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Abstract
Apple’s Find My network, leveraging over a billion active
Apple devices, is the world’s largest device-locating network.
We investigate the potential misuse of this network to ma-
liciously track Bluetooth devices. We present nRootTag, a
novel attack method that transforms computers into track-
able “AirTags” without requiring root privileges. The attack
achieves a success rate of over 90% within minutes at a cost
of only a few US dollars. Or, a rainbow table can be built
to search keys instantly. Subsequently, it can locate a com-
puter in minutes, posing a substantial risk to user privacy and
safety. The attack is effective on Linux, Windows, and An-
droid systems, and can be employed to track desktops, laptops,
smartphones, and IoT devices. Our comprehensive evaluation
demonstrates nRootTag’s effectiveness and efficiency across
various scenarios.

1 Introduction

Bluetooth trackers, such as AirTag [7] and Tile [61], utilize
crowd-sourced finding networks, allowing owners to locate
their trackers precisely. A tracker sends advertisement mes-
sages over Bluetooth Low Energy (BLE), while nearby de-
vices (i.e., finders) that are in the same finding network as the
tracker receive the messages and then report their locations
(latitude/longitude coordinates) to a cloud. A tracker does not
need a GPS module but relies on the GPS modules of such
finders to report locations. Among various tracking networks,
Apple’s Find My network is the largest, leveraging over a
billion active iPhones and other Apple devices. This exten-
sive network makes it more likely that a lost AirTag will be
detected and its location reported compared to other trackers.
Therefore, this work is focused on Find My network.

Prior work, OpenHayStack [31], reported that devices like
the ESP32 could be turned into trackers leveraging Apple’s
Find My network without requiring Apple’s approval. (Note
that this is different from Apple-certified third-party trackers,
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Figure 1: Overview of Find My offline finding.

which participate in the Find My network through a paid mem-
bership in the Apple program [6].) OpenHayStack requires
root privileges (or a device that does not distinguish root and
non-root processes at all) to turn a device into a tracker [29].
However, root privilege escalation usually requires non-trivial
efforts in the attacking scenario and does not always succeed.
Thus, OpenHayStack only works in limited scenarios. In con-
trast, we aim at a widely applicable attack method that can
turn a remote computer into a tracker without depending on
root privileges.

Figure 1 illustrates the overview of Find My offline finding.
(1) Through pairing, an AirTag shares the public/private key
information with the owner’s device. (2) When the AirTag is
separated from the paired device, it advertises its public key
via BLE advertisements, known as lost messages. (3) Nearby
Apple devices, referred to as finders, generate encrypted lo-
cation reports and send them, along with the hashed public
key, to the Apple Cloud. (4) The Apple Cloud allows anyone
to use a hashed public key to retrieve the associated location
reports, which can only be decrypted using the correct private
key. To ensure anonymity, finders do not authenticate whether
a lost message is sent from an Apple device [31].



Public Key (28 Bytes):

Byte 0  Byte 1 Byte 2 Byte 3 Byte 4 Byte 5  22 Bytes
XX XXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX   · · · 
 |___________________________________________________|

      46 bits used for matching

BLE Address (48 bits):
Byte 0  Byte 1 Byte 2 Byte 3 Byte 4 Byte 5
XX XXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
| |___________________________________________________|

MSB     46 bits used for matching

Figure 2: Relationship between the public key and the
BLE advertising address.

The BLE specification limits an advertisement payload to
31 bytes, which is insufficient for a lost message. To cope
with the tight limit, the Find My protocol stores a part (46
bits) of the public key in the BLE advertising address field.
As illustrated in Figure 2, if the least significant 46 bits of
a BLE address are equal to the least significant 46 bits of
the first 6 bytes in a public key, we say they match. These
46 bits are referred to as the critical part of the advertising
address or public key. To craft a lost message, OpenHayStack
first prepares a public/private key pair, and then modifies the
advertising address to match the public key. Modifying the
advertising address, however, requires root privileges.

Instead of modifying the advertising address, we propose
to search for a public/private key pair that matches the ad-
vertising address and then send lost messages advertising the
public key. However, the Find My specification [5] mandates
the use of a random static address for advertising lost mes-
sages, whereas our investigation reveals that devices usually
do not use such addresses for advertising. This seems to cre-
ate a barrier to our strategy of using the existing address for
advertising lost messages.

Nevertheless, our further experiments reveal that all types
of BLE addresses are allowed by the Find My implementa-
tion for advertising lost messages. Building on this finding,
we present a novel attack method, nRootTag, which turns
a computer into a tracker without needing root privileges.
Depending on the operating system, one of the two attack
techniques is employed. (1) On Linux, a public address is
used for advertising and can be accessed without root privi-
leges. Our observation is that the public address of a BLE chip
has 24 bits of “Company ID” (also known as OUI) assigned
by the IEEE, and these registry records are publicly accessible.
Leveraging the public information, we can precompute rain-
bow tables that store the keys for various public addresses. As
a result, given a public address, the matching public/private
key pair can be retrieved instantly. (2) On Android and Win-
dows, advertising typically uses a random resolvable private
address and a non-resolvable private address, respectively,
and the address cannot be accessed without root privileges.
We consider an attack scenario, for example, where a popular
app is installed on multiple computers at a location, such as

a home, mall or office building. The app then can use one
computer to sniff the advertisements from another and obtain
the advertising address. Subsequently, the attacker can use
rainbow table lookup or online key search to find a matching
public/private key pair. We design a custom database to signif-
icantly reduce the storage space required for the rainbow table.
To accelerate the key search, we implement online search to
leverage multiple GPUs.

We make the following contributions.

• While the Find My specification mandates the use of
random static addresses for advertising lost messages,
computers typically do not use such addresses for BLE
advertisements. Our study, however, reveals that the Find
My service actually allows all types of BLE addresses.
This has been overlooked by both prior work and Apple,
but is leveraged in our attack.

• We present the first attack method, nRootTag, that turns
a computer into an “AirTag” tracker without root privi-
lege escalation.1 We devise attack methods that can be
applied to Linux, Windows, and Android systems.

• Our implementation significantly saves the space needed
by rainbow tables and accelerates online key search
through GPUs. The online key search success rate is
over 90% in 3 minutes at a cost of just a few US dollars.
Interestingly, the cost does not increase as the number
of tracked computers grows.

• The evaluation results show that various computers, such
as desktops, laptops, smartphones, and IoT devices, can
be turned into trackers without needing root privileges,
and that the attack is effective on Linux, Windows, and
Android. We also discuss how the attack can be mitigated
and extended to other systems, such as Apple.

2 Background

2.1 Bluetooth Low Energy Addresses
As illustrated in Figure 3, the BLE protocol defines two main
address categories: Public Address and Random Address,
which are distinguished by the TxAdd bit in the header.
Public Address (TxAdd = 0). The public address is designed
to be globally unique and remains constant throughout the
device’s lifespan, serving as a permanent identifier. It com-
prises two parts: the most significant 24 bits, assigned by
the IEEE and known as the Organizationally Unique Identi-
fier (OUI), and the least significant 24 bits, assigned by the
device manufacturer. As of December 2024, IEEE has pub-
lished 47,054 OUIs [46]. Studies have shown that the use of
public addresses poses privacy and security risks, allowing
applications to identify and track users [35, 70].

1https://nroottag.github.io
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Figure 3: Categories of BLE addresses

Random Address (TxAdd = 1). Unlike public addresses,
random addresses do not include vendor information. As
shown in Figure 3, random addresses are classified into three
types, distinguished by the two most significant bits: 0b00 for
non-resolvable private address (NRPA), 0b01 for resolvable
private address (RPA), and 0b11 for random static address.
Random addresses are designed to enhance privacy by chang-
ing periodically, referred to as address rotation. According to
the specification [15], a random static address is generated at
power-up and remains unchanged until the next reboot, and an
RPA or NRPA typically changes at regular intervals to further
protect user privacy.

2.2 Find My Service
In 2019, Apple introduced its Find My service for iOS 13,
macOS 10.15, and watchOS 6, enabling users to locate their
Apple devices via BLE without relying on Internet access. It
was further enhanced in 2021 with the introduction of AirTag,
a standalone tracker designed for personal belongings such
as backpacks and wallets.

Apple underscores the privacy and anonymity aspects of
the Find My service [8], which is confirmed in recent stud-
ies [31,53]. First, lost messages are not authenticated by finder
devices, nor are the devices sending them. Second, end-to-end
encryption is applied to location reports. Specifically, each
location report is encrypted using the advertised public key
before being uploaded to the Apple Cloud, ensuring that it can
only be decrypted with the corresponding private key. Third,
a location report, along with the SHA256 hashed public key,
is uploaded to the cloud. Anyone can query and download
location reports using a hashed public key.

2.3 Details of Lost Messages
As illustrated in Table 1, an advertisement for a lost message
comprises device-specific and constant fields.
Device-specific fields. The lost message requires 37 bytes [5],
including a 28-byte public key. However, since a BLE ad-
vertisement can accommodate only up to 31 bytes [15], this
results in a 6-byte deficit. To address this, Apple splits the
public key into three parts and stores them as follows:

Table 1: Dissection of a BLE advertisement for a lost mes-
sage. “pub” stands for the public key.

Type Field Value

Device specific Adv. Address (PubKey part 1) pub[0:6]
Constant Adv. Payload Length 0x1E
Constant Adv. Type 0xFF
Constant Company ID 0x004C
Constant Apple Payload Type 0x12
Constant Apple Payload Length 0x19
Device specific Status Example: 0x00
Device specific PubKey part 3 pub[6:28]
Device specific PubKey part 2 pub[0] » 6
Device specific Hint Example: 0x00

• Part 1: The first six bytes of the public key are placed
in the advertising address. However, Apple overwrites
the two most significant bits of the address with 0b11,
indicating a random static address (Section 2.1).

• Part 2: The overwritten two bits of the public key are
relocated here.

• Part 3: The remaining 22 bytes of the public key are
stored in this part.

The Status byte, defined by the Find My specification,
varies based on the device type (e.g., iPhone, Mac, AirTag)
and battery level. Section 7.2 will examine how specific values
(e.g., 0x00) can be leveraged to evade detection of tracking.

Constant fields. Unlike device-specific fields, several fields
remain constant, including the Advertisement Payload Length,
Advertisement Type, Company ID, Apple Payload Type, and
Apple Payload Length.

It is worth noting that the lost message does not include
any fields for authenticating whether the message is sent by
an Apple-certified device. As a result, non-Apple devices
can also send lost messages and be tracked successfully, as
demonstrated in prior work [31].

3 Limitations of Prior Methods

Prior State of the Art. OpenHayStack conducts a study of
the Find My service through reverse engineering and interpre-
tation of the Find My specification. Notably, it open-sources
the attack that turns a computer into a tracker. However, sev-
eral limitations of OpenHayStack remain unaddressed, con-
straining its applicability.

Address type. OpenHayStack concludes that the adver-
tising address should be a random static address, as spec-
ified in the Find My specification [5]. Subsequent stud-
ies [27, 43, 53, 69] share this consensus. However, our study
reveals that finders accept a wide range of address types,



including public address, resolvable private address, and non-
resolvable private address. This is crucial to the success of
our attacks.

Hardware dependence. Through source code examination,
we discovered that the implementation of OpenHayStack re-
lies heavily on “hcitool” and Broadcom-specific commands,
which are not standardized BLE operations and are specific to
certain hardware and platforms. This hardware dependency
prevents OpenHayStack from being deployed across a wide
range of BLE devices.

Privilege dependence. OpenHayStack first generates a pub-
lic/private key pair and then modifies the BLE advertising
address to match the public key. However, modifying the ad-
vertising address requires root privileges or a device without
privilege control mechanisms (e.g., ESP32), posing significant
constraints on attack scenarios.

Other Approaches. Another approach to tracking a device
involves determining its location based on its IP address. An
ISP (Internet Service Provider) assigns the IP address to a
specific customer account, and they maintain records that map
the assigned IP address to the customer’s billing information,
including their home address. However, this detailed infor-
mation is not publicly accessible and requires lawful means,
such as a subpoena or court order, to be accessed.

Some companies maintain specialized geolocation
databases that map IP addresses to approximate physical
locations [22, 34, 42]. However, the accuracy of these
databases is generally limited, typically providing location
estimates at the city or neighborhood level [49]. Furthermore,
many Internet Service Providers (ISPs) assign dynamic
IP addresses, which can change over time, reducing the
reliability of location tracking. This limitation is further
exacerbated by the widespread use of Network Address
Translation (NAT), a technique that allows multiple devices to
share a single public IP address. NAT is commonly employed
in academic institutions and corporate environments, where
large groups of users egress their traffic from a shared IP
pool. Richter et al. [50] note that the depletion of the IPv4
address pool has led approximately 40% of ISPs to deploy
Carrier-Grade NAT, with user-to-IP ratios as high as 20:1.
As a result, multiple users may share the same public IP
address, making it impractical to precisely determine a
target’s location using IP-based methods.

Additionally, the proliferation of Virtual Private Networks
(VPNs) further complicates IP-based location tracking. They
are commonly used by international businesses and organiza-
tions for various purposes, such as circumventing censorship,
reducing latency, and enhancing Quality of Service (QoS). In
this technological landscape, a location inferred from an IP
address may not accurately reflect the device’s actual physical
location. For example, a device physically located in Singa-
pore may appear to have a Hong Kong IP address.

Two alternative methods for tracking users are worth con-

sideration: (1) obtaining the MAC addresses of nearby Wi-Fi
access points (APs), and leveraging a MAC-location database
to infer the device’s approximate location, and (2) employ-
ing BLE advertising to broadcast a unique message, which is
detected by BLE receivers at specific locations. While these
methods are technically feasible, they face notable limitations
in practice.

MAC-based tracking relies on the accuracy and coverage of
the database, which may be incomplete or outdated [32,37,39].
Additionally, many modern devices use MAC address ran-
domization [3, 24, 37, 60], which significantly limits the effec-
tiveness of this approach. BLE-based tracking, while precise
in controlled environments, requires the deployment of multi-
ple BLE receivers in specific locations, which is logistically
challenging and costly.

In comparison, our proposed attack leverages Apple’s Find
My network, which benefits from global coverage through
over a billion active Apple devices acting as finders. This ap-
proach bypasses the challenges associated with MAC address
randomization, database accuracy, and the need for additional
infrastructure deployment, providing a robust, cost-effective,
scalable and precise solution for tracking.

4 System Overview and Threat Model

4.1 System Overview
Our design for nRootTag aims to achieve the following goals.

• Generalizability. In contrast to prior work, the attack
method should be applicable to a wide range of devices
and attack scenarios without being constrained to spe-
cific chip architectures or requiring root privileges.

• Time Efficiency. An infected computer can be located
rapidly.

• Cost Efficiency. The attack should be affordable even
for individual attackers. Ideally, the computational cost
remains largely unaffected by an increase in the number
of tracked computers.

• Stealth. The attack should avoid raising immediate sus-
picion from the owner of the tracked computer.

Insights. Although the Find My specification and prior re-
search specify that a random static address is required for
advertising, our experiments reveal that the Find My imple-
mentation accepts a wide range of advertising addresses, in-
cluding public addresses, NRPAs, RPAs, and random static
addresses (Figure 3). Actually, public addresses are widely
used for advertising by Linux systems, and NRPAs and RPAs
are used by Windows and Android, respectively. Rather than
modifying the advertising address, we aim to explore the fea-
sibility of searching for a public/private key pair that matches
the address, thereby eliminating the need for root privileges.
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Approaches. We propose two attack approaches tailored to
different operating systems. The operating system is identified
on the target device, enabling the automatic selection of the
appropriate attack approach. Attack-I: On operating systems,
such as Linux, a public address is used for advertising and
can be accessed without root privileges. The public address of
a BLE chip includes a 24-bit OUI (Organizationally Unique
Identifier) assigned by the IEEE, and these registry records
are publicly accessible. By leveraging this public informa-
tion, we can precompute rainbow tables that store keys for
various public addresses. As a result, given a public address,
the corresponding public/private key pair can be retrieved
instantly. Attack-II: On other systems, a random resolvable
or non-resolvable address is typically used for advertising,
and the address cannot be accessed without root privileges.
We consider an attack scenario, for example, where a popular
app is installed on multiple computers at a location, such as a
home, mall, or office building. Thus, the app, aiming to track
users, can use one computer to sniff advertisements from an-
other and obtain the advertising address. Subsequently, the
app server can use a rainbow table lookup or online key search
to find a matching public/private key pair. To accelerate the
key search, we have implemented a search system that takes
advantage of multiple GPUs.

Architecture. Figure 4 illustrates the architecture of our de-
sign. (1) The Trojan code runs on the computer to be tracked.
It retrieves the advertising address, acquires the matching
public key from our server, and then advertises lost messages.
(2) The Server processes requests for acquiring public keys
through rainbow table lookup or online key search. (3) The
Database system, which contains a rainbow table of key in-
formation, provides the corresponding public/private key pair
for a given advertising address. (4) The Key Generation and
Search serves two purposes: it is used to precompute the rain-
bow table, and invoked to search for a matching public/private
key pair on the fly. Finally, given a public key, the server uses
its hash value to query the Apple Cloud for location reports,
then decrypts the reports using the private key.

Attack Procedure. (i) Once the Trojan is deployed on a
computer, it contacts the Server to receive a unique ID. (ii)
The Trojan retrieves the BLE advertising address and sends a
query to the Server, including its unique ID and the advertising
address. (iii) The Server searches for a matching public/pri-

vate key pair and returns the public key to the Trojan. The
Server also updates its records to associate the Trojan’s ID
with the key pair. (iv) The Trojan advertises lost messages
containing the public key. Any finder receiving these mes-
sages uploads an encrypted location report, along with the
hash of the public key, to Apple Cloud. (v) The Server uses
the hash of the public key to query Apple Cloud for location
reports and decrypts them using the corresponding private
key.

4.2 Threat Model
This work introduces a novel attack that allows an attacker to
turn a computer into an “AirTag” tracker without the need for
root privileges. The threat model considers various potential
adversaries and their capabilities, as well as the assumptions
made regarding the computers to be tracked.

The following adversaries may be interested in exploiting
this attack.

• Apps for shopping, streaming, social media, and other
personalized services could exploit this attack to track
users’ locations, enabling them to deliver tailored rec-
ommendations or targeted advertisements. These apps
typically seek to enhance user experience or boost ad rev-
enue by monitoring users’ preferences, behaviors, and
locations. Applications that rely on Bluetooth can easily
legitimize their use of Bluetooth while concealing ma-
licious objectives. Notable examples include payment
applications that use Bluetooth for seamless transactions,
as well as music applications that employ Bluetooth to
connect with earphones.

• Intelligence departments may utilize this attack for
espionage and surveillance. They can use social engi-
neering (such as phishing and fake software updates),
vulnerability exploitation (e.g., drive-by downloads), and
software supply chain attacks (e.g., adding the Trojan
code to a library) to deploy our attack.

• Individuals or organizations with malicious intent, such
as botnet owners, can use this attack to track users. They
can exploit social engineering, software vulnerabilities,
or malicious ads to distribute our Trojan logic.

We assume the computer to be tracked is equipped with
a functional BLE module and is running our Trojan code,
which can communicate with our server via the Internet and
can both send and sniff BLE advertisements.

While a single Trojan instance suffices to launch Attack-I,
Attack-II requires at least one Trojan instance to be within
the BLE range of another to obtain the advertising address.
In other words, two Trojan instances within BLE range are
sufficient to execute Attack-II. The range of BLE 5.0 is up to
400m [55].



Potentially harmful mobile apps are known to collect user
data [19, 36, 40, 71] and may exploit our attack to track users,
enabling personalized recommendations or increasing ad rev-
enue. In practice, it is common for users to install the same
app on multiple devices, such as smartphones, desktops, or
laptops at home or in the office. For example, if a person is car-
rying a smartphone and wearing a smartwatch, Attack-II can
be used to track them, provided both devices are running our
Trojan code. Similarly, a potentially harmful mobile app may
be installed on multiple nearby devices in shared spaces like
hospitals, or shopping malls, providing an avenue to launch
Attack-II.

As another example, large botnets have infected tens of
millions of devices [4, 11]. It is not uncommon for multiple
IoT devices in a home, office, or factory to be infected by
the same botnet. Botnet operators could exploit our attack to
locate these bots and execute targeted phishing, blackmail, or
extortion campaigns.

On Android, user permission is required to perform Blue-
tooth operations. However, given the widespread use of Blue-
tooth peripherals and applications, such as file sharing, gam-
ing, and smart homes, Bluetooth permissions are frequently
granted to apps [54]. Bluetooth permissions are widely con-
sidered less sensitive than GPS location permissions [64].

Root privileges or a GPS module on the computer are not re-
quired for our attack. Additionally, the computer being tracked
does not need to be registered on Apple Cloud, as finders do
not verify whether a lost message originates from an Apple
device or is registered on Apple Cloud [31]. Furthermore,
the computer does not need to be in close proximity to the
Server during preparation, as it receives the public key over
the Internet.

5 System Design

To make the discussion concrete, we use Linux, Windows,
and Android as examples: Attack-I applies to Linux, while
Attack-II applies to Windows and Android. Regarding the
attack scenario, as an example, we consider a popular app that
intends to track its users.

5.1 Trojan

The Trojan enables Bluetooth (if not already enabled), ob-
tains the BLE advertising address, queries the server for the
matching public key, and then sends lost messages.

Enabling Bluetooth. Bluetooth is often already enabled
on computers due to the widespread use of Bluetooth pe-
ripherals (e.g., keyboards, mice, earbuds, speakers), allow-
ing this step to be skipped. If not, the Trojan must first
enable Bluetooth. Attack-I: On Linux, prior work [68] ob-
served that Gnome-based systems might implement special
rules granting any program access to /dev/rfkill, an in-
terface used to communicate with the Linux kernel to con-

trol the adapter’s power state. However, among the 12 dis-
tributions we tested, write permissions for /dev/rfkill
are generally restricted to root. Notably, we discovered
a rule file (61-gnome-settings-daemon-rfkill.rules)
that creates an exception, allowing non-root users to write to
/dev/rfkill. This enables the Trojan to enable Bluetooth
adapters without requiring user interaction or root privileges.
Attack-II: Bluetooth on Windows and Android can be enabled
using the SetStateAsync and BluetoothAdapter.enable
APIs, respectively. However, starting with Android 13, ex-
plicit user permission is required to enable Bluetooth.

Retrieving Advertising Address. Our approach is to search
for the public key that matches the advertising address, elimi-
nating the need for root privileges. Thus, it is critical to get
the advertising address. Attack-I: On Linux, retrieving the ad-
dress is straightforward and can be done through the standard
bluez interface. Attack-II: Android uses RPAs for adver-
tising, while Windows uses NRPAs. Both systems change
the advertising address periodically (e.g., every 10 minutes)
and prevent non-root programs from reading the address. We
propose leveraging nearby devices to retrieve the address. In
practice, it is common for a user to install an app on multiple
devices, such as a smartphone, desktop, and laptop at home.
Similarly, the app may be installed on devices located in a
shared space, like a building, shopping mall, or on a train or
bus. In this scenario, Trojan A periodically (once per minute)
advertises an address-query message containing its 64-bit ID
assigned by the Server and a 32-bit sequence number N. Tro-
jan B on a nearby device that sniffs the message can extract
A’s advertising address from the message and respond with an
address-response message that includes A’s ID, address, and
the sequence number N. Similarly, Trojan B retrieves its own
advertising address from Trojan A. The address-response mes-
sage is sent with a random delay (ranging from 0 to 2000 ms).
If an address-query message has already triggered a response,
nearby Trojans refrain from responding to avoid redundant
replies.

Obtaining Public Key. Using the obtained advertising ad-
dress, the Trojan queries the Server for the matching public
key. Attack-I: Since a device’s public address remains con-
stant, the key query is a one-time operation. Once the Server
responds with the matching public key, it creates a record map-
ping the Trojan’s ID to the public/private key pair. Attack-II:
If the Trojan obtains its advertising address for the first time
or detects a change in the address, it queries the Server for
the public key. The Server then updates the record mapping
the Trojan’s ID to the public/private key pair.

Sending Lost Message. Once the matching public key is
obtained, the Trojan crafts and sends the lost message (Sec-
tion 2.3). On Android, we observed that the advertising ad-
dress changes when the advertising payload is modified by
default. However, by using the AdvertisingSet API avail-
able since Android 8, we ensure that the advertising ad-



dress remains unchanged despite payload modifications (from
address-request to lost message).

5.2 Server
When a Trojan contacts the Server for the first time, the Server
assigns a unique ID to the Trojan. Upon receiving a public-key
query from a Trojan, the Server either searches the rainbow ta-
ble or performs a real-time GPU-based key search, as detailed
in Sections 5.4.1 and 5.4.2.

Once a key is found, the Server updates the record mapping
the Trojan ID to the corresponding public/private key pair.
To locate a Trojan, the Server uses the SHA256 hash of the
public key to query the Apple Cloud for location reports and
decrypts them using the corresponding private key. Notably,
as demonstrated by the community project [14], attackers can
create virtual MacBooks to download location reports. This
approach enables attackers to access location reports without
relying on a physical MacBook, which could be traced via
its serial number, thereby maintaining anonymity. Technical
details are elaborated in Appendix A.1.

5.3 Database
The database stores the rainbow table. A straightforward de-
sign is to use a regular database system, where the advertising
address (6 bytes) serves as the primary key for data indexing,
and the other table columns include the matching public key
(28 bytes) and private key (28 bytes). With this design, each
record requires 62 bytes.

Taking Attack-I as an example (with similar optimizations
for Attack-II), we use a custom database system with sev-
eral optimizations, as illustrated in Figure 5a. (1) Public key
elimination: The public key can be derived from the private
key [44, 65], making it unnecessary to store the public key.
(2) OUI-based organization: Advertising addresses belong-
ing to the same OUI result in repetitive OUI storage in the
records. Instead of storing all the records together, we store
the records for each OUI in a separate file, using the OUI as
the file name. This eliminates the need to store the 24-bit OUI
in the records. (Similarly, in Attack-II, the first 22 bits of the
critical part of the address serve as the file name.) (3) Implicit
indexing: In addition to the OUI, a public address contains 24
manufacturer-specific bits (Figure 3). Consequently, each file
corresponding to an OUI contains 224 records. These records
are organized as elements in an array, where the manufacturer-
specific bits of a public address are used as the array index
for storing or retrieving the private key. This design elimi-
nates the need to store the remaining 24 bits of the address,
reducing storage requirements to just 28 bytes per record.

For Attack-I, we maintain a record in the rainbow table for
each unique public address of an OUI. Thus, each file for an
OUI contains 224 records, requiring 224 × 28 bytes, or 448
MB. According to IEEE registry records, there are 47,054

OUIs [46]. Consequently, the rainbow table for Attack-I re-
quires approximately 20.10 TB of storage. A 24 TB hard
drive costs around 479.99 USD [2], making this storage re-
quirement affordable even for individual attackers.

For Attack-II, a slightly different design is used to save stor-
age. Since only the least significant 46 bits of an address are
used for the key match, we maintain 246 records in the rain-
bow table for Attack-II, one for each unique value of the 46
bits, as shown in Figure 5b. If two devices randomly generate
addresses differing only in the most significant two bits, the
server returns the same public key for the two devices. How-
ever, given the N = 246 value space, this collision is highly
unlikely, depending on the number of tracked computers,2 and
the concern is further mitigated because non-resolvable or re-
solvable random addresses change periodically. Thus, the rain-
bow table for Attack-II requires approximately 246×28 bytes,
or 1.75 PB of storage. While this is prohibitively expensive
for individual attackers (the cost is analyzed in Section 6.2.2),
it may be affordable for app owners or a country’s intelligence
department. A rainbow table is a more cost-effective choice
for attackers aiming to track users continuously over long pe-
riods. However, for short-term or intermittent tracking, online
key search may be a viable alternative (Section 5.4.2).

5.4 Key Generation and Search

We design the public/private key pair generation module to
utilize multiple GPUs, enabling accelerated construction of
the rainbow tables and key search.

5.4.1 Building Rainbow Table

To build the rainbow table for Attack-I, we need to find a
matching public/private key pair for each unique public ad-
dress of a registered OUI. However, the private-to-public key
derivation is a one-way process, making the generated pub-
lic keys essentially random. In other words, the computation
cannot be directed to generate keys exclusively for the OUIs
published by IEEE. Given that a public address consists of 48
bits, the random search space is effectively N = 248. Each gen-
erated public/private key pair matches one of the 248 possible
addresses. This scenario can be modeled as the classic coupon
collector’s problem: given N coupons, how many coupons are
expected to be drawn with replacement before having drawn
each coupon at least once [23].

The expected number of trials required to collect all N
distinct coupons is:

E[T ] = N ·HN

where HN is the N-th harmonic number:

2The collision probability follows the birthday paradox. For instance, the
probability of at least one collision is only 10% when the number of tracked
computers exceeds 2.7 million.



01110000 00000101 00000101 00000000 00000000 00111000
MSB LSB
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(a) Rainbow table for Attack-I.

01110000 00000101 00000101 00000000 00000000 00111000

Rainbow table files

…

300505.dat

…

Private KeyIndex

…0x000000

……

…0x000038

……

Binary:
Hex:

Random Address

30 05 05 00 00 38

MSB LSB

(b) Rainbow table for Attack-II.

Figure 5: Storage of rainbow tables. In Attack-I, for instance, a rainbow table file is named based on an OUI, with the
remaining bits of the public address used as an index to store and retrieve the private key, while the public key can be
derived from a private key.

HN =
N

∑
k=1

1
k

For large N, an approximation is:

HN ≈ ln(N)+ γ+
1

2N
Thus, the expected number of trials is approximately:

E[T ]≈ N ·
(

ln(N)+ γ+
1

2N

)
where γ ≈ 0.577 is the Euler-Mascheroni constant. For

Attack-I, for example, we substitute N = 248 into the equation.
First, calculate:

ln(248) = 48 · ln(2)≈ 48 ·0.693 ≈ 33.264

Now, using the approximation:

E[T ]≈ 248 ·
(

33.264+0.577+
1

2 ·248

)
Since 1

2·248 is extremely small, it can be neglected for prac-
tical purposes. Thus, the expected number of trials is approxi-
mately:

E[T ]≈ 248 · (33.841)

In short, to build the rainbow table for Attack-I, where N =
248, the expected number of trials is approximately E[T ] ≈
248 · (33.841). With the GPU RTX 3080, for example, our
code can generate 4.90 billion public/private key pairs per
second. Thus, using one RTX 3080 GPU, the expected time
for the key generation is approximately 539.99 hours. When
200 such GPUs are used, the time is reduced to 2.70 hours.

To build the rainbow table for Attack-II, where N = 246,
the expected number of trials is approximately E[T ]≈ 246 ·

(32.455). Using one RTX 3080 GPU, the expected time for
the key generation is approximately 129.47 hours.When 200
such GPUs are used, the time is reduced to 0.65 hour.

It is important to clarify that when on-cloud GPUs are
rented for key generation, the computation is billed based
on the total active usage time. Therefore, the cost does not
increase with the number of rented GPUs [33, 51, 66]. The
cost is discussed in Section 6.2.

5.4.2 Online Key Search

Given a BLE address, online key search continues generating
keys until a public key matches it. As described in Section 5.3,
for short-term or intermittent tracking with Attack-II, online
key search may be a more cost-effective option.

Given a BLE address and the search space N = 246 for
Attack-II, the probability of match success (i.e., the generated
key matches the address) in a single key generation is p = 1

N .
Therefore, with k keys generated, the probability q of at least
one match success is:

q = 1− (1− p)k

Given q, we can solve for k as follows:

k =
ln(1−q)
ln(1− p)

The number of keys generated per second is denoted as
KPS, and the time spent on key generation measured in sec-
onds is t. Since k = KPS× t, we can solve for t:

t =
ln(1−q)

KPS · ln(1− p)
(1)

According to Equation 1, for example, when 200 RTX 3080
GPUs are rented for online key search, given a BLE address
and a targeted match success rate q= 0.9, we can calculate t =



165.34 seconds (2.76 minutes), which costs 2.20 USD. When
tracking multiple m computers, we organize their addresses
in a hash table based on the value of each address’s critical
part. For each public key generated, its critical part is used to
search the hash table. Note the number of generated keys k
required to attain the probability q remains the same for each
of the m addresses, as the success probability for each address
is independent of others. Therefore, the cost remains constant
regardless of the number of tracked computers. Further cost
details are provided in Section 6.2.

We have implemented key search functionality for the
secp224r1 curve, utilized by Apple’s Find My network. A
notable optimization involves creating a generator table that
precomputes numerous intermediate scalar multiplication re-
sults. Subsequent computations perform scalar additions with
these cached results, significantly reducing the computational
time associated with expensive scalar multiplications. Cru-
cially, this approach leverages GPU acceleration, yielding
performance improvements of several orders of magnitude,
thereby rendering our proposed method feasible.

The performance of the key search process is influenced
by several factors. To identify the optimal settings, we con-
duct comprehensive experiments across various GPUs and
configurations, as detailed in Section 6.1.

6 Evaluation

We first study the impact of GPUs and configurations on
key generation speed (Section 6.1), and then investigate the
cost efficiency (Section 6.2). The latency and accuracy of
the attack are detailed in Section 6.3, with its applicability
discussed in Section 6.4.

6.1 GPUs and Configurations
We begin by examining the impact of various GPUs and
configurations on key generation speed. Our study includes
several consumer-grade GPUs, such as the RTX 3070, RTX
3080, and RTX 4090, as well as data center-grade GPUs,
specifically the A100 (80GB) and H100 (80GB).

A Streaming Multiprocessor (SM) is a core computational
unit in NVIDIA GPUs, equipped with CUDA cores, warp
schedulers, and shared memory to handle thousands of threads
concurrently. Proper selection of X , the number of blocks per
SM, and Y , the number of threads per block, is crucial for
performance. Excessively large X can cause scheduling over-
head, while very high Y may exhaust shared memory and
registers, reducing active warps and GPU occupancy. Con-
versely, overly small X or Y leads to underutilization of the
resources. Balancing these parameters ensures efficient oper-
ation and maximizes performance for key generation tasks.

We conducted experiments to examine the impact of these
parameters on key generation speed, measured in Keys per
Second (KPS). As shown in Figure 6, the configuration X =

X = Blocks per SM, Y = Threads per Block

X=1, Y=512
X=16, Y=256
X=16, Y=384
X=16, Y=512
X=32, Y=512

(80GB) (80GB)

Figure 6: The impact of GPUs and configurations on key
generation speed.

Table 2: GPU selection. The optimal configuration X = 32
and Y = 512 is used for each GPU.

Model KPS
(billion)

Price
(USD)

Price-to-KPS
Ratio

Rent
(USD/h)

Rent-to-KPS
Ratio

RTX3070 2.64 499 189 0.13 0.050
RTX3080 4.90 699 143 0.22 0.045
RTX4090 8.22 1,599 195 0.40 0.049

A100 80GB 9.07 13,224 1458 1.60 0.178
H100 80GB 11.91 48,200 4047 2.14 0.180

32 and Y = 512 achieves optimal performance across GPU
models. Increasing these parameter values beyond this point
does not yield further improvements in key generation speed.

While the H100 achieves the highest key generation speed,
its cost is prohibitively high. Therefore, we use the price-
to-KPS ratio (lower is better) to guide GPU selection. For
scenarios where cloud GPUs are rented, we consider the rent-
to-KPS ratio (lower is better). Many cloud GPU platforms,
such as vast.ai, charge based on active usage time; to make
the following discussion concrete, we use its listed rental rates.
As shown in Table 2, the RTX 3080 offers both the lowest
price-to-KPS ratio and the lowest rent-to-KPS ratio. Thus, we
recommend the RTX 3080 for the key generation.

6.2 Cost Efficiency

As discussed in Section 4.1, the rainbow table for Attack-
I requires only 20.10 TB of storage, making it a practical
choice for this attack. However, for Attack-II, the rainbow
table demands 1.75 PB of storage, which is prohibitively
expensive. Therefore, for Attack-II, we compare the costs of
the two key search methods: rainbow table-based search and
online key search.
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Figure 7: The time needed for building the rainbow table
decreases as the number of used GPUs increases.

6.2.1 Attack-I

Building the rainbow table is a one-time effort, making it cost-
effective to rent cloud GPUs for this purpose. As discussed
in Section 5.4.1, the expected number of key generations is
E[T ]≈ 248 · (33.841). One RTX 3080 generates 4.90 billion
keys per second (Table 2). Notably, on cloud GPU platforms
that charge based on active usage time, the cost remains con-
stant regardless of the number of GPUs rented, as long as the
total usage time is unchanged. Therefore, we propose renting
multiple GPUs to expedite the process. Figure 7 shows that
the required time decreases as the number of rented GPUs
increases. For instance, using 200 RTX 3080 GPUs, the pro-
cess takes 2.70 hours. At a rate of 0.22 USD per GPU per
hour, the total cost to create a rainbow table for Attack-I is
118.80(= 0.22×200×2.7) USD.

As discussed in Section 5.3, the rainbow table for Attack-I
requires a storage of 20.10 TB, which can be satisfied with a
standard 24 TB hard drive, priced at 479.99 USD [1]. These
resources are affordable even for individual attackers.

6.2.2 Attack-II

Rainbow table. As discussed in Section 5.4.1, building the
rainbow table for Attack-II requires an expected number of
key generations of E[T ] ≈ 246 · (32.455). Accordingly, we
can plot Figure 7, which illustrates how the required time
varies with the number of rented GPUs. For example, using
200 RTX 3080 GPUs in parallel completes the task in 0.65
hours at a total cost of 28.60(= 0.22×200×0.65) USD.

As presented in Section 5.3, the rainbow table for Attack-II
demands a substantial storage of 1.75 PB (or 1,792.0 TB). As
illustrated in Table 3, for on-premises storage, a dedicated
server with 75 drives (24 TB each) necessitates an initial
investment of 65,601.85 USD, coupled with monthly opera-
tional costs of 1,484.52 USD.

Cloud storage offers an alternative solution that eliminates
hardware purchases but incurs a monthly cost of 18,350.00

Table 3: Storage system setup and monthly operation costs
for maintaining the Attack-II rainbow table.

Category Details Cost (USD)

One Time Setup Expense
Rainbow Table Rent 200 RTX 3080 for 0.65h 28.60
Hardware Supermicro Storage Server 29,574.00
Hardware 479.99 USD Per Drive × 75 35,999.25

Total One Time 65,601.85

Operation Expense (Monthly)
Electricity 1.3 kW × 30 days × 0.177 USD/kWh 165.67
Cooling 0.2 kW × 30 days × 0.177 USD/kWh 25.49
Depreciation Five year depreciation model 1,093.36
Maintenance Estimated Repairs and personnel 100.00
Network Estimated for small business 100.00

Total Monthly 1,484.52
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Figure 8: The success rate and cost of online key search
change over time.

USD, based on current market rates of 10.24 USD/TB [9,
25, 52]. Despite the significant upfront capital required for
the dedicated server, our analysis demonstrates that the on-
premise storage becomes more economical than cloud storage
after 3.89 months.

In summary, for rainbow table-based key searches, on-
premise storage is a more cost-effective option compared
to renting cloud storage. However, it may still be prohibitively
expensive for most individual attackers.

Online key search. For short-term or intermittent tracking
(e.g., once per hour), we find that online key search is more
cost-effective. According to Equation 1, given 200 RTX 3080
GPUs rented, we can generate Figure 8, which illustrates
how the probability of key search success and the associated
cost increase with search time. For instance, achieving a 90%
success probability requires a search time of 2.76 minutes
and incurs a cost of 2.20(= 200×3÷60×0.22) USD. Note
that for 2.76 minutes, the cloud GPU platform charges for
3 minutes, as it rounds up to the nearest whole minute. If



Table 4: Confidence levels correlate with deviations.

Confidence Deviation

3 27m
2 56m
1 264m

users are tracked once per hour, the daily cost amounts to
52.8(= 2.2×24) USD. If attackers limit tracking to once per
hour during daytime on weekends (e.g., 7AM to 6PM), the
weekly cost is 52.8(= 2.2×12×2) USD.

By renting 200 RTX 3080 GPUs, we also conducted mea-
surements with a group of random addresses to observe how
the key search success rate evolves over search time. The
results show that the measured curve closely aligns with the
theoretical curve plotted.

In summary, online key search is affordable even for in-
dividual attackers, and we recommend online key search for
launching Attack-II. As explained in Section 5.4.2, the on-
line key search cost does increase as the number of tracked
computers grows.

6.3 Latency and Accuracy
We conducted tracking in stationary, riding, and flight scenar-
ios. For the stationary scenarios, we used a desktop computer
running our Trojan. In the e-bike riding, a Raspberry Pi run-
ning our Trojan was carried, and the ground truth trajectory
data was collected using the iOS app “GPS Tracks.” In the
flight scenario, we carried a Steam Deck, a popular portable
gaming console, and the ground truth for the flight trajectory
was collected from “Flight Radar 24.” In the flight scenario,
other passengers (i.e., Finders) may have paid to use in-cabin
Wi-Fi and caused submitting location reports to iCloud.

The location report contains an attribute Confidence. While
Apple has not disclosed the meaning of this attribute, our mea-
surements show that it correlates with the deviation between
the actual location of the Finder and its reported location,
as illustrated in Table 4. Reports with confidence levels 2
and 3 demonstrate low deviation, while level 1 reports show
significant deviation and were excluded from our analysis.

6.3.1 Latency Measurement

We measured the latency between the first advertisement and
the first available location report in two environments: of-
fice and residence. For the office environment, measurements
were conducted within a university building for 24 hours. We
collected 637 samples, yielding an average wait time of 6.75
minutes, with the 90th percentile at 10.34 minutes. The resi-
dential environment was a single-family house in a suburban
area, where 526 samples were collected in 24 hours, show-
ing a slightly longer average wait time of 8.09 minutes, with

(a) Eps = 3m (b) Eps = 25m

Figure 9: Tracking in a residential environment. The
ground-truth location (green pin), estimated position (red
pin), and epsilon boundary region (semi-transparent red
area) are shown.

Figure 10: Flight trajectory and Find My location reports.

the 90th percentile reaching 15.92 minutes. These statistics
indicate the expected latency for receiving the first available
location report after a lost message is sent.

6.3.2 Accuracy Measurement

Stationary. We first conducted accuracy measurements at
the aforementioned single-family house. Given the location
reports collected during 24 hours, we performed a location
estimation using DBSCAN with ball tree clustering. We ob-
served an interesting phenomenon: the clustering produces
accurate estimates when using a small epsilon, as shown in
Figure 9(a). Epsilon, in the context of DBSCAN, defines the
maximum distance between two points for them to be con-
sidered part of the same cluster. While in our experiment the
estimates were highly accurate (the green pin and the red pin
are within 3m), it is worth clarifying that these represent the
actual Finder locations, rather than the locations of the target
device. As illustrated in Figure 9(b), a larger epsilon value
results in location reports being aggregated over a broader
area, leading to a shift in the estimated position.

Riding. The e-bike riding speed was approximately 15 km per
hour, and the ride lasted for 57 minutes. As the rider quickly
passed potential adjacent Finders, they might not have been
able to receive the complete lost message. As a result, only a
small number of location reports were collected. Totally, nine
location reports were collected, with seven reports aligning



with the actual track and two reports showing deviations of
45.88 m and 58.92 m.

Flight. The flight lasted a total of 91 minutes, with an aver-
age speed of 863 km per hour. Figure 10 illustrates the flight
trajectory and the locations reported by the 17 location re-
ports. The average distance between the reported locations
and the ground truth was 70.03 meters. GPS location on a
flight can be less accurate due to signal blockage from the
aircraft’s structure, high altitude and speed affecting satellite
geometry, and limited visibility of satellites. Interestingly, by
chaining the reported locations, we were able to reconstruct
the flight path. By incorporating real-time flight trackers, such
as “Flight Radar 24,” we were able to deduce the flight num-
ber.

6.4 Attacks on Various Devices and OSes
Our attack was carried out on various devices and operating
systems, categorized under Attack-I and Attack-II.

Attack-I: Attack-I is applicable to Linux, which uses a public
address for advertising. As detailed in Table 5, we tested
the attack on 12 different Linux distributions and achieved
success on all of them.

1. IoT Devices: In addition to a Gigabyte desktop com-
puter, the attack was also validated on two IoT devices:
a Steam Deck, a well-known portable gaming console,
and a Raspberry Pi, a popular IoT platform.

2. Bluetooth State and Stealth Enabling: On three of the
12 distributions, Bluetooth is disabled by default. How-
ever, Bluetooth can be programmatically enabled on all
distributions without triggering any alerts. Despite these
successes, unique challenges were encountered on open-
SUSE and Debian for enabling Bluetooth: openSUSE re-
quires root privileges for executing rfkill, and Debian
lacks the executable. We overcame these obstacles by di-
rectly writing the bytestream 0x00000000020300003 to
/dev/rfkill, successfully enabling Bluetooth on both
systems.

Attack-II: Attack-II is applicable to Android and Windows,
which use RPAs and NRPAs for advertising, respectively.

As detailed in Table 6, the experiment involved seven An-
droid phones (versions 11 through 14), a Sony smart TV
(Bravia A80J), and a Meta VR headset (Quest 2), and all the
attacks succeeded. A Raspberry Pi device running our Trojan
was placed around 20 meters away from the tested computer,
and they were in different rooms. Interestingly, the smart TV
and headset prevented users from disabling Bluetooth, as they

3The source code [38] reveals that the first four bytes represent the de-
vice index, where zeros indicate broadcast to all devices, followed by bytes
indicating the device type, operation, software blocking state, and hardware
blocking state, respectively.

rely on it for control. On Android 11 and 12, Bluetooth can be
enabled programmatically. However, starting with Android
13, if Bluetooth is disabled by the user, an app requires the
user’s permission to enable it. Despite this, Bluetooth is typi-
cally enabled on most smartphones due to the widespread use
of Bluetooth accessories, such as earpods, and applications,
such as smart homes and health. Thus, this restriction does not
pose a significant barrier to the attack. The address rotation
period is large enough for launching Attack-II (Section 6.2.2).

Regarding Windows, the experiment involved one Dell lap-
top and one Gigabyte desktop, both running the latest version
of Windows 11, and Attack-II succeeded on both. Windows
supports two application frameworks: Win32 (traditional .exe
applications) and Universal Windows Platform (UWP) [45].4

We validated Attack-II on both frameworks, and our investi-
gation shows that the advertising address rotation behavior is
independent of the application framework.

7 Discussion

7.1 Applicability to Apple Devices

Apple’s products are known for offering restricted access to
APIs, permitting only two advertisement types (i.e., Local-
Name and ServiceUUID). As a result, a Trojan without root
privileges cannot advertise the data required for a lost mes-
sage. To integrate Trojan with macOS, we adapted nRootTag
to effectively work with Internal Blue [41,62], a methodology
and accompanying software designed to exploit the diagnostic
interface inherent in certain Broadcom Bluetooth chips. This
adaptation facilitated the manipulation of Bluetooth adapters
on macOS systems without the need for root-level access priv-
ileges. Our findings indicated that this integration operated
successfully on macOS versions 10.15 and 11, allowing for
the successful tracking of a MacBook, although Apple has
mitigated this issue in subsequent macOS versions.

However, a Trojan on an Apple device can advertise its
unique ID assigned by our server, while a Trojan on a nearby
device (e.g., an Android phone) that detects the ID-advertising
message can relay this ID to the server. The detection of
the ID-advertising message indicates that the devices are
within Bluetooth transmission range. Therefore, by locating
the nearby device, the server can infer the location of the Ap-
ple device. Alternatively, the nearby Linux/Windows/Android
device can advertise its own ID. In this case, an Apple device
that receives the ID can query the server to obtain the location
associated with that ID.

4UWP introduces a modern application model with features such as
sandboxing, managed distribution through the Microsoft Store, and cross-
platform compatibility across Windows devices, including Xbox.



Table 5: Attack-I succeeded on all the 12 Linux distributions we tested. On three of these, Bluetooth is disabled by default.
However, Bluetooth can be programmatically enabled on all the distributions without triggering any alerts.

Device Type Operating System Version Default Bluetooth State Stealth Enabling

Desktop openSUSE Leap 15.6 Disabled Yes
Desktop Manjaro Linux 24.0.3 Disabled Yes
Desktop Kali Linux 2024.2 Disabled Yes
Desktop Linux Mint 21.3 Enabled Yes
Desktop MX Linux 23.3 Enabled Yes
Desktop Debian 12.5.0 Enabled Yes
Desktop Fedora Workstation 40 Enabled Yes
Desktop Ubuntu 22.04 Enabled Yes
Desktop Garuda Linux Dr460nized Enabled Yes
Desktop Pop!_OS 22.04 Enabled Yes

IoT SteamOS Holo 3.5.19 Enabled Yes
IoT Raspberry Pi OS 2024-07-04 Enabled Yes

Table 6: Attack-II succeeded on all the nine Android devices and two Windows devices.

Device Type Device Model Operating System Version Address Type Rotation Period Default Bluetooth State Stealth Enabling

Phones

Google Pixel 3a Android 11 RPA 809s Enabled Yes
Google Pixel 4 Android 11 RPA 459s Enabled Yes
Google Pixel 5 Android 13 RPA 652s Enabled No
Google Pixel 6 Android 14 RPA 684s Enabled No

Sony Xperia 5 II Android 12 RPA 378s Enabled Yes
Galaxy S23 Ultra Android 14 RPA 373s Enabled No

Galaxy Xcover Pro Android 13 RPA No Rotation Enabled No

Smart TV Sony Bravia A80J Android TV 10 RPA 378s Always Enabled Not Required

VR Headset Meta Quest 2 Android 12 RPA 3593s Always Enabled Not Required

Laptop Dell Latitude E5470 Windows 11 NRPA 707s Enabled Yes

Desktop Realtek RTL8761B Windows 11 NRPA 243s Enabled Yes

7.2 Stealth Tracking

Apple has implemented unwanted tracking detection to warn
individuals about the potential misuse of tracking devices.
Previous research [27, 43, 53] examined this mechanism and
found that an alert may be triggered after a tracker travels
with an individual for a distance ranging from half a mile [27]
to a mile [53].

Stationary devices under our attack, such as desktop com-
puters and household IoT devices, do not move and therefore
do not trigger such alerts. In contrast, portable devices (e.g.,
laptops, gaming consoles) that continuously advertise lost
messages can travel with individuals and, without evasion
techniques, may activate these alerts.

Previous work by Mayberry et al. [43] describes multiple
evasion techniques to avoid such alerts. For instance, setting
the Status field of a lost message to 0x00 can prevent tracking
alerts, as such messages are typically sent by MacBooks,
which Apple deems “irrelevant” for tracking purposes. We
validated this evasion technique on the latest version of iOS
for iPhone, confirming that no alerts were triggered.

7.3 Mitigation

The Find My network specification mandates the use of ran-
dom static addresses for advertising lost messages. However,
our research reveals that public addresses, resolvable private
addresses, and non-resolvable private addresses can also serve
this purpose without any issues. This implementation vulner-
ability is exploited by our attack to track Linux, Android, and
Windows systems.

To mitigate the attack, Apple could patch finder devices
to only process lost messages sent from random static ad-
dresses. However, given the vast number of finder devices
(e.g., iPhones and Apple Watches), it may take considerable
time for the patch to be widely installed.

Even after the patch is broadly adopted, if an attacker iden-
tifies devices using random static addresses for advertising,
such as some smart home and health devices [16, 35], our
attack remains feasible on these devices, leveraging over a
billion active iPhones and other Apple devices as spies for
tracking. Our future work will investigate this further to assess
the broader implications of the proposed attack.



8 Related Work

A series of work has studied the security and privacy impli-
cations of Apple’s wireless ecosystem. For instance, prior
work [10] demonstrated methods to spoof an AirDrop re-
ceiver’s identity, enabling unauthorized access to personal
data. Stute et al. [58, 59] illustrated the potential for user
tracking via Apple Wireless Direct Link (AWDL). Celosia
and Cunche [17] presented novel techniques for tracking Blue-
tooth Low Energy (BLE) devices, such as Apple AirPods, and
extracting user email addresses and phone numbers from BLE
advertisements associated with Apple’s Wi-Fi Password Shar-
ing (PWS). Further research revealed design flaws in AirDrop
that exposed user phone numbers and email addresses [28].
Additionally, Stute et al. [57] analyzed the protocols involved
in Apple’s Handoff feature, identifying vulnerabilities that
enable device tracking through Handoff advertisements.

Among the works on exploiting BLE for tracking [12, 31,
35, 70], OpenHayStack [31] is the most closely related to
our work. OpenHayStack has reported that one can turn a
computer into a tracker leveraging Apple’s Find My network.
However, to launch the attack, OpenHayStack requires root
privileges or a device that does not distinguish root and non-
root processes at all. Our work can turn a Linux, Android
or Windows system into a tracker without root privileges. It
exploits a vulnerability of the Find My network we discovered.
We also developed key search techniques to make the attack
cost-effective and fast.

Recent work [13, 26, 63] has examined the potential uti-
lization of Find My network for transmitting arbitrary data,
exploring applications such as crowd-sourced sensing and
data-muling.

In a broader context, Weller et al. [67] investigated the se-
curity and privacy of commercial Bluetooth tags from various
vendors. Their study uncovered multiple design and imple-
mentation issues, including unauthorized access to location
reports and user data leakage.

Stephenson et al. [56] explored the abuse of IoT devices for
surveillance and its impact on personal safety. By conducting
interviews with victims of the abuse, this work shows the
ineffectiveness of amateur attempts to locate hidden trackers.

Prior work [69] has demonstrated that Samsung Smart-
Tags can be exploited for malicious tracking. However, this
approach requires replaying advertisements from an actual
SmartTag device. Moreover, SmartTag’s lost message in-
cludes a liveness attribute protected by a message authentica-
tion code (MAC), requiring periodic lost message synchro-
nization with Samsung’s servers. Additionally, SmartTag does
not implement end-to-end location encryption but enforces
online decryption. Combined with the mandatory activation
and pairing process for SmartTag usage, such attacks require
much effort to launch and are easy to identify. In contrast, our
attack does not involve Apple Cloud for lost message genera-
tion, key generation, or location report decryption. Moreover,

our attack exploits Apple’s Find My network, the largest track-
ing network, significantly increasing the likelihood of locating
a targeted device compared to trackers on other networks.

9 Conclusion

Our work uncovered a vulnerability in the Find My ser-
vice that permitted all types of BLE addresses for advertis-
ing. Exploiting this vulnerability, we proposed a novel at-
tack, nRootTag, which transforms a Bluetooth device into an
“AirTag” tracker without requiring root privilege escalation.
By utilizing over a billion active Apple devices as finders,
the attack is able to accurately track user devices. Through
rainbow table-based offline key search or GPU-accelerated
online key search, an infected computer can be quickly turned
into a tracker. Notably, the online key search cost does not in-
crease as the number of tracked devices grows. The evaluation
shows that the attack is effective across various devices, in-
cluding desktops, laptops, smartphones, and IoT devices, and
worked on Linux, Windows, and Android platforms. We also
discussed how the attack could be extended to track Apple
devices.
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A Appendix

A.1 Apple Location Report Retrieval

Listing 1: HTTP request for downloading location reports.
POST /acsnservice/fetch HTTP/1.1
Host: gateway.icloud.com
User -Agent: python -requests /2.31.0
Accept -Encoding: gzip , deflate
Accept: */*
Connection: keep -alive
X-Apple -I-MD: ...
X-Apple -I-MD-M: ...
X-Apple -I-Client -Time: ...
X-Apple -I-TimeZone: UTC
loc: en_US
X-Apple -Locale: en_US
X-Apple -I-MD-RINFO: ...
X-Apple -I-MD-LU: ...
X-Mme-Device -Id: ...
X-Apple -I-SRL-NO: 0
Content -Length: 121
Content -Type: application/json
Authorization: Basic ...

{
"search": [{
"startDate": 1737842550000 ,
"endDate": 1737846150000 ,
"ids": ["..."]}]

}

Genuine AirTag users utilize the Find My application to ac-
cess AirTag locations. The Find My application lacks the ca-
pability for programmatic export of location reports and does
not support integration with third-party applications. Previous
studies [14,30,31] have identified APIs for accessing Find My
reports. These Apple APIs are protected by multi-factor au-
thentication, which utilizes periodically changing credentials
based on an undisclosed protocol. To dispatch requests with
these credentials, OpenHayStack employs a plug-in crafted
for the Apple Mail application, specifically associated with

macOS. However, with the termination of plug-in support
in macOS 14, OpenHayStack is now obsolete. A provisional
solution employed OSX-KVM virtual machines [47,48] to cir-
cumvent OS limitations, but this method is resource-intensive
due to the requirement for running macOS.

We exploited the methodology outlined in biem-
ster/FindMy [14], which employs a more efficient tech-
nique through the integration of specialized libraries ac-
quired through reverse engineering [20, 21]. This technique
invokes the requisite cryptographic operations for authenti-
cation from a dynamic library extracted from Apple Music
for Android. The library generates the necessary authentica-
tion headers linked with metadata. Significantly, this method
facilitates the retrieval of reports using solely an Apple ac-
count, thereby eliminating the necessity for either physical
Apple hardware or resource-intensive virtual machines. This
approach dramatically lowers the barriers to accessing the
Find My network, and, importantly, the minimal resource
demand enables flexible integration and automation. While
biemster/FindMy is shell interactive, we used a publicly ac-
cessible fork, Chapoly1305/FindMy,1 which provides API
features. An example HTTP request for requesting location
reports is shown in Listing 1.

Within our threat model, we postulate that an adversary
might target a large population for the purposes of profiling
and surveillance. Such an attack requires the retrieval of loca-
tion reports for a multitude of devices. Notably, discussions
in 20212 and our preliminary tests conducted in 2023 sug-
gest that Apple does not strictly enforce a throttling policy
concerning the number of tags in a single request or the size
of a single report file. In our experiment, we successfully
queried 1,552 tags in a single request and obtained a report
file amounting to 1,576,864 bytes. Our Apple account, em-
ployed for the experimentation, carried out periodic queries
over a period exceeding 13 months without encountering bans
or restrictions. Thus, it is plausible to exploit the Find My
network to observe thousands of devices.

1https://github.com/Chapoly1305/FindMy
2https://github.com/seemoo-lab/openhaystack/issues/41
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