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Abstract

Modern software often accepts inputs with highly complex
grammars. To conduct greybox fuzzing and uncover security
bugs in such software, it is essential to generate inputs that
conform to the software input grammar. However, this is
a well-known challenging task because it requires a deep
understanding of the grammar, which is often not available
and hard to infer. Recent advances in large language models
(LLMs) have shown that they can be used to synthesize high-
quality natural language text and code that conforms to the
grammar of a given input format. Nevertheless, LLMs are
often incapable or too costly to generate non-textual outputs,
such as images, videos, and PDF files. This limitation hinders
the application of LLMs in grammar-aware fuzzing.

We present a novel approach to enabling grammar-aware
fuzzing over non-textual inputs. We employ LLMs to synthe-
size and also mutate input generators, in the form of Python
scripts, that generate data conforming to the grammar of a
given input format. Then, non-textual data yielded by the input
generators are further mutated by traditional fuzzers (AFL++)
to explore the software input space effectively. Our approach,
namely G>Fuzz, features a hybrid strategy that combines a
“holistic search” driven by LLMs and a “local search” driven
by industrial quality fuzzers. Two key advantages are: (1)
LLMs are good at synthesizing and mutating input genera-
tors and enabling jumping out of local optima, thus achiev-
ing a synergistic effect when combined with mutation-based
fuzzers; (2) LLMs are less frequently invoked unless really
needed, thus significantly reducing the cost of LLM usage.
We have evaluated G?FUZZ on a variety of input formats, in-
cluding TIFF images, MP4 audios, and PDF files. The results
show that GZFuzz outperforms SOTA tools such as AFL++,
Fuzztruction, and FormatFuzzer in terms of code coverage
and bug finding across most programs tested on three plat-
forms: UNIFUZZ, FuzzBench, and MAGMA. G2Fuzz also
discovers 10 unique bugs in the latest real-world software, of
which 3 are confirmed by CVE.

* Corresponding authors.

1 Introduction

Modern software often accepts inputs with highly complex
grammars, such as images, configuration files, and network
packets. Fuzzing such software is well-known to be chal-
lenging [14, 19, 23, 27, 33, 47] because it requires a deep
understanding of software grammar to fully explore the input
space. Often, one needs to prepare sample inputs that con-
form to the grammar of the input format and also exhibit a
variety of characteristics before conducting effective greybox
fuzzing [6, 15, 28, 35, 36, 48, 56] and uncover security bugs.
Recent structure-aware fuzzers have explored solutions to
alleviate the above challenges with inference-based fuzzing
and grammar-aware fuzzing, yet they still have limitations.
Inference-based fuzzers, such as ProFuzzer [55], Fuzzln-
Mem [32], and WEIZZ [15], can infer input grammars and
generate inputs on-the-fly. However, they often suffer from
low accuracy and weak scalability, by inferring simple input
fields and struggling to mutate file structures. ProFuzzer and
WEIZZ are time-consuming for long inputs, while FuzzIn-
Mem requires programs having printer functions that convert
in-memory data structures to files. Grammar-aware greybox
fuzzers [9, 8, 21, 39, 51] often require pre-knowledge of the
input grammar (e.g., provided by the users). Such informa-
tion is often not available or incomplete, making it obscure to
comprehensively understand input fields and their relations.
Moreover, current fuzzing approaches primarily validate ba-
sic structural fields like size and checksums in file formats
but neglect complex features. These features can trigger more
complex logic, revealing deeper bugs. Complex features of-
ten include intricate chunks or constraints between chunks,
posing challenges to traditional fuzzing methods. Fuzztruc-
tion [7] mitigates this challenge from a different perspective
by injecting faults into generator applications to produce in-
puts with highly complex formats. However, Fuzztruction
relies on the availability of a suitable generator application,
which still requires experienced researchers to identify.
Large language models (LLMs) are transformer-based neu-
ral networks that have achieved state-of-the-art (SOTA) per-



formance in natural language and code processing tasks. Thus,
one may expect that LLMs could generate input samples with
various valid grammars, thus driving grammar-aware fuzzing
on its own. Indeed, we have seen some recent works that
leverage LLMs to generate inputs for fuzzing [9, 10, 37, 53].
Nevertheless, we clarify that although LLMs are capable of
generating fextual outputs, such as natural language text and
code, we find that LLMs are often incapable or too costly
of generating non-textual data samples as required by many
software. We present a detailed analysis in Sec. 3.

Instead of instructing LLMs to directly generate non-
textual fuzzing inputs, this paper explores another perspec-
tive to augment mutation-based fuzzing with LLMs. The key
idea is to leverage LLMs to automatically synthesize and
further mutate input generators (often in the form of Python
scripts) customized to the specific features and structures
of the target file format. By executing these generators, we
can produce inputs that exhibit a wide range of features and
structures, potentially triggering different program logic and
exploring previously untested code regions. Moreover, these
generated non-textual inputs can be rapidly mutated by tradi-
tional mutation-based fuzzers, such as AFL++, to effectively
explore the input space. Holistically, this approach offers a
new and unique hybrid view to augment fuzzing with LLMs:
LLMs are particularly good at synthesizing distinct input gen-
erators and enabling the escape from “local optima,” whereas
mutation-based fuzzers excel at conducting fine-grained, lo-
cal searches in the input space efficiently. We show that our
novel combination of LLMs and mutation-based fuzzers can
achieve a synergistic effect, leading to a significant improve-
ment in code coverage and bug finding. Moreover, since we
only invoke LLMs when necessary to synthesize new input
generators, we substantially reduce the cost of LLM usage.

We implement the above approach in a novel fuzzing frame-
work, namely G?Fuzz.” When users specify an input format
name (e.g., “TIFF”), G2?Fuzz employs de facto LLMs, such
as GPT-3.5 and llama-3-70b-instruct, to automatically syn-
thesize input generators in Python scripts that generate TIFF
images. G?Fuzz facilitates several strategies to further mu-
tate the synthesized generators. Then, GZFUZZ executes gen-
erators to produce a diverse set of non-textual inputs, and
also employs AFL++ to mutate the synthesized inputs. When
the employed fuzzers fail to uncover new code coverage to
a certain extent, G2FUzZ invokes LLMs to synthesize new
and distinct input generators, and then further mutates the
generated non-textual inputs using AFL++. This process con-
tinues until the target software is fully covered or a certain
time budget is reached.

We evaluate GZFUZz on 34 input formats, including JPEG
images, TIFF images, and MP4 videos. Our results show that
G?Fuzz can consistently outperform SOTA mutation-based
fuzzers, such as AFL++, and several structure-aware fuzzer

2G2Fuzz stands for “grammar-aware fuzzing with LLM-synthesized
input generators”.

baselines, in terms of code coverage and bug finding. We

evaluated it on three third-party benchmarks: UNIFUZZ [30],

FuzzBench [38], and MAGMA [22]. Our results show that

G?Fuzz achieves the best performance in code coverage and

bug finding across all three platforms. We find that with the

help of LLMs, G?Fuzz is able to discover many unique edge/-
function coverage that other fuzzers cannot find. Moreover,
we show that GZFUZZ incurs a very low cost of LLM usage;
fuzzing a target software with GPT-3.5 for 24 hours only costs
less than 0.2$ in LLM usage. We have used GZFUZzZ to find

10 unique bugs in the latest real-world software, of which

3 are confirmed by CVE. In sum, our contributions are as

follows:

* We introduce a novel approach to augmenting mutation-
based fuzzing using LLMs. The core idea is to combine the
strengths of LLMs in synthesizing and mutating diverse in-
put generators and the strengths of mutation-based fuzzers
in performing fine-grained mutations over non-textual data.
This approach leverages a synergistic effect to deliver effec-
tive fuzzing at a moderate cost.

* We design G’Fuzz that concretizes the above idea.

G?Fuzz properly and periodically invokes LLMs and

mutation-based fuzzers to benefit from their respective

strengths. G?FUzz features a set of design principles and
optimizations to make it highly efficient and practical.

Our results show that G?Fuzz consistently outperforms

SOTA mutation-based fuzzers and several other fuzzer base-

lines in terms of code coverage and bug finding across

various input formats and testing platforms. GZFuzz has
discovered 10 unique bugs in the latest real-world software.

2 Preliminaries

Large Language Models (LLMs). LLMs, transformer-based
neural networks, have reached SOTA performance in various
NLP tasks, including translation and summarization. Autore-
gressive (e.g., GPT) and masked language modeling (e.g.,
BERT) are essential for textual output, while models like
CLIP[29] and DALL-E[44] handle non-textual data, enhanc-
ing their range of applications. The community has noted that
LLMs have the potential to augment software fuzzing [12].
Greybox Fuzzing. Greybox fuzzing, a technique for find-
ing software security bugs, relies on lightweight instrumen-
tation for execution feedback to mutate inputs more effec-
tively. Fuzzers like AFL[57], AFL++[16], and Honggfuzz [2]
have advanced this field. AFL++, with optimizations such
as Redqueen, is recognized as the de facto standard fuzzer,
widely used by the security community to detect bugs.
Grammar-Aware Fuzzing. Grammar-aware fuzzing, a form
of greybox fuzzing, produces inputs based on precise gram-
mar rules, effectively identifying vulnerabilities in software
that handle complex input structures. Tools like Format-
Fuzzer [13], Gramatron [49], and Superion [51] leverage pro-
vided grammars to uncover security bugs in real-world soft-



ware. To generate inputs in highly complex formats, Fuzztruc-
tion [7] deliberately injects faults into generator applications.
Inference-Based Fuzzing. Inference-based fuzzing, such as
ProFuzzer [55], GreyOne [17], and WEIZZ [15], leverages
inferred relationships between input bytes and path constraints
to generate targeted test inputs. This method analyzes internal
logic and data formats to create relevant test cases, enhancing
coverage and reducing noise in results.

3 Motivation

3.1 Related Work and Limitations

Existing methods can be categorized into two types based on
the input they handle: (1) Text-format fuzzing, and (2) Binary-
format fuzzing. Text-format fuzzing primarily tests programs
using text inputs, such as Superion [51], Nautilus [5], and
Grimoire [8]. These methods generate a variety of valid text
inputs based on provided specifications, including formats
like XML, Ruby, SQL, and SMT. On the other hand, binary-
format fuzzing tests programs with binary inputs, such as For-
matFuzzer [13], FuzzInMem [32], WEIZZ [15], and AFLS-
mart [41]. These methods split the input into multiple chunks
and perform mutations on these chunks to create diverse in-
puts, such as JPEG, PDF, TIFF, MP3, and MP4.

G?Fuzz belongs to the latter category, constructing binary
format files with complex features for exploring deeper into
the code. Despite the significant advancements made by ex-
isting methods, they still face the following three challenges:
Challenge I: Generating Files with Complex Features. The
current approaches focus primarily on the basic structure of
target file formats, such as generating valid basic structural
fields like size fields, checksums, and bitfields. However, a
target binary file format often incorporates various complex
features, and per our observation (see Sec. 5.1.1), files with
complex features often have the potential to trigger more
complex program logic, thereby likely uncovering deeper-
seated bugs. Compared to the basic structures, these complex
features differ mainly in two aspects: 1) complex features
likely introduce extra complex chunks in the binary file, and
2) varying constraints (e.g., numerical constraints raised by
checksum) may be introduced among binary file chunks. Ad-
ditionally, certain dependencies exist among different (basic/-
complex) features, where one feature depends on another to
be implemented. For instance, to enable JPEG compression in
a TIFF file, the file must first support the “YCbCr/RGB color
space” feature. All these scenarios pose major challenges for
existing binary-format fuzzers. For example, current fuzzers
fail to generate TIFF files with LZW data due to inaccurate in-
ference (e.g., WEIZZ) or incomplete grammars lacking LZW
syntax (e.g., FormatFuzzer, AFLSmart), limiting their parsing
and mutation capabilities. See Appendix A for more details.
Challenge II: Require Format Specifications and Man-
ual Coding. Previous works often rely on provided format

specifications or human effort to modify code, as seen in For-
matFuzzer [13]. FormatFuzzer obtains format templates from
the 010 Editor repository and uses them for parsing. However,
manual coding is still required for the generation process.
Furthermore, modifying complex formats like MP4 can take
“over a week” (per [13]), due to its multiple chunk types,
many of which are not fully detailed in the original binary
template. Additionally, Fuzztruction can generate diverse files
by injecting faults into generator applications. Yet, it relies on
experienced researchers to manually identify and instrument
suitable generator applications, and finding appropriate gener-
ators for less common formats is often challenging. Here, we
search GitHub for generator applications for all 34 formats
listed in Table 5. The search uses the keywords "FORMAT
converter/transformer/generator language:C++ stars:>5",
where “"FORMAT” serves a placeholder for specific formats.
For example, for JPG files, one of the search queries is "JPG
converter language:C++ stars:>5". Generators were found
for 21 formats (usability untested), while no generators were
available for the remaining 13 formats.

Challenge III: Simultaneously Process Multiple Formats.
Many software can process multiple input formats. However,
existing grammar-aware fuzzers typically generate files of
a single format during the fuzzing process. This limitation
hampers their effectiveness in thoroughly testing software
that accept diverse input formats, potentially missing bugs
related to the handling of specific file types.

One solution may be launching multiple fuzzers in parallel,

each focusing on one input format, and then aggregating the
individual fuzzing results at the end. However, programs often
include routine code for preprocessing and error handling
that are independent of specific file formats. Parallelism can
result in repetitive efforts in these common routines, not only
consuming time but also wasting resources.
Insight. We view that the aforementioned limitations can
be addressed by cleverly leveraging LLMs. Our insights
are as follows: for generating files with complex features
(Challenge I), numerous libraries for file generation are al-
ready available online. These libraries offer APIs to directly
construct complex features of the target format. Since LLMs
have been trained on vast datasets that presumably include
these online codebases, they shall be able to yield binary file
generation scripts (code in Python) tailored to the required
file features. By running this generator, we can produce files
that exhibit the desired features. For example, to implement
LZW compression for TIFF (Fig. 10b), we can employ LLMs
to construct the corresponding generator with 3 lines of code,
as in Fig. 11. With LLMs, common complex file structures
can be generated with a moderate amount of code.

Using LLMs to generate generators evidently eliminates
human efforts or the need for preparing format specifications.
This enables a fully automated testing process, whereas exist-
ing methods require manual coding and format preparation
(Challenge II). Moreover, our fuzzing pipeline maintains



generators of different binary formats unifiedly (Sec. 4.1), al-
lowing simultaneously processing multiple formats yet largely
reducing repetitive efforts (Challenge III). This allows us to
concentrate resources and efforts on more in-depth testing of
code areas that are closely related to different file formats.

3.2 The Pilot Study of LLMs

LLMs have been extensively trained using large-scale
datasets, enabling them to learn complex patterns and gen-
erate high-quality outputs. This extensive pre-training en-
ables LLMs to excel in various open-ended, structured
data generation tasks, such as code completion and gener-
ation [3, 11, 11, 20, 31, 40, 42, 50, 54, 58], text to image
translation [4, 18, 24, 34, 43], and QA tasks for customer
support [26, 45, 46]. It is believed that the vast amount of
training data helps LLMs capture the nuances of language
and produce accurate and contextually appropriate results.

Limitation of De Facto LLMs. We are positive that LLMs
can be used to augment mutation-based fuzzing, given that
LLMs may possess complex grammatical knowledge to fa-
cilitate continuous testing of software with complex input
formats. However, we find that LLMs are often less capable
or even incapable of generating non-textual outputs. In partic-
ular, while modern fuzz testing frequently targets non-textual
inputs like image processing libraries, general-purpose LLMs
are not designed to generate such non-textual data. Moreover,
while cutting-edge LLMs such as DALL-E [1] can generate
images, our tentative exploration shows that the image format
is limited to a small set of predefined formats. DALL-E only
supports generating images in common image formats, such
as PNG and GIF, even if we specify requiring other formats
(TIFF, RAW, BMP, etc.) in the prompts. Moreover, DALL-E
usage costs $40.00 per 1,000 images, making it expensive
for large-scale fuzzing. Generating an input sample can take
several seconds, significantly impacting fuzzing throughput.
Besides images, other non-textual file types, such as MP4 for
video, MP3 for audio, PDF for documents, and Binary Large
Object (BLOB), are often not supported by existing LLMs.
Finding all customized LLMs can be challenging.

We analyze the input format distributions of FuzzBench
programs. FuzzBench [38] is one most widely-used bench-
marking platform developed by Google to evaluate fuzzing.
It includes many widely used open-source projects that pro-
cess a variety of input formats. We believe the analysis re-
sults will be generalizable due to the size and diversity of the
benchmarks. We find that 73% of the programs only accept
non-textual inputs. Programs that accept non-textual inputs
are more common than those accepting textual inputs in tra-
ditional fuzzing. For these programs, general LLMs cannot
directly generate fuzzing inputs (reasons discussed before).
Moreover, while some cutting-edge LLMs can generate PNG
and JPEG inputs, other formats still lack support.

LLM-Enabled Opportunity. We observe that most binary
files can be produced using Python libraries. For example,
we can use PIL to generate JPEG files with different struc-
tures and CV2 to generate PNG files. Since documents for
these libraries are likely included in the LLM training data,
it is reasonable to expect that LLMs can synthesize gener-
ators for binary files based on these libraries. In this step,
we conducted experiments on the available formats in UNI-
FUZZ, FuzzBench, and MAGMA to test whether LLLMs can
generate a generator for each format. For more details, refer
to Sec. 5.1.5. In short, all these non-textual data can be gener-
ated by Python scripts. Consequently, we can use LLMs to
synthesize various generators, producing different structured
inputs and exploring deeper code regions. However, we have
to address the following two challenges.

Technical Challenge 1: Diversity. We find that LLM outputs
are often less diverse and uneasy to control; this is undesirable
in fuzzing, which expects a large number of generators that
are diverse and cover as much of the input space as possible.
Overall, our tentative exploration shows that LLM outputs are
often predictable, meaning that the software under fuzzing
may process many similar inputs that do not effectively cover
the input space.

During our preliminary study, we attempted to calibrate
the diversity of synthesized generators with several tactics,
such as temperature control and top-k sampling, but the re-
sults were not satisfying. For example, while one may instruct
LLMs to “generate 100 JPEG image generators that are as
diverse as possible”, we find that many of the generated im-
ages are simply repeated, and “100” is already too large for
the LLM to process in one go. Recent works point out that
using only LLMs to generate diverse samples is inherently
challenging [25, 52]; this is often referred to as the “tail phe-
nomena”, where the LLMs tend to generate a large number of
similar samples and only a small number of diverse samples.

Technical Challenge II: Overhead. Real-world fuzzing cam-
paigns require many input samples to be generated and tested,
and the suggested fuzzing duration is often in the order of
days or weeks. This raises a severe concern on overhead. For
example, the cost of using GPT-4 Turbo is estimated to be
$10.00 per 1M tokens, and the cost of using DALL-E is es-
timated to be $40.00 per 1,000 images. Given that a single
fuzzing campaign may require millions of tokens or images,
the cost of using LLMs can be prohibitively high.

The time cost of using LLMs is also high, as the generation
of a single input sample may take several seconds or up to
twenty seconds, depending on the complexity of the input
format and the quality of the generated sample. This is not
practical for fuzzing, as the fuzzer is expected to generate and
test a large number of input samples in a short time. Suppose
each JPEG image takes 10 seconds to generate, and the fuzzer
needs to generate 1,000,000 images. This will take 115 days
to complete, which is not practical in real-world fuzzing.



4 Design

In line with challenges noted in Sec. 3, we present G>Fuzz,
a novel and efficient approach to augment mutation-based
fuzzing with LLMs. Fig. | illustrates the high-level design of
G?Fuzz. G?Fuzz features a hybrid strategy that combines a
“holistic search” driven by LLMs and a “local search” driven
by industrial-quality mutation-based fuzzers. The key idea is
to leverage LLMs to automatically synthesize input genera-
tors that are customized to the specific features, structures, and
grammar of the target file format. We further mutate the syn-
thesized generators to enhance their diversity (see Sec. 4.1).
By running these generators, G?FUZZ can obtain seeds with
diverse structures and features. Then, those generated inputs
can be further mutated by traditional mutation-based fuzzers
(AFL++) to explore the input space more effectively (see
Sec. 4.2). When G?Fuzz cannot identify a new path during
the local search, it switches back to the holistic search to
generate new input generators.

G?Fuzz comprises two core components: input generator
synthesis and input generator mutation. In input generator
synthesis, G>FUzz first analyzes the file features for the target
format and synthesizes an input generator for each feature. At
this stage, we obtain some initial, rather simple generators.
In the generator mutation stage, G>FUZZ aims to produce
generators customized to multiple features or structures si-
multaneously, which can yield more complex fuzzing inputs
and enhance the generator diversity. We also evaluate the
performance of each generator based on mutation feedback
during fuzzing and extract useful knowledge from the success-
ful generator mutations to guide future mutation directions.
Except for specifying the target file format (which requires the
user to provide), the whole process of G?FUZZ is automated.

The bottom flowchart in Fig. 1 specifies the pipeline of
standard mutation-based fuzzing. We start with initial seeds,
add them to the seed queue, and then select a seed to mutate.
Finally, we mutate the target seed under the predefined mu-
tation strategy and check if the mutated inputs trigger bugs.
G?Fuzz augments the standard pipeline by incorporating the
above two LL.M-based components. Before seed selection,
we obtain the fuzzing state based on the fuzzing performance.
If it is the first cycle of fuzzing, we perform both input gen-
erator synthesis and input generator mutation to iterate basic
features and enrich our initial seed corpus. If the fuzzing pro-
cess cannot find a new path for a long time, G*Fuzz directly
mutates input generators, creating more complex generators
through feature combinations and presumably enabling the
fuzzing campaign to escape from “local optima.”

Synergy Effect. We highlight that GZFUZzz features a syn-
ergistic effect when combined with mutation-based fuzzers.
LLM:s are knowledgeable about the grammatical information
of various input formats, yet they are less capable of gener-
ating those non-textual inputs directly. On the other hand,
mutation-based fuzzers are good at performing fine-grained,

byte-level mutations and exploring the input space system-
atically at low cost. However, conventional mutation-based
fuzzers often lack the grammatical knowledge to generate
high-quality input samples, and they often lack the “big pic-
ture” to progressively explore the input space. A good synergy
between LLMs and mutation-based fuzzers can be achieved,
where LLMs excel at synthesizing input generators and en-
abling escape from local optima, and mutation-based fuzzers
excel at deeply exploring the local input space. This allevi-
ates the limitations of both LLMs and conventional mutation-
based fuzzers, and achieves better performance than using
either of them alone; see evaluations in Sec. 5.

Addressing Technical Challenge 1. Challenge I concerns
the lack of diversity in LLM-generated outputs. As aforemen-
tioned, LLMs are inherently prone to the “tail phenomena”
and often generate outputs that are repeated or very similar
to each other. Rather than directly asking LLMs to produce
“diverse” generators, GZFUZZ first analyzes the possible fea-
tures of a target file format, and then uses LLMs to synthesize
input generators tailored to specific features/structures of the
target file format. We also propose a set of strategies to extend
and mutate the synthesized generators.

Addressing Technical Challenge II. Challenge II concerns
the high cost of LLM usage. We address this challenge in a
principled manner, where we only invoke LLMs to generate
new input generators when needed. Holistically, LLMs are
only invoked when the local search (conducted by AFL++)
cannot identify new edges. This largely reduces the cost of
LLM usage, from 15.16$ (our LLM-baseline setting; see com-
parisons in Sec. 5) to 0.124$, thus making G>FUZz practical
and cost-friendly in real-world fuzzing campaigns.
Application Scope. G?Fuzz is designed to be general-
purpose and applicable to a wide range of input formats. We
have evaluated GZFUZZ on a variety of input formats, includ-
ing JPEG images, TIFF images, MP4 videos, and 31 other
formats. The design of GZFUZZ is not specific to any partic-
ular input format, and it can be easily extended to support
new input formats. With modern LLMs increasingly capable
of gaining complex grammatical knowledge and coping with
advanced data types (e.g., videos and audio), we are positive
that G?FUzz can be used to augment mutation-based fuzzing
for a wide range of input formats. We leave the exploration
of those advanced data types to future work.

4.1 Input Generator Synthesis

When to Use. Before entering the formal fuzzing loop,
G?Fuzz first obtains the target input file format from the user
(e.g., “TIFF”; this is the only information required), extracts
its features, and synthesizes the corresponding generators.
Then, it runs these generators previously-synthesized by the
LLM to produce new diverse seeds and adds them to the seed
queue. Note that if a software accepts multiple input file for-
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Figure 1: The workflow of GZFuzz.

mats, G>FUzz analyzes each format individually to obtain
the corresponding generators.

Design Consideration: Features vs. Structures. To describe
a file, two main aspects can be considered: feature and struc-
ture. “File feature” refers to attributes or characteristics that
can provide external details about the file. “File structure”
refers to the way data within a file is organized and formatted,
providing internal details about how data is arranged within
the file. Using file structure to describe a desired file input is
a more straightforward approach. However, there is a gap be-
tween specifying structure and preparing the generator Python
code. The document of Python file libraries often lacks de-
tails on how to write code to yield a specific file structure. In
Python, constructing a file with a specific structure is not like
building with blocks, where one chunk can be added at a time;
instead, the file is often constructed from a more holistic per-
spective. This makes it difficult for an LLM to understand and
use the libraries to achieve certain structures. Also, relations
among chunks can be complex and have intricate dependen-
cies. Our tentative study shows that creating generators based
on structures has a high failure rate, consuming much time
and negatively affecting fuzzing throughput.

We find that relevant Python file libraries often provide
APIs to implement features for specific file formats, such as
the compression flag in 1ibtiff for storing TIFF files. In
these cases, features and code have a direct map, as the docu-
ment of these libraries includes corresponding descriptions.
LLMs can learn from this information, making file features
easy for them to understand. Consequently, the transformation
from features to a Python generator code is straightforward.
Indeed, since file features also encompass structural descrip-
tions and complex constraints, generating input with a specific
feature must adhere to the grammar and structural constraints.
Therefore, we use file features to synthesize generators.

Overview. Input generator synthesis has two steps: given a
file format, we first perform feature analysis to identify all
possible features. Then, for each feature, we ask LLMs to
synthesize a generator that produces an input with the target
feature. As shown in Alg. 1, given a file format, G?Fuzz
constructs a prompt and asks the LLM for the corresponding

Algorithm 1: Generator Procedure

Input: The target file format, rarget_format.
Output: A set of (generator, feature description), G.
1 prompt < construct_prompt(target_format)
2 features < LLM(prompt)
3 for f in features do
4 g < generator_generation(target _format target_feature)
// Based on Alg. 2

// Based on Fig. 2

5 if g # none then

6 seeds < run(g)

7 add_to_queue(seeds)
8 G (8f)

features (lines 1-2). For each feature, GZFuzz leverages an
LLM to create a generator for it (lines 3-4). Then, G2Fuzz
runs the generators to obtain seeds with various features and
adds these seeds to the seed queue in fuzzing (lines 6-8).

Feature Analysis. As there are many feature descriptions in
the document of Python file libraries, the LLM can synthesize
a generator producing a file with the specific feature. To obtain
the features for a given file format, we instruct the LLM to
summarize the possible features. The prompt is shown in
Fig. 2. For example, when applying this prompt to extract the
features of TIFF files, the output might include: 1. Lossless
compression: TIFF files support ... 2. Multiple layers: .... We
do not limit the number of features, as different file formats
have varying ranges of features. We aim to capture common
features at this step, and explore unusual features in Sec. 4.2.

What features can '<TARGET>' files have? Output the
information in the following format:

1. <feature 1>: <feature description>
2. <feature 2>: <feature description>

N. <feature N>: <feature description>

Figure 2: The prompt used to analyze the features of a specific
program.

Generator Synthesis. After we obtain the features for a spe-
cific file format, we synthesize a generator for each feature.
For the generator, we have two requirements: (i) it should be
written in Python, and (ii) it should be executable. Obtaining a
Python generator is straightforward for LLMs. However, there
are several challenges for generators to run smoothly. First,



Algorithm 2: Generator Synthesis Algorithm

Input: The target file format, target_format. The target file feature,
target_feature.
Output: A valid generator that can generate a file with specific features, g.
1 init_cnt <0
2 while init_cnt < INIT_MAX do

3 dialogue < [ ]

4 prompt <— construct_prompt(target_format,target_feature)
// Based on Fig. 3

5 dialogue.append(prompt)

6 g < LLM (dialogue)

7 status, msg < exec(g)

8 debug_cnt <0

9 while debug_cnt < DEBUG_MAX do

10 if status == SUCCESS then

1 ruturn g

12 error_info < get_msg(msg)

13 while TRUE do

14 if "ModuleNot FoundError” not in error_info then

15 | break

16 library_prompt < construct_prompt(error_info)
// Based on Fig. 4

17 relied_library <— LLM (library_prompt)

18 flag,g = automatic_installation(relied_library)

19 if flag == 0 then

// Failed to install the library

20 ruturn None

21 status,msg <— exec(g)

22 if status == SUCCESS then

23 | ruturng

24 else

25 | error_info < get_msg(msg)

26 dialogue.append(g)

27 dialogue.append(error_info+ “Regenerate™)

28 G « LLM (dialogue)

29 status, msg <— exec(g)

30 debug_cnt < debug_cnt + 1

31 init_cnt < init_cnt + 1

as seed construction may rely on certain Python libraries,
it is common to encounter the ModuleNotFound problem
(Challenge I). Thus, we use the LLM to analyze the error
information to automatically identify the required libraries
and install them. Second, as LLMs cannot ensure the validity
of generated codes, the code generated by an LLM may con-
tain some bugs (Challenge II). We propose an algorithm to
automatically debug the generated code.

As in Alg. 2, the synthesis algorithm first constructs an
initial generator based on the target file format and the desired
feature, and runs it to obtain the execution status (lines 3-7).
The prompt template used is shown in Fig. 3. If the execution
fails, the specific error message is extracted (line 12).

If the error involves a missing module, the algorithm at-
tempts to install the required library. This process involves
constructing a prompt based on the error information, using
the LLM to identify the missing library, and then attempting
an automated installation (lines 14-18). The prompt template
is in Fig. 4. If the installation is successful, the generator
is re-executed, and if the execution status is SUCCESS, the
valid generator is returned (lines 22-23). Otherwise, the error
handling loop continues.

After resolving the library dependency issue, the error in-
formation is fed back into the LLM to regenerate a program
that can resolve the current error (lines 26-28). If debugging

up to DEBUG_MAX times still fails to produce a valid gener-
ator, the algorithm attempts to generate a new initial generator
(back to line 3). This is crucial because, due to the stochastic
nature of LLMs, the same prompt can yield generators of
varying quality, helping to avoid getting stuck in “local min-
ima” (lines 9-12 and lines 26-30). Based on our preliminary
exploration, we set INIT_MAX to 2 and DEBUG_MAX to 3
to balance the trade-off between the quality of the generated
generator and the time cost.

Generate ‘<TARGET>’ files containing the following features
using Python without any input files, and save the
generated files into ‘./tmp/’.

<TARGET_FEATURES>

Please use Markdown syntax to represent code blocks. Please
ensure that there is only one code block. You don't need to
tell me which libraries need to be installed.

Figure 3: The prompt for developing a generator from a spe-
cific feature.

<MSG>

Please use Markdown syntax to represent the command. Please
ensure that there is only one command. To solve the above
issue using Python's package manager pip, you should run the
following command in the command-line interface:

Figure 4: The prompt for extracting the required library.

4.2 Generator Mutation

The generators obtained from Sec. 4.1 generate a seed with
a single specific feature, which often covers a small part of
the feature space. To effectively utilize the mutation feedback
information from fuzzing and cover a larger feature space, we
take into account more complex features using the following
three mutation strategies: Rare-Feature Directed Mutation:
We incorporate historical information—specifically, the fea-
tures that have already been covered by the generators—into
the prompt to guide the LLM in extracting unanalyzed fea-
tures, focusing specifically on adding these rare features to
the existing generators. Feature-Structure Havoc Mutation:
We add a random feature/structure to the existing generators,
aiming to unleash the potential upper bound capability of the
LLM. Pattern-Based Mutation: As different features may
exert varying influences on the target program, we leverage
historical information to extract useful features and retain
them by combining them with other features. Thus, we use
the feedback information from the fuzzing process to guide
the generator mutations.

When to Use. In the fuzzing process, generator mutation is ex-
ecuted in two specific situations. First, when G*Fuzz initially



Algorithm 3: Generator Mutation Algorithm

Input: The target file format, format.
Output: A generator, g,,.

1 state « get_fuzz_state()
2 if state == init then
3 prompt < construct_prompt(target_format) // Based on Fig. 5
4 features < LLM (prompt)
5 for f in features do
6 g < generator_select ()
7 prompt < construct_prompt(format, g, f) // Based on
Fig. 6
8 8m < LLM (prompt)
9 8m < self_debug(gn) // Reuse the code lines 9 - 30 in
Alg. 2
10 seeds < run(gm)
11 add_to_queue(seeds)
12 if state == stall then
13 g < generator_select ()
14 mutator < mutator_choose()
15 if mutator == feature or mutator == structure then
16 prompt < construct_prompt(format,g,mutator) // Based on
Fig. 13
17 else if mutator == pattern then
18 example < pre_mutation_select ()
19 prompt < construct_prompt(g,example) // Based on Fig. 7
20 &m < LLM (prompt)
21 8m < self_debug(gm) // Reuse the code lines 9 - 30 in
Alg. 2
2 seeds < run(gm)
23 add_to_queue(seeds)

enters the fuzzing loop, we use rare-feature directed mutation
to enrich the variety of features in the initial seeds. Second,
when fuzzing fails to find new paths within a set time limit
(likely trapped in a local optimum), we use feature-structure
havoc mutation and pattern-based mutation to construct seeds
with different features or structures, which can help fuzzing
explore other code regions.

Overview. When fuzzing stalls or initializes, G2FuUZzzZ uses
generator mutation to generate more complex inputs. The al-
gorithm is in Alg. 3. GZFUZZ obtains the current fuzzing state
(line 1). If it is initialization, G?Fuzz performs rare-feature
directed mutation. To do so, GZFUzz asks LLMs to extract
the unanalyzed features based on historical information (lines
3-4). For each unanalyzed feature, G?FUzz randomly selects
a generator and asks LLMs to incorporate the unanalyzed
feature into it to create new inputs (lines 5-11).

If it is a stall, G2Fuzz performs feature-structure havoc
mutation or pattern-based mutation. G?Fuzz randomly se-
lects a generator from a database containing all executable
generators (line 13). It then randomly chooses a mutator to
apply to this selected generator (line 14). Next, GZFUZZ con-
structs a prompt based on the chosen generator and mutator
(lines 15-19). Finally, G>’FUZzz retrieves a mutated generator
from the LLM, runs it to obtain a new seed, and adds this seed
to the queue for further mutation (lines 20-23).

Rare-Feature Directed Mutation. To improve the compre-
hensiveness of our testing, it is essential to cover rare features
that the generators from Sec. 4.1 may have overlooked. Our
tentative study shows LLMs cannot often identify all relevant
features of a file format in a single request. Typically, they

provide around ten features at a time but often neglect rare
features and cannot generate them directly.

To achieve rare feature mutation, we maintain a fea-
ture database that collects analyzed features as described in
Sec. 4.1. Once a feature has been analyzed to synthesize a
generator, its name, and corresponding description are added
to the feature database. We then incorporate these analyzed
features into a prompt and ask the LLM to identify other
unexplored features, as illustrated in Fig. 5.

At the same time, we store all the synthesized generators
in the generator database, and we randomly select a generator
from this database. Afterward, we ask the LLM to mutate the
selected generator to produce a file that includes an additional
rare feature alongside the existing ones. The prompt for this
step is shown in Fig. 6. Finally, we run the mutated genera-
tor, obtain new seeds with multiple (newly-added) features,
and add this seed to the seed queue. Given that this method
requires putting all previously analyzed feature descriptions
into a prompt, we only use this strategy the first time fuzzing
enters the loop to reduce token overhead.

Analyzed features:

1. <feature 1>: <feature description>
@o ooo 8 ocoo

Apart from the above features, what other features can '<TARGET>'
files have? Output the information in the following format:

1. <feature 1>: <feature description>
2. <feature 2>: <feature description>

N. <feature N>: <feature description>

Figure 5: The prompt for rare feature extraction.

<TARGET_GENERATOR>

The code above is used to generate <FROMAT> files. Now, we
need to extend this code to generate a new <FROMAT> file
that includes an additional “<NEW_FEATURE>" feature besides
the existing features. The description of the
“<NEW_FEATURE>" feature is as follows:

<FEATURE_DES>

Figure 6: The prompt for rare feature mutation.

Feature-Structure Havoc Mutation. Although the LLM is
powerful, its output can sometimes be unstable. To explore
the full potential of the LLM, we ask it to randomly mutate
the current generator to produce a file that includes an ad-
ditional feature or structure alongside the existing features.
The prompt is shown in Fig. 13. Since a generator can be mu-
tated multiple times, it is possible to generate a file with many
features or structures. The randomness of the LLM may intro-
duce rare features that cannot be discovered through directed
rare-feature mutation. While rare-feature directed mutation
typically generates a file with two features, feature-structure
havoc mutation can produce a file with more than two features.



This allows for the construction of more complex generators,
enabling us to explore a deeper feature space.
Pattern-Based Mutation. Given that different features may
exert varying influences on the target program, we propose
pattern-based mutation. This approach uses historical infor-
mation to extract useful features, which are then accentuated
by integrating them with other features. Feedback from the
fuzzing process effectively highlights which mutations result
in more useful generators (i.e., those capable of discovering
new edges). By analyzing this feedback, we can ask LLMs to
learn these mutation strategies, thus guiding and optimizing
future mutation directions.

The feature space of a file format is often vast, and not
every unique feature triggers distinct processing logic in the
target program. Iterating through all possibilities is inefficient;
instead, we focus on the features that the target program is
interested in, namely “program-relevant” features. Seeds with
program-relevant features will be processed differently by the
target program. If a seed obtained from a mutated generator
discovers a new path, we infer that this seed contains program-
relevant features. Consequently, we consider the <original
generator, mutated generator> tuple to contain useful infor-
mation and incorporate it into our useful pattern database.

To reuse effective mutation strategies, we employ LLMs to
learn the mutation patterns from the mutation generator tuples
and apply these patterns to other generators. The prompt is
shown in Fig. 7. By doing so, we aim to generate seeds with
a richer variety of program-relevant features. In our imple-
mentation, we trace the performance of each generated seed
during fuzzing. If a useful seed (i.e., one that discovers new
paths) is produced through generator mutation, we consider
this mutation useful for this program. Therefore, we add both
the mutated and original generators to the prompt in Fig. 7
and apply this mutation strategy to other generator mutations.

STT<ORI>TCT

TUTMUTS Y

Imitate the mutation of 'The original generator -> The
mutated generator' above and apply it to the following
target code:

The original code:
The mutated code:

<TARGET_CODE>

Figure 7: The prompt for pattern-based mutation.

5 Evaluation

G?Fuzz is built upon AFL++, enabling integration of our
method with other existing techniques. To ensure the accu-
racy and fairness of our results, we conducted experiments on
three testing platforms: UNIFUZZ, MAGMA, and FuzzBench.
The experiments were carried out on three systems running
Ubuntu 22.04, each equipped with 64 cores (Intel(R) Xeon(R)
Gold 6444Y CPU) and 256GB memory. We study the fol-
lowing research questions (RQs): RQ1: Can the tool out-

perform SOTA in terms of code coverage and the number
of unique bugs? RQ2: Can G*Fuzz’s performance surpass
that of structure-aware fuzzers? RQ3: How many tokens will
be consumed when fuzzing a program for 24 hours? RQ4:
Which part of GZFUZZ contributes the most?

5.1 Code Coverage and Unique Bugs

Code coverage and unique bugs are common metrics for
evaluating fuzzers. To ensure fairness and reproducibility,
we conduct our experiments on UNIFUZZ, MAGMA, and
FuzzBench. All runtime settings, including the initial seeds,
follow the default configuration.

5.1.1 Experiments on UNIFUZZ

UNIFUZZ is an open-source and metrics-driven platform
designed for the holistic and fair evaluation of fuzzers.
Compared Fuzzers. AFL++’s performance demonstrates
that the implementation significantly affects testing efficiency.
To avoid the influence of implementation, we have developed
G?Fuzz based on AFL++, integrating it as a mode within
AFL++. Since AFL++ already incorporates many SOTA
fuzzers, this allows for easy and fair comparisons between
G?Fuzz and other fuzzers implemented in AFL++. As the
range of features incorporated into AFL++ would exceed the
scope of this paper, we compared G*Fuzz with the four most
widely used configurations of AFL++. AFL++(cmplog): en-
ables REDQUEEN mutator. AFL++(mopt): enables MOPT
mutator. AFL++(fast): enables AFLFast seed scheduling.
AFL++(rare): prioritizes seeds that are rarely covered by
other seeds. For G?Fuzz, we enable cmplog mode to facili-
tate efficient low-level mutation.

Programs Selection. Since G?Fuzz is designed for testing
programs with non-textual inputs, we selected programs that
meet this criterion. The target programs, listed in Table 17,
include 10 programs with over 20 different input format types.
Experiment Results. Table | shows the edge coverage
achieved by eight fuzzers. GZFuzz(GPT-4) discovers a total
of 59,642 edges, which is 15,437 more than the best baseline
fuzzer, AFL++(cmplog). G2FUzz(GPT-4) and G’Fuzz(GPT-
3.5) achieve the highest performance on 9 out of 10 programs,
while AFL++(cmplog) excels on one program. Furthermore,
G2Fuzz(GPT-4) is able to discover more unique bugs than
the other baseline fuzzers. Specifically, G?FUzz(GPT-4) finds
143 unique bugs, which is 32 more than the best-performing
comparison fuzzer, AFL++(cmplog).

Moreover, we also calculated the pairwise unique code
coverage. We summed up the unique code coverage for
each pair of fuzzers across all programs, resulting in Fig. 8.
G’Fuzz(GPT-4) and G’Fuzz(GPT-3.5) are quite similar,
and both are able to identify more unique code coverage than
the remaining four fuzzers. This result demonstrates that with
the assistance of LLMs, the inputs we generated, which pos-



Table 1: Average code coverage and the total unique crashes found by G>?Fuzz with GPT-3.5/GPT-4 and 6 compared fuzzers.

Programs G’Fuzz(GPT-3.5)! | G’FUzZ(GPT-4)? | AFL++(cmplog) | AFL++(fast) AFL++(mopt) | AFL++(rare)
e Cov. | #Bug Cov. | #Bug Cov. | #Bug Cov. | #Bug | Cov. | #Bug | Cov. | #Bug
exiv2 5,099 31 5,171 28 4,965 26 3,776 5 3,758 12 | 3851 11
ffmpeg | 31,706 0 34,218 1 22,099 0 17,380 | 0 15,566 | 0 14,613 | 0
flvmeta 228 4 228 4 228 4 228 4 228 4 228 4
edk 2,958 6 2,327 2 2,172 5 2,093 4 2,082 2 1,991 4
imginfo | 2,839 0 3,825 0 2,189 0 1,998 0 2,004 0 1,976 0
jhead 315 13 491 23 445 21 195 3 195 3 195 4
mp3gain | 921 11 921 12 923 11 900 10 899 8 891 10
mpd2aac | 2,067 17 2,700 14 2,001 13 1,178 6 1,157 3 1,135 2
pdftotext | 8,265 43 7,921 49 7,434 25 6483 | 25 | 6376 | 28 | 11257 | 28
tiffsplit | 1,817 7 1,840 10 1,659 6 1,619 9 1,644 9 1,626 7
! G*Fuzz(GPT-3.5): G>Fuzz based on GPT-3.5.
2 G’Fuzz(GPT-4): G*Fuzz based on GPT-4.
sess complex features, are capable of triggering more intricate 9 Unique Code Coverage
program logic. Consgquently, this leads to the discovery of a 0\0‘3 L o0 3653 | 1661 7106 2054 e
higher amount of unique code coverage. & S
G?Fuzz incorporates additional steps into AFL++, such @63 - usa 0 s | 1335 sea 1011 e
X

as generator synthesis and execution. To assess the impact
of these steps on fuzzing throughput (i.e., execution speed),
we measure the total number of executions for each fuzzer.
Fig. 14 presents the total number of executions performed
by all programs that the fuzzers run after 24 hours. The re-
sults indicate that GZFUzz’s throughput does not significantly
decrease compared to other fuzzers. We also fuzzed certain
programs for 48 hours to observe GZFUZz’s performance in
the later stages of fuzzing. During the 24 to 48-hour period,
G2Fuzz discovered 32, 5, 1, 33, and 89 new edges in imginfo,
jhead, mp3gain, mp42aac, and tiffsplit, respectively.

Furthermore, we evaluated the token costs of LLMs for
fuzzing. GZFUZZ minimizes token usage by reducing reliance
on LLMs for mutation. GPT-3.5 incurs costs of less than
0.2%, and GPT-4 less than 13$ for 24 hours of fuzzing. More
details can be found in Appendix B. Additionally, the ablation
study shows that both components of GZFUZz are effective,
with generator synthesis and mutation contributing 82,001
and 141,340 new paths, respectively. LLM-only approaches
struggle, highlighting the necessity of integration. For more
details, please refer to Appendix C.

5.1.2 Experiments on FuzzBench

To conduct more comprehensive experiments, we also evalu-
ate G>Fuzz using FuzzBench.

Experiment Setup. FuzzBench builds a Docker image for
each fuzzer-benchmark pair to run the experiments. How-
ever, the resulting container does not have an internet connec-
tion. Therefore, we modify the condition to run the LLM-
generation algorithm from ‘stall/init’ to ‘init’ to create a
variant of GZFUZzz. Specifically, we run the input generator
synthesis and generator mutation when the fuzzing process
first enters the fuzzing loop. This allows us to run the algo-
rithm in advance and upload the results into the container
built by FuzzBench. Consequently, we can conduct the exper-
iments without needing an internet connection. To mitigate
randomness in LLM generation, we conduct three epochs to
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Figure 8: Pairwise unique code coverage across all programs.
Each cell represents the number of code branches covered by
the fuzzer of the column but not by the fuzzer of the row.

obtain three sets of seeds from the LLM-generation algorithm.
Therefore, we need to perform three sets of experiments.
Programs Selection. Since G>Fuzz is suitable only for non-
textual inputs, we excluded programs with textual inputs, leav-
ing 11 programs for testing G*FUzz, as listed in Table 17.
Metric. We choose the average rank of fuzzers as our evalua-
tion metric to assess each fuzzer’s performance across multi-
ple benchmarks. By ranking the fuzzers on each benchmark
according to their median reached code coverage, with lower
values indicating better performance, we can derive an overall
understanding of their effectiveness.

Experiment Results. As shown in Table 2, the perfor-
mance of G?FUZzZ remains stable across different experi-
mental groups. GZFUZZ achieves the best ranks in all three
groups, which are 2.09, 2.18, and 2.18. The second-best fuzzer,
AFL++, achieves ranks of 2.73, 2.73, and 2.91 in the respec-
tive groups. In Figure 9, we additionally provide the code cov-
erage distributions for all fuzzers across all programs within
one of the experimental groups. ° G2FUZz achieves the high-

3The report is available at: https://storage.googleapis.com/www.
fuzzbench.com/reports/experimental/2024-05-16-formatfuzz/
index.html.
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est performance on five out of 11 programs, while LibAFL
and AFL++ each excel on two programs, and LibFuzzer and
FairFuzz excel on one program each.

The LLM-generation algorithm demonstrates remarkable
effectiveness on certain programs, such as vorbis_decode_-
fuzzer. We illustrate the average code coverage evolution
over time for vorbis_decode_fuzzer in Fig. 15. Notably, we
observe that GZFUZz achieves higher coverage at 15 minutes
compared to all other compared fuzzers at 23 hours. This
highlights the capability of G?’FUZZ to generate diverse and
complex structures, enabling the discovery of code regions
that are challenging for conventional fuzzers to uncover.

Table 2: Fuzzbench fuzzer ranking. It reports the average rank
of fuzzers, after we rank them on each benchmark according
to their median reached code-coverage (lower is better).

Fuzzers | Group I | Group I | Group III | Average

G?Fuzz | 2.09 2.18 2.18 2.15
AFL++ 2.73 2.73 291 2.79
LibAFL 4.55 4.55 4.64 4.58
LibFuzzer 4.73 4.64 4.64 4.67
HonggFuzz | 6.45 6.45 6.36 6.42
AFLSmart | 6.73 6.73 6.73 6.73

AFL 7.27 7.27 7.27 7.27
MOPT 7.27 7.27 7.27 7.27
Eclipser 7.36 7.36 7.27 7.3

FairFuzz 8.82 8.82 8.82 8.82
AFLFast 9.09 9.09 9.09 9.09
Centipede 9.18 9.18 9.18 9.18

Additional Analysis Time. Since we run the LLM-generation
algorithm before the experiments, GZFUZZ has more fuzzing
time compared to other fuzzers. To assess its impact, we
analyze additional analysis time per program, as shown in
Table 18. The program with the highest additional time is
bloaty_fuzz_target at 925 seconds (1.06% of 23 hours fuzzing
time), while zlib_zlib_uncompress_fuzzer requires the least at
163 seconds (0.19%). Eight out of 11 programs need under
500 seconds (0.6%). We also find that the extra 15 minutes
required for LLM-generation had no effect on median code
coverage after 23 hours, as shown in Table 19.

5.1.3 Experiments on MAGMA

Code coverage and unique bugs are key metrics, but discover-
ing real CVEs directly shows a fuzzer’s ability to find security
vulnerabilities with significant real-world impact. To avoid
bias, we conduct experiments on MAGMA, a ground-truth
fuzzing benchmark with real-world bugs for accurate perfor-
mance evaluation. We integrate G?FUZzZ into MAGMA and
compare it with five fuzzers (i.e., AFL++, MOPT, AFLFast,
LibFuzzer, and Entropic). All AFL++-related fuzzers used
in this experiment were based on AFL++ (commit 1d17210)
and enabled the RedQueen mutator. We excluded programs
with textual inputs. Table 17 shows the target programs used
in MAGMA. Input format types are determined by file name

Table 3: The total CVEs discovered (on MAGMA). G2Fuzz
performs the best in discovering real CVEs.
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libpng_read_fuzzer
tiff_read_rgba_fuzzer
tiffcp
pdf_fuzzer
pdftoppm
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Table 4: The real bugs discovered by each fuzzer.
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mp3gain 1 1 -

pdftotext 1 1 1

mp42aac 3 3 1 -
mp42ave 3 - -
mp42heve 2

Total 10 5 2 2 3

extensions in the initial seeds. For openssl, as MAGMA’s ini-
tial seeds lack extensions, we exclude it from consideration.
To avoid randomness, we repeat the experiments 5 times.

We analyze the number of CVEs found by each fuzzer,
whose results are in Table 3. We found that G?Fuzz per-
forms the best on the MAGMA benchmark, uncovering the
most bugs in all programs. Specifically, G*FUZz performs the
best on libpng_read_fuzzer, tiff_read_rgba_fuzzer,
tiffcp, pdf_fuzzer, pdftoppm and pdfimages, exposing
3,5,7,5, 6 and 6 bugs, respectively.

5.1.4 Finding Bugs in Latest Program Versions

To evaluate G>Fuzz’s ability to discover real bugs, we test
the latest versions of projects from UNIFUZZ, along with
all other executable programs in these projects suitable for
fuzzing. Each fuzzer-program pair runs for 24 hours and is re-
peated 5 times. Following UNIFUZZ’s suggestion, we use the
top three functions from the ASAN output to de-duplicate un-
covered bugs. The results are shown in the Table 4. GZ?Fuzz
discovers a total of 10 bugs, while the best comparative fuzzer,
AFL++(cmplog), identifies 5. Notably, 4 bugs are exclusively
discovered by G?Fuzz and remain undetected by all other
comparative fuzzers. By the time of writing, we have re-
ported these bugs to the developers, and 3 of them have
been confirmed by CVE: CVE-2024-57509 (in mp42avc),
CVE-2024-57510 (in mp42avc), and CVE-2024-57513 (in
mp42hevc).
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Figure 9: Code coverage distributions achieved in a FuzzBench experiment. Due to space constraints, we only present the results
on four programs. For other experimental results, refer to Fig. 12.

5.1.5 Classification of Handled File Formats

In the above experiments across three platforms, we use
G?Fuzz to evaluate its effectiveness in handling various file
formats. As shown in Table 5, GZFuzz successfully pro-
cesses a variety of image formats including JPG, GIF, BMP,
and PNG, as well as several audio and video formats such as
MP3, WAV, MP4, and FLV. Additionally, G2Fuzz demon-
strates capability in handling PDF documents and various font
formats like TTF and OTF. In terms of file formats, it supports
processing formats such as ELF, Mach_O, and WebAssembly.
All programs associated with the 34 formats were evaluated in
the previous experiments. These findings highlight G>Fuzz’s
strong performance in fuzz testing across diverse file types.

The conditions of constructing different file formats vary:
some formats are supported by specific libraries, while others
are not. We classify these conditions into three levels. (1)
L1: The target format has specific libraries that can directly
generate files. (2) L2: Some components of the format can be
generated using existing libraries, and these components are
then organized according to the target format’s syntax rules.
(3) L3: Files are generated entirely from scratch, based solely
on the target format’s syntax rules. Among the 34 tested for-
mats, 23 fall into L1, 3 into L2, and 8 into L3. Formats in
L1 typically lead to higher-quality generators the supporting
libraries—often accompanied by documentation, sample code,
and other resources—are included in LLM training data, in-
creasing both the diversity and accuracy of generated files.
Nevertheless, we also observe decent-quality generators for
formats in L2 and L3, which demonstrates the robustness of
G?Fuzz in handling various formats.

5.2 Compared with Structure-Aware Fuzzers

We compare G>FuUzz with the SOTA grammar-aware fuzzer
FormatFuzzer and the SOTA inference-based fuzzer WEIZZ
using the UNIFUZZ benchmark. We do not compare
against AFLSmart because it has already been compared in
FuzzBench, where G?Fuzz significantly outperforms AFLS-
mart. GZFUZZ’s average code coverage rank is 2.15, while
AFLSmart’s is 6.73. Due to the considerable gap, we do not
conduct additional experiments here. We do not compare
against Superion, Nautilus, and Grimoire, as these fuzzers

Table 5: Classification of formats handled by G*Fuzz.

Category ‘ Level Formats Related Libraries
JPG PIL/piexif
GIF PIL
BMP PIL
Li! PNG PIL/matplotlib/cv2
Ico PIL
Image Formats XMP Ixml/xml.dom.minidom
& TGA PIL
TIFF PIL/tifffile
ANI PIL
122 RAS PIL
PGX PIL
L3 PNM/RAW -
0OGG soundfile
MP3 pydub/mutagen
L1 WAV wave/scipy
. AIFF soundfile/pydub/wave
Audio Formats AIFC aifc
L3 AU/CAF -
. FLV moviepy
Video Formats L1 MP4 cv2/moviepy/mutagen
Document Formats ‘ L1 PDF fpdf/PyPDF2/reportlab
Font Formats ‘ L1 TTF/OTF/WOFF/TTC fontTools
Zlib compressed zlib
. - L1 PCAP scapy
File Formats DER certificate cryptography
L3 ELF/Mach O/WebAssembly/ICC profile

' L1: Use specialized libraries to create files in the target format.

2 LL2: Construct parts of the file with specific libraries and organize them according to the target
format’s syntax rules.

3 L3: Build the file from scratch based on the target format’s rules, directly writing binary data or
using struct to write the data.

have only been assessed on text-based grammar input formats.
Moreover, we do not include FuzzInMem, ProFuzzer, and
GreyOne because they have not been made open source.

Table 6: The average line coverage discovered by G?Fuzz,
FormatFuzzer, and WEIZZ.

G’Fuzz FormatFuzzer WEIZZ
Programs . N . . . .
line ‘ function line function line function

exiv2 5,984 1488 1,138 369 3,732 1025
ffmpeg 53,664 3028 23,114 1554 26,789 1795

flvmeta 623 59 - - 632 60
imginfo 5,003 364 2,128 193 3,481 275

jhead 431 21 239 16 300 18

mp3gain | 2,168 58 # # 2,103 56
mp42aac 3,378 811 # # 2,041 504
pdftotext 13,733 1182 - - 9,133 914
tiffsplit 3,176 194 - - 3,019 185

gdk 4,856 315 2,287 192 =3 =

1. FormatFuzzer does not support PDF, TIFF, and FLV formats.
2 #: We encountered issues while running FormatFuzz.
3 =: We are unable to compile gdk-pixbuf by WEIZZ.



Table 7: Functions exclusively discovered by each fuzzer.

Program ‘ G?Fuzz ‘ FormatFuzzer ‘ WEIZZ

gdk 126 0 -
exiv2 424 0 0
ffmpeg 1951 6 14
flvmeta 0 - 1
imginfo 148 0 0
jhead 8 0 0
mp3gain 1 - 0
mp42aac 338 - 0
pdftotext 334 - 0
tiffsplit 10 - 0

As G2FUZZ, FormatFuzzer, and WEIZZ use different in-
strumentation methods, they may achieve varying edge cover-
age levels with identical inputs. To accurately measure line
coverage, we utilize afl-cov. The results are presented in Ta-
ble 6. To clarify, we encountered issues running some pro-
grams with FormatFuzzer and WEIZZ. Specifically, Format-
Fuzzer generated an excessive number of core. * files while
testing mp42aac, consuming over S00GB of memory within
10 hours. Additionally, we face errors when building MP3
generators for mp3gain according to FormatFuzzer’s instruc-
tions. FormatFuzzer is also unsuitable for testing pdftotext,
tiffsplit, and flvmeta, as it does not support PDF, TIFF, and FLV
formats. As for WEIZZ, we are unable to compile gdk-pixbuf.

For nine out of 10 programs, G>Fuzz achieves higher line
coverage than both FormatFuzzer and WEIZZ. For example,
G?Fuzz achieves more than twice as much line coverage
as FormatFuzzer in exiv2, ffimpeg, imginfo, gdk. Unlike the
grammar-based fuzzer FormatFuzzer, G2Fuzz is scalable to
a broader range of programs that accept different formats.
Moreover, it is common for a program to accept multiple
input formats, but FormatFuzzer can handle only one format
at a time, which can reduce the diversity of generated inputs.

To further validate that the files generated by G2Fuzz with
complex features help uncover more intricate program logic,
we measure the number of functions exclusively discovered
by each fuzzer. Here, “exclusive” refers to functions that are
not detected by any other fuzzer. A fuzzer that finds more
exclusive functions illustrates its ability to trigger more subtle
program logics. The results are shown in the Table 7. For nine
out of ten programs, G?Fuzz identifies the largest number
of exclusive functions, confirming the effectiveness of using
LLMs to generate complex binary inputs.

5.3 Compared with Fuzztruction

To compare with Fuzztruction, we use G2Fuzz to gener-
ate a batch of initial seeds and conduct experiments in the
Docker environment provided by Fuzztruction, ensuring that
all experimental parameters remain consistent. We test nine
programs used by Fuzztruction; however, three lack clear in-
put file extensions and are thus incompatible with G?Fuzz.
The tests run for 6 hours and are repeated 5 times, and the
versions of all test programs are consistent with the versions

tested by Fuzztruction. The mean coverage is shown in Ta-
ble 8. Overall, G2Fuzz outperforms Fuzztruction on seven
out of nine programs. G?FUZZ semantically constructs files
with different structures from scratch, while Fuzztruction’s
generator—primarily a converter—still requires structured ini-
tial seeds, and its bit-level mutation only makes subtle adjust-
ments. However, Fuzztruction performs better on programs
using zip files. We believe G?Fuzz finds fewer bugs due to
the limited functionality of Python libraries for constructing
zip files, restricting coverage of file characteristics.

We compare the seed quality of G>Fuzz and Fuzztruction
by measuring feature coverage. In this experiment, G2FUzz
generates seeds only during the initial stage, while Fuzztruc-
tion continuously generates seeds. To ensure fairness, we
compare the feature coverage of G>?Fuzz and Fuzztruction
using the same number of generated seeds, with the number
of seeds generated by G2FUzz serving as the baseline. For
program selection, we target all programs that take image
or document inputs, including pngtopng, pdftotext, and qpdf.
In Fuzztruction, PDFs generated by the qpdf generator are
excluded due to unparseable password options. The results
are shown in the Table 9, revealing that G>Fuzz discovers
more unique features than Fuzztruction. In terms of valid-
ity ratio, GZFUZz achieves a higher validity ratio for PNGs
and PDFs compared to Fuzztruction. Additionally, G>Fuzz
discovers more rare features, such as Properties-Digital Sig-
nature and Properties-png: PLTE.number_colors in PNG files,
which Fuzztruction cannot cover.

Table 8: The average coverage (in basic blocks) and bugs
discovered by Fuzztruction and G2Fuzz.

Input Format | Program Fuzztruction G?Fuzz
Cov |Bug| Cov |Bug
pdf pdftotext-enc | 36853.8 | 0 |38866.0 | O
pdf pdftotext | 35108.4| 0 |[390114| O
elf objdump |12468.8| 0 |12851.8| 0O
elf readelf 12347.8| 0 |13328.2| O
png pngtopng 44146 | 0 | 4566.2 | O
der vfychain | 149374 | 0 |116004| 0
7z 7zip-enc | 28887.2| 8 [28909.0| 6
zip 7zip 345854 | 8 [316914| 6
zip unzip 27882 | 1 | 3104.8 | 1

Table 9: Functions exclusively discovered by each fuzzer.

PDF(pdftotext)
Feature Cov ‘ ValidNum/InvalidNum

PNG(pngtopng)
Feature Cov ‘ ValidNum/InvalidNum

457.0 36/0 531.0 50/12
4274 27.8/8.2 152.4 48.8/13.2

G’Fuzz
Fuzztruction

5.4 Feature Coverage

To verify whether G?FUZZ can generate file features that other
fuzzers cannot cover, we compare the feature coverage of each
fuzzer. The calculation of feature coverage is challenging due
to the lack of a unified quantification method. Therefore, we



Table 10: The feature coverage covered by each fuzzer.
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TIFF (tiffsplit)y 4719 2303 2169 2369 2178
JPG (exiv2) 4096 1910 1910 1913 1909
MP4 (mp42aac) 1459 0 0 0 0

PDF (pdftotext) 37797 33451 40730 44704 36203

use ImageMagick to extract each seed’s attributes, such as
compression type, treating each attribute as a feature. We then
manually remove irrelevant attributes that vary across most
files, such as the file name.

We select four formats—TIFF, JPG, MP4, and PDF—{rom
Sec. 5.1.1 for analysis, covering image files, video files, and
complex documents. The results are shown in the Table 10.
G?Fuzz (using GPT-4) achieves the highest feature cover-
age for TIFF, JPG, and MP4. AFL++ focuses more on low-
level mutations, which struggle to modify high-level features.
Changing high-level features requires handling the constraints
across multiple chunks simultaneously, which is highly chal-
lenging for byte-level mutation. In contrast, GZFUZZ can
semantically mutate the generator or generate seeds with the
target features from scratch, enabling broader coverage of
high-level file features. Note that ImageMagick can only parse
valid inputs, while most seeds generated by AFL++ mutations
are invalid, resulting in lower feature coverage being recorded
for AFL++. For example, the mutations of AFL++ fail to pro-
duce valid MP4 files, resulting in a feature coverage of 0. In
the PDF format (pdftotext), AFL++ (rare) and AFL++ (fast)
cover more features in terms of skewness, kurtosis, and stan-
dard deviation in the Blue/Green/Red channels. Seeds with
such features receive higher weights in AFL++ (rare) and
AFL++ (fast), leading to more frequent mutations and, con-
sequently, higher coverage of these features. However, from
the perspective of final code coverage, allocating excessive
energy to explore such features is inefficient.

G’Fuzz can construct some rare features, such as
Properties-tiff:-timestamp, Properties-tiff:copyright, and
Properties-Contact in TIFF files. Furthermore, for
Chromaticity-Compression, G*Fuzz can cover all four
compression methods—Zip, RLE, JPEG, and LZW-whereas
other fuzzers can only cover RLE and JPEG. We observe that
covering rare features can better trigger specific program
logic in the target program, thereby improving code coverage.

5.5 Generalizability Across LLMs

To demonstrate GFUZZ’s generalizability across different
LLMs, we select the open-source models /lama-3-8b-instruct
and llama-3-70b-instruct for our experiments. Under the same
setup, these models generate initial seeds for five file formats,
completing Input Generator Synthesis and Generator Muta-

tion during the initialization stage. For GPT-3.5 and GPT-4,
we reuse the initial seeds generated from the first epoch of ex-
periments for JPG, TIFF, MP3, MP4, and PDF with G2Fuzz
on exiv2, tiffsplit, mp3gain, mp42aac, and pdftotext. Only files
with the target format suffix are considered, as the generator
may produce files in other formats.

The results are shown in the Table 11. GPT-4 achieves
the highest feature coverage for JPG and PDF, while the
open-source models llama-3-8b-instruct and llama-3-70b-
instruct achieve the highest feature coverage for TIFF and
MP4, respectively. Notably, llama-3-70b-instruct outperforms
GPT-3.5 across all four formats. These results demonstrate
G?Fuzz’s scalability and its ability to generate high-quality
generators using open-source models.

We also evaluate the effectiveness of the prompt used by
G2Fuzz with 10 different formats (including images, videos,
and documents) and find that GPT-4 performs well across
most formats. More details can be found in Appendix D. Ad-
ditionally, we analyze the impact of different libraries on the
generator quality and find that collaboration between multi-
ple libraries is the most efficient approach. For more details,
please refer to Appendix E.

Table 11: Functions exclusively discovered by each fuzzer.

Format ‘ GPT-3.5 ‘ GPT-4 ‘ 1lama-3-8b-instruct ‘ llama-3-70b-instruct

JPG 259 984 211 636
MP4 - 290 245 517
PDF 374 559 555 504
TIFF 388 387 591 516

1. GPT-3.5 cannot generate valid MP4 files during the first round due
to randomness.

6 Discussion

G?Fuzz supports only file formats that have accompanied
generator libraries available. Nevertheless, it can integrate
with user-written file format specifications (by using prompts
such as “generate Python generator code based on the pro-
vided format specifications.”). Thus, supporting corner cases
or new file formats requires only extra engineering and man-
ual effort. More importantly, we see an encouraging trend
of emerging Python libraries for file generation (searching
for JPEG and MP4 on GitHub reveals 21 and 26 file gener-
ation/editing libraries, respectively, created within the past
three years); this illustrates the high extensibility of GZFUzz
to adapt to new formats without code changes. Overall, lever-
aging existing and emerging libraries, G*FUZZ can support
more file formats, thus improving fuzzing efficiency in a
broader range of scenarios and continuous manner. In addi-
tion, G2Fuzz is currently unable to handle custom formats.
This limitation could be alleviated by adding document pars-
ing capabilities, allowing LLMs to learn and adapt to custom
syntax; we leave this as future work.



7 Conclusion

In this paper, we present GZFUZzZ, a novel and highly efficient
approach that augments mutation-based fuzzing with LLMs.
We identify a unique opportunity to combine the strengths
of LLMs and mutation-based fuzzers to achieve a synergis-
tic effect. The evaluation shows that GZFUZzz consistently
outperforms SOTA mutation-based fuzzers and several other
fuzzer baselines.
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9 Ethics Considerations

Vulnerability Disclosure. Our fuzzing tool is designed to
uncover security vulnerabilities in software. If we identify
such vulnerabilities, failing to disclose them responsibly could
lead to serious security risks, such as unauthorized access or
exploitation by malicious actors.

We have established a responsible disclosure process.

When we find vulnerabilities, we promptly notify the affected
software vendors, giving them sufficient time to patch the
issues before making any public disclosures. This ensures our
research contributes positively to security without exposing
users to unnecessary risks.
Experiments with Live Systems Without Informed Con-
sent. If we apply our fuzzing tool to live systems or real-world
software without obtaining consent from the owners or oper-
ators, this could disrupt services or negatively impact users
who rely on those systems.

We avoid testing live systems without explicit consent from

the system owners. When testing on live systems is neces-
sary, we first obtain informed consent and design our testing
methods to minimize any potential harm or disruption. This
approach respects the rights and interests of those who rely
on the systems we study.
Terms of Service. Our tool could potentially violate the terms
of service of the software we are testing, particularly if the
software explicitly prohibits automated testing or fuzzing.
This could lead to legal issues or harm our reputation in the
research community.

Before conducting any fuzzing, we thoroughly review the
terms of service of the software being tested. If our activities
might violate these terms, we seek permission from the soft-
ware provider or adjust our methods to avoid violations. This
ensures our research is both ethical and legally compliant.
Deception. If our testing involves any form of deception,
such as obscuring the true nature of the tests from the sys-

tem administrators or users, this could raise ethical concerns,
particularly if it results in harm or a loss of trust.

We avoid using deception in our research. If deception

is necessary for the validity of the study, it is ethically jus-
tified and followed by a thorough debriefing to explain the
research’s purpose and methods to all affected parties. This
approach maintains transparency and trust.
Wellbeing for Team Members. Our work may expose team
members to stressful or disturbing content, especially when
analyzing malicious software, which could impact their psy-
chological wellbeing.

We prioritize our team’s wellbeing by supporting those
exposed to stressful content, setting clear boundaries, and
maintaining a safe, supportive work environment.
Innovations with Both Positive and Negative Potential Out-
comes. The tools and techniques we develop have potential
for misuse by adversaries. While our intention is to improve
software security, there is a risk that others could use our tool
to find and exploit vulnerabilities for malicious purposes.

We recognize the dual-use nature of our tool and have im-

plemented safeguards to prevent misuse. Access is restricted,
and we work with ethical review boards to assess risks. We
also engage with the security community to ensure our re-
search is used positively.
Retroactively Identifying Negative Outcomes. If our re-
search unintentionally causes negative outcomes, like service
disruptions or exploitation of vulnerabilities, failing to address
them could harm users and damage our credibility.

We will monitor for any issues and take responsibility if
they arise, working to remediate any harm. This proactive ap-
proach ensures our research remains ethical and responsible.
The Law. Our fuzzing activities must comply with cyberse-
curity laws and regulations. Any inadvertent violations could
lead to legal consequences for us and our institution.

We consult legal experts to ensure compliance and obtain
necessary approvals before engaging in risky activities, mini-
mizing legal risks and ensuring proper conduct.

10 Open Science

To ensure compliance with open science principles, we com-
mit to making our research data, code, and materials pub-
licly accessible through publicly available repositories. This
includes providing access to our tool code and experiment
dataat https://github.com/G2FUz%/G2FUZ2* and https:
//github.com/G2FUZZ/G2FUZZ-DATA, allowing others to
review, utilize, and adapt our implementation.

We also document our research methods, experiments, and
results in detail to enable reproducibility. All relevant infor-
mation will be shared openly to allow other researchers to
replicate and build upon our work.

4Qur tool code is also available at https://zenodo.org/records/
14728879.
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A Challenges in Generating Complex Files: A
TIFF Case Study

00 01 02 03 04 05 06 07 08 09 @A 0B OC 0D OF OF 10 11 12 13 14 15 16
0x0000 [49]49]2A 00]08 00 00 00J0A 0000 01]o4 0001 00 00 0064 00 00 00]o1|
0x0017 |01 [04 0001 00 00 00[64 00 00 00[02 01]03 00[03 00 00 00[86 00 00 00|
0x002E [03 01]03 00]01 00 00 00]01 00|00 0006 01]03 0001 00 0@ 00 [0z 00|00
0004500 [11 01]04 00]01 00 00 00]8C 00 00 00|15 01]03 00|01 00 00 00]03 00
0x005C [00 00 [16 01]04 00|01 00 00 00|64 00 00 00]17 01|04 00]0l 00 00 00]30
0x0073 [75 00 00[1C 01]03 0001 00 00 00[01 00[00 00|00 00 00 00]08 00[08 00
0x008A [08 00|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

(a) Original TIFF file.

00 01 02 03 04 @5 06 07 08 09 @A @B OC @D OFE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
0x000 [49[49|2A 00[1E 01 00 00[80 00 20 50 38 24 16 0D 07 84 42 61 50 B8 64 36 1D OF 88 44 62 51 38 A4
0x020|56 2D 17 8C 46 63 51 B8 E4 76 3D 1F 90 48 64 52 39 24 96 4D 27 94 4A 65 52 B9 64 B6 5D 2F 98 4C
0x040|66 53 39 A4 D6 6D 37 9C 4E 67 53 B9 E4 F6 7D 3F AQ 50 68 54 3A 25 16 8D 47 A4 52 69 54 BA 65 36
0x060|9D 4F A8 54 6A 55 3A A5 56 AD 57 AC 56 6B 55 BA ES 76 BD 5F BO 58 6C 56 3B 25 96 CD 67 B4 S5A 6D
©0x080|56 BB 65 B6 DD 6F B8 5C 6E 57 3B A5 D6 ED 77 BC SE 6F 57 BB ES F6 FD 7F CO 60 70 58 3C 26 17 0D
0x0A0(87 C4 62 71 58 BC 66 37 1D 8F (8 64 72 59 3C A6 57 2D 97 CC 66 73 59 BC E6 77 3D 9F DO 68 74 S5A
0x0C0(3D 26 97 4D A7 D4 6A 75 SA BD 66 B7 5D AF D8 6C 76 5B 3D A6 D7 6D B7 DC 6E 77 5B BD E6 F7 7D BF
0x0EQ(EQ 70 78 5C 3E 27 17 8D C7 E4 72 79 5C BE 67 37 9D CF E8 74 7A 5D 3E A7 57 AD D7 EC 76 7B 5D BE
0x100(E7 77 BD DF F@ 78 7C SE 3F 27 97 (D E7 F4 7A 7D SE BF 67 B7 DD EF F8 7C 7E S5F 3F A5 BA 02 [0A 00
0x120(00 01]03 00]01 00 00 00]64 00]00 00[01 01]03 00]ol 00 00 00|64 00|00 00[02 01]03 00]03 00 00 00
0x140[9C 01 00 00]03 01]03 00|01 00 00 00|05 00|00 00 |06 01]03 00|01 00 00 00|02 00]00 00|11 01]04 00
0x160[01 00 00 0008 00 00 00|15 o103 0001 00 00 00]03 00[00 00|16 01]03 o]0l 00 00 00|64 00|00 00
0x180 17 01]04 0001 00 00 00]16 01 00 00]1C 01]03 00[01 00 00 00[01 00[00 00 [00 00 00 00]08 0008 00

0x1A0 |08 00

(b) TIFF file with LZW compression enabled.
Figure 10: Comparing two TIFF files with LZW compression
enabled or not, both containing an identical image data. The
newly added LZW-related chunks in Fig. 10b from (0x000,
0x08) to (0x100, Ox1D) cannot be parsed without specifica-
tions.

from PIL import Image

image = Image.new('RGB', (100, 100))

image save('./tmp/tiff tiff’,
compression="tiff_lzw')

Figure 11: Python generator for creating the TIFF file with
LZW compression data in Fig. 10b.

In Sec. 3, we argue that generating files with complex fea-
tures is challenging for current fuzzers. To illustrate this, we
provide an example. TIFF, which stands for Tagged Image
File Format, is a flexible and adaptable file format for storing
images. Note that TIFF files support various compression al-
gorithms. Here, we analyze the use of LZW compressed data



within TIFF files to clarify why generating files with complex
features is hard for existing fuzzers. Fig. 10 illustrates the
differences between two TIFF files with an identical image
data: Fig. 10a shows the original TIFF file, whereas Fig. 10b
shows the file with LZW compression enabled. Two main
differences exist: 1. introducing many (unparsed) data blocks.
In Fig. 10b, a large data block is introduced. Note that it is
“unparsed” because the LZW specification is missing in the
010 Editor template used by FormatFuzzer, which prevents
parsing and further mutating. 2. changes in data values and
new constraints: Many data values in Fig. 10b have changed,
with these changes introduced new constraints (e.g., offsets
and sizes) that need to be met. For example, when adding Exif
features to a TIFF file, an Exif[FDPointer tag is added to the
primary IFD to refer the Exif data. The Exif data, like color
space, must be aligned with those in TIFF data, introducing
new constraints between the Exif data and the primary IFD.

Based on our exploration, current binary-format fuzzers
cannot generate TIFF files containing LZW data. These meth-
ods can be categorized into two types: I. inference-based
fuzzing, such as WEIZZ. WEIZZ infers input fields and an ap-
proximate structure of the chunks on-the-fly while mutating.
The inference results can be inaccurate, failing to precisely
capture relations between chunks and making it unsuitable for
constructing files with complex features. 2. grammar-aware
fuzzing, such as FormatFuzzer and AFLSmart. They rely on
user-provided grammars to parse and mutate inputs. However,
the standard TIFF specification can be insufficient frequently,
and specifications of other formats are needed. In particu-
lar, due to the absence of LZW syntax in the grammar files
shipped by FormatFuzzer and AFLSmart, they cannot gener-
ate TIFF files that include LZW data. Thus, even if an initial
TIFF seed contains compression data, existing methods still
cannot parse and mutate it.

Overall, complex features are very common across various
file formats in different domains, such as the complex Exif
data in JPEG files, transparency capabilities in PNGs, and en-
cryption and DRM protection in MP4 files. It’s worth noting
that these complex features often involve more intricate logic
and state management, which may likely result in security
vulnerabilities. Therefore, constructing test input files with
various complex features is crucial for enhancing fuzzing.

B Token and Cost Analysis

We further evaluate the token cost of LLMs for fuzzing. Over-
all, as we do not rely on LLMs to perform mutation engines,
G?Fuzz does not need too many tokens. We collect the to-
ken consumption of GPT-3.5 and GPT-4 in the experiments
of UNIFUZZ. The results are shown in Table 12. In all pro-
grams, G2Fuzz(GPT-3.5) costs less than 0.2$ for a 24 hour
fuzzing process, while G2Fuzz(GPT-4) costs less than 13$.
We interpret that the token cost is acceptable for fuzzing.

Table 12: Token consumption and cost analysis for 24 hours
of fuzzing in UNIFUZZ.

Programs G?Fuzz(GPT-3.5) G?Fuzz(GPT-4)
Token Count ‘ Cost($) | Token Count ‘ Cost($)
ffmpeg 57,870.0 0.10 112,763.8 3.97
gdk 80,720.4 0.14 186,810.8 6.50
jhead 68,816.2 0.12 158,385.6 5.68
mp42aac 64,593.6 0.12 170,129.4 6.03
tiffsplit 75,616.6 0.14 156,247.8 5.58
exiv2 41,958.4 0.08 100,312.0 3.58
flvmeta 52,2774 0.09 350,607.6 12.71
imginfo 66,237.4 0.12 138,265.4 4.78
mp3gain 108,270.2 0.20 152,863.2 5.50
pdftotext 69,787.6 0.13 131,047.2 4.64

C Ablation Study

C.1 The contribution of each component

As G?>Fuzz comprises two main components: input generator
synthesis and generator mutation, we analyze the contribution
of each component. Our goal is to assess the effectiveness
of the seeds generated by these components. If mutating a
seed results in the discovery of a new path, we consider it
useful. Therefore, we count the number of new paths found
by mutating seeds from each component. The component that
contributes more new paths is deemed more effective.

The results are presented in Table 13. On average, both
the input generator synthesis and the generator mutation have
proven to be effective. In total, the input generator synthesis
contributes 82,001 new paths, while the generator mutation
contributes 141,340. Specifically, in jhead, the input generator
synthesis is responsible for discovering almost all the new
paths. In tiffsplit, ffmpeg, exiv2, and mp3gain, the generator
mutation contributes the most to discovering new paths.

Table 13: The number of new pathes contributed by the dif-
ferent components of GZFUZz.

Input Generator

Programs ‘ Initial Seeds Generator Mutation

Synthesis
tiffsplit 101 539 2,549
jhead 2 1,046 0
mp42aac 6,859 522 6,298
gdk 9,832 12,993 1
ffmpeg 4,877 14,603 109,381
exiv2 398 40,719 18,328
flvmeta 1,133 1,066 29
imginfo 21,236 593 0
mp3gain 1,675 1,377 4,266
pdftotext 7,735 8,543 488
Total ‘ 53,848 ‘ 82,001 ‘ 141,340

C.2 Compared with LLM-Only G?*Fuzz

In G?Fuzz, we leverage LLMs for generating diverse seeds
and performing mutations using traditional byte-level tech-
niques. Previous experiments confirm the LLM’s effective-
ness in seed generation. To assess the need for combining



LLMs with traditional methods, we created GZFUZZ(LLM-
Only), which solely relies on LLMs for seed mutation. Test-
ing on UNIFUZZ shows that G2FUZZ(LLM-Only) finds
fewer edges and has lower throughput, often less than 1%
of G?Fuzz, as shown in Table 14. It also struggles with low-
level mutations and is significantly more expensive, making
the integration of LLMs and traditional fuzzing both neces-
sary and efficient.

Table 14: The evaluation of GZFUzz(LLM-Only).

G2Fuzz

Programs (LLM-Only) Throughput ‘ Token Count | Cost($)
flvmeta 150 5,758,008 16,253,249 15.72
exiv2 2,126 7,643 20,831,178 17.80
gdk 830 18,007 18,253,243 16.63
imginfo 909 13,155 17,353,735 16.10
jhead 245 150,634 18,523,648 17.00
mp42aac 728 11,645 16,349,895 15.13
tiffsplit 938 6,729 20,539,769 17.75
mp3gain 691 9,337 18,547,650 16.31
pdftotext 3,300 3,084 22,996,919 19.20

D Prompt Effectiveness

To evaluate the effectiveness of the prompts we used, we ana-
lyze three attributes. 1) Validity: The generator produced by
G?Fuzz should be able to construct valid seeds. 2) Proportion
of Seeds with the Target Feature (PSTF): Seeds that contain
the necessary code to produce the target feature are deemed to
possess it. 3) Proportion of Unique, Useful Features (PUUF).

We analyze all generators from Sec. 5.1.1 for validity and
manually review the generators produced during Input Gen-
erator Synthesis for the other two attributes. Specifically, we
exclude files whose suffix matches the target format and use
ImageMagick for analysis. Note that ImageMagick can pro-
cess various image formats as well as PDF and MP4 (see
Table 15). For example, for TIFF, we exclude seeds with a
TIFF suffix from all programs, then parse each one with Im-
ageMagick. Seeds that can be parsed are deemed valid, and
vice versa. The results are shown in Table 15. GPT-4 achieves
a validity rate exceeding 80% across all 10 formats, with PSTF
over 70% in 5 formats and PUUF above 70% in 8 formats.
These findings demonstrate the effectiveness of G*Fuzz’s
prompts in efficiently accomplishing the target tasks.

The unsuccessful outcomes can be attributed to four rea-
sons: 1) LLM hallucinations generate non-existent features.
2) Debugging (Alg. 2) leads the LLM to remove code related
to the target feature for proper execution. 3) Rare features
are harder to generate. 4) Some features exist in all files of
a given type, rendering them useless. We further analyze the
impact of LLM hallucinations on G>Fuzz. During the feature
generation phase, hallucinations are relatively rare, with most
useless features like “default features describing the target
format” or “redundant features.” Hallucinations primarily oc-

cur during generator synthesis, often referencing non-existent

Table 15: Analysis of prompt effectiveness for different for-
mats.

Validity Rate
Format GPT3.5 ‘ GPT-4 PSTF (GPT-4) | PUUF (GPT-4)
TIFF | 91.90% | 94.31% 90.00% 90.00%
BMP | 57.25% | 97.26% 50.00% 60.00%
JPG | 98.05% |99.16% 70.00% 80.00%
PNG | 90.78% |99.65% 77.77% 77.77%
GIF | 88.37% | 100% 75.00% 75.00%
ICO | 47.88% | 100% 57.14% 85.71%
TGA | 22.22% | 82.81% 88.88% 88.88%
PNM | 67.12% | 90.00% 37.50% 37.50%
MP4 | 35.29% | 90.17% 60.00% 80.00%
PDF | 98.80% |95.71% 60.00% 86.66%

functions or attributes and triggering exceptions such as At-
tributeError or NotImplementedError. However, due to our
debugging strategy (Alg. 2), these errors caused by halluci-
nations are promptly detected when executing the generator.
The LLM then attempts to fix them, effectively mitigating the
impact of hallucinations.

E Library Influence

To evaluate the impact of different libraries on the quality of
generator, we conduct experiments across four target formats.
Specifically, we use GPT-4 to construct generators, specifying
the library to be used in the prompt, such as “You must use cv2
to create this Python generator.” For each format, we select
two libraries capable of generating files in the corresponding
format.

The results are presented in Table 16. In most cases, dif-
ferent libraries exhibit large variations in feature coverage,
as observed in the cases of JPG, MP4, and PDF. Notably,
combining multiple libraries leads to higher overall feature
coverage because their complementary functionalities enable
the construction of more sophisticated generators.

Table 16: Feature coverage achieved by using different li-
braries.

Format | Library | Feature Cov | ValidNum/InvalidNum

PIL 252 40/0
JPG cv2 337 40/0
Unlimited 984 130/0
cv2 471 23/11
MP4 | moviepy - -
Unlimited 290 19/15
fpdf 353 27/0
PDF | PyPDF2 72 18/4
Unlimited 559 50/1
PIL 164 27/0
TIFF tifffile 161 22/2
Unlimited 387 48/8
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Figure 12: Code coverage distributions achieved in a FuzzBench experiment.

<TARGET_GENERATOR>

Based on the above code, provide me with a more complex code
that can generate <FROMAT> files with additional more

complex file <features/structures>.

Figure 13: The prompt for random mutation.

Table 17: Benchmark programs selected from UNIFUZZ,

FuzzBench, and MAGMA.
UNIFUZZ FuzzBench MAGMA
gdk-pixbuf-pixdata bloaty_fuzz_target libpng_read_fuzzer
jhead freetype2-2017 read_rgba_fuzzer
mp3gain harfbuzz-1.3.2 tiffcp
ffmpeg lems-2017-03-21 pdf_fuzzer
tiffsplit libjpeg-turbo-07-2017 pdfimages
pdftotext libpcap_fuzz_both pdftoppm
mp42aac libpng-1.2.56 sndfile_fuzzer
flvmeta openssl_x509
imginfo vorbis-2017-12-11
exiv2 woff2-2016-05-06
zlib_zIlib_uncompress_fuzzer
1e9
1.25
<
o
= 1.00
Q
2075
8
5
2050
X
[
*0.25
0.00
< » S N S Q)
a (3/\/ @Q\o X &8
X d x N
4&\62 & & ¥ & ¥
R N ha
I3 G

Figure 14: The total throughput of different fuzzers running
for 24 hours.
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Figure 15: Average Code Coverage Evolution Over Time for

vorbis_decode_fuzzer.

Table 18: The additional analysis time of LLMGenFuzz. The

unit is seconds.

Programs ‘ Group I ‘ Group IT ‘ Group IIT ‘ Average(ExtraPCT")
lems 131 299 158 196(0.22%)
woff2 431 434 220 361(0.42%)
vorbis 552 329 194 358(0.41%)
freetype2 817 788 410 671(0.77%)
libpcap 261 173 220 218(0.25%)
bloaty 743 990 1,043 925(1.06%)
harfbuzz 465 651 282 466(0.54%)
libjpeg-turbo 575 163 118 285(0.33%)
libpng 379 158 47 194(0.22%)
openssl 1,259 189 551 666(0.77%)
zlib 220 161 110 163(0.19%)

! ExtraPCT: The percentage of the additional analysis time compared to the

23 hours of fuzzing time.

Table 19: The median code coverage achieved by G?Fuzz at
23 hours and 23 hours and 45 mins.

23 hours and .

Programs ‘ 23 hours 45 minutes ‘ Diff
bloaty_fuzz_target 6,377.0 6,377.0 0
freetype2_ftfuzzer 11,630.0 11,630.0 0
harfbuzz_hb-shape-fuzzer 10,935.5 10,935.5 0
lems_cms_transform_fuzzer 1,610.0 1,610.0 0
libjpeg-turbo_libjpeg_turbo_fuzzer | 2,551.0 2,551.0 0
libpcap_fuzz_both 3,003.0 3,003.0 0
libpng_libpng_read_fuzzer 2,006.0 2,006.0 0
openssl_x509 5,833.0 5,833.0 0
vorbis_decode_fuzzer 1,283.5 1,283.5 0
woff2_convert_woff2ttf_fuzzer 1,178.0 1,178.0 0
zlib_zlib_uncompress_fuzzer 471.0 471.0 0
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