64: PAN Hijacking
	aarch64: SPSR_EL1 Hijacking

	Technique Validation
	Proof of Concepts
	Real-World Evaluation

	Case Studies
	CVE-2024-26925
	CVE-2024-1085
	Bypassing [Fine]IBT

	Mitigations
	Mitigating swapgs
	Mitigating cr0 and cr4
	Mitigating lidt
	Mitigating MSR pan and MSR spsr_el1
	Mitigating popf

	Discussion
	Related Work
	Conclusion
	Acknowledgements
	Ethics Considerations
	Open Science
	Appendix
	Gadgets on x86-64
	Gadgets on aarch64


