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Abstract
Despite the widespread adoption of HTTPS for enhanced
web privacy, encrypted network traffic may still leave traces
that can lead to privacy breaches. One such case concerns
MPEG-DASH, one of the most popular protocols for video
streaming, where video identification attacks have exploited
the protocol’s side-channel vulnerabilities. As shown by sev-
eral works in recent years, the distinctive traffic patterns gen-
erated by DASH’s adaptive bitrate streaming reveal streamed
content despite TLS-protection. However, these earlier stud-
ies have not demonstrated that the vulnerability remains ex-
ploitable in large-scale attack scenarios, even when making
strong assumptions about network details. To that end, this
work presents a protocol-agnostic system capable of identi-
fying videos independent of network layer information, and
demonstrates a practical attack over the largest dataset to date,
comprising over 240,000 videos covering three entire stream-
ing services. Using a combination of k-d tree search and
time series methods, our system achieves an accuracy of over
99.5% in real-time video identification and remains effective
even in scenarios involving victims behind VPNs or where
Wi-Fi eavesdropping occurs. Since large-scale video identi-
fication can compromise user privacy and enable potential
mass surveillance of video services, we complement our work
with an analysis of the vulnerability root cause when using
adaptive bitrate streaming and propose a mitigation strategy
to stand against such vulnerabilities. Recognizing the lack of
open-source tooling in this domain, we publish an extensive
dataset of video fingerprints, network capture data, and tools
to foster awareness and prompt timely solutions within the
video streaming community to address these privacy concerns
effectively.

1 Introduction

In the realm of user privacy preservation, HTTPS has become
the standard, ensuring end-to-end encryption and enhancing
privacy on the web. However, even encrypted network traffic

leaves traces that can be exploited to compromise user pri-
vacy. In the last eight years, numerous video identification
attacks (among others [5,7,9,10,22–24,31]) have exploited a
side-channel in the standardized MPEG-DASH protocol [3]
(referred to hereafter simply as DASH), revealing streamed
content despite all traffic being encrypted. DASH, an adaptive
bitrate streaming protocol, segments videos into variously
encoded bitrate chunks. This segmentation, while optimizing
streaming, inherently generates a distinctive, bursty traffic pat-
tern that can be analyzed to deduce the content being watched.
Surprisingly, despite substantial privacy implications and the
potential for mass surveillance of video services, the issue
has not received enough attention. We believe the two key
reasons behind this lack of attention are (1) non-scalable iden-
tification systems incapable of handling large datasets, and
(2) non-robust identification systems that are sensitive to vari-
ations in transport layer details or noisy traffic. However, as
this work highlights, these reasons do not justify overlook-
ing the problem. Addressing a concerning reality, our work
demonstrates that entire streaming services can be systemati-
cally monitored at a low cost to the attacker, underscoring the
immediate need for mitigative actions.

Current state of the art. Earlier video identification studies
have assumed different attack models. In most studies, the
attack is deployed at the network layer, where the attacker is
assumed to have access to transport layer information and the
encrypted payload exchanged between the streamer and the
video service [7,9,13,24,30]. This scenario mimics that of an
ISP or a network administrator acting as the attacker. Other
works have employed more covert models, operating over
LTE networks [5] or 802.11 traffic [22]. Beyond the attacker
model, known attacks fall into two broad categories: machine
learning (ML)-based methods and fingerprinting methods.
Refer to Table 1 for a summary of known attacks compared
to the identification system introduced here.

ML-based studies [5, 9, 15, 24] have adhered to the tradi-
tional ML pipeline, i.e., streaming videos multiple times and
extracting features from the resulting capture files to train a



Table 1: Comparison of our work against previous demon-
strated privacy attacks over encrypted video streams.

Year [Ref.] Targeted
service(s)1

Monitored
videos

Protocol-
agnostic

Data
collection2 Method3

2016 [22] N <1k ✓ FP
2017 [24] A,N,Y,V <1k ✓ ML
2017 [9] Y <1k ✓ ML
2017 [23] N 42k ✗ FP
2019 [13] Ah <1k ✓ FP
2020 [30] F <1k ✗ FP
2020 [31] Y <1k ✓ FP
2022 [5] A,N,Y <1k ✓ ML
2022 [10] N,S <1k ✓ ML
2022 [4, 15] Y <1k ✓ ML
2022 [29] Ah <1k ✗ FP
2023 [7] S 20k ✗ FP
2023 [27] Ah <1k ✗ FP
2023 [8] Y <1k ✗ FP
2024 [32] Y <1k ✗ FP
This work A,M,S 242k ✓ FP
1Targeted service(s): Amazon Prime Video (A), Facebook (F), Max (M),
Netflix (N), SVT Play (S), Youtube (Y), Vimeo (V); Ad Hoc service (Ah).
2 Slow, require watching videos (multiple times); Moderately efficient,
partially automatized; Efficient & fully automatized data collection.
3Based on Machine Learning (ML) or Fingerprinting (FP).

classifier, whether using deep learning [15, 24] or a combina-
tion of other models [9, 10]. This approach’s main advantage
is to allow the system to learn the characteristics of targeted
videos simply by repeatedly watching them, without requiring
particular expertise in the targeted streaming protocol or video
service. ML-based methods have shown success on modest
datasets but face significant bottlenecks, particularly in data
collection time (which may involve watching the same video
hundreds of times under varying network conditions [9, 31])
and the cost of training models. Additionally, ML-based at-
tacks require that the videos be streamed under the same
timeframe and quality conditions as seen during training. As
a result, all demonstrated attacks in this category, often im-
plicitly, assume that the video is captured from its very start.
These limitations pose major challenges in scaling ML-based
methods to large-scale attack scenarios.

In contrast, fingerprinting methods [13, 22, 23] exploit the
fact that DASH exposes information about segment sizes to
any client initiating playback. This information serves as
ground truth reference data, which can then be used to com-
pare with live-captured traffic. Consequently, data collection
is more efficient, as videos do not need to be streamed be-
forehand. However, strategies must be developed both for
aggregating encrypted packet sizes into larger chunks analo-
gous to segment sizes and for searching an existing fingerprint
database. Recognizing that the term fingerprint is overloaded
in this domain and can refer to anything from observed traffic
patterns to statistical signatures, we clarify that in this work,
a fingerprint specifically refers to the exact sequence of seg-

ment sizes corresponding to a particular video representation
(i.e., quality). A more detailed explanation follows later, but
at a high level, this definition is essential for distinguishing
fingerprinting from ML-based methods. Building on this def-
inition, prior fingerprinting studies have employed various
techniques to use observed burst sizes as input for searching
a fingerprint database, enabling video identification. These
techniques include k-d trees [7, 22, 23], dynamic time warp-
ing [13], and Markov chains [31]. Among these, the k-d tree
has proven to be the most scalable, supporting datasets with
tens of thousands of identifiable videos. However, using a
searchable data structure requires a distance measure and is
weakened by noisy inputs that can disproportionately affect
the distance calculation. Fingerprinting-based methods typi-
cally assume that the attacker captures traffic at the network
layer, isolating communication between the video service and
the streamer. To refine captured data, overhead from protocol
headers and TLS-encryption may be estimated and removed
from the trace [8, 23], aiming to closely approximate true
segment sizes. However, the adoption of QUIC in HTTP/3
complicates this process, prompting newer works to target
QUIC traffic specifically [27,28]. Only a few works [5,15,22]
attempt to bypass network-level access assumptions, such as
dealing with VPN-protected victims [15], but these methods
either fail to scale effectively or do not achieve high accuracy.

Our contributions. We present in this work a robust and
versatile system for video identification over encrypted packet
traces, with demonstrated attack efficacy in real video stream
captures over the largest published dataset of video finger-
prints. Specifically, our system employs an efficient and scal-
able data collection method, retrieving 242,000 videos and 3
million fingerprints from three well-established video stream-
ing services. Furthermore, we combine the logarithmic search
of the k-d tree with a time series method to create a system
capable of identifying videos inside our collected dataset. To
differentiate our approach from works that rely on transport
layer information, we emphasize that our system is protocol-
agnostic; it relies on the characteristics of adaptive bitrate
streaming, independent of the network protocol used to de-
liver the stream. To demonstrate this property, we show the
effectiveness of the attack in an authentic network environ-
ment as a network attacker (e.g. ISP or network administra-
tor), and also more covertly as a passive 802.11 eavesdropper
(without access to the network but close enough to sniff the
encrypted 802.11 frames) and despite the victim using a VPN.
Our system requires no synchronization between the target
and attacker, meaning videos can be identified at any point in
playback, provided that a sniffing time of approximately 60 to
90 seconds is available. Unlike previous works, which focus
on static, one-time classification, our system is designed as
a continuous identification tool, adapting dynamically as the
target switches videos. Additionally, our approach is practical
to deploy and mitigates base rate concerns by maintaining a



comprehensive dataset of all available videos for a service.
Our data collection tool may also be used to keep the dataset
up to date as streaming service libraries evolve.

The code and tools developed for this project are publicly
available1. By publishing our large-scale and efficient identi-
fication system, we aim to raise awareness among all actors
within video streaming services that privacy solutions for
adaptive bitrate streaming must be urgently considered and
implemented. Failing to address these vulnerabilities could
leave the video streaming ecosystem exposed to large-scale
surveillance and potential censorship. We also explore mit-
igation strategies to alleviate this attack and strongly urge
streaming service developers to take them into account as
early as possible.

Paper’s organization. In Section 2, we introduce the nec-
essary background for our work, presenting adaptive bitrate
streaming (including the DASH and HLS protocols), the
targeted streaming services, and the considered attack mod-
els. Section 3 presents our identification method in detail
from data collection and building the fingerprint database to
capturing traffic and identifying video streams. A thorough
evaluation of our systems is conducted in Section 4. Finally,
Section 5 explores mitigation strategies, and the last section
presents our conclusions.

2 Background

2.1 Adaptive Bitrate Streaming
In the past, video streaming was facilitated by protocols such
as RTP and RTSP. These early protocols struggled with issues
such as firewall and NAT traversal, lack of efficient caching
mechanisms, and inability to adjust to varying network con-
ditions due to their fixed bitrate design. Recognizing these
challenges, the industry has shifted towards Adaptive Bitrate
(ABR) streaming protocols designed for performance in large
distributed HTTP networks. ABR protocols work by segment-
ing the source media into smaller parts or chunks designated
as segments, typically between two and fifteen seconds long,
and encodes each segment at multiple bitrates. A client device
will then request segments based on its available bandwidth
and buffer consumption rate. At the start of a stream, the
client downloads a manifest file, which contains metadata,
including the available encodings and the location of their
corresponding segments. Since manifests and segments are
static files, ABR streaming works seamlessly with Content
Delivery Networks (CDNs) where these files are cached at
edge servers. Widely recognized and supported by Bitmovin’s
7th Annual Video Developer Report [6], the industry lead-
ing ABR protocol implementations are Dynamic Adaptive

1All artifacts, including datasets and capture files for reproducibility, are
available on Zenodo: https://zenodo.org/records/14676527.

For convenience, the code is also accessible to view on GitHub:
https://github.com/trustcom/endangered-privacy.

Figure 1: The hierarchical structure of a DASH manifest;
source: Sodagar, 2011 [26].

Streaming over HTTP (DASH), also known as MPEG-DASH,
and Apple’s HTTP Live Streaming (HLS), with other options
seeing minimal use.

DASH and HLS. DASH is the only ABR protocol that is
an international standard [3]. It was developed by the Mov-
ing Pictures Expert Group (MPEG) with the goal of having
an open standard alternative to HLS, which is proprietary to
Apple. DASH is widely supported by content providers and
devices, with iOS devices being a notable exception. DASH’s
manifest file (MPD extension, for Media Presentation De-
scription) is an XML-based document organized in a hierar-
chical structure (cf. Figure 1), and summarized hereafter:

1. Media Presentation (root): primary component holding
all the other elements.

2. Periods (one or multiple): individual chapters of a video
or strategic breakpoints where advertisements can be
inserted.

3. Adaptation Sets (for each period): comprise various
representations of the media (e.g. several encodings at
various bitrate levels, all using the same video codec);
different video codecs are stored in separate adaptation
sets.

4. Representations: distinct versions of media within adap-
tation sets containing multiple segments identified by
an average bitrate; the representation is selected by the
client based on its available bandwidth level.

5. Segments: references to the individual variable bitrate
encoded segments that the client fetches and plays back.

ABR streaming protocols define how the media segments
are delivered from the server to the client, facilitated by the
manifest. The segments themselves are wrapped in a container
file format, with additional metadata, encryption if using Dig-
ital Rights Management (DRM), and a codec that indicates
how the video data is compressed and decompressed. DASH’s
MPD most often reference fragmented MP4 containers that
are both encryption and codec agnostic. The individual media
segments can be part of a contiguous file, in which case the
client sends HTTP byte-range requests to fetch them. We lend
our terminology from the DASH Industry Forum [11] and call

https://zenodo.org/records/14676527
https://github.com/trustcom/endangered-privacy
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Figure 2: The bursty behavior of ABR streaming, starting off
with the buffer-fill before transitioning to the steady state.

this mode indexed addressing. When indexed addressing is
used, the MPD specifies the location of the file and the range
of the index segment that contains the byte ranges of all other
media segments. Segments can also be addressed with explicit
addressing and fetched via individual URLs that are either
directly listed in the MPD or constructed using a template
based on sequence numbers or explicitly defined time spans.

HLS [19] predates DASH and has wide support even
though it is not an open standard. HLS manifests are rep-
resented by M3U8 files known as (master) playlists. While
structurally different than an MPD, its purpose is nevertheless
the same and the concepts of representations and addressing
modes also exist in HLS.

CMAF. To be able to stream, devices and various software
must support the streaming protocol, the underlying media
and its encryption scheme. Consequently, content providers
typically package their content for both DASH and HLS with
their respective common stacks, i.e. MP4 for DASH and
MPEG-TS for HLS. This inefficiency of both packaging and
storing twice as much data is what the Common Application
Media Format (CMAF) [1] was introduced to solve. CMAF
allows for a single fragmented MP4 container based on the
ISO base media file format to be referenced by both DASH
and HLS manifests, making use of MPEG Common Encryp-
tion [2] that is agnostic to the DRM employed. In this paper,
to keep consistency, we adhere to the DASH terminology but
it is worth noting that the concepts also apply to HLS.

2.2 ABR Streaming Leak

When a client initiates a video stream, it first requests the
manifest that facilitates the stream. During start-up, the client
has an empty buffer and typically requests segments from
a low bandwidth representation to ensure earliest possible
playback. Once the client has a full buffer it reaches a steady
state, where the time between segment requests depends on
the buffer consumption rate. The client continuously esti-
mates its bandwidth capacity to decide from which represen-
tation it should request segments from. This on and off period
causes a pattern in the network trace that has been described
as bursty [24], visualized in Figure 2. Each burst can be as-
sociated with the client requesting and downloading one or

more segments. Because segments are encoded with a vari-
able bitrate, their sizes depend on the content, with more bits
allocated to complex ones (e.g. vibrant action scenes) than to
simpler ones (e.g. mostly static scenes). The leak relies on the
distinctive network trace that aligns with the order and sizes
of the segments belonging to a specific video representation.

Fingerprints. In previous works, fingerprints have had
varied definitions. For instance, in machine learning works [5,
24], the observed network trace is labeled a fingerprint, and
multiple streams of the same video is used as training data. As
mentioned previously, we define a fingerprint as the complete
sequence of exact segment sizes corresponding to a specific
representation of a video. Consequently, a video available on
a streaming service possesses a unique fingerprint for each
of its available representations. Our method, like previous
fingerprinting methods [7, 13, 22, 23, 30], makes use of the
ground truth fingerprint data to identify videos and does not
require streaming videos beforehand. To acquire a fingerprint,
an adversary is required to first locate a manifest file or an
equivalent JSON schema (e.g. YouTube and Vimeo specific
format equivalent to the MPD). In scenarios where indexed
addressing is employed, the adversary must access the index
segment to get the byte ranges that constitute the fingerprint
while in explicit addressing, the information of each segment
is retrieved via its corresponding URL.

2.3 Studied Streaming Services
We evaluate our methods across the complete libraries of three
well-established video-on-demand streaming services: Ama-
zon Prime Video, Max (the product of the recent merger of
Discovery, Inc. and WarnerMedia), and SVT Play, Sweden’s
national public television broadcaster’s streaming service.
Amazon and Max utilize indexed addressing for segments,
whereas SVT employs explicit addressing. These distinctions
require slightly different data collection strategies, to be ex-
plained in § 3.1. Besides available bandwidth, the represen-
tations a client can select during streaming are influenced
by device capabilities and DRM restrictions. For example,
on Amazon, browsers on Linux-based systems are limited
to standard definition. A key advantage of our fingerprinting
method is that it can collect all such representations, enabling
device-independent identification.

Our focus on over-the-top (OTT) video-on-demand stream-
ing services, rather than online video-sharing platforms, is
intentional. OTT services typically have more manageable
libraries, allowing us to collect data for every video, ensuring
that network traces from these service’s video CDN servers
correspond to videos in our dataset. In contrast, previous stud-
ies targeting platforms such as YouTube and Facebook have
demonstrated accuracy on subsets of videos between 100 and
1000, but need to consider the base rate when making claims
about generalization (for context, YouTube is estimated to
host more than 10 billion videos [16]).



2.4 Attack Models

Strong attacker. This model, common in previous works,
represents the typical setting where an attacker (e.g. a moni-
toring ISP or network admin) can isolate IP communication
between the target and the streaming service. The attacker
can achieve this by maintaining a lookup table of known IP
addresses or by intercepting the TLS handshake to obtain
the hostname from the Server Name Indication (SNI). In our
work, we do not make any distinctions between transport
layer details. Although TCP information can be exploited
by the attacker [23], and recent studies have focused on the
increased complexities of QUIC-based traffic [27, 28], our
approach relies almost exclusively on the characteristics of
ABR streaming and look no further than the IP-layer. In this
model, according to its available information, the attacker has
knowledge of the streaming service being used.

Weak attacker. In this model, we consider two scenarios:
VPN and Wi-Fi eavesdropping. For the VPN scenario, the
attacker is on the network path, but the target uses a VPN
(e.g. a commercial VPN proxy service), funneling all of the
target’s internet traffic through an encrypted tunnel. In the
Wi-Fi scenario, a Wi-Fi eavesdropper, not connected to the
network but within range, would observe an aggregated stream
where multiple IP conversations are hidden behind encrypted
link-layer communication. In this case, the attacker captures
frames using a monitor mode device.

We assume the target is not actively doing anything other
than streaming a video. This corresponds to the typical and
realistic attack scenario we aim to reproduce, as most view-
ers are likely focused on the video itself, making additional
online activities less probable during the streaming session.
For instance, smart TVs often enforce this behavior by allow-
ing only one application to run in the foreground. However,
note that the target’s device still operates in a typical setting,
generating routine background traffic from system processes
and passive network activity, which differs from intentional
user-driven actions. This is to mimic a real-world scenario,
hence, we do not disable protocols or standard applications
that would otherwise generate traffic. The attacker has to deal
with that traffic as additional noise, including data from the
streaming services themselves that are not the actual stream,
such as ad and telemetry data.

In the weak attacker model, the attacker cannot identify the
streaming service directly from the communication addresses,
as the VPN conceals the service’s IP, and Wi-Fi eavesdropping
reveals only the device’s MAC address. In this work, we
do not make any assumptions about the attacker’s ability to
identify a service through other means2. In any event, we

2For instance, one may run separate service detection methods prior to
using our system, possibly based on service-specific buffer management
strategies as discussed in § 5. Alternatively, the attacker may already suspect
that the target is using a specific service and only then employ directed
monitoring, e.g. setup a Wi-Fi device in close proximity to the target.

believe it to be valuable to test our system’s capabilities to
handle the noisier data of VPN and Wi-Fi traffic. We extend
our evaluation with an experiment to see how the system
behaves when queried with data unassociated with Amazon,
Max and SVT. Note that, in the worst case, the attacker must
consider the set of all possible internet traffic as input, i.e.,
already billions of videos from other services even if restricted
to video streaming only.

Common assumptions. For both models, we assume that
the target maintains a stable enough connection during stream-
ing to consistently select segments from the same represen-
tation for continuous periods of up to ca. 1 minute (more
specifically k+1 bursts as detailed in § 3.4). As previously dis-
cussed, this steady state is typical for DASH or HLS streams
under good network conditions, where the device strives to
maintain the highest possible representation. However, in
unstable network environments, such as those in some devel-
oping countries, frequent representation switching can occur,
making identification more challenging. Such conditions are
not considered and is a limitation of our work.

3 Protocol-agnostic Classification of Video Net-
work Traces

Attack overview. The attack consists of two phases. In
the first, video metadata and fingerprints belonging to the
targeted services are collected and preprocessed fragments
of all fingerprints are stored in a k-d tree data structure per
attacked service. In the second or active phase, traffic from the
target is captured and analyzed in real-time. Bursts present
in the traffic are isolated and fed to an identification sub-
system in charge of querying the fingerprint databases. The
identification logic assigns a score to candidates and when the
highest score is beyond a predetermined threshold the system
outputs a match. The entire identification system functions on
a continuous basis and identification is updated for instance
when the target switches to another video. Our method is
explained in detail hereafter.

3.1 Data Collection
We have developed a dedicated tool, karl, designed to finger-
print videos compatible with ABR streaming. It provides a
common interface for fingerprinting videos across different
services and also supports arbitrary DASH and HLS mani-
fests (currently limited to commonly used recent versions) or
fragmented MP4 files. While previous fingerprinting methods
are relatively efficient compared to ML-based approaches,
they typically rely on using a web driver3 to crawl and start
streams in order to intercept manifest information. For ex-
ample, Reed and Kranch [23] collected a dataset of 42,000

3https://www.w3.org/TR/webdriver2

https://www.w3.org/TR/webdriver2


Table 2: Our dataset covering the full libraries of Amazon
Prime Video, Max, and SVT Play.

Service # Videos # Representations

Amazon 116,070 1,285,713
Max 99,478 1,544,778
SVT 26,816 230,582

Total 242,364 3,061,073

Netflix videos and 330,000 fingerprints over two months using
such a crawler. In contrast, karl is purely HTTP-based, elim-
inating the need to launch full browser instances. Although
this approach requires understanding internal service-specific
details to retrieve metadata and manifest locations, the process
of extracting fingerprints remains the same.

Amazon and Max are subscription services, but aside from
initiating DRM-protected playback, authorization is only re-
quired to retrieve video metadata. In fact, manifests and media
files, which account for approximately 95% of requests, can be
collected entirely unauthenticated from their respective CDN
servers. Recall from § 2 that we require only the index seg-
ment (which is not DRM-protected) or the individual URLs if
explicit addressing is used to derive fingerprints. Furthermore,
when DASH and HLS manifests reference the same underly-
ing CMAF-compliant containers, extracting fingerprints from
either format is sufficient. In detail, when indexed addressing
is used, karl fetches the byte range of the index segment and
derives the fingerprint directly from the sidx atom of the frag-
mented MP4 file. For explicit addressing, karl constructs the
URLs and sends HTTP HEAD requests to each media URL
to obtain the segment size from the Content-Length header
field.

As mentioned previously, our data collection method dif-
fers significantly from prior efforts, where data collection is a
major bottleneck, often requiring hundreds or even thousands
of hours [5] to collect data for a modest number of videos. In
contrast, karl collects our entire dataset in less than a day from
a single host, even with throttling applied to avoid IP-based
blocking. On the other hand, ML models can learn network-
based variations during streaming, which has been identified
as a challenge for fingerprinting-based systems. However, as
demonstrated in this work, our heuristic successfully distin-
guishes videos among 242,363 others, even in VPN and Wi-Fi
attack scenarios.

Dataset. Our dataset (cf. Table 2) comprises the libraries
of Amazon, Max, and SVT around the time of our evaluation.
In this work, we deliberately collect only DASH manifests,
which also allow for the identification of HLS streams when
CMAF-compliant containers are used. However, HLS-based
MPEG-TS streams are excluded. karl can fingerprint all such
cases, but due to time, storage, and memory constraints, we
limit our dataset to fingerprints derived from DASH man-

ifests. We make our dataset publicly available as a set of
Tab-Separated Values (TSV) files totaling 19.8 GB. Addition-
ally, 264 videos were intentionally discarded due to their short
duration (under one minute) as our system is not capable of
identifying videos that fit entirely within a buffer’s length. A
real-world application of our methods could keep the dataset
up to date as content is rotated in and out by running karl on
a daily schedule.

3.2 Organizing the Data: k-d tree

Database(s). Similar to some earlier works [7, 22, 23], we
employ a k-d tree for the initial lookup. To achieve this, we
preprocess our collected dataset to create a database Dk (fully
defined below) suitable as input to the tree, k being a fixed
parameter of our system.

Let I be the set of all representations targeted by the attack.
For each representation i ∈ I , let Si = (si,1,si,2, . . . ,si,ni) be its
fingerprint, with si, j representing the size of its j-th segment
and ni its total number of segments. Let the set of all segment
sizes be denoted by S = {si, j | i ∈ I ,1 ≤ j ≤ ni}. We define
the normalized fingerprint, with each element rescaled to be
in the [0,1] range, as S′i = (s′i,1,s

′
i,2, . . . ,s

′
i,ni

) where

s′i, j =
si, j −min(S)

max(S)−min(S)
.

Furthermore, let ∂S′i be the discrete derivative of the normal-
ized fingerprint S′i, i.e., for i ∈ I , ∂S′i = (∆s′i,2,∆s′i,3, . . . ,∆s′i,ni

),
where ∆s′i, j = s′i, j − s′i, j−1 for j = 2,3, . . . ,ni. The reasoning
behind computing the differences of each adjacent segment
size is to make later comparison with imperfect data easier,
explained further in § 3.4.

For a given dimension k ≥ 1 and representation i ∈ I , we
denote W k

i the window view of width k over ∂S′i, defined as:

W k
i =


∆s′i,2 ∆s′i,3 · · · ∆s′i,k+1
∆s′i,3 ∆s′i,4 · · · ∆s′i,k+2

...
...

. . .
...

∆s′i,ni−k+1 ∆s′i,ni−k+2 · · · ∆s′i,ni


The rows of the window view W k

i can be conceptualized as
each k-length sequence observed as a sliding window tra-
verses ∂S′i. Regardless of the attacker model, for each at-
tacked streaming service ν, we build its associated database
Dν

k =
⋃

i∈Iν
W k

i by repeating the above process for every nor-
malized fingerprint S′i with i ∈ Iν, where Iν is the set of tar-
geted representations from service ν.

k-d tree. For a given database Dν

k , we store every row of
every window view W k

i ∈ Dν

k in a k-d tree T ν

k , where the ℓ-th
row

W k
i [ℓ] = ∆s′i,ℓ+1,∆s′i,ℓ+2, · · · ,∆s′i,ℓ+k

of W k
i can be interpreted as a k-dimensional point in space.



We populate our data structure with triplets of the form
⟨W k

i [ℓ], i, ℓ⟩, with W k
i [ℓ] being used to calculate distances be-

tween points as used in the k-d tree’s O(logn) lookup opera-
tion, whereas (i, ℓ) is used to retrieve the video information
corresponding to the k-dimensional point W k

i [ℓ]. The search
operation provided by our fingerprint database can be viewed
as providing an implementation for a function

T k
τ,r : Rk → P (N×N×R),

that maps a k-dimensional point p to the τ closest points to
p within radius r in T ν

k . Technically, the k-d tree T ν

k is used
to efficiently retrieve T ν

k (p,τ) the τ closest points to p in the
tree, before filtering out points outside of radius r. Formally,
the output set T k

τ,r(p) is made of triplets of the form ⟨i, ℓ,d⟩
where i ∈ I is a video representation, 1 ≤ ℓ≤ ni − k is a row
number of W k

i (i.e., W k
i [ℓ] is a specific sequence of length

k+ 1 within the video associated to the i-th representation;
1 added due to the normalization step) and 0 ≤ d ≤ r is a
distance such that:

⟨i, ℓ,d⟩ ∈T k
τ,r(p)⇔W k

i [ℓ]∈T ν

k (p,τ)∧d = dist(p,W k
i [ℓ])≤ r,

with dist(p,q) =
√

∑
k
j=1(p j −q j)2 being the euclidean dis-

tance between the two k-d points p = (p1, . . . , pk) and q =
(q1, . . . ,qk). The introduced output format is relevant for the
identification heuristic outlined further in § 3.4.

3.3 Capturing Traffic: Packets and Bursts
The objective of the capture is for the attacker to aggregate
packet (or frame) sizes into chunks analogous to the actual
segment sizes downloaded during video streaming. These
chunks can subsequently be used to query the k-d trees to ob-
tain a shortlist of potential candidates. Reed and Kranch [23]
used TCP sequence and acknowledgment numbers to infer the
sizes of HTTP application data on each connection. Other fin-
gerprinting based works have used some version of a heuristic
that group packets into time-based intervals. While not as ex-
act as the method of [23], it suites ABR streaming traces well
given their bursty behavior (cf. Figure 2).

In our work, we do not assume anything about the network
protocol in use other than being able to distinguish a source,
destination, a time and a size of a packet or frame. This allows
the attacker to be efficient, needing to parse only the IP header
of each packet (assuming the attacker can also keep a lookup
table for service addresses). We created a tool, BurstShark,
that wraps TShark to also aggregate sequences of packets or
frames into bursts based on throughput, with some additional
features such as real-time output, allowing us to carry out the
attack and identify videos in a live setting by querying our
system as it creates bursts. While BurstShark is effective for
live analysis, ISP-level traffic monitoring would require more
specialized tooling that is not based on libpcap. BurstShark
performs some data cleaning, such as discarding bursts under

a certain threshold unlikely to be video, and accounting for the
header sizes on the outermost layer, but it is far from rigorous.
For example, we do not know if packets unassociated with
the video stream are interleaved in a burst. We do not make
assumptions about transport details, e.g. multiple connections
on different ports typical of HTTP/1.1 and TCP that offers in-
sight to the attacker and those are instead aggregated grouped
by IP address. Even as the strong attacker, the IP conversa-
tion that carries the video may also contain non-video traffic,
e.g. audio segments or text. However, instead of attempting
to clean the data on the network level, we accept that our
query points contain such noise and rely on our identification
heuristic to manage it.

Wi-Fi capturing. BurstShark also reads 802.11 traffic, pro-
vided a wireless interface in monitor mode. Here, we bin
conversations into a tuple consisting of the source and target
MAC address. Capturing 802.11 data frames is not always
trivial; while control and management frames can be simpler
to catch, data frames are usually transferred at full speed. The
monitor device must match the capabilities of the transmit-
ting device such as frequency, bandwidth and spatial streams.
Based on the equipment we have available, we limit ourselves
to 2.4 GHz 802.11n set to a fixed channel. Despite this, it is
common for our device to miss sequences of frames. How-
ever, since we only need the total volume of transmitted data,
we estimate missing bytes by using sequence numbers, iden-
tifying gaps, and computing each missing frame’s size based
on the average size of adjacent frames.

3.4 Identification Logic
In this section, we detail how bursts produced by our capture
tool are converted into the system’s predictions: which video
is being streamed at each timestep. It introduces a number of
system parameters, whose values and trade-offs are discussed
in the next section on system configuration.

Querying the k-d tree (strong attacker). Let X =(xt)t≥1 be
an unbounded series of bursts produced by our capturing pro-
gram BurstShark at discrete time steps; timestep t is referred
as “time t” whenever the context makes it unambiguous. As
for the ground-truth datapoints (see the preprocessing steps
outlined in § 3.2), let X ′ = (∆x′t)t≥2 be the discrete derivative
of the normalized burst sequence X , i.e. ∆x′t = x′t − x′t−1 for

t ≥ 2, where x′t =
xt−min(S)

max(S)−min(S) .
The reason behind manipulating the differences instead

of the absolute numbers is to eliminate potential constant
overhead present in adjacent bursts. For example, while the
video is variable bitrate encoded, audio is typically constant
bitrate and has a similar size in each burst. Also, the added
noise due to background traffic (particularly relevant for VPN
and Wi-Fi scenarios) will mostly on average cancel out if
we assume the volume of background traffic stays roughly
constant over time (at least when aggregated over segments



duration). We define the query (k-d) point Xk
t at time step

t ≥ k + 1 as follows: Xk
t = [∆x′t−k,∆x′t−k+1, . . . ,∆x′t ] is the

derivative of the normalized k+1 last recorded bursts at time
t ≥ k+1. Note Xk

t+1 is efficiently calculated from Xk
t using a

sliding window of length k+1 over the bursts sequence.
At last, we query our fingerprint database T ν

k for the corre-
sponding service ν (that was already built for a specific value
of k before the capturing tool started) to retrieve the set of
triplets T k

τ,r(X
k
t ) following the fixed parameters τ and r used

to configure the system; see § 3.2 for the definition of T k
τ,r. We

call Ck
t = T k

τ,r(X
k
t ) the set of candidate triplets at time step t.

Querying the k-d trees (weak attacker). Since the weak
attacker potentially does not know which video streaming ser-
vice is being used (or even if the captured traffic corresponds
to streaming traffic), we query in this case all the available
fingerprint databases and consider as candidates the (at most)
τ triplets with smallest distance from the queried point Xk

t
among all retrieved triplets.

Grouping candidate triplets into alignment groups. In
previous k-d tree works [7, 23], a single query was used to
declare an identification, with each query treated indepen-
dently without regard to queries at different points in time.
Due to isolation of the conversation at the transport layer and
data cleaning, a query point could then be almost identical
to its counterpart stored in the tree. In this work, we cannot
rely solely on a single query point due to increased noise,
which generates too many false positives (cf. comparison in
Appendix C). Instead, we introduce the concept of candidates
(distinct from candidate triplets), an illustrative example be-
ing included at the end of the paragraph. In detail, we group
candidate triplets ⟨i, ℓ,d⟩ ∈ Ck

t by their representation i and
alignment j = t − ℓ into the alignment group (i, j) ∈ I ×Z.

We say that two candidate triplets ⟨ia, ℓa,da⟩ ∈Ck
ta seen at

time step ta, and ⟨ib, ℓb,db⟩ ∈Ck
tb seen at time step tb ≥ ta are

aligned if
ia = ib ∧ ℓb − ℓa = tb − ta.

According to the time series lag parameter L, an alignment
group A(i, j)t “at timestep t” is made of all candidate triplets
seen during the last L time steps that belong to the alignment
group (i, j) – all such triples are then aligned with each other
(note that being aligned is indeed transitive), i.e.,

A(i, j)t =
⋃

t−L≤t ′≤t

{⟨i, ℓ,d⟩ ∈Ck
t ′ | t ′− ℓ= j}.

We call candidate at time t any non-empty alignment group
A(i, j)t at time t, with

Ct = {A(i, j)t | A(i, j)t ̸= /0}i∈I , j∈Z

being the set of candidates at time t.
An alignment group (i, j) is said to be present at time t

if a triplet corresponding to that alignment group has been
observed for time step t, i.e., ⟨i, t−ℓ,d⟩ ∈ A(i, t−ℓ)t for some

d ∈ R. In other words, the set of candidates Ct at time t corre-
spond to all alignment groups that have been present at least
once in the most recent L timesteps.

Example: To give an example of candidates, assume the
target is watching some video (representation) at timestamp
1:15:30 and one of the triplets obtained by querying our k-d
tree identifies this part of the video. Now, assume there are
no matches, i.e. candidate triplets, for the video in the next
minute because of noise. Then, one minute later a match for
the same representation at timestamp 1:16:30 is retrieved, cor-
relating with where the target would be in the video, assuming
uninterrupted playback. Our underlying hypothesis is that this
does not appear out of mere luck. Hence, whenever candidate
triplets are aligned, it is a strong indication that the considered
representation likely belongs to the video being played. Note
we used real timestamps here for the sake of the example as
opposed to the discrete time steps of our burst-based system.

Scoring. Recall, we have so far built at time t a set of
candidates Ct from which we need to decide if one of the
candidates c ∈ Ct produces a match, i.e., if our identification
system is confident enough in the candidate c to output it for
time step t (meaning its score exceeds a predefined threshold
θ). To decide for a match, we rank all candidates of Ct using
a heuristic scoring function. Intuitively, the score of a candi-
date indicates the likelihood of the candidate to correspond
to the actual video being played with the following aspects
increasing the score of a candidate: repetitive presence of the
candidate in previous timesteps and closeness of previous
query points to the candidate when it is present.

Let us now explain our scoring function score(c, t) for any
candidate (i, j) ∈ Ct in detail. For each candidate c = (i, j) ∈
Ct that is present at time step t ≥ k+1, i.e., such that

⟨i, ℓ,dist(Xk
t ,W

k
i [ℓ])⟩ ∈ A(i, j)t

with j = t−ℓ, we assign first a base score Dc
t with 0 < Dc

t ≤ 1
and determined by the exponential distance decay from the
query point Xk

t at time t, i.e., calculated as

Dc
t = e−λdist · dist(Xk

t ,W
k
i [ℓ]),

where the constant λdist represents the distance decay factor.
If a candidate (i, j) ∈ Ct is not present at time t then we set
its base score to zero, i.e. for any alignment group c = (i, j)
we have

¬(∃d ∈ R,⟨i, j,d⟩ ∈Ck
t ) =⇒ Dc

t = 0.

The base scores vector Dc
t for candidate c ∈ Ct at time step t

is defined as

Dc
t = [Dc

max{k+1,t−L+1}, . . . ,D
c
t−1,D

c
t ]

and contains the L most recent base scores for c; note if t < L,
the vector Dc

t is of smaller size.
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Figure 3: Illustration of weights for some w, k and L empha-
sizing recent scores as less important.

Furthermore, we introduce a vector W = [w1,w2, . . . ,wL]
made of L weights where w1, . . . ,wL−k−1 are all set to a fixed
constant w≥ 1 and the remaining k+1 elements wL−k, . . . ,wL
are set to 1. The main input for the score for any candidate c
present at time t is the weighted sum Sc

t = W ·Dc
t of the base

scores by the fixed weights. As our system is non-conclusive
it needs to adapt its opinion over time, therefore we also log
scale Sc

t and apply the decay constant λscore to a candidate’s
previous score when it is not present at time t.

The score of candidate c ∈ Ct at timestep t is calculated as:

score(c, t)=


ln

1+
L

∑
n≥1,

n≥k+1+L−t

Dc
t−L+n ·wn

 if c is present
at time t,

score(c, t −1) ·λscore otherwise.

Summary and justifications: In brief, the score of align-
ment groups that are absent from the last L timesteps is 0.
Among candidates, when not present, the score of a candidate
decreases exponentially by a factor λscore at every time step.
If present, the score is the product of the base scores of the
time steps when it appears in the last L steps, weighted so
that the most recent k+ 1 scores have a lesser importance.
The prioritization of older base scores over recent ones is
illustrated in Figure 3. We motivate this decision by assum-
ing a false candidate c has been produced by the query point
Xk

t = [∆x′t−k,∆x′t−k+1, . . . ,∆x′t ]. As the sequence evolves to
Xk

t+1 = [∆x′t−k+1,∆x′t−k+2, . . . ,∆x′t+1], all elements in Xk
t ex-

ist in Xk
t+1 except for the discarded element ∆x′t−k and the

added element ∆x′t+1, highlighting this latter one as the fo-
cal point for determining the likelihood of c reappearing as
a result of Xk

t+1. With each new time step, the influence of
the initially overlapping elements on the likelihood of c di-
minishes. This diminishing likelihood can be expressed as
P(c | Xk

t+1)> P(c | Xk
t+2)> .. . > P(c | Xk

t+k). Consequently,
we place less emphasis on recent base scores, and our empir-
ical data have shown this to be effective in preventing high
scores for false candidates.

Prediction. In each time step t we select the highest score
candidate above a predefined threshold θ which becomes the
prediction. If no candidate has a score above the threshold,
then the system does not make a prediction, instead returning
−1 to signal that it is not confident enough. Additionally, let us
observe that because a candidate also includes the alignment
j = t − ℓ, we can derive the playback position of the target by
using ℓ, the segment duration and accounting for the buffer
length used by the service.

Table 3: Configurable system parameters and default values.

Variable (§ def.) Value Description

k (§ 3.2) 8 Dimension of the k-d tree
r (§ 3.2) 0.025 Radius of the k-d tree search
τ (§ 3.2) 50 Max elements retrieved from T ν

k
L (§ 3.4) 75 Time series lag
w (§ 3.4) 3.0 Weight for t −L, . . . , t − (k+1) scores

λdist (§ 3.4) 100.0 Decay constant for base scores
λscore (§ 3.4) 0.9 Decay constant for candidate scores

θ (§ 3.4) 2.2 Confidence threshold

3.5 System Configuration

System parameters. The value that we set for our system
parameters are presented in Table 3. k = 8 is a trade-off be-
tween the curse of dimensionality, identification time and
accuracy. We set r = 0.025 and τ = 50 to limit the lookup
in both sparse and dense regions of the k-d trees. To priori-
tize older scores, the weight parameter is set to w = 3.0 to
lessen the impact of false candidates appearing in clusters (as
explained in § 3.4) and handle highly similar footage. The
lag is set to L = 75 as a trade-off memory usage and system
accuracy. We set the decays to λdist = 100.0 and λscore = 0.9
to have base scores close to 0 when points are close to r. With
these parameters and when the system is the most confident,
scores converge to 5.0 and drops below 2.2 upon changing
videos (as visualized in Figure 5 where θ = 2.2). The ef-
fect of different thresholds is demonstrated in § 4. The same
parameter set is applied across all of our attack scenarios,
although different system configuration could potentially be
more effective given the variable quality of data. Prior to ex-
panding our dataset and evaluation to include Amazon and
Max videos, tuning was performed on 200 SVT video streams
(0.1% of our dataset) in a VPN-scenario. While these parame-
ters are not necessarily optimal, they have proven sufficiently
effective for our heuristic approach. The reasons behind the
selection of all system parameters are described in more depth
in Appendix B.

Implementation. Our implementation uses NumPy, pan-
das and the k-d tree implementation of scikit-learn. The 8-
dimensional trees consist of approximately 1.89 billion points
derived from 3 million fingerprints, requiring around 90 min-
utes to build and approximately 152 GB of memory. In prac-
tice, an attacker may update the dataset and rebuild the trees
once per day. A lookup, i.e. call to the search function of one
k-d tree, takes about 18 ms on average on our midrange hard-
ware. Being in the order of milliseconds, for our evaluation it
is deemed negligible against the playback (wall) time.
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Figure 4: Illustration of the attack and testing environment; note that the testing setup has been designed to facilitate our evaluation
and most elements are not required for the attack to be performed.

Table 4: Videos streamed per device (evenly distributed
among the services): (a) HTTPS streams for the strong at-
tacker model and (b) VPN streams for the weak attacker.

(a) HTTPS (b) VPN
Device # Videos Time (h) # Videos Time (h)
Linux 339 56.5 0 0
Mac 255 42.5 429 71.5

Windows 306 51 411 68.5

Total 900 150 840 140

4 Evaluation

We present in this section a thorough evaluation of the identi-
fication method presented in § 3.1-3.4 and parameterized by
the default values as presented in Table 3 and explained in
§ 3.5. We first explain in detail the real network environment
that is used for our evaluation, before presenting our results.

4.1 Experimental Setup

Network environment. Our aim is to mimic a typical real
life streaming scenario, therefore we setup a regular home
network, see Figure 4, with an internet-facing router. LAN
devices, i.e. the targets, connect to the network wirelessly
through a separate access point. Between the router and the
access point we setup a layer 3 switch with monitoring ca-
pabilities. We connect the SPAN port attacker to the switch,
such that it receives a copy of all network packets on the Ac-
cess Point (AP) port. While the attacker is part of the LAN in
our experimental setup, it could be deployed anywhere on the
network path between the target and the video service. For the
evaluation of the strong attacker model, there are three target
laptops streaming with HTTPS only, a Lenovo laptop running
Ubuntu 24.04, a MacBook running macOS 11, and an Acer
laptop running Windows 11. We refer to them as the Linux,
Mac, and Windows devices respectively. For the weak model,
we do not stream on the Linux device. Instead, we configure
it as a VPN (WireGuard) relay positioned outside the LAN,
allowing the Mac and Windows devices to use it as an exit
node. As a result, from the SPAN port attacker’s perspective,
all network traffic is now going through an encrypted tunnel.

Furthermore, we set up the Wi-Fi attacker in close proximity
to the target devices, a device equipped with a network card
in monitor mode to capture the Wi-Fi traffic. For clarity, both
the VPN and Wi-Fi evaluations are conducted using the same
VPN-streamed sessions. The target devices are fully updated
and use default OS-level settings. As mentioned, and relevant
for the VPN and Wi-Fi attacks, we purposefully try to emulate
a typical user, so the Mac is signed in with an Apple ID, and
the Windows device is signed in with a Microsoft account.
Consequently, each device generates some idle network traf-
fic, such as syncing, telemetry, and checking for updates. A
shared web driver program for the Chrome browser is used to
navigate each service and start playback automatically.

Test set. We select randomly videos from Amazon, Max
and SVT that are at least 15 minutes long for each device
to stream. Because our system is designed to be continuous
and adaptive to changes, each device streams three videos
(one from each service) at a time, also in a random order.
Each video is streamed for 10 minutes, seeking to a random
position with enough time remaining as the starting point.
This duration is chosen to provide sufficient playback for
querying while also balancing the evaluation cost in terms
of time spent watching videos and storage needed for saving
PCAPs. The attacker runs the capture tool for the full 30
minutes. The system is capable of real-time identification but
the evaluation is instead done by saving the burst files and the
original PCAPs for reproducability. Note, however, that there
is no required post-processing step, and evaluation results
for a certain configuration apply to the real-time use case as
well. Table 4 shows the number of streams and total duration
per device in both evaluation settings. Our webdriver script
often failed to initiate playback, or crashed due to stale web
elements or CAPTCHA prompts. Sessions that contained such
failures were discarded, as they do not accurately emulate real
user behavior.

In the weak attacker model, we also conduct an experiment
to evaluate how the system reacts to data unassociated with
Amazon, Max and SVT videos. For this, we continuously
stream random videos on YouTube using YTRoulette4, ob-
taining 149 hours of VPN traces. Additionally, we use capture

4https://ytroulette.com

https://ytroulette.com


traces from HBO Max, from our own earlier experiments prior
to the launch of its successor Max, comprising 68.8 hours of
VPN and Wi-Fi captures. On top of our own collected data,
we make use of the public VNAT dataset [14] that includes
streaming traces from YouTube, Vimeo and Netflix as well as
a range of other applications in a VPN and non-VPN setting,
accounting for 490 hours of network traffic (cf. Table 6 in
Appendix D).

4.2 Results
The system’s performance at any given time step t is deter-
mined by whether it outputs a correct prediction for repre-
sentation i or returns -1 if confidence falls below the pre-
determined threshold θ. This non-conclusive approach ne-
cessitates an evaluation over time, particularly as the target
content changes. In order to assess the system in a way that
is interpretable, we account for the playback time in seconds
0≤ t ≤ 600, and define the following three mutually exclusive
outcomes for a single playback at time t:

• Identified(t) (abbrv. Id.): At least one correct prediction
within time t with no incorrect predictions5 inside the
full 600 seconds watching session.

• Misidentified(t) (abbrv. Mis.): At least one incorrect
prediction inside the watching session; constant for all t.

• Unknown(t) (abbrv. Unk.): Neither identified within t
nor misidentified.

Here, a correct prediction means that the predicted repre-
sentation belongs to the video that is being streamed by the
target, while an incorrect prediction belongs to some other
video. When the target changes video, the score of the previ-
ous video automatically decays. For this reason we allow a
90 second grace period, but only if the system’s prediction is
associated with the previous video played by the target. Addi-
tionally, since we classify a playback as misidentified if there
is a single incorrect prediction inside the full 600 seconds,
we can safely say that a video identified at some time t = t0
will also be identified for all t0 < t ≤ 600. Furthermore, for
Amazon, Max and SVT videos (i.e. data known to the system)
we define the precision and the recall as follows:

Prec.(t) = ∑t Id.(t)
∑t Id.(t)+∑t Mis.(t)

Rec.(t) = ∑t Id.(t)
∑t Id.(t)+∑t Mis.(t)+∑t Unk.(t)

5Except during a 90 second grace period when the target switches to
another video during which only the previously watched representation is
allowed to be “misidentified”.
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Figure 5: System scoring over time as target streams three
videos with a VPN, demonstrating how it adapts over time.

Figure 6 shows the accuracy over time for each evaluation
setting. Unsurprisingly, the system more rapidly identifies
the HTTPS-based traffic compared to the noisier VPN and
Wi-Fi traffic, with approximately 90% of streams being iden-
tified within 1:30 and the very last identification occurring
at the 5:30 mark. Table 5 shows the cumulative results after
10 minutes of playback time, using a threshold of θ = 2.2.
The unidentified SVT videos in the HTTPS and VPN settings
were HLS-based MPEG-TS streams, whose fingerprints were
absent from our dataset as noted earlier. Nevertheless, any
attacker with a more capable setup than ours could easily
gather all such fingerprints as well. On the other hand, one un-
known Amazon video was a cartoon, characterized by smaller
segment sizes typical of static scenes and was streamed by
the Linux device, resulting in reduced quality as well. Here,
our set threshold for discarding bursts in our capture tool
was set too high at 50 KB, causing legitimate segments to be
ignored. Evaluating very low-quality streams may warrant
further investigation. The other unknown Amazon video had
an outdated fingerprint, possibly due to re-encoding. While
our evaluation took place over a few days after collection,
an attacker could run the data collection tool daily to avoid
such cases. In the Wi-Fi evaluation, many Amazon videos
remained unidentified, a stark contrast to the VPN scenario
where the very same streams were largely identified. Analysis
of the raw capture data indicates prolonged periods of frame
loss in these cases, surpassing what our previously described
recovery technique could handle. This issue likely stems from
a limitation in our monitoring device, specifically its inability
to process the large volumes of data received during Ama-
zon’s initial buffer fill, which may overwhelm the network
card’s capacity. During evaluation we observed a small num-
ber of misidentifications, but these turned out to be mirrors
with separate video IDs (e.g. the same video with a different
title or for another language) and such cases were ignored.

Unknown traffic experiment. We provide empirical evi-
dence for the expected false positive rate of our identification



Table 5: Results with θ = 2.2 at t = 600 s.

(a) Strong attacker: HTTPS

Service Id. Unk. Mis. Prec. Rec.

Amazon 299 1 0 1.000 0.996
Max 300 0 0 1.000 1.000
SVT 299 1 0 1.000 0.996

Total 898 2 0 1.000 0.998

(b) Weak attacker: VPN

Service Id. Unk. Mis. Prec. Rec.

Amazon 279 1 0 1.000 0.996
Max 280 0 0 1.000 1.000
SVT 276 4 0 1.000 0.985

Total 835 5 0 1.000 0.994

(c) Weak attacker: VPN + Wi-Fi

Service Id. Unk. Mis. Prec. Rec.

Amazon 165 115 0 1.000 0.589
Max 279 1 0 1.000 0.996
SVT 275 5 0 1.000 0.982

Total 835 121 0 1.000 0.856
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Figure 6: Cumulative accuracy for the evaluated attack sce-
narios over the playback time.
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Figure 7: Empirical maximum scores over unknown traffic.

system, assuming a threshold θ set at 2.2. Consider the nearly
500 hours of unknown network traffic selected for our evalua-
tion. Recall that this traffic is generated by various networking
applications (including SSH, SCP, etc.) and not exclusively
by adaptive bitrate streaming traffic. As a result, our burst
identifier tool often fails to form query points, leading to an
average of only one datapoint generated every 15 seconds
(details are provided in Table 6 in Appendix D). The highest
score ever produced by our system is 1.99, resulting in zero
identifications and therefore no false positives.

Figure 7 displays the empirical distribution of the maxi-
mum score obtained by querying our system, i.e., the highest
score among the 50 closest matches in our fingerprint database
over all our unknown data. It also highlights HBO Max, the
“unknown” application with the highest average maximum
score. Following our experiments, the empirical maximum
score distribution is well modeled by a normal distribution.
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Figure 8: Effect of θ for 140 hours of known VPN traffic and
490 hours of unknown traffic.

Such a distribution quickly approaches zero, thus under this
assumption, the probability that an unknown score is above
θ =2.2 is 6.17 · 10−6 with the mean µ and standard devia-
tion σ parameters of the normal distribution pessimistically
set to µ = 0.67 and σ = 0.35 so to be well above the tail of
the empirical distribution (cf. the zoomed-in plot Figure 10
on the tails of the distributions in Appendix D). Following
this observation, we estimate that the maximum score from
unknown traffic will exceed the set threshold only once ev-
ery hundred thousand query points. Combining this with the
average empirical time between query points, this translates
to a false positive being (pessimistically) expected approxi-
mately once per month when the system is continuously fed
unknown network traffic from a single source. This estimate
is obtained under the simplified assumption that the observed
data is representative of the overall distribution of such traffic.
Furthermore, Figure 8, with precision modified to include
false positives from the unknown set, demonstrates how the
threshold can be adjusted to fine-tune the sensitivity of the
system.

Summary. Our evaluation highlights the concerning aspect
of the demonstrated privacy attack. Indeed, among a massive
database of 242,000 videos and 3 million fingerprints, 99.5%
of streams are identified within 10 minutes with successful
identification occurring on average within 2 minutes of start-
ing our capturing program. Given the ease with which our
system can be deployed, these results are particularly alarm-



ing. In addition, the robustness of our system is maintained
in noisier conditions: it can effectively identify streams when
targets use VPNs to mask their traffic or if the attacker has no
network access but simply monitor the wireless traffic within
reach. In these cases, our preliminary results indicate some
resistance to false positives, but further research is required
to validate its effectiveness in more diverse conditions.

5 Mitigation

5.1 Traffic Manipulation
Recent studies [12, 21, 25] have explored defensive measures
against encrypted traffic analysis attacks, primarily focus-
ing on website fingerprinting. The VPN service Mullvad re-
cently introduced an optional feature called Defense against
AI-guided Traffic Analysis (DAITA) in their beta client [17].
DAITA is built using the Maybenot framework, introduced
by Pulls et al. [21]. It works by ensuring constant packet
sizes, interspersing random background traffic, and distort-
ing data patterns to make it difficult for observers to identify
meaningful activity or specific website visits. We conducted
a brief experiment streaming five videos with and without
DAITA activated. Our results, whose capture files are avail-
able as part of our published record, indicate that DAITA
effectively mitigates the attack outlined in this paper but dou-
bles bandwidth usage at best, potentially impacting quality
of experience (QoE). These findings align with the authors’
evaluation of the initial DAITA servers [20]. Nevertheless,
we advocate for the development of such privacy-preserving
features. DAITA, although in its early stages, shows promise
and is likely to improve with further research. In its current
state, DAITA appears to be a viable option for mitigating
the attack when privacy is paramount, but further research is
required to thoroughly evaluate its efficacy.

5.2 Addressing the Leak Source
Traffic manipulation is a band-aid solution to the leak, which
stems from the design of ABR streaming clients. We could
pad segments on the server side using a padding scheme [18],
but due to the already large size of video segments, exces-
sive padding could negate many of the advantages of using
variable bitrate over constant bitrate in the first place. These
advantages include reducing bandwidth costs and maintain-
ing QoE, which are top priorities for content providers [6].
Since ABR protocols are inherently client-driven, we believe
that the largest part of the prevention strategy should be im-
plemented at the client level, perhaps in conjunction with
variations of previously mentioned approaches. The remain-
der of this section discusses the cause of the leak and proposes
a number of conditions to mitigate it.

Buffer management. In this paper, we assume that one
burst, excluding audio and other noise, corresponds to one

video segment during the streaming steady state, meaning
the buffer is full and network conditions are stable. This re-
flects a buffer strategy of a request being triggered when the
buffer falls below a predefined threshold, typically a segment
length, and seems to be the most common strategy from our
observations. Consequently, this means that all network traces
for a representation playback during the steady state, have a
single permutation, or mapping, to its fingerprint and lets us
build a single k-d tree to find candidates for all such videos.
A different strategy employed by some services is the use of
shorter segments where the client requests multiple ones in
quick succession. This can be beneficial for latency assuming
a whole segment needs to be decoded to initiate playback,
but has the drawback of increased load on servers because of
the higher request frequency. Here, the requested segments in
each “on period” depend on when the steady state is reached.
This raises the question if the attacker can deal with a variable
number of segments interleaved in a single burst.

HTTP. To address this, we assume a network attacker that
can observe the transport layer, albeit TLS-protected, con-
versation between the target and the streaming service, i.e.
the model of many previous works [7, 9, 13, 24, 30]. The in-
formation that can be dissected from the multiple segments
in the same on period depend on the HTTP version. It is
known that HTTP/1.1 suffers from head-of-line blocking,
and to overcome this, simultaneous requests for resources
use multiple TCP connections. Consequently, if the client
uses HTTP/1.1, the attacker can derive the individual segment
sizes from the different connections. HTTP/2 offers multiplex-
ing at the HTTP level, meaning resources can share a single
TCP connection. HTTP/3 further improves on this, addressing
some shortcomings of TCP itself and employs the UDP-based
QUIC protocol instead. The use of HTTP/2 and HTTP/3 thus
poses challenges to the attacker when multiple segments are
requested, in that deriving their individual sizes from a single
burst will be difficult. In its current state, the attack outlined in
this paper would not work on a streaming service that employs
a buffer management strategy of requesting a variable number
of segments in each on period. However, as we discuss next,
this is not a general countermeasure to the vulnerability and
we do not recommend settling for such a solution.

Timing considerations. In this work, as in previous fin-
gerprinting works, the variable bitrate encoded segment sizes
have been the focus. Setting aside concerns about inefficiency,
consider an encoding strategy where each representation is
divided into segments of equal size. The observed bursts for
all videos will thus be similar in size, effectively stopping
known fingerprinting methods. However, this approach would
only shift the focus of the attack to the time domain, since
the segment durations would now vary significantly. Here, the
attacker could use the time between bursts, and the fingerprint
would comprise the segment durations. We note that this is
possible because the buffer will, during the steady state, try



to remain constant. This is generally true and not restricted to
equal sized segments. We believe that the buffer striving to
stay at a constant size during the steady state is the root cause
of the vulnerability and that there is, with this assumption,
potential for a method that is also agnostic to the buffer strat-
egy. For example, such a solution would incorporate both the
segment sizes and the segment durations for a generalized fin-
gerprint. This remains to be evaluated by future work, but as a
proactive measure, we suggest the use of a randomized buffer.
In this scenario, the buffer could be configured to maintain
a capacity between a predefined lower bound, e.g. the previ-
ous max size of the buffer, and an upper bound. The buffer
would then be allowed to deplete to a random level within
this range before the next request phase is triggered which
requests between 1 and N segments, ensuring that the number
of segments requested does not cause the buffer to exceed its
upper bound. This layer of randomness would challenge any
fingerprinting system derived from constant features.

Summary. To mitigate the attack, we propose three condi-
tions that should all be satisfied by a ABR client implemen-
tation: (1) a buffer strategy where multiple segments may be
requested simultaneously, (2) use of HTTP/2 or higher, and
(3) the use of a randomized buffer. The effectiveness of this
approach, potentially in combination with other methods, and
its impact on QoE remain areas for future research.

6 Conclusion

We have presented a concerning narrative about the video
streaming landscape, demonstrating that the ABR leak is more
extensive than previously documented. Our system shows re-
markable accuracy and precision even with a massive set of
monitored videos and would in its current state be practical
to deploy in smaller networks, leveraging our efficient data
collection method to keep the datasets fresh. Also, its porta-
bility to programmable network devices could be explored
to evaluate its scalability at larger scales, such as ISP-level
deployments.

The privacy implications of this work are very substantial,
extending beyond mere privacy invasion to potential surveil-
lance, censorship or discriminatory treatment. We hope our
work raises public awareness about the vulnerabilities in video
streaming, encouraging informed consumer choices. We also
release our tools and datasets to support ongoing research in
this domain. At last, we would like to call on streaming devel-
opers to take our proposed mitigation strategy into account
and develop solutions promptly to address the leak.

7 Ethics Considerations

This work highlights a significant privacy issue with poten-
tial implications for covert surveillance, where individuals
could be monitored without their knowledge. A key concern

is whether publicizing this vulnerability does more harm than
good. However, exposing weaknesses in widely used systems
is a crucial step toward improving security. Identifying and
addressing vulnerabilities is a fundamental principle in net-
work security, allowing the community to develop stronger
defenses. Importantly, this is not a newly discovered or zero-
day vulnerability. Rather, it builds on a known issue, now
shown to be more severe than previously understood. The
ABR leak has been documented since 2016 [22], and our
findings suggest that, given its feasibility over large datasets,
well-resourced actors could potentially already be exploiting
it.

Beyond security research, this work also serves an educa-
tional purpose by raising awareness about the privacy risks in
video streaming. Even if the issue is not immediately resolved,
users and organizations can make more informed decisions
when considering the privacy implications of streaming con-
tent online. Additionally, we discuss mitigation strategies,
contributing to the broader effort to address these vulnerabili-
ties. Striking a balance between responsible disclosure and
the potential risks of misuse is always important. However, by
adhering to ethical disclosure practices and prioritizing public
awareness, this work ultimately contributes to strengthening
digital privacy and network security.

8 Open Science

All our tools are made publicly available to facilitate repro-
ducibility and encourage a timely response from streaming
services. Additionally, we are releasing our entire fingerprint
dataset—the largest of its kind ever published, exceeding pre-
vious datasets by at least an order of magnitude. We hope
this will not only foster research into mitigation strategies for
the demonstrated attack, with reproducible results, but also
stimulate further studies on network traffic analysis, particu-
larly in video streaming. All artifacts, available on Zenodo as
referenced earlier, include:

• TSV datasets containing video metadata and fingerprints
from Amazon, Max, and SVT;

• PCAP capture files from the main evaluation, the un-
known traffic experiment, and DAITA testing;

• karl, our data collection tool for retrieving fingerprints;

• BurstShark, our TShark wrapper tool for network traffic
capture;

• Models implementing the video identification logic;

• An evaluation script to reproduce the main results;

• Miscellaneous scripts, e.g., the automated WebDriver
streaming script.
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Figure 9: Deployed experimental setting.

Hardware involved in our experimental setup are displayed
in Figure 9.

B System Configuration and Parameter Tun-
ing

Earlier k-d tree works [7, 22, 23] have used a value for k be-
tween 3 and 6, noting a trade-off between identification time
and accuracy. It is known that k-d trees suffer in performance
as k grows, a concept known as the curse of dimensional-
ity. In this work, we did not have query points of sufficient
quality to obtain accurate queries with a k < 6. We found
that an 8-dimensional tree was more accurate than 6 and 7,
and that identification time differences were negligible due
to our method requiring more than a single point to make
a prediction. The accuracy of the search was met with di-
minishing returns at k > 8, with cost in both query time and
memory use. We note that our heuristic works by assuming
points belonging to the representation we are searching for
will, over time, appear more often and with a closer distance
than other points. The previous k-d tree works only needed
a single query point to surpass a set threshold based on the
Pearson correlation with one of the returned points in order
to accurately declare a match. In our method, the overlap be-
tween true and false points greatly reduced the effectiveness
of the previous strategy, as demonstrated by our comparison
presented in Appendix C.

We use a radius value r of 0.025 which can be thought of as
a generous upper-bound, with most lookups being limited to
the τ closest points, which we keep at 50. r and τ complement
each other in that r limits the lookup in sparse regions of the
tree, while τ limits more dense regions. For example, as noted
in earlier k-d tree works [7, 23] some videos have periods
of darkness, resulting in a sequence of equal sized segments.
Our implementation is not as sensitive to such sequences
due to requiring multiple points and prioritizing older scores,
for which we use w = 3.0. This lessens the impact of false
candidates appearing in clusters, as explained in § 3.4, and
consequently improves accuracy (about ~3% in our parameter



Table 6: Number of query points and average elapsed time between them per application, from processing unknown traffic.

Application Total capture time (h) Number of generated query points Average time between points (s)
HBO Max 68.8 52561 4.7

Netflix 1.3 314 14.9
Skype 123 0 –

SFTP,Rsync,SCP 14.8 514 104
SSH,RDP 127.4 126 3640

Vimeo 1.0 479 7.5
YouTube 151.5 58358 9.3
Zoiper 2.7 0 –

Total 490.5 112382 15.7

Table 7: Evaluation results using the method of Björklund et
al. [7]. Testing multiple suggested settings.

w k Pearson Thr. Id. Unk. Mis. Prec. Rec.

5 5 1 - 1e-5 8 86 746 0.011 0.009
12 3 1 - 1e-2 2 783 55 0.036 0.002
12 4 1 - 1e-2 7 682 151 0.046 0.008
12 6 1 - 1e-2 49 307 484 0.092 0.058

tuning evaluation), identification time and the system’s ability
to retain its predictions, by allowing a lower threshold to be set.
We use a lag of L = 75, ensuring that the system retains only
the most recent 75 time steps without indefinitely consuming
memory, and further increasing it had no significant impact on
accuracy. For the base scores, we use λdist = 100.0, resulting
in base scores close to 0 for points closer to r. Note the
difference with tightening the r-value, since in that case the
candidate would not be considered as present, while λdist
allows us to both give low scores to false candidates, while
simultaneously accounting for previous candidates appearing
again but with a bit more noise. We set λscore = 0.9, setting
a lower value technically allows the system to adapt faster
to videos changing, but consider that a sequence of k+1, i.e
9 bursts are required at minimum to initially predict a new
video. With the suggested parameters, even when the system
is the most confident, the score will converge around 5.0,
allowing it to drop to approximately 2.2 during the transition
period. This can be visualized in Figure 5 presenting score
over time, where the threshold θ is also set to 2.2. Uncertainty
due to noise is characterized by the score dropping, before
the system sees the candidate present again.

C Comparison with Previous Method

Among the previous works summarized in Table 1, many
are hard to properly reproduce in our setting (e.g. require
transport details). Machine-learning based approaches require
multiple streams of the same videos, something we cannot
do given the size of our monitored videos set. The majority
of works also lack open-source implementations and public
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Figure 10: Empirical maximum scores over unknown traffic,
tail of the empirical distributions.

datasets. However, we can do a reasonable comparison with
previous works based on the k-d tree. For this, we imple-
mented the conclusive heuristic used by Björklund et al. [7],
as they do not rely on TCP sequence and acknowledgement
numbers used by Reed and Kranch [23]. Their method was
demonstrated to be 99.5% accurate for a dataset of 20,000
videos, having full network-level access, and similarly to Reed
and Kranch, use a dimensionality reduction technique for win-
dows, condensing w-dimensional sequences to k-dimensional
query points for the k-d tree to retrieve a set of candidates
that are subsequently compared with the query point using
the Pearson correlation coefficient and declaring a match if
it surpasses a predefined threshold. We evaluate the method
using our VPN streams for Amazon, Max and SVT. Table 7
demonstrates the difference in the quality of the input data in
our attack model, reaching 0.058 recall in the best case, using
their proposed settings.

D Empirical Scores for Unknown Traffic

Table 6 summarizes the selected unknown traffic dataset cov-
ering 490 hours of captured traces. For each application, total
duration of the captures is given as well as number of gener-
ated query points by our packet capturing tool and the average
time between query points. Figure 10 is a zoomed-in version
of Figure 7 focusing on the scores above 1.1. It highlights that,
following the distribution of max scores obtained over 500
hours of unknown network capture of various applications,
the probability that a false positive is generated by our system
(with the score threshold set to θ = 2.2) is very low.
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