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Abstract
BFT protocols usually have a waterfall-like degradation in
performance in the face of crash faults. Some BFT protocols
may not experience sudden performance degradation under
crash faults. They achieve this at the expense of increased
communication and round complexity in fault-free scenarios.
In a nutshell, existing protocols lack the adaptability needed
to perform optimally under varying conditions.

We propose TockOwl, the first asynchronous consensus
protocol with fault adaptability. TockOwl features quadratic
communication and constant round complexity, allowing it
to remain efficient in fault-free scenarios. TockOwl also pos-
sesses crash robustness, enabling it to maintain stable perfor-
mance when facing crash faults. These properties collectively
ensure the fault adaptability of TockOwl.

Furthermore, we propose TockOwl+ that has network adapt-
ability. TockOwl+ incorporates both fast and slow tracks and
employs hedging delays, allowing it to achieve low latency
comparable to partially synchronous protocols without wait-
ing for timeouts in asynchronous environments. Compared
to the latest dual-track protocols, the slow track of TockOwl+
is simpler, implying shorter latency in fully asynchronous
environments.

1 Introduction

Crash fault tolerant (CFT) [70] and Byzantine fault toler-
ant (BFT) [52] are two essential fault tolerance models in
distributed systems. A CFT protocol ensures that the sys-
tem continues to function normally even when some replicas
stop working. Many CFT protocols, such as Paxos [51] and
Raft [67], are widely applied in practical systems and services,
including distributed databases [9, 20], distributed message
queues [5, 49, 76], and container orchestration and schedul-
ing [6]. Once Byzantine faults occur, the security of the CFT
protocols will be destroyed.
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In comparison, a BFT protocol accounts for the existence of
Byzantine replicas. The ability to tolerate a certain proportion
of Byzantine faults is crucial to ensure the security of numer-
ous protocols, such as federated learning protocols [12,29,54],
distributed cryptographic systems [10,25,26,58], and consen-
sus mechanisms [1, 15, 37, 48].

From the perspective of network models, consensus pro-
tocols can be categorized into synchronous [2, 3], partially
synchronous [18, 80], and asynchronous protocols [27, 63].
The asynchronous model does not make assumptions about
the upper bound of message transmission delays, making
asynchronous protocols are robust than synchronous and par-
tially synchronous protocols. Therefore, asynchronous BFT
protocols are crucial for maintaining security in adversarial
environments, such as those involving Byzantine faults and
asynchronous networks.

There are many asynchronous BFT protocols [24, 32, 38,
63, 72] that achieve high performance and strong security.
Nevertheless, several subtle issues remain. In adversarial envi-
ronments, do Byzantine faults always exist, or is the network
always in an asynchronous state? Furthermore, can the perfor-
mance of asynchronous BFT protocols be enhanced in more
benign environments, such as in the presence of crash faults
or within synchronous networks?

1.1 Background and Problem Statement

This section further looks into the above questions.

Crash faults in BFT protocols. Practical consensus systems
may experience three states: fault-free, crash fault, and Byzan-
tine fault. Many studies [47, 74] show that crash faults are the
most common in practical systems. While CFT protocols can-
not handle Byzantine faults, BFT protocols tolerate a certain
level of crash faults, maintaining liveness. However, crash
faults can still weaken the liveness of many BFT protocols,
causing their performance to dramatically degrade. This is not
surprising, and we will analyze why this impact occurs later.
We test the performance of several known asynchronous BFT
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Figure 1: Comparison of asynchronous BFT Patterns.

protocols under fault-free and crashed conditions in experi-
ments (see Section 6). The results show that their performance
declines with the occurrence of crash faults. For example, as
shown in Figure 5, in sMVBA [38] with 100 replicas on a
global network, the latency increases by 100% to 150% when
33 replicas crash, compared to the fault-free scenario.

Asynchronous protocols in synchronous networks. Net-
work conditions are unpredictable due to various changes.
Asynchronous protocols guarantee system availability under
such conditions, at the cost of more communication rounds
than partially synchronous protocols. When the network is
synchronous, running an asynchronous protocol leads to per-
formance inefficiencies.

Adaptive asynchronous BFT protocol. An ideal protocol
should function effectively in adversarial environments. Ex-
isting asynchronous BFT protocols must pay a premium to
achieve this, which increases the cost of running the protocol

Table 1: Comparison of TockOwl and other asynchronous
consensus protocols.

Protocol Model Complexity Crash
Communication Round robustness

Speeding-Dumbo [38] BFT O(n3) O(1) ✗

FIN [28] BFT O(n3) O(1) ✗

CKPS [16] BFT O(n3) O(1) ✗

VABA [4] BFT O(n2) O(1) ✗

sMVBA [38] BFT O(n2) O(1) ✗

DAG-Rider [45] BFT O(n3) O(1) ✗

Bullshark [72] BFT O(n3) O(1) ✗

Tusk [24] BFT O(n3) O(1) ✗

CNV06 [21, 65] BFT O(n4) O(n) ✓

WaterBear [82] BFT O(n3) O(2n) ✓

HoneyBadger [63] BFT O(n3) O(logn) ✓

MyTumbler [57] BFT O(n3) O(logn) ✓

QuePaxa [75] CFT O(n3) O(1) ✓

TockOwl (this work) BFT O(n2) O(1) ✓

in benign environments. It is difficult to know the specific
types of faults and networks, so we expect the protocol to
adaptively cope with changes in faults and networks.

1.2 Fault-adaptive Consensus Protocol

Trade-off between complexity and crash robustness. In
asynchronous BFT consensus protocols [4, 16, 24, 38, 45, 60,
72] based on multi-value Byzantine agreement (MVBA) and
directed acyclic graph (DAG), a broadcast-election-consensus
pattern is adopted. As shown in Figure 1(a), each replica in-
dependently conducts several rounds of (consistent/reliable)
broadcasts for its proposal. Once enough replicas have com-
pleted broadcasting, all correct replicas participate in a coin-
tossing process to select one replica as the leader and attempt
to reach consensus on this leader’s proposal. If a replica that
has not started working at all is selected as the leader, con-
sensus cannot be achieved in this epoch. From the client’s
perspective, the underlying consensus network appears to ex-
perience jitter, with a sudden increase in transaction latency
and a significant decrease in throughput. Consequently, these
consensus protocols are vulnerable to crash faults.

We expect that the performance of asynchronous protocols
will remain stable in the case that some replicas crash. We
refer to this property as crash robustness (see Definition 2).
Informally, crash robustness means that an increase in the
number of crashed replicas does not reduce the success prob-
ability of asynchronous consensus.

Asynchronous BFT protocols with a broadcast-consensus
pattern can achieve crash robustness at the cost of higher
communication and round complexity. As depicted in Fig-
ure 1(b), this pattern requires each replica to independently
initiate a sub-consensus module after the broadcast phase.
For instance, in HoneyBadger [63], each replica is required



to initiate an asynchronous binary agreement (ABA), and in
MyTumbler [57], each replica must execute a multi-value
consensus protocol called SuperMA, which includes a fast
track. Since the broadcast and consensus initiated by each
replica are independent, crashed replicas cannot prevent the
correct replicas from reaching consensus. However, this inde-
pendence comes at a cost: initiating sub-consensus modules
for all replicas requires at least O(n3) communication com-
plexity, and the parallel execution of n consensus protocols
results in O(logn) round complexity. In contrast, consensus
protocols based on the broadcast-election-consensus pattern
can achieve O(n2) communication complexity and constant
round complexity, as replicas only need to reach consensus on
the leader once. This highlights a trade-off between complex-
ity and crash robustness, leading to the following question:

Can we make the BFT protocol fault-adaptive, meaning it
maintains high efficiency when there are no faults, main-
tains stable performance when crash faults occur?

We design TockOwl, which provides an affirmative answer
to this problem. TockOwl is an asynchronous BFT proto-
col. As shown in Table 1, existing consensus protocols in-
volve trade-offs among fault tolerance, high efficiency, and
crash robustness, with none being fault-adaptive. TockOwl
achieves fault adaptability by changing the broadcast-election-
consensus pattern.

Assign priorities instead of selecting a leader. As illustrated
in Figure 1(c), we propose a new pattern called broadcast-
assignment-consensus, which uses a common coin to deter-
mine replica priorities instead of selecting a leader. We believe
that this pattern is generic and helps protocols without crash
robustness to achieve this property. In this pattern, each replica
is assigned a priority. Correct replicas attempt to reach con-
sensus on the replica with the highest priority in an active set,
which consists of replicas that have completed broadcasting.
The active set is a subset of all replicas, and non-working repli-
cas are not included in the active set, ensuring that crashed
replicas cannot affect the consensus among correct replicas.
Note that the highest-priority replica may be mistaken for the
leader, but they are inherently different.

• Leader Election: the elected leader may crash, causing the
current consensus to fail.

• Priority Assignment: a crashed replica will never be elected.
In TockOwl, each replica observes an active replica set
AR and attempts to reach consensus on the highest-priority
replica within AR. Since a crashed replica is excluded from
the active set, it cannot be elected.

On the other hand, the leader is public and undisputed, while
the highest-priority replica in the active set is controversial
because each replica may observe a different active set. There-
fore, reaching consensus on this replica is more challenging
than reaching consensus on the leader, especially in asyn-

chronous networks and under the BFT model.
In the CFT model, QuePaxa [75] introduces a method

for reaching consensus on the highest-priority replica. This
method relies on a critical primitive called threshold syn-
chronous broadcast (tcast) [31]. By continuously invoking
tcast, QuePaxa ensures that the AR sets observed by different
replicas share a common subset of size of at least n− f . If
the highest-priority replica is included in this common subset,
consensus can be reached. Although implementing tcast in
the BFT model using reliable broadcast (RBC) [14, 17] is fea-
sible, it results in high communication complexity when each
replica invokes RBC. TockOwl does not require RBC but in-
stead uses a simpler consistent broadcast (CBC) to propagate
proposals. After the broadcast phase, TockOwl introduces an
exchange phase, where replicas share information without
requiring a common subset. The structure of broadcasting
followed by exchanging ensures simplicity.

1.3 Network-adaptive Consensus Protocol

Dual-track protocols. Due to the FLP theorem [30], asyn-
chronous consensus requires the introduction of random-
ized components, which often increases rounds. To enable
the protocol to adapt to network changes, dual-track proto-
cols [13, 22, 33, 59] are proposed. These protocols feature
both fast and slow tracks: the fast track maintains efficiency
in partially synchronous environments, while the slow track
ensures liveness in asynchronous environments. There are
mainly two types of dual-track protocols. The first type uses
timeout delays, activating the slow track only when the fast
track fails. The second type uses hedging delays, which al-
low both tracks to start simultaneously to avoid waiting for a
timeout in asynchronous networks.

We primarily focus on protocols using hedging delays.
ParBFT [22] is currently the most advanced dual-track proto-
col, and its two tracks are independent. Since both tracks start
simultaneously, they may both output a value. To ensure even-
tual consistency, an additional consensus instance is required
to select between the values from the two tracks, resulting in
ParBFT’s slow track requiring a total of two asynchronous
consensus instances.

TockOwl+: A faster dual-track protocol in asynchronous
environments. We design a dual-track protocol called Tock-
Owl+ based on TockOwl. We utilize the highest priority to
provide a fast track for TockOwl+, while the slow track is a
complete instance of TockOwl. Unlike ParBFT, we integrate
the fast track into the slow track, allowing both tracks to share
internal state information. This integration makes the protocol
more streamlined and effective. Specifically, in TockOwl+,
each epoch designates a replica as the leader. The leader has
the highest priority, while the priorities of other replicas are
determined through a common coin. If the leader works well,
the replicas can directly reach consensus on the leader’s pro-



posal and output quickly. If not, the replicas can still reach
consensus through the complete steps.

TockOwl+ inherits the fault adaptability of TockOwl. Simi-
lar to ParBFT [22], TockOwl+ employs hedging delay instead
of timeout delay used in BDT [59] and Ditto [33]. The slow
track of TockOwl+ consists of an instance of asynchronous
consensus, which is more streamlined than the slow tracks
of protocols like ParBFT and BDT that require two asyn-
chronous instances.

1.4 Our contributions

In summary, our contributions are as follows:

• We design TockOwl, an asynchronous BFT protocol
with fault adaptability. First, TockOwl achieves optimal
quadratic communication and constant round complexity,
ensuring efficiency in fault-free scenarios. Second, Tock-
Owl possesses crash robustness, ensuring its performance
remains unaffected by crash faults.

• We design TockOwl+, an asynchronous BFT protocol that
inherits fault adaptability and introduces network adaptabil-
ity. TockOwl+ is a dual-track protocol that uses hedging
delay instead of timeout delay, enabling quick output in par-
tially synchronous environments and requiring no timeout
in asynchronous environments. The slow track of TockOwl+
only requires one asynchronous consensus, which is sim-
pler than existing dual-track protocols, meaning TockOwl+
has lower latency in fully asynchronous environments.

• We present two variants of TockOwl. The first variant short-
ens TockOwl’s latency by optimizing the number of broad-
cast phases at the cost of losing crash robustness. This
variant has an expected latency of 10.5 rounds, which is
one of the lowest latency asynchronous multi-value BFT
protocols. The second variant accepts variable payloads
and categorizes proposals as either non-empty or empty
based on payload size. This allows the protocol to prioritize
committing non-empty proposals, enhancing performance
under light or unbalanced load conditions.

2 Related Work

ACS-based asynchronous consensus. Asynchronous com-
mon subset (ACS) refers to n participants reaching consensus
on a subset of size at least n− f . It was first proposed by
Ben-Or et al. [10] and applied to the design of asynchronous
secure multi-party computation protocols. The ACS proto-
col proposed by Ben-Or et al. is called BKR. Many proto-
cols [27, 55, 63, 81] have utilized BKR for constructing asyn-
chronous consensus. HoneyBadger [63] uses threshold en-
cryption and Reed-Solomon code to process and broadcast
the original transactions, and then uses BKR to reach con-
sensus. Decentruth [78] introduces a variant of BKR called

WP-ACS. WP-ACS takes into account the historical weight of
replicas, and the values of proposals from replicas with higher
weight are more likely to be output. Dumbo [39] and FIN [28]
build ACS based on MVBA, that reduces the number of ABA
protocols from n to only three as expected.

MVBA-based asynchronous consensus. In MVBA, each
replica provides an input that satisfies external validity, and
the replicas eventually output one of the values. MVBA is a
primitive abstracted by Cachin et al. [16]. They designed an
asynchronous atomic broadcast protocol with O(n3) commu-
nication complexity, constant communication rounds, and an
optimal 1/3 fault tolerance. VABA [4] is the first MVBA pro-
tocol to implement the communication complexity of O(n2).
Speeding-Dumbo [38] further reduces the expected rounds
of the protocol while achieving O(n2) communication com-
plexity. Dumbo [39] constructed ACS based on MVBA for
the first time, and this idea is followed by many subsequent
works [28, 38]. Furthermore, MVBA can be utilized as a
building block to construct more intricate consensus proto-
cols [13, 19, 22, 32].

DAG-based asynchronous consensus. In this type of proto-
cols, each block references n− f blocks that had certificates
from the previous round, and blocks are linked in a DAG
structure. A notable feature of this type of protocols is that no
additional communication is required to reach consensus on
top of building the DAG. DAG-Rider [45] is a post-quantum
safe asynchronous consensus that is equitable and guarantees
that all proposals proposed by the correct replicas will eventu-
ally be committed. Bullshark [72] implements a low latency
fast track to facilitate rapid output of replicas in good cases.
Tusk [24] optimizes DAG-Rider to reduce the latency under
normal circumstances.

Protocols for handling hybrid faults. Several protocols [56,
62, 64, 77] involve handling hybrid faults and aim to enhance
fault tolerance. XPaxos [56] adopts the cross fault tolerance
(XFT) model, achieving an improved level of fault tolerance
without increasing resource overhead. The flexible BFT pro-
tocol [62] introduces the concept of alive-but-corrupt (a-b-c)
faulty replicas that attempt to compromise safety without af-
fecting liveness. This protocol improves overall fault tolerance
by reducing Byzantine fault tolerance. The multi-threshold
BFT (MT-BFT) protocol [64] separates the safety and live-
ness threshold definitions and supports both synchronous and
asynchronous (or partially synchronous) timing models. The
MT-BFT protocol enhances safety fault tolerance by reduc-
ing liveness fault tolerance in synchronous networks. The
strengthened fault tolerance [77] allows blocks to gradually
obtain higher levels of fault tolerance as the blockchain grows.
This mechanism introduces stronger safety guarantees in the
optimistic period, thus ensuring that blocks can tolerate more
than 1/3 faults in non-optimistic periods. These protocols
are leader-based and non-asynchronous. If the leader crashes,



their performance degrades, and they lose liveness in asyn-
chronous networks.

Crash-robust consensus protocols. Several existing proto-
cols, such as Algorand [35], Goldfish [23], and Mysticeti [8],
also introduce priorities or crash-fault-skipping mechanisms
into their consensus processes. At a high level, these protocols
comprise three main phases: block proposal, block selection,
and reaching consensus. The block selection method is critical
for ensuring crash robustness.

Similar to TockOwl, Algorand [35] and Goldfish [23] lever-
age priority assignment to ensure crash robustness. Specifi-
cally, Algorand and Goldfish are hybrid protocols that com-
bine Proof-of-Stake (PoS) and BFT. During the block pro-
posal phase, these two protocols use verifiable random func-
tions (VRFs) to determine proposer eligibility. Upon block
selection, TockOwl employs a common coin to assign priority,
while Algorand and Goldfish derive priority values directly
from VRF outputs. After priorities are assigned, Algorand
reaches consensus via its Byzantine agreement protocol, BA*,
which outputs either a common block or an empty block.
Goldfish introduces the GHOST [71] rule to select the branch
with the highest weight, ensuring eventual consistency.

Mysticeti [8], a low-latency DAG-based BFT protocol with
a communication complexity of O(n3), does not explicitly
adopt a priority assignment mechanism in block selection but
introduces a novel skip pattern mechanism to exclude crashed
replicas. Specifically, the Mysticeti direct decision rule allows
replicas to promptly mark a slot as “to-skip” upon observing a
skip pattern for that slot, thereby preventing crashed replicas
from affecting subsequent block commitments.

However, Algorand, Goldfish, and Mysticeti are not de-
signed to operate in fully asynchronous networks. In terms
of efficiency, the latencies of Algorand and Goldfish are con-
strained by timeout speeds, whereas TockOwl’s latency de-
pends solely on network speed.

3 System Model and Definitions

We consider a system consisting of n replicas, denoted as
{p1, p2, . . . , pn}, within which the number of Byzantine repli-
cas is represented by f , satisfying n = 3 f +1.

Network assumptions. We assume that each replica is inter-
connected via a point-to-point authenticated channel, ensuring
secure communications. We adopt the asynchronous network
model and explicitly do not presuppose any constraints re-
garding the latency of message transmission.

Cryptographic assumptions. We assume the security of the
underlying cryptographic primitives, including hash functions
and signatures. Before initiating our series of protocols, it
is imperative to establish a threshold cryptography system
across all replicas, either through distributed key generation

or via a trusted dealer.

Adversary assumptions. We assume that a global and static
adversary exists, capable of controlling all f Byzantine repli-
cas and having complete control over the network. This im-
plies that the adversary possesses the ability to delay and
order messages at will.

Crash robustness. To circumvent the FLP impossibility the-
orem, asynchronous protocols need to introduce randomness,
resulting in a non-zero failure probability.

Definition 1 (Consensus Success Probability). The consensus
success probability of an asynchronous protocol is the prob-
ability, p(c,b)k , that the protocol commits a proposal within k
communication rounds, where c and b are the proportions
of crashed and Byzantine replicas among the total replicas,
respectively.

This probability affects the latency of the protocols. A
higher p(c,b)k , implying lower expected rounds, is desirable.

Definition 2 (Crash Robustness). An asynchronous consensus
protocol is of crash robustness if, for any k and b = 0, the
consensus success probability (i.e., p(c,0)k ) does not decrease
as c increases, where 0≤ c < 1/3.

State machine replication (SMR). SMR [50, 70] is a tech-
nique where each replica maintains a state machine that starts
with the same initial state. If the inputs and the order of re-
quests to these state machines are the same, then each state
machine will produce the same output.

Definition 3 (SMR). In a SMR protocol, there exists a set
of replicas, and all replicas collectively maintain a linearly
growing log and reach consensus on the log’s content. The
replicas receive and process transactions from clients and
interact with each other. Then, each replica outputs a deter-
ministic log, which is a sequence of transactions. A SMR
protocol satisfies:

• Safety. If LOGi and LOG j are the logs output by any two
correct replicas at any time, then either LOGi is a prefix of
LOG j or LOG j is a prefix of LOGi.

• Liveness. Any transaction received by a correct replica will
ultimately be recorded in the logs of all correct replicas.

4 TockOwl: Asynchronous BFT SMR with
Fault Adaptability

In this section, we describe TockOwl, which is a SMR pro-
tocol that exhibits fault adaptability. Each replica inputs a
proposal value vi in each epoch. The replicas continuously
submit proposals and output the values within the proposals
to the state machine log.



4.1 Overview

At a high level, as shown in Figure 2, TockOwl consists of
three main steps: three-phase broadcast, common coin, and
Best exchange.

The first step is the three-phase broadcast. Replicas initi-
ate three consecutive CBCs for their own proposals. Each
replica broadcasts its proposal and endeavors to collect n− f
votes to form a quorum certificate (QC). Once the QC of the
current phase is formed, the replica immediately initiates the
next broadcast phase with this QC as the input, similar to the
three-phase process in HotStuff [80]. While performing their
respective CBCs, replicas collect proposals and QCs from all
three phases of other replicas. The proposals are stored in set
V , and the QCs from the first/second/third phases are stored
in sets Q1/Q2/Q3, respectively.

The second step is the common coin. The common coin
provides a random value for all replicas, which determines
the priority of each replica. Current MVBA protocols select
a leader from all replicas based on the common coin, while
TockOwl selects the highest-priority replica from a replica set.
As shown in Figure 3, we employ a scenario with four replicas
to demonstrate the differences in usage. (a) In MVBA proto-
cols, the replica participates in the common coin and elects
replica 1 as the leader from all replicas. (b) In TockOwl, the
priority order from highest to lowest is replica 1, 3, 2, and 4.
The replica confirms that replicas 1, 2, and 4 have completed
the three-phase broadcast, forming a set. The replica selects
replica 1 as the target replica from the set. (c) The replica con-
firms that replicas 2, 3, and 4 have completed the three-phase
broadcast, forming another set. The replica selects replica 3
as the target replica from the set. Although replica 1 holds the
highest priority, it is not in the set.

The third step is the Best exchange. Among the proposals
in set V , we can select the replica’s proposal with the highest
priority, which is referred to as the Best value in V . Similarly,
the Best values in Q1, Q2, and Q3 can be obtained. Subse-
quently, replicas broadcast these Best values and collect Best
values from other replicas. When the replicas collect the Best
values of n− f replicas, the Best exchange step is completed.

4.2 Terminology and Variables

• Epoch. Our protocol operates across epochs. We assume
that all message formats are authentic and legitimate, and
originate from the current epoch, denoted as e. For a replica
in epoch e, if it receives a message from epoch e′, it can
simply discard the message (if e′ < e), or it can cache the
message until it enters epoch e′ (if e′ > e).

• Proposal. At the beginning of each epoch, replicas input a
value and package this value into a proposal. Committing
a proposal means outputting the value. The proposal value
can be a series of transactions or a list of commands from
clients. The proposal incorporates a proposal from the pre-
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Figure 3: Comparative analysis of methods utilizing the com-
mon coin.

vious epoch as its parent. This is designed to aid replicas
that have not achieved commitment in the previous epoch
to successfully commit.

• Quorum Certificate (QC). Each QC is associated with a
proposal. A QC stores a threshold signature, which is used
to prove that the proposal has been approved by a majority
of replicas. Upon finalizing the three CBCs, replicas can
obtain QCs for the three CBCs, denoted as qc1, qc2, and
qc3. The subscript of qc indicates its proposer. For example,
qc1i represents the first-phase QC of replica pi.

• Priority. In each epoch, the common coin generates a ran-
dom seed. This seed is used to calculate a unique priority
for each replica. We assume that these priorities are distinct
among replicas, which can be easily achieved in practice.
For example, hashing the combination of the seed and a
replica’s sequence number to derive the replica’s priority.
With this method, the probability of encountering priority
collisions is negligible.

• Priority function. Prie(proposal/qc) represents the prior-
ity of the proposer associated with proposal/qc, in a given
epoch e.

• Best function. If R is a set of proposals/QCs, then Best(R)
returns the proposal/QC with the highest priority in set R.

• Variables parentQc1 and parentQc2. Each replica main-
tains these two variables locally. The variable parentQc1



represents the first-phase QC with the highest priority re-
ceived by the replica in the previous epoch, which is then in-
corporated into the parent field of the proposal. The variable
parentQc2 represents the second-phase QC with the high-
est priority received by the replica in the previous epoch,
which is used to verify the validity of the parent field in
other proposals.

4.3 Detailed Description

The details of TockOwl are presented in Alg. 1 and Alg. 2.

Three-phase broadcast. Upon entering the current epoch,
each replica initiates three consecutive CBCs (Alg. 2, Line 6).
Each replica inputs its own proposal into the CBC1 and then
inputs the QC output from the CBC1 into the CBC2. This
process continues, and every replica eventually obtains three
QCs for its proposal. While conducting its own three-phase
broadcast, the replica also receives proposals and three phase
QCs from other replicas, which are stored in the sets V , Q1,
Q2, and Q3, respectively (Alg. 1, Line 15-23).

The replica performs a SAFEPROPOSAL check on the pro-
posals from other replicas (Alg. 1, Line 16). This check
mainly involves checking the proposal’s parent. The replica
compares the priority of the parent in the proposal with the
priority of the locally maintained parentQc2, and this check
passes only when the former is not less than the latter. If
the SAFEPROPOSAL check fails, the replica refuses to vote.
When each of the four sets contains at least n− f elements,
the replica outputs Finish from the three-phase broadcast.

Common coin. The replica initiates the common coin by
broadcasting a share of the coin. In this process, we set the
coin threshold to n− f and use the BV-broadcast proposed
in Mostefaoui’s ABA [66]. Once the replica receives n−2 f
shares and has not yet broadcast its own share, it then broad-
casts its share. Eventually, each replica receives n− f shares,
allowing for the derivation of a common and random value,
denoted as seed. Based on this seed, the replica calculates the
priorities for all replicas utilizing a transparent and public-
known method. Given that the seed generated by every replica
is identical, their perceptions of the calculated priorities are
also consistent. Moreover, we assume that the priorities are
unique. After obtaining the seed, the replica terminates the
three-phase broadcast and stops participating in the CBC that
other replicas have not completed (Alg. 2 Line 14).

Best exchange. After the priorities are determined, the
replica utilizes the Best function to identify and select the
proposal or QC with the highest priority among the sets V , Q1,
Q2, and Q3. Following this selection, the replica broadcasts
these prioritized values through a BestMsg message (Alg. 2,
Line 15). Concurrently, the replica receives BestMsg mes-
sages from other replicas, incorporating their proposals and
three phase QCs into corresponding sets V , Q1, Q2, and Q3

Algorithm 1 Three-phase broadcast (for epoch e, replica pi)
Global: V,Q1,Q2,Q3
Input: proposali

// CBC Process
1: upon receiving (id,∗,∗) from Main Broadcast Process do
2: broadcast (id,∗,∗)
3: upon receiving (id,∗,∗) from p j do
4: calculate the threshold signature and vote for p j

5: upon receiving n− f vote for (id,∗,∗) do
6: aggregate signatures to get newQc
7: output (id,∗,newQc) to Main Broadcast Process

// Main Broadcast Process
8: input (cbc1, proposali,null) to CBC1i
9: upon outputting (cbc1, proposali,qc1i) from CBC1i do

10: input (cbc2,H(proposali),qc1i) to CBC2i

11: upon outputting (cbc2,H(proposali),qc2i) from CBC2i do
12: input (cbc3,H(proposali),qc2i) to CBC3i

13: upon outputting (cbc3,H(proposali),qc3i) from CBC3i do
14: broadcast (last,H(proposali),qc3i)

15: upon receiving (cbc1, proposal j,null) from p j do
16: if SAFEPROPOSAL(proposal j) then // every replica verifies

whether this rule holds before participating in CBC1 j
17: add proposal j to V

18: upon receiving (cbc2,H(proposal j),qc1 j) from p j do
19: add qc1 j to Q1

20: upon receiving (cbc3,H(proposal j),qc2 j) from p j do
21: add qc2 j to Q2

22: upon receiving (last,H(proposal j),qc3 j) from p j do
23: add qc3 j to Q3

24: upon |V |, |Q1|, |Q2|, |Q3| are all not less than n− f do
25: Output Finish

(Alg. 2 Line 16).
To prevent the redundant broadcasting of proposals, the

BestMsg message transmits only the hash value of the
proposal, rather than the proposal itself. Upon receiving
a BestMsg message, the replica retrieves the original pro-
posal through the GETPROPOSALBYHASH process (Alg. 2,
Line 17). If the replica does not have the original proposal lo-
cally, it requests the proposal from the sender of the BestMsg.
The logic of GETPROPOSALBYHASH is independent of the
consensus logic, and many consensus protocols use similar
modules for block and transaction synchronization. Byzantine
replicas may send a BestMsg message containing a meaning-
less hash value, thereby preventing replicas from retrieving
the corresponding proposal. In such cases, a BestMsg mes-
sage for which the original proposal cannot be obtained is
deemed invalid.

Upon receiving at least n− f BestMsg messages, the
replica uses the UPDATEPARENT function to assign the val-
ues of Best(Q1) and Best(Q2) to the variables parentQc1



Algorithm 2 TockOwl protocol (for epoch e, replica pi)
Initialization: If e = 1, then parentQc1, parentQc2 ← null.

V,Q1,Q2,Q3←{}. Let value represent the value input by pi.
// Utilities

1: procedure UPDATEPARENT(qc1,qc2)
2: parentQc1← qc1, parentQc2← qc2
3: procedure SAFEPROPOSAL(proposal(e,value,qc))
4: return Prie−1(qc)≥ Prie−1(parentQc2) // the priority of

null defaults to 0

// Three-phase broadcast
5: proposal← (e,value, parentQc1)
6: input proposal to Three-phase broadcast
7: upon outputting Finish from Three-phase broadcast do
8: broadcast ShareMsg(coinShare) if not

// Common Coin
9: upon receiving ShareMsg messages from n−2 f replicas do

10: broadcast ShareMsg(coinShare) if not
11: wait until receiving ShareMsg messages from n− f replicas
12: seed←CommonCoin(e)
13: determine the priority for each replica based on seed
14: stop participating in unfinished CBC
15: broadcast BestMsg(H(Best(V )),Best(Q1),Best(Q2),

Best(Q3))

// Best exchange
16: upon receiving BestMsg(h,bqc1,bqc2,bqc3) from p j do
17: bv← GETPROPOSALBYHASH(h)
18: add bv,bqc1,bqc2,bqc3 to V,Q1,Q2,Q3, respectively
19: wait until receiving BestMsg messages from n− f replicas
20: UPDATEPARENT(Best(Q1), Best(Q2))
21: if Prie(Best(V )) = Prie(Best(Q3)) then
22: Commit the proposal in Best(V ) and its uncommitted

ancestor proposals

and parentQc2 (Alg. 2, Line 20). These variables are used
for referencing and verifying proposals for the forthcoming
epoch. UPDATEPARENT provides a secure method for updat-
ing, and in conjunction with SAFEPROPOSAL, it ensures cross-
epoch safety. Although faulty replicas might not update their
parentQc1 and parentQc2 according to the UPDATEPARENT
method, SAFEPROPOSAL ensures that proposals with incor-
rect parents do not gain the approval of correct replicas.

The replica determines whether the commit condition,
Prie(Best(V )) = Prie(Best(Q3)), is satisfied or not. If
this condition holds, it indicates that Best(V ), Best(Q1),
Best(Q2), and Best(Q3) originate from the same replica,
and this replica’s proposal is committed. Moreover, once a
replica identifies the QC of the highest-priority replica among
all replicas within its own Q3 set, it can immediately commit
a proposal, serving as a shortcut to the protocol’s output.

Intuition of three-phase broadcast. TockOwl requires a
three-phase broadcast instead of a two-phase broadcast be-

cause a two-phase broadcast cannot ensure cross-epoch safety.
Consider an example where the protocol uses a two-phase

broadcast and the commit condition is Prie(Best(V )) =
Prie(Best(Q2)). If a correct replica pi meets the com-
mit condition in epoch e and commits proposall , then its
Best(Q1) = qc1l and Best(Q2) = qc2l . For another cor-
rect replica p j, Best(V ) = proposall , Best(Q1) = qc1l , and
Best(Q2) = qc2m (where qc2m has a lower priority than
qc2l). In epoch e+ 1, both pi and p j will reference qc1l as
the parent of their proposals, while a faulty replica pk refer-
ences qc1m. Although pi can verify that the proposal of pk is
illegal (since pi has qc2l), p j cannot. If p j and other replicas
reach consensus on pk’s proposal in epoch e+1 and commit
it, inconsistency will occur.

We provide a protocol called TockCat that uses a two-phase
broadcast and has quadratic communication complexity in
Appendix B, at the cost of lacking crash robustness. On the
other hand, if we require both crash robustness and two-phase
broadcast, we can derive a variant of the TockOwl with cubic
communication complexity. In other words, there is a trade-
off between a two-phase broadcast, quadratic communication,
and crash robustness. It is not yet clear whether there exists a
protocol that simultaneously satisfies all three properties.

4.4 Two variants of TockOwl

TockCat: Asynchronous BFT SMR with low latency. We
present TockCat, a variant of TockOwl, which utilizes a com-
mon coin to select a leader and employs an additional broad-
cast phase to exchange the leader’s value. TockCat achieves
quadratic communication and an expected latency of only
10.5 rounds, making it as fast as the current lowest-latency
asynchronous multi-valued Byzantine consensus protocol.
The specific details of TockCat are provided in Appendix B.

TockWhale: Asynchronous BFT SMR with a preference
for non-empty proposals. We introduce TockWhale, a vari-
ant of TockOwl, designed to improve the quality of commit-
ted proposals by prioritizing non-empty ones. TockWhale
assigns the lowest priority to empty proposals, allowing the
protocol to preferentially commit non-empty proposals. The
lowest priority grants the replica the right to forgo its pro-
posal from being committed in the current epoch. While
forgoing the chance to be committed might seem counter-
intuitive, it enhances efficiency in systems with unbalanced
or light loads, such as blockchain-based electronic contract
depositories [40, 61] and intellectual property protection sys-
tems [42, 44]. In these systems, replicas must receive client
transactions to form valid proposals. However, if no transac-
tions are received within a given time, replicas are forced to
propose empty values to maintain protocol liveness. These
empty proposals, although necessary, are otherwise meaning-
less and can compete with non-empty proposals, reducing the
likelihood of the latter being committed. A detailed discus-



sion of TockWhale can be found in the full version of the
paper [53].

4.5 Protocol Correctness
If Proposal1 is an ancestor proposal of Proposal2, we say
that Proposal2 extends Proposal1.

Lemma 1. In epoch e, for any correct replicas pi, p j, pk, pl
that have completed the Best exchange, Prie(Best(Vi)) ≥
Prie(Best(Q1 j)) ≥ Prie(Best(Q2k)) ≥ Prie(Best(Q3l))
holds.

Proof. For any replica pl , let its Best(Q3l) be qc3m. qc3m
is a third-phase QC, which means at least n− 2 f correct
replicas voted for qc2m and added it to their Q2 sets. These
correct replicas broadcast messages BestMsg(∗,∗,bqc2,∗)
during the Best exchange step, where Prie(bqc2) =
Prie(Best(Q2)) ≥ Prie(qc2m). Due to quorum inter-
section, any correct replica pk will receive at least one
BestMsg(∗,∗,bqc2,∗) message and add bqc2 to its Q2
set. Thus, Prie(Best(Q2k))≥ Prie(bqc2)≥ Prie(qc2m) =
Prie(Best(Q3l)) holds.

Similarly, Prie(Best(Vi)) ≥ Prie(Best(Q1 j)) and
Prie(Best(Q1 j))≥ Prie(Best(Q2k)) can be obtained.

Lemma 2. In epoch e, after a replica reaches the com-
mit condition, then Prie(Best(Q1i)) = Prie(Best(Q2i)) =
Prie(Best(Q1 j)) = Prie(Best(Q2 j)) holds for any correct
replicas pi, p j.

Proof. This follows directly from Lemma 1 and the commit
condition (Alg. 2 Line 21).

Lemma 3. If correct replicas pi and p j commit Proposal1
and Proposal2 with epoch number e in epoch e, respectively,
then Proposal1 = Proposal2.

Proof. According to Lemma 2, after both pi and p j com-
mit a proposal, Prie(Best(Q1i)) = Prie(Best(Q1 j)) =
Prie(Best(Vi)) = Prie(Best(Vj)) holds. Therefore, the pro-
posals they commit are consistent.

Theorem 1 (Safety). In TockOwl, if a correct replica pi com-
mits Proposal1 with epoch number e in epoch e, and a correct
replica p j commits Proposal2 with epoch number e′ in epoch
e′, then either Proposal1 extends Proposal2 or Proposal2
extends Proposal1.

Proof. When e = e′, the proof can be directly derived from
Lemma 3. Without loss of generality, we assume e < e′.
In epoch e, pi commits Proposal1. Let pk be the pro-
poser of Proposal1, and let the corresponding three-phase
QCs be qc1k, qc2k, and qc3k. According to Lemma 2 and
the UPDATEPARENT rule, all correct replicas set their own
parentQc1 = qc1k, and parentQc2 = qc2k. Let the priority
of pk as pri.

Next, we prove that there does not exist a first-phase QC
with a priority greater than pri in epoch e. Using proof by
contradiction, we assume that such a QC exists in replica
pl’s set Q1l , then Prie(Best(Q1l))> pri= Prie(Best(Q1i)),
which contradicts Lemma 2.

In epoch e+1, if a faulty replica references a proposal with
a priority lower than pri, then Prie(proposal.parentQc) <
pri= Prie(qc2k) = Prie(parentQc2) holds. This means that
this proposal will not pass the SAFEPROPOSAL check in
Alg. 2, making the proposal invalid.

In other words, in epoch e+1, all valid proposals will ref-
erence Proposal1, so all subsequently committed proposals
will extend from Proposal1.

Lemma 4. If all correct replicas input a value in epoch e,
then each correct replica eventually receives at least n− f
BestMsg messages and subsequently enters epoch e+1.

Proof. If all correct replicas broadcast ShareMsg messages,
then each correct replica obtains the common coin value and
subsequently broadcasts a BestMsg message. Eventually, all
correct replicas can receive enough BestMsg messages. There-
fore, the key to this lemma is to prove that all correct replicas
will broadcast ShareMsg messages. We consider three cases:

• Case1: All correct replicas obtain outputs from the three-
phase broadcast. In this case, these correct replicas will
broadcast ShareMsg messages.

• Case2: Some correct replicas obtain output from the three-
phase broadcast, while other correct replicas do not. As-
sume that time t is the moment when the first correct
replica receives n− f valid ShareMsg messages. Before
time t, at least n−2 f correct replicas have already broad-
cast ShareMsg messages. Subsequently, the correct repli-
cas that have not yet broadcast will receive at least n−2 f
ShareMsg messages and broadcast ShareMsg messages.

• Case3: No correct replica obtains output from the three-
phase broadcast. This is impossible because faulty replicas
cannot provide n−2 f valid ShareMsg messages.

Thus, in any case, all correct replicas will broadcast ShareMsg
messages, and there must exist some correct replicas that
obtain outputs from the three-phase broadcast.

Theorem 2 (Liveness). In epoch e, the probability that a
correct replica commits a proposal is greater than 2/3.

Proof. Let the replica with the highest priority among the n
replicas be pl . According to Lemma 4, some correct replicas
definitely obtain outputs from the three-phase broadcast. For
any such replica pi, |Q3i| ≥ n− f , if the third-phase QC of
pl appears in Q3i, then pi can definitely commit the proposal
of pl in the current epoch. Therefore, the probability is (n−
f )/n > 2/3.

Lemma 5 (Crash Robustness). Let k represent the number of
communication rounds, and c and b represent the proportions



of crashed and Byzantine replicas among the total replicas,
respectively. For any k and b = 0, the consensus success prob-
ability (i.e., p(c,0)k ) does not decrease as c increases, where
0≤ c < 1/3.

Proof. TockOwl uses the priority assignment. With priority
assignment, a crashed replica will never be elected. Due to
b = 0, the elected replica is not a Byzantine one, so it must
be a correct one. Since 0 ≤ c < 1/3, the proposal of this
elected replica will be successfully committed in one epoch
(9 rounds). Therefore, when k < 9, p(c,0)k = 0 and when k ≥
9, p(c,0)k = 1. Hence, p(c,0)k remains constant as c increases,
provided that 0≤ c < 1/3. This implies TockOwl has crash
robustness.

Lemma 6 (Efficiency). TockOwl exhibits quadratic commu-
nication complexity and an expected constant round latency.

Proof. The protocol uses all-to-all broadcasting in each round,
so it has O(n2) communication complexity. The protocol
requires 9 rounds per epoch, and the probability of committing
in each epoch is 2/3. This leads to an expected latency of
9×3/2 = 13.5 rounds.

5 TockOwl+: Asynchronous BFT SMR with
Network Adaptability

5.1 Overview

Building on TockOwl, we introduce TockOwl+, a protocol
that incorporates a fast track. In TockOwl+, a replica is pre-
selected as the leader and assigned the highest priority. The
leader can be chosen using various methods employed by
partially synchronous protocols, such as fixed leader [18, 43,
73], rotating leader [36, 80], or periodic rotation based on

fast track

slow track

two tracks 
start simultaneously

fast track

slow track

slow track delayed start

hedging delay

leader HaltMsg

Figure 4: The structure of TockOwl+, which is a dual-track
protocol that includes both a fast and a slow track.

Algorithm 3 TockOwl+ (for epoch e, replica pi, leader pl)
If e = 1, then parentQc1, parentQc2← null. Let value repre-
sent the value input by pi.

1: bd = f alse // bd indicates whether pi has broadcast data
2: proposal← (e,value, parentQc1)

// Fast Track
3: if pi is leader then
4: input proposall to Three-phase broadcast
5: upon obtaining (qc1l ,qc2l ,qc3l) from Three-phase broad-

cast do
6: broadcast HaltMsg(H(proposall),qc1l ,qc2l ,qc3l)

7: upon receiving HaltMsg(hash,qc1l ,qc2l ,qc3l) from p j do
8: UPDATEPARENT(qc1l ,qc2l) // see Alg. 2, Line 1
9: Commit proposall and its uncommitted ancestor proposals

10: if bq then
11: broadcast HaltMsg(hash,qc1l ,qc2l ,qc3l) if not
12: enter epoch e+1

// Slow Track
13: wait until receiving the timer T expires
14: bd = true
15: activate TockOwle(proposal.value) // SlowTrack is an in-

stance of TockOwl (see Alg. 2)
16: enter epoch e+1

performance history [7]. In TockOwl+, the leader is selected
using the Round-Robin [36, 80] method.

If the leader completes the three-phase broadcast step, all
replicas will observe the leader’s proposal and first/second
phase QC during the Best exchange step. Therefore, once a
replica detects the leader’s third-phase QC in its Q3 set, it can
immediately commit the leader’s proposal without waiting
for the Best exchange step to conclude.

TockOwl+ is a dual-track protocol [13, 22, 54, 59], charac-
terized by the integration of both a fast and a slow track. The
fast track enhances efficiency within partially synchronous
environments, while the slow track guarantees liveness in
asynchronous environments. Generally, the fast track drives
the protocol’s progress. However, when network asynchrony
disrupts the fast track, the slow track survives with the pro-
tocol’s advancement. As illustrated in Figure 4, TockOwl
constitutes the slow track of TockOwl+, ensuring its liveness.

5.2 Detailed Description
The complete description of TockOwl+ is shown in Alg. 3.
TockOwl+ operates in epochs. We assume that all message
formats are authentic and legitimate, and originate from the
current epoch, denoted as e.

Fast track. At the beginning of each epoch, the fast track
is initiated first. The leader attempts to propagate its pro-
posal using a three-phase broadcast. Optimistically, the leader
obtains a third-phase QC for its proposal and then broad-



Table 2: Comparison of the TockOwl+ protocol and recent dual-track protocols.

Protocol
Communication complexity

The structure of slow track Track switching delay
Fast track Slow track

PABC [68] O(n) O(n3) Two asynchronous consensus instances timeout delay
Bolt-Dumbo [59] O(n) O(n2) Two asynchronous consensus instances(2) timeout delay
Ditto [33] O(n) O(n2) One asynchronous consensus instance timeout delay
Abraxas [13] O(n2) O(n2) One asynchronous consensus instance timeout delay(4)

ParBFT1 [22] (pattern 1)(1) O(n2) O(n2) Two asynchronous consensus instances (3) none
ParBFT2 [22] (pattern 2) O(n) O(n2) Two asynchronous consensus instances hedging delay
TockOwl+ (pattern 1) O(n2) O(n2) One asynchronous consensus none
TockOwl+ (pattern 2) O(n) O(n2) One asynchronous consensus hedging delay

(1)Pattern 1 means that both tracks start at the same time, and pattern 2 means that the slow track starts with delay. (2)One asynchronous
consensus instance is used for pace synchronization, and another consensus instance is used to reach consensus on transactions. (3)One
asynchronous consensus instance is used to reach consensus on transactions, and another consensus instance is used to determine the value of
whether to use the fast track or the slow track. (4)In Abraxas, the fast track and the slow track operate simultaneously. However, during the fast
track’s operation, the slow track processes transactions without committing them. The slow track only commits transactions when it detects that
the fast track makes no progress, so we consider that Abraxas still employs a timeout delay.

casts a HaltMsg message. Replicas that receive the HaltMsg
message can immediately commit the leader’s proposal. If
bq = true, the replica also broadcasts the HaltMsg message
to assist uncommitted replicas. The variable bq identifies
whether the slow track has been activated. To avoid intro-
ducing quadratic complexity into the fast track, replicas only
broadcast HaltMsg messages after the slow track has been ac-
tivated. Furthermore, for a replica pi that has already commit-
ted in the fast track, if it receives a message from p j regarding
the slow track, pi must forward the HaltMsg message to p j.
A number of asynchronous [22,38] and partially synchronous
protocols [80] adopt similar approaches to help replicas that
have not committed or lack critical blocks to commit.

The replica updates parentQc1 and parentQc2 to the
leader’s first-phase and second-phase QCs through the UP-
DATEPARENT function. The UPDATEPARENT and SAFEPRO-
POSAL rules collectively ensure the cross-epoch safety of
TockOwl+. These rules maintain consistency regardless of
whether they are applied in the fast track or the slow track.
Specifically, the UPDATEPARENT rule guarantees that correct
replicas can accurately update their proposed parent, while
the SAFEPROPOSAL rule ensures that proposals referencing
an incorrect parent are not approved.

Slow track. The slow track is a complete single-epoch in-
stance of TockOwl. Each replica locally maintains a timer, T .
Once T times out, replicas set bq = true and initiate the slow
track. From that point onward, the fast track and slow track
proceed in parallel. Note that in TockOwl, when a replica
receives n− f ShareMsg messages, it stops voting in any un-
finished CBCs (Alg. 2 Line 14), including the CBC initiated
by the leader in the fast track. Moreover, the leader has the
highest priority, and the Best function returns the leader’s

value unless the set does not contain the leader’s value.

Safety overview. If we consider only the fast track or the
slow track, then the safety of TockOwl+ is easily obtained.
We mainly need to prove that the protocol remains safe even
if one replica commits a proposal from the fast track while
another replica commits a proposal from the slow track. We
defer the complete proof to Appendix A.

5.3 Protocol Analysis

Hedging delays. As shown in Table 2, TockOwl+ offers cer-
tain advantages compared to state-of-the-art dual-track proto-
cols. In TockOwl+, the setting of timer T is flexible. Typically,
we set the time of T to be a multiple of the maximum network
delay. This ensures that under optimistic conditions, the pro-
tocol outputs through the fast track with O(n) communication
complexity, thereby enhancing performance. Alternatively, we
can even set the time to 0, meaning that the fast track and slow
track start simultaneously to avoid timeouts. QuePaxa [75]
refers to this as a hedging delay, which differs from the time-
out delay in Bolt-Dumbo [59] and Ditto [33]. When a timeout
is triggered, the protocol stops the fast track, while triggering
a hedging does not. Incorrectly estimating the timeout delay,
causing the slow track to start early, leads to increased com-
munication and latency. In contrast, incorrectly estimating the
hedging delay only leads to increased communication.

Faster slow track. The slow track of TockOwl+ is more
efficient, as it is constructed from a single asynchronous
consensus, whereas the slow tracks in Bolt-Dumbo [59]
and ParBFT [22] require two asynchronous consensus in-
stances. Consequently, TockOwl+ exhibits lower latency in
asynchronous environments.



6 Implementation and Evaluation

Implementation details. We implement and test TockOwl,
TockOwl+, and TockCat in a Wide Area Network (WAN) en-
vironment. In the same project, we also implement BKR [11],
sMVBA [38], and ParBFT [22]. All protocols are imple-
mented in Golang, with the project is forked from the open-
source implementation1 of Dory [83]. To ensure that perfor-
mance differences stem from the logical differences in the
consensus mechanisms themselves, the implementations uti-
lize unified underlying components. Specifically, LevelDB2

is used for storing transactions and blocks, and Boldyreva’s
pairing-based threshold scheme on the BN256 curve, im-
plemented in Kyber3, is employed for threshold signatures
and coin tossing. Replica communications are facilitated via
gRPC4. The BKR protocol consists of reliable broadcast
(RBC) and asynchronous binary agreement (ABA), and we
use the RBC version from [41] and the ABA version from [66].
The slow track of ParBFT includes multi-valued Byzantine
agreement (MVBA) and ABA, with MVBA sourced from [38]
and ABA from [66].

We deploy a consensus network on Amazon Web Ser-
vices, using m7g.8xlarge instances across 5 different AWS re-
gions: N. Virginia (us-east-1), Sydney (ap-southeast-2), Tokyo
(ap-northeast-1), Stockholm (eu-north-1), and Frankfurt (eu-
central-1). They provide 15Gbps of bandwidth, 32 virtual
CPUs on AWS Graviton3 processor, and 128GB memory and
run Linux Ubuntu server 22.04.

We implement the mempool of Dumbo-NG [32] to fa-
cilitate the synchronization of data blocks among replicas.
Dumbo-NG decouples the process of broadcasting and con-
sensus, a strategy that has been shown to improve throughput
in various protocols [19, 24, 46, 72, 79]. Specifically, Dumbo-
NG has a broadcast module that propagates transactions
among replicas, and we use this module for transaction syn-
chronization. Dumbo-NG also has a consensus module that
orders batches of transactions, and we instantiate this module
with our asynchronous protocols. ParBFT similarly adopts
this strategy in its experiments. Each transaction in the mem-
pool is set to a size of 250 bytes. When missing blocks are
detected, a replica sends a message CallHel p to other repli-
cas by the block synchronizer. Correct replicas run a Hel per
process to respond to CallHel p.

Throughput is calculated as the average number of trans-
actions committed per second. Latency is calculated as the
total time from when a transaction is proposed to when it
is committed, including the time for transaction consensus
as well as the time spent synchronizing and waiting in the
mempool. For each data point, we conduct three experiments,
each lasting five minutes, and report the average throughput

1https://github.com/xygdys/Dory-BFT-Consensus
2https://github.com/syndtr/goleveldb
3https://github.com/dedis/kyber
4https://github.com/grpc/grpc-go

and latency. The error bars represent one standard deviation.

Experimental composition. We conduct tests in small-scale
(10 replicas) and large-scale (100 replicas) networks. The
experiments are mainly divided into two parts:

• We compare our protocols, TockOwl and TockCat, with
the well-known BKR and sMVBA protocols in terms
of fault adaptivity. BKR demonstrates crash robustness,
while sMVBA exhibits quadratic communication com-
plexity. Both crash robustness and quadratic communica-
tion complexity are fundamental characteristics of Tock-
Owl. Moreover, TockCat shares similar properties with
sMVBA but requires fewer rounds. As such, TockCat is
also included in this test.

• We compare our TockOwl+ protocol with ParBFT, the
state-of-the-art dual-track protocol, in terms of network
adaptivity. We do not compare TockOwl+ with protocols
that have timeout delay, such as BDT and Ditto, because
they are not in the same category as TockOwl+. These
protocols require the setting of timeout parameters, and
the accuracy of the timeout parameter settings affects the
performance of the protocols. In practice, it is difficult to
accurately set the timeout parameters, making an experi-
mental comparison between BDT, Ditto, and TockOwl+
less practically meaningful.

6.1 Tests on Fault Adaptability
We test TockOwl, TockCat, BKR, and sMVBA in three en-
vironments: no fault, crash faults, and Byzantine faults. The
crash and Byzantine faults only target the consensus process.
In other words, faulty replicas exhibit faulty behavior in the
consensus but still participate normally in the operation of the
mempool. Mempool faults that have no effect on consensus
can be ignored, and other mempool faults can be simulated
by consensus action failure. Crash-free mempool simplifies
the engineering implementation without affecting the experi-
mental result and analysis. Moreover, we do not provide per-
formance data for BKR with 100 replicas, as BKR’s latency
exceeds 200 seconds even in fault-free conditions. Under such
circumstances, it no longer makes sense to compare BKR’s
performance with other protocols.

No fault and crash faults. We first change the number of
faulty replicas and evaluate the performance of the protocols
under fault-free and replica crash conditions. Both TockCat
and sMVBA have output shortcuts, allowing them to output
in 6 rounds when there are no faulty replicas. To show the
performance of the protocols under normal conditions, we
enable the output shortcut for both TockCat and sMVBA (see
Figure 5).

When there are no faulty replicas, the performance of Tock-
Cat and sMVBA is comparable, and both outperform Tock-
Owl. BKR performs the worst, which is not surprising given

https://github.com/xygdys/Dory-BFT-Consensus
https://github.com/syndtr/goleveldb
https://github.com/dedis/kyber
https://github.com/grpc/grpc-go
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Figure 5: Performance of TockOwl under no fault and crash faults.
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Figure 6: Performance of TockOwl under Byzantine faults.

its high communication and round complexity.
When faulty replicas are present, the performance of Tock-

Cat and sMVBA declines significantly, while TockOwl expe-
riences only a slight decrease in performance. In this situation,
TockOwl performs comparably to TockCat and sMVBA in
a network of 10 replicas, but in a network of 100 replicas,
TockOwl’s performance is noticeably better than the other
protocols. These results indicate that TockOwl is more stable
in the presence of crash faults.

The performance decline of TockOwl is mainly affected
by the bandwidth bottleneck of slower replicas among the
surviving replicas, which can be resolved by increasing their
resources. For consensus protocols like sMVBA, simply in-
creasing resources cannot completely solve the problems
caused by crashed replicas. More crashed replicas mean a
greater probability that the common coin selects an ineffec-
tive leader. Once an ineffective leader is selected, even if the
resources are sufficient, consensus cannot be reached in the

current epoch.

Byzantine faults. We test the performance of the protocols
in Byzantine environments. In this test, we disable the output
shortcuts of TockCat and sMVBA. The strategies adopted by
Byzantine replicas in the four protocols are as follows:

• TockOwl: Byzantine replicas only participate in the broad-
cast of the first phase. Under this strategy, if a Byzantine
replica has the highest priority in the current epoch, con-
sensus cannot be reached in that epoch.

• TockCat: Byzantine replicas only participate in the broad-
cast of the first phase and send empty BestMsg messages
during the Best exchange step.

• sMVBA: Byzantine replicas only participate in the broad-
cast of the first phase and always vote 0 during the PreVote
step.

• BKR: Byzantine replicas do not perform RBC and always
vote 0 in ABA.

The results are shown in Figure 6. In a network of 10 repli-
cas, BKR performs the worst, while the performance of the
other three protocols is very close. In a network of 100 repli-
cas, the performance of the three protocols remains very close,
but TockCat performs slightly better than sMVBA and Tock-
Owl. This aligns with the theoretical results, as TockCat has
the least expected number of rounds. These results indicate
that TockOwl’s performance is not inferior to other protocols
when facing Byzantine faults.

6.2 Tests on Network Adaptability

We test TockOwl+ and ParBFT in three environments: fast
network (a good leader), slow network (a bad leader), and
adversarial network (leader and replicas crash).

A good or bad leader. To intuitively show the impact of
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Figure 7: Performance of TockOwl+ under a good leader and
a bad leader.
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Figure 9: Performance when adding artificial network delay.

leader crashes on the protocols, we test a series of through-
put and latency when the network size is 10 and 100. The
results are shown in Figure 7. When the leader is fault-free,
ParBFT performs slightly better than TockOwl+, mainly due
to ParBFT’s lower latency in optimistic scenarios. However,
when the leader crashes, TockOwl+ performs significantly
better than ParBFT, owing to TockOwl+’s concise slow track.

Leader and replica crash. To assess the protocols’ perfor-
mance in more adverse conditions, we test the protocols by
crashing some non-leader replicas in addition to crashing the
leader. The results are shown in Figure 8. It can be seen that,
regardless of the network size, TockOwl+ performs signif-
icantly better than ParBFT. Furthermore, the performance
gap between the two protocols widens compared to the sce-
nario where only the leader fails. These results indicate that
TockOwl+ performs better in slow and adversarial networks.

Impact of network delay. To further evaluate the effect of

network latency on the protocols, we introduce an artificial
network delay to the leader’s messages, represented by the
parameter α. This parameter can simulate scenarios where
the leader experiences bandwidth limitations or is targeted by
a denial-of-service attack, which is feasible since the leader’s
identity is typically public. We test the protocols under two
patterns. In the first pattern, both tracks start synchronously,
while in the second pattern, the slow track starts after a delay
of ∆. In this experiment, the number of replicas is fixed at 100,
each block contains 1000 transactions, and ∆ is set to 1000
ms. We gradually change the value of α and obtain a series of
latencies. The results are shown in Figure 9. The results show
that as α increases, the latency of all protocols gradually rises.
When α is less than 500 ms, the latency of TockOwl+ is dom-
inated by the fast track. When α exceeds 500 ms, the latency
of TockOwl+ transitions to being dominated by the slow track
and remains stable thereafter. In contrast, ParBFT’s latency
does not stabilize until α reaches 2500 ms. Furthermore, the
stable latency of ParBFT is significantly higher than that of
TockOwl+.

7 Conclusion

This paper proposes an asynchronous BFT protocol called
TockOwl which achieves crash robustness. TockOwl mainly
consists of three steps: three-phase broadcast, common coin,
and Best exchange. After the broadcast step, TockOwl uti-
lizes a common coin to determine the priorities of replicas,
rather than selecting a leader like traditional asynchronous
BFT protocols. Furthermore, we introduce a protocol called
TockOwl+, which is a dual-track protocol based on hedging
delays. TockOwl+ has a faster slow track.
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A Correctness Proof of TockOwl+

Lemma 7. If correct replicas pi and p j commit Proposal1
and Proposal2 with epoch number e in epoch e, respectively,
then Proposal1 = Proposal2.

Proof. We consider three cases:

• Case1: Both pi and p j commit a proposal in the fast track.
Since correct replicas do not vote for different proposals in
the fast track, the proposals committed by correct replicas
are consistent.

• Case2: Both pi and p j commit a proposal in the slow
track. Due to the safety of TockOwl, we can directly infer
the safety of this case.

• Case3: pi commits a proposal in the fast track, while p j
commits a proposal in the slow track. We denote the leader
as pl , and its proposal and corresponding three-phase QCs
as proposall , qc1l , qc2l , and qc3l .

– If pi first commits proposall in the fast track, it means
that at least n−2 f correct replicas have voted for qc2l
and stored qc2l in their Q2 set. Then, in the Best ex-
change step, all correct replicas will store qc2l in their
Q2 set. Since the leader has the highest priority, there
will not exist a proposal different from proposall can
be committed in the slow track.

– If p j first commits a proposal in the slow track, it
means that at least n−2 f correct replicas have broad-
cast BestMsg messages and stopped voting in the
three-phase broadcast. At this point, the fast track will
not be able to make progress, and other correct replicas
cannot commit another proposal in the fast track.



Theorem 3 (Safety). In TockOwl+, if a correct replica pi
commits Proposal1 with epoch number e in epoch e, and a
correct replica p j commits Proposal2 with epoch number
e′ in epoch e′, then either Proposal1 extends Proposal2 or
Proposal2 extends Proposal1.

Proof. When e = e′, the proof of the lemma can be directly
derived from Lemma 7. Without loss of generality, we assume
e < e′. In epoch e, we consider two cases:

• Case1: pi commits Proposal1 in the slow track. In this
case, the lemma can be directly derived from Theorem 1
and its proof.

• Case2: pi commits Proposal1 in the fast track. Let pl be
the leader of epoch e, let the corresponding three-phase
QCs be qc1l , qc2l , and qc3l , let priority be the prior-
ity of pl in epoch e. At this point, any correct replica
sets its own parentQc1 = qc1l , and parentQc2 = qc2l .
In epoch e, there does not exist a first-phase QC with a
priority greater than priority because the leader’s prior-
ity is the highest. In epoch e+ 1, if a Byzantine replica
references a proposal with a priority lower than priority,
then Prie(proposal.parentQc)< priority = Prie(qc2l)
holds. This means that this proposal will not pass the
SAFEPROPOSAL check in Alg. 2, making the proposal
invalid. In other words, in epoch e+1, all valid proposals
will reference Proposal1, so the subsequently committed
proposals will extend from Proposal1.

Theorem 4 (Liveness). Each correct replica eventually com-
mits some proposals.

Proof. We consider two cases:

• Case1: There exist some correct replicas, such as pi, that
commit the leader’s proposal in the fast track. If a correct
replica p j cannot commit in the fast track, then eventually
it will trigger a timeout and send messages about the slow
track to all replicas. Upon receiving the message from
p j, pi will forward the HaltMsg to p j to help it commit.
Therefore, every correct replica can eventually commit
some proposals.

• Case2: If no correct replica commits a proposal in the fast
track, then eventually all correct replicas will start the slow
track. Since TockOwl has liveness, all correct replicas will
eventually commit some proposals in the slow track.

B TockCat: Asynchronous BFT SMR with low
latency

In this section, we present TockCat, an asynchronous BFT
SMR protocol that achieves quadratic communication com-

Algorithm 4 Two-phase broadcast for TockCat (for epoch e,
replica pi)
Global: V,Q1,Q2
Input: proposali

// Main Broadcast Process
1: input (cbc1, proposali,null) to CBC1i
2: upon outputting (cbc1, proposali,qc1i) from CBC1i do
3: input (cbc2,H(proposali),qc1i) to CBC2i

4: upon outputting (cbc2,H(proposali),qc2i) from CBC2i do
5: broadcast (last,H(proposali),qc2i)

6: upon receiving (cbc1, proposal j,null) from p j do
7: if SAFEPROPOSAL(proposal j) then // every replica verifies

whether this rule holds before participating in CBC1 j
8: add proposal j to V

9: upon receiving (cbc2,H(proposal j),qc1 j) from p j do
10: add qc1 j to Q1

11: upon receiving (last,H(proposal j),qc2 j) from p j do
12: add qc2 j to Q2

13: upon |V |, |Q1|, |Q2| are all not less than n− f do
14: Output Finish

plexity with an expected latency of 10.5 rounds5. TockCat
ranks among the fastest asynchronous multi-value BFT proto-
cols in terms of round efficiency.

B.1 Protocol Description
The complete description of TockCat is shown in Alg. 4 and 5.
TockCat operates across epochs, during which replicas pro-
pose a new proposal in each epoch. We assume that all mes-
sage formats are authentic and legitimate, and originate from
the current epoch, denoted as e.

Two-phase broadcast. TockCat employs a two-phase broad-
cast instead of a three-phase broadcast. During this step, pro-
posals received by a replica are stored in the set V , while the
QCs from the first and second phases are stored in the sets Q1
and Q2, respectively. The replica also performs a SAFEPRO-
POSAL check on the proposals from other replicas (Alg. 5,
Line 3). The main purpose of this check is to validate the proof
contained in the proposal. If a proposal references the leader’s
proposal from the previous epoch, the proof should be the
leader’s first-phase QC. Conversely, if the proposal references
the replica’s own proposal from the previous epoch, the proof
should be σe−1,non−leader (see below). If the SAFEPROPOSAL
check fails, the replica refuses to vote.

Common coin. After completing the two-phase broadcast,
the replica broadcasts a share of the common coin and waits

5The expected number of rounds is calculated using the same method
as Speeding-Dumbo [38], which accounts for the complete rounds of an
epoch. 2PAC [69] considers the benefit provided by the output shortcut,
which reduces the round count by one. If we apply this calculation method,
TockCat’s expected latency would be 9.5 rounds.



Algorithm 5 TockCat protocol (for epoch e, replica pi)
Initialization: If e = 1, then parentHash, parentProo f ← null.

V,Q1,Q2←{}. Let value represent the value input by pi.
// Utilities

1: procedure UPDATEPARENT(proposal, proo f )
2: parentHash← H(proposal), parentProo f ← proo f
3: procedure SAFEPROPOSAL(proposal(e,value,hash, proo f ))
4: Verify the signature in proo f according to hash

// Two-phase broadcast
5: proposal← (e,value, parentHash, parentProo f )
6: input proposal to Two-phase broadcast
7: upon outputting Finish from Two-phase broadcast do
8: if pi has not broadcast ShareMsg message then
9: broadcast ShareMsg(coinShare)

// Common Coin
10: upon receiving ShareMsg messages from n−2 f replicas do
11: if pi has not broadcast ShareMsg message then
12: broadcast ShareMsg(coinShare)
13: wait until receiving ShareMsg messages from n− f replicas
14: lqc1, lqc2,s← null
15: l← LeaderElection(e) // pl is the leader of epoch e
16: stop participating in unfinished CBC
17: if qc2l is in Q2 then
18: lqc2← qc2l

19: if qc1l is in Q1 then
20: lqc1← qc1l
21: else
22: s← the signature share for (e,non− leader)
23: broadcast BestMsg(lqc1, lqc2,s)

// Best exchange
24: upon receiving BestMsg(lqc1, lqc2,s) from p j do
25: add lqc1, lqc2 to Q1,Q2, respectively
26: wait until receiving BestMsg messages from n− f replicas
27: if qc1l is in Q1 then
28: UPDATEPARENT(proposall , qc1l)
29: else
30: combine n− f signature shares s and obtain the threshold

signature σe,non−leader
31: UPDATEPARENT(proposali, σe,non−leader)

// Commit
32: upon observing qc2l is in Q2 at any time do
33: Commit proposall and its uncommitted ancestor proposals

for the shares from other replicas. In this process, we set the
coin threshold to n− f . If a replica receives n− 2 f shares
and has not yet broadcast its own share, it then broadcasts its
share. Eventually, each replica receives n− f shares, then it
computes the coin value and selects a leader.

Best exchange. If the replica finds the leader’s qc1l in its
own Q1 set, it broadcasts a BestMsg message containing qc1l

and qc2l (if available). Otherwise, the replica generates a sig-
nature share s for (e,non− leader) and broadcasts a BestMsg
message containing s.

The replica waits until it receives n− f BestMsg mes-
sages. If at least one of these contains qc1l , the replica sets
parentHash = H(proposall) and parentProo f = qc11, then
moves to the next epoch. Otherwise, the replica combines
the n− f signature shares to obtain the threshold signature
σe,non−leader, which proves that n− f replicas have gener-
ated a signature share for (e,non− leader). In this case,
the replica sets parentHash=H(proposali), parentProo f =
σe,non−leader, and enters the next epoch.

Once the replica observes qc2l , it can immediately commit
the corresponding proposall . This condition may be triggered
when the coin value is revealed or when receiving BestMsg
messages.

B.2 Protocol Correctness

The proof of TockCat’s liveness is similar to that of TockOwl,
so it is not repeated here. Instead, we focus on providing the
safety proof for TockCat. If Proposal1 is an ancestor proposal
of Proposal2, we say that Proposal2 extends Proposal1.

Theorem 5 (Safety). In TockCat, if a correct replica pi com-
mits Proposal1 with epoch number e in epoch e, and a correct
replica p j commits Proposal2 with epoch number e′ in epoch
e′, then either Proposal1 extends Proposal2 or Proposal2
extends Proposal1.

Proof. If e = e′, then Proposal1 = Proposal2, because pi
and p j can only commit the leader’s proposal in the current
epoch.

Without loss of generality, we assume e < e′. In epoch
e, let pl be the leader. Replica pi can only commit pl’s
proposal after obtaining qc2l . This indicates that at least
n− 2 f correct replicas have voted for qc1l and added qc1l
to their respective Q1 set. These correct replicas broadcast
BestMsg messages containing qc1l during the Best exchange
step. Due to quorum intersection, any correct replica pk
will receive qc1l and set parentHash = H(Proposal1) and
parentProo f = qc1l . Moreover, no replica can produce a
threshold signature σe,non−leader for (e,non− leader). There-
fore, in subsequent epochs, all valid proposals can only extend
the proposal corresponding to qc1l , which is Proposal1.

Lemma 8 (Efficiency). TockCat has a communication com-
plexity of O(n2) and an expected latency of 10.5 rounds.

Proof. The protocol uses all-to-all broadcasting in each round,
so it has O(n2) communication complexity. The protocol
requires 7 rounds per epoch, and the probability of committing
in each epoch is 2/3, leading to an expected latency of 10.5
rounds.



Note that if we consider the gain brought by the com-
mit shortcut (triggered when the common coin value is re-
vealed), the probability of TockCat committing a proposal in
6 rounds (1 epoch) is 2/3, the probability in 7+6 rounds (2
epochs) is 1/3×2/3, and so on. This results in an expected
latency of 9.5 rounds for TockCat, which is comparable to the
current fastest asynchronous multi-value Byzantine consen-
sus protocol, 2PAC [69]. Before 2PAC, the fastest protocol
was Ditto [33]. However, the initial version of Ditto had a
safety flaw, which was fixed by 2PAC. The latest version of
Ditto [34] uses a MVBA protocol as a black box, and when
using 2PAC, Ditto’s latency is 13.5 rounds.
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