
BlueGuard: Accelerated Host and Guest Introspection Using DPUs

Meni Orenbach
NVIDIA

Rami Ailabouni
NVIDIA

Nael Masalha
NVIDIA

Thanh Nguyen
Unaffiliated ∗

Ahmad Saleh
NVIDIA

Frank Block
NVIDIA

Fritz Alder
NVIDIA

Ofir Arkin
NVIDIA

Ahmad Atamli
NVIDIA

Abstract
Virtual Machine Introspection (VMI) is an essential tech-

nique for monitoring the runtime state of a virtual machine.
VMI systems are widely used by major cloud providers as
they enable a range of applications, such as malware detec-
tion. Unfortunately, existing VMI systems suffer from several
shortcomings: they either compete with the introspected VMs
for shared CPU resources or report poor performance. Further,
they cannot introspect hypervisors or bare metal machines.

We propose BlueGuard, a system that leverages the physi-
cally isolated Data Processing Unit (DPU) commonly found
on data center servers to efficiently run full system introspec-
tion by both host and guest introspection (HGI).

BlueGuard facilitates the creation of hardware-accelerated
HGI applications and frees the CPU while providing perfor-
mance isolation. As a beneficial side effect, BlueGuard is
capable of introspecting even bare metal servers that are usu-
ally out of scope for VMI systems. Furthermore, BlueGuard
abstracts the DPU accelerators and provides kernel bypass-
ing, non-blocking memory access, and user-level threading to
achieve µs-scale introspection latency. Finally, we introduce
delta introspection to accelerate the detection of state changes
with BlueGuard and demonstrate the ability to isolate infected
machines on a network layer.

We implement and extensively evaluate BlueGuard on an
NVIDIA BlueField-2 DPU. Our system achieves a 4.3× de-
tection speedup compared to prior work and is capable of
monitoring tens of VMs concurrently without hindering the
host performance.

1 Introduction

Virtual machine introspection (VMI) is an important tool for
identifying advanced threats in VMs, such as rootkits [12,
16, 17, 23, 40, 64, 65, 67, 69], and is commonly deployed
in modern data centers [18, 43]. VMI helps detection by

∗Work done while at NVIDIA

bridging the semantic gap [25]: reconstructing high-level
information from raw memory images.

VMI was demonstrated in its benefits to detect stealthy
malware [66], a special type of malware that aims to evade
detection employed by traditional security countermeasures.
Specifically, stealthy malware can be as sophisticated as to
hide its files and processes, disable the detection tools, and use
polymorphism to change its appearance on each execution.

Previous work on VMI systems includes different design
options. First, Host VMI systems (Fig 1(a)) reside within the
hypervisor or the VM [16, 77, 79], and have scalability and
resiliency issues [69]. Further, these systems have inadequate
isolation and therefore do not allow for a hypervisor or bare
metal introspection [39].

Second, Out-of-band (OOB) VMI systems (Fig 1(b)) run on
an isolated device [15, 33, 39, 41, 46, 48, 66, 80], and acquire
data using Direct Memory Access (DMA) or remote DMA
(RDMA). OOB VMI is considered more secure than host
VMI due to devices being physically isolated. Further, OOB
VMI can introspect a full system: host and guest introspection
(HGI). Notably, prior work focused on introspecting either
hypervisors or VMs, overlooking detecting potential threats.

Modern data centers present both new requirements and op-
portunities for HGI. On the requirements side, server proces-
sors can concurrently host dozens of VMs [44], and stealthy
malware can conceal itself within milliseconds, limiting the
effectiveness of slower HGI systems.

On the opportunity side, data centers now feature increas-
ingly complex servers that host not only conventional re-
sources like CPUs and memory but also accelerators such
as Data Processing Units (DPUs) [21, 45, 52]. Note, we use
the term DPU interchangeably with SmartNIC. The primary
function of DPUs is to offload complex networking tasks like
firewalls or packet encryption from the CPU to the DPUs.

To bridge the performance gap of conventional VMI sys-
tems in modern data centers, we propose BlueGuard, an HGI
system that builds on top of a DPU to offload the computation-
intensive introspection of tens of VMs concurrently while
being physically isolated from the inspected host. BlueGuard

VM VM

Hypervisor

VMI system

VM VM

PCIe device

VM VM

Hypervisor

 (a) Host VMI (b) Traditional co-processor VMI (c) Blueguard

VMI system

HGI system

VDPU VDPU

Hypervisor

Direct access
HW virtualization

Indirect access
SW virtualization

Trusted
components

DPU

Figure 1: Overview of existing VMI systems and BlueGuard.

is inspired by advancements by NVIDIA for malware detec-
tion [53] and executes introspection applications as illustrated
in Fig 1(c). BlueGuard utilizes DPUs’ SR-IOV capabilities to
create a virtual DPU (vDPU) to scalably support HGI.

BlueGuard abstracts the complexity of DPU programming
without sacrificing the introspection bandwidth with the fol-
lowing design choices.
DPU tailored introspection. BlueGuard builds on the idea
of libOSs used in CPUs for µs-scale [4, 60, 78] for HGI
systems. This includes user-level threading, memory man-
agement, and I/O management through the vDPUs. Specifi-
cally, each introspection application is connected to a single
monitored VM or the host through a dedicated vDPU. Blue-
Guard utilizes the one-sided RDMA interface to program
local DMA engines via the vDPU hardware-managed queues
enabling kernel-bypass in the DPU. Moreover, BlueGuard
reuses known RDMA performance optimizations when pro-
gramming the DPU’s accelerators. This enables BlueGuard
to reduce introspection latency by tailoring it to DPUs unique
hardware design (§6.3).
Offloading introspection. Introspection applications rely on
computing resources to analyze memory for malware, which
can create a bottleneck when introspecting tens of VMs
with the DPUs resource-constraint general-purpose cores. We
demonstrate improved performance when using DPUs hard-
ware for accelerating and offloading these actions from the
DPUs’ general-purpose cores. Specifically, we show orders-
of-magnitude performance improvement for real introspection
applications similar to those used by Google’s virtual machine
threat detection [18]: verifying kernel modules integrity and
scanning for malware with YARA rules [74] (§6.5).
Delta Introspection. Not all resource-intensive tasks can be
easily accelerated by DPUs. One such example is pointer
chasing, which plays a vital role for several VMI applications.
Yet, we observe that the only input for VMI applications is
the VMs’ acquired memory, and the output changes iff the
memory changes. Thus, we introduce delta introspection,
where BlueGuard traces the set of memory accesses and their
content, so that upon subsequent invocations it can batch-
send the same requests and compare the acquired values. This
technique detects changes (deltas) to the VMI application’s
input data efficiently, without re-running the VMI application.
Ease of introspection. Importantly, BlueGuard allows intro-

spection applications to utilize these accelerators without
arduous code changes. Instead, BlueGuard’s design provides
a plugin system that allows for easy implementation of intro-
spection applications without extensive modifications (§5).
Malware isolation. BlueGuard supports different policies for
continuous malware scanning. Upon detection, it can trigger
VLAN isolation, segmentation of the infected server or guest
in case the hypervisor or tenant are compromised respectively.
This isolation is governed by predefined policies controlled
by the DPU’s programmable switch that dictates different
levels of access and containment measures.
Results. We implement a prototype of BlueGuard on top
of the NVIDIA BlueField-2 DPU and evaluate the system’s
performance and scalability using microbenchmarks and real
introspection applications such as scanning active processes,
active kernel modules, and duplicated credentials checking.
We show that BlueGuard enables a 4.3× improvement in
detection speed compared to prior HGI systems, while also
scaling to monitor up to 64 VMs concurrently. Furthermore,
with DPUs’ hardware accelerators, BlueGuard accelerates
common VMI applications by up to two orders of magnitude.

Further, we show that BlueGuard detects different mal-
ware, including stealthy malware which hides its presence in
a few milliseconds successfully. Finally, we evaluate Blue-
Guard’s performance impact on introspected VMs by run-
ning a bandwidth-demanding introspection application con-
currently with SPEC CPU2017 [6] and IOZone [7]. We do
not observe a noticeable performance impact indicating that
BlueGuard maintains performance isolation.

BlueGuard makes the following contributions:

• Design of an efficient and scalable OOB introspection
system using DPUs with SR-IOV, N:M threading, delta
introspection, and DPU hardware accelerators.

• Malware detection and effective network containment
via VLAN isolation.

• Prototype implementation of BlueGuard on commodity
DPUs and evaluation with microbenchmarks and real-
world VMI applications.

2 Background

In the following, we introduce machine introspection, com-
mon introspection applications, and DPUs.

2.1 Machine introspection
Machine introspection has mostly been studied for the past
two decades under the term VMI to gain valuable information
on VMs by accessing snapshots of raw memory. Unsurpris-
ingly, VMI was largely considered for security workloads,
such as intrusion detection [17], malware analysis [34], and
memory forensics [20, 75].

VMI systems execute in isolated environments, most often
by the hypervisor [77] or in dedicated VMs [79]. VMI systems
bridge the semantic gap and enable seamless execution of
VMI applications that periodically acquire guest memory
snapshots for security analysis tasks, e.g., reconstructing the
process list to identify whether an unknown process exists.
Recent systems allow the introspection of the hypervisor itself
as well as bare metal machines [29, 39, 48, 66].

2.2 Common VMI applications
In this work, we use the terms VMI application and intro-
spection application interchangeably, as the most common of
these applications are originating from the area of VMI-based
systems. Since VMI applications are observing the intro-
spected operating system they can access, the applications
themselves are not the limiting factor when differentiating
between a VMI-, and an HGI-based system, and we thus see
any VMI application as a valid HGI application. VMI ap-
plications used by prior work and industry tools observably
follow a common flow illustrated in Figure 2. In a high-level
overview, VMI applications access specific addresses in the
introspected’s memory based on known symbol offsets to pro-
cess the acquired data and compute the next set of addresses
to access until finally extracting the desired artifact. We find
the following common high-level patterns in VMI applica-
tions [18, 39, 75, 79]: 1) read memory for a pointer, and read
its content; 2) Scan the memory for known malicious patterns,
e.g., via YARA rules [74]; 3) Compare the read content to a
reference value. In the following, we list a number of common
VMI applications that we also support in BlueGuard:
pslist. Lists all processes metadata by traversing over the
process list with the list head being the init_task in Linux. The
metadata captured includes the process’s state, virtual address,
name, and associated identifiers: self, parent, user, and group.
For simplicity, we use pslist as a running example.
check_creds. Traverses all processes’ credentials by travers-
ing the process list and dereferencing the internal cred pointer.
Captures metadata on process identifiers that shares the same
credential structure.
modules. Lists the metadata for all kernel modules by travers-
ing over the modules list with the list head being pointed to
by the symbol modules_addr in Linux. The metadata captured
includes the modules’ virtual address, name, and size.
modules_integrity. Similar to modules, it iterates over all ker-
nel modules but it captures all modules’ virtual memory ar-
eas (VMAs) and computes a cryptographic hash per page.
Upon every invocation, it validates that the cryptographic
hash matches a pre-computed hash, which demonstrates that
a kernel module was not compromised by an adversary.
regex_scan. Iterates over all processes, and for each process
captures its VMAs and scans them for the given regex.

We demonstrate how BlueGuard utilizes these applications
for malware detection in §6.1.

P

Artifact available

A P A P A P A P

VMI Application

P A P A P A P A P

VMI Application

Artifact available

Figure 2: VMI application flow. Artifacts are detected/misde-
tected. Processing steps capture data and compute the next
accessed address. Accesses fetch the data.

2.3 Data Processing Units (DPUs)

BlueGuard leverages DPUs [24, 42, 45, 47, 51], which extend
traditional NICs by offloading various networking tasks from
the main CPU, enhancing performance and efficiency in data
centers and high-performance computing environments [28,
35, 61]. The reasons include the decline of Moore’s law that
necessitates better use of CPU cycles [68], stronger security
due to physical isolation, and improved performance isolation.

DPUs feature programmable cores that allow for custom
processing of network traffic, management cores for oversee-
ing operations, and high-speed memory for quick data stor-
age and processing. Additionally, DPUs are equipped with
hardware accelerators for tasks like encryption/decryption,
compression, and deep packet inspection, significantly im-
proving overall system performance by offloading these tasks
from the DPUs general-purpose cores. DPUs manage both
incoming and outgoing network traffic, performing tasks such
as load balancing, and routing directly on the embedded NIC.

DPUs that support one-sided RDMA verbs, such as RDMA
read and RDMA write, enable direct memory access between
a local and a remote node without involving the remote CPU.
This capability allows a compute server to directly read from
or write to the memory of a remote server by specifying the
memory address to be accessed. By bypassing the remote
CPU, one-sided RDMA verbs significantly reduce latency
and increase bandwidth, making them highly efficient for
tasks that require rapid data transfer with low overhead. Blue-
Guard leverages the one-sided RDMA verbs interface, yet,
for local DPU accelerators, e.g., local DMA to read the host’s
memory into the DPU’s local memory. Similarly, DPUs can
perform inline acceleration on data read from the host into
the DPU’s memory, including encryption, decryption, com-
pression, hashing, and regular expression matching.

Finally, DPUs with embedded switch capabilities offer ad-
vanced network management directly in hardware. This in-
cludes traffic routing, load balancing, and network segmen-
tation. BlueGuard utilizes this to enforce network isolation
policies at wire speed when detecting malware.

3 Motivation and objectives

Hypervisor-based virtualization creates a substantial trusted
computing base (TCB) consisting of millions of lines of code,
which often leads to the discovery of common vulnerabilities
and exposures (CVEs). A similar situation exists for bare
metal systems. Malware scanning within hypervisors or bare
metal systems must be offloaded to custom devices [39, 48].
This limits existing host-based VMI systems and forces the
use of OOB introspection within HGI systems.

The downside is that, unlike traditional VMI, OOB in-
trospection cannot affect the introspected VMs, e.g., cannot
pause them before accessing the memory, which creates a
smearing effect. In turn, it forces HGI systems for efficient
memory acquisition. For example, for pslist, malicious pro-
cesses can be available only for a limited time as they termi-
nate after performing a designated exploit. Notably, detecting
the process depends on the processing and memory access
latency of the pslist VMI application.

Figure 2 shows two cases where the artifact is only fully
available for the left, circled, instance. In the right instance,
the artifact becomes only available after the VMI application
has already started processing the memory, and the malicious
process might be missed. This is the data smearing problem
and is a known limitation of asynchronous OOB systems.
Analysts can reduce the probability of smearing by invoking
the VMI application multiple times, e.g., at specific intervals
or continuously. In Appendix A we present a statistical model
to quantify the detection rate for a VMI application. At a high
level, a 100% detection rate with continuous introspection
requires the artifact of interest to be in memory at least twice
as long as the latency of a full introspection execution.

We propose delta introspection to detect changes much
faster than invoking the full VMI application. Its advantage
is 100% detection rate in a shorter period, by combining the
VMI application’s latency with the significantly lower delta
introspection latency (2 ·delta_latency+ vmi_app_latency).

Similar to delta introspection, it is critical to accelerate
the introspection to increase the detection probability without
rewriting the VMI application. Further, public clouds can host
tens of VMs that execute concurrently, which necessitates a
scalable HGI system.

3.1 Why DPUs?

DPUs improve security over host-based VMI as the interface
shared with the host is minimal: reading memory content.
Thus, CPU vulnerabilities such as Spectre and Meltdown [30,
38] do not leak DPU-related states.

Moreover, modern processors use IOMMU to protect
against malicious devices using DMA to access CPU mem-
ory. DPUs are inherently trusted to send and receive data
over the network and read and write the content to the hosts’
memory. Yet, generic accelerators are likely to be restricted

from using DMA through the IOMMU to limit exposure to
potential DMA attacks. Note, a stealthy malware attempting
to tamper with the IOMMU to avoid BlueGuard ’s detection
will also tamper with the network access. This effectively
limits malware from tampering with BlueGuard and continue
leaking secrets or communicate with a control server over the
network.

Finally, in addition to the physical isolation, BlueGuard
gains additional benefits from residing on the DPU, as the
DPU is commonly utilized for networking tasks, which al-
lows an HGI system to autonomously react after malware is
detected. For example, BlueGuard could completely isolate
an infected VM from the original network, place it in a VLAN
dedicated for potentially malicious tenants, and provide noti-
fication to an external server all at the same time.

3.2 Advantage over remote introspection
Remote device. Recently, RDMI [39] showcased up to
2Gb/second network bandwidth for introspection as an HGI
system by utilizing an RDMA-based approach and transmit-
ting data from a bare metal machine to a programmable switch
that performs the introspection. In contrast to prior, host VMI-
based systems such as LibVMI [77], RDMI reports better per-
formance even though it only focuses on bare metal servers
and does not support the introspection of virtual machines.
Crucially, however, RDMI relies on unencrypted RDMA traf-
fic from the introspectee’s memory to RDMI. This may not
be acceptable for security-conscious users who do not wish
to expose the HGI memory reads over untrusted networks.

Further, DPUs contain hardware accelerators such as a
regex engine for pattern matching and a hashing unit for
computing digests. These accelerators can greatly speed up
common introspection tasks. For instance, the regex engine
can scan for malware patterns, while the hashing unit can
speed up the comparison of known malware digests.
Remote host. Remote introspection with an external CPU
acquiring memory through RDMA [31] offers a few advan-
tages: programming flexibility, performance, and improved
ecosystem compatibility. Running VMI applications in a re-
mote CPU is close to the DPU model used by BlueGuard. Yet,
without sending memory content over the network. Notably,
DPUs are prevalent in data centers [21, 45, 52], and HGI of-
floading to DPUs can reduce the data center’s total cost of
ownership (TCO) compared to using remote CPUs for HGI.
Specifically, DPUs consume less power compared to CPUs,
and the saved CPU cores can be rented to tenants.

3.3 System model
We consider a platform with a multi-core CPU under the man-
agement of a cloud service provider (CSP). Multiple VMs
execute on the same platform and are managed by a hyper-
visor. Both the VMs as well as the hypervisor are the target

VMI
Apps

HG
list

Schedule
graph

VMI
app

VM VM VM

Hypervisor

VMI
app

VMI
app

VMI
app

VMI
app

Blueguard Input Blueguard DPU Host

Figure 3: BlueGuard overview. Arrows depict which host or
guest each VMI application is monitoring.

of introspection. If no VMs are present, the whole bare metal
machine as a whole is the sole target of introspection. The
platform contains a DPU connected through PCIe to the CPU.
BlueGuard executes on the DPU and runs introspection appli-
cations to detect malware on the system.These introspection
applications monitor live kernel and user application states
without modifying or suspending the guest system.

BlueGuard targets the system organization shown in Fig-
ure 3. Using BlueGuard, security analysts can deploy VMI
applications such as pslist for malware detection together with
a security policy that contains the requested HG list: which
VMs and hypervisor to introspect with the deployed VMI
applications and the introspection schedule.

3.4 Threat model

The adversary is malware in the host that may possess root
privileges that aim to compromise the confidentiality and
integrity of services executed in the introspected system. We
assume the hardware and firmware in both, the host’s CPU
and DPU, are trusted, and the hypervisor and any running VM
boot securely to enable DPU access to their memory. Both the
DPU itself as well as software running on the DPU are inside
the trusted computing base and cannot be compromised by
the adversary.

After boot and BlueGuard initialization, the adversary may
infect a target during runtime by launching various software
attacks, e.g., by exploiting a buffer overflow vulnerability [70]
or by taking over the host from an infected VM. However, a
core assumption is the visibility of any malicious modification
in the main memory. Thus, we assume that the adversary can
be detected by applications that are introspecting the memory,
and attackers avoiding memory modifications are out of scope.

Next, we distinguish between the threat models for the two
deployment variations of BlueGuard: Bare metal introspec-
tion and VM introspection.
Bare metal threat model. An adversary compromising the
bare metal machine and gaining kernel-level access may tam-
per with the page table or kernel data structures to avoid
introspection and malware detection [3, 26]. Specifically, by
forcing the VMI systems to introspect a memory region that
appears benign while malware executes elsewhere in memory.

These address translation redirection attacks are a known limi-
tation shared by all OOB VMI systems [26, 33, 48, 66] and is
out of scope. VM-specific threat model. In the VM-specific
deployment, a compromised hypervisor can alter IOMMU
translations to avoid VM introspection by BlueGuard. This
attack is a form of the previously mentioned translation redi-
rection attacks and is equally out of the scope due to the same
set of limitations. Finally, DoS attacks are out of scope for
both types of deployment.

3.5 Objectives and non-goals
Our goal with BlueGuard is to provide a configurable system
with improved introspection efficiency compared to existing
OOB HGI systems. Specifically, security analysts can opt to
continuously invoke introspection applications for an optimal
detection rate, or employ heuristics to invoke specific applica-
tions for certain VMs on the system. Yet, proposing new VMI
applications that are more proficient at detecting malware,
or a specific invocation heuristic to improve the detection
accuracy and DPU resource utilization is out of the scope of
this paper. Instead, in § 6 we evaluate VMI applications that
were used by prior work [39, 79] and a continuous invocation
heuristic for optimal detection rate.

4 BlueGuard design

We first explain the high-level design of BlueGuard and then
describe the main components in detail.

Figure 4 shows the overall architecture of BlueGuard. Blue-
Guard depends on DPUs with support for virtualization (SR-
IOV), such that the DPU can present itself as a virtual DPU
(vDPU) that connects to a VM or the hypervisor. BlueGuard
implements a mechanism to transfer live memory content
from the VMs to the VMI applications via the vDPU’s queues
abstracted as VMI contexts. Each VMI context contains the
VMI application’s metadata, similar to a process in a tra-
ditional OS, which includes vDPU hardware queues: send,
receive, and completion queues for the DMA, regex, and hash-
ing accelerators, the physical memory regions, an intermediate
symbol table (IST) for the kernel, and internal caches.

VMI applications do not use VMI contexts directly. Instead,
BlueGuard’s interface abstracts memory accesses to either a
DPU local address space (LAS) or the introspected’s remote
address space(RAS).

On the first boot of the VM/hypervisor, BlueGuard creates
an underlying VMI context for it, and communicates with
the introspected to set up the control plane to enable access
to its memory: a set of send/receive queues and completion
queue per acceleration engine and memory registration for
its RAS and a DPU LAS. Next, VMI applications can sub-
mit either memory access or inline computation requests to
buffers in LAS or RAS. The VMI applications are executed
by BlueGuard’s scheduler.

pslist

Blueguard

Userspace

Thread
management

VMI Contexts
management

DMA SHA Regex

vDPU
Queues:
requests,
completion

Kernel

modules modules integrityVMI Apps

Figure 4: BlueGuard manages VMI applications in userspace.

4.1 Memory management

In BlueGuard, the DPU’s general-purpose cores execute the
control plane, and the embedded NIC zero-copies data from
the host memory to the DPU’s local memory. Under the hood,
BlueGuard uses the traditional RDMA interface to access the
NIC’s queues. Yet, unlike traditional RDMA the data is not
transferred over the network and hence sensitive VM data is
not exposed to adversaries that may snoop on the network.
Moreover, BlueGuard use of DPUs with SR-IOV support
sidesteps the need to virtualize access to the DMA engine,
enabling kernel-bypass [27].
Initialization. BlueGuard relies on a PCIe feature called
Single Root Input/Output Virtualization (SR-IOV) that em-
ploys so-called virtual functions (VFs) to virtualize a PCIe
device [59]. Each VF is directly assignable to a VM or the hy-
pervisor, granting access to unique DPU hardware resources,
thereby acting as a vDPU. The VFs are used by BlueGuard’s
initialization to set up DPU access to the VM as described
next.

To initiate memory access, BlueGuard first registers two
memory regions: one in the target: either the VM/hypervisor
for RAS access or the DPU for LAS access, and the other
in the DPU. Then, BlueGuard creates and exchanges con-
trol data to set up the queue pairs to a ready state for all the
acceleration engines: DMA, regex, and hashing. Note, Blue-
Guard intends this process to be performed by agents in the
DPU and the introspected VM/hypervisor, which are both
trusted at initialization time while exchanging the data over a
secure channel, e.g., a UNIX socket guarded with TLS. This
secure channel is closed after the data exchange is finished
and before any external client can connect. Specifically, we
assume the introspection begins in a valid state before it can
be compromised by an adversary.
Protect VM control structures. After the initialization com-
pletes, the agent terminates but does not free the resources
allocated. Thus, access by the DPU is maintained throughout
the VM/hypervisor lifetime. Later, when the boot completes,
an adversary may gain root privileges and attempt to limit or
tamper with the control structures, e.g., deregister the regis-
tered RAS memory region, or modify it to limit introspection

Dequeue;
Access PA

DMA/Regex/SHA

DPU Memory
Main memory

Result

Data
0x8000
0x3000
0xf000

vDPU request queue

Figure 5: BlueGuard data plane flow with inline computation.
vDPU queues are simplified to only contain the VM PAs.

to memory regions that fake benign activity. However, such
attempts would render the existing RAS object invalid and
would thus be detected by BlueGuard. Note, DoS attacks are
out of scope for BlueGuard (§3.3).
RAS access. DPUs contain address translation capabilities to
access virtual addresses. However, prior work observed that
limited NIC resources can limit scalability when accessing
large virtual memory regions [73]. Furthermore, our threat
model assumes the VM or hypervisor may be compromised
after BlueGuard’s initialization, which makes it challenging
to validate in runtime the security posture of newly registered
memory regions. Instead, we use the pa−mr verb that enables
registering the entire physical address space [39, 55, 73].
However, this design choice forces BlueGuard to perform
software translations of RAS memory. Specifically, virtual
address (VA) to physical address (PA) and guest VA (GVA)
to guest PA (GPA) translations for the hypervisor and VMs,
respectively (§4.3).

Once the control plane is set up, BlueGuard internally in-
vokes the acceleration engines by sending a work request
element via the queue pair with the target address in either
RAS or LAS along with the size for each access and the target
local memory to store the result (Figure 5). After the request
completes, the DPU places a work completion element in its
completion queue to asynchronously notify that the data fetch
was completed successfully, or indicate an error if occurred.
Shared address space. BlueGuard enables the sharing of
common information, such as the GVA-GPA translation cache
of introspected VMs/hypervisor across different VMI applica-
tions as they all share the same address space. This is useful
when multiple VMI applications are configured to monitor
the same VM/hypervisor.

4.2 BlueGuard scheduler

BlueGuard builds on DPUs, which have limited computing
resources. Therefore, instead of continuously polling the com-
pletion queue to validate memory access requests completed
successfully, BlueGuard performs a single polling operation
in a non-blocking manner. Specifically, if the poll indicates the
access was completed successfully, the VMI application can
continue to execute. Otherwise, BlueGuard context switches
to a different VMI application. Once the VMI application

VMI
App

1

Hardware thread Hardware thread
SchedulerScheduler

VMI
Contexts

2 3
VMI
App

Figure 6: BlueGuard threading model. 1 Schedule VMI applica-
tion. 2 Post read request to VM’s memory. 3 Yield to the scheduler
while the request is being processed.

is scheduled back, BlueGuard checks whether the memory
access is completed or if another context switch is required.
Threading model. BlueGuard uses an N:M threading model
with cooperative multitasking to avoid costly hardware thread
context switches during non-blocking memory accesses. Fig-
ure 6 illustrates how M VMI application threads are multi-
plexed across N OS threads. In BlueGuard, each thread exe-
cutes a userspace scheduler that chooses a VMI application
registered to a hardware thread to be executed.

Once a VMI application is scheduled to run it executes
uninterruptedly until posting a request on the VMI context’s
queue and then yields its execution back to the scheduler. The
scheduler checks whether another VMI application thread
can wake up due to an expired timeout or the arrival of a
completion element. If no VMI application can be executed,
the scheduler backs off to save the DPU compute resources.
We evaluate this design decision in § 6.3.

4.3 Address translation
Virtual memory translation in VMs involves nested page ta-
bles that translate GVA to GPA and GPA to Host PA (HPA).
IOMMU considerations. BlueGuard sets the IOMMU to
passthrough mode to prevent the hypervisor from manipu-
lating with introspection through DMA remapping when it
is being introspected. Thus hypervisor and bare metal in-
trospection use the PA directly. Yet, for VM introspection,
BlueGuard uses PCIe passthrough configuration, where the
IOMMU translates GPAs to HPAs. While IOMMU configu-
ration and address remapping attacks are possible by the hy-
pervisor we currently exclude them from BlueGuard’s threat
model similar to prior HGI systems. We discuss mitigations
and their performance impact in §7.
Software address translation. BlueGuard detects the root of
the VM’s/hypervisor’s kernel page table. Next, for each VA,
BlueGuard traverses the page table with DMA accesses and
uses the extracted data to compute the PA with a software-
based page table walk. Our prototype currently targets the
x86 architecture with four-level page tables. Thus, BlueGuard
sends four DMA requests to translate a VA into a PA.

BlueGuard cannot access the CPU control registers, includ-
ing CR3. Instead, it performs an exhaustive memory search to

find the PA of the VM’s/hypervisor’s kernel root page table.
The scan uses a known memory forensic approach based on
an IST: a structure containing offsets and sizes for kernel sym-
bols in the virtual address space. The scan takes a known VA
that points to a page with known contents, e.g., the init_task in
the Linux kernel, and performs software address translation
on it. The candidate that has a valid translation and points to a
page with the expected content is deemed to be the root of the
kernel’s page table. The process page table physical addresses
are stored in Linux in each task_struct. Thus, BlueGuard can
recover them as well.
GPA-HPA translation. With VMs, a second level transla-
tion from GPA to HPA exists. The second level of translation
can be performed by BlueGuard similarly to GVA to GPA by
finding the physical address of the root of the extended page
table. This allows BlueGuard to directly translate GPAs to
HPAs akin to the method of Graziano et al. [22]. However,
BlueGuard can offload the GPA to HPA translation to the
IOMMU with PCIe passthrough of vDPUs to improve the
introspection performance. Note, that the IOMMU may be
tampered with by a compromised hypervisor, which does not
introduce a new attack vector as translation redirection at-
tacks are out of scope for BlueGuard and OOB introspection
systems in general [26] (§ 3.4).

4.4 Inline computation
Managing the accelerators for VMI applications requires spe-
cial care as unfortunately, VMs/hypervisor states exist in vir-
tual memory, and the matching PAs are unlikely to be contigu-
ous. Thus, invoking the accelerators on RAS buffers could
yield an incorrect computation if the buffer crosses two pages.
Note, LAS accesses are registered with DPU virtual memory
so they do not share this issue. To overcome this, BlueGuard
automatically detects cross-page access. Next, for each access
to the regex or hashing engines, BlueGuard first copies the
requested buffers to local memory and then triggers a subse-
quent request for the respected engine on the local memory
that is contiguous. For non-cross page accesses BlueGuard
performs the computation directly on the VM’s memory. Fi-
nally, to reduce memory utilization, BlueGuard partitions the
copies to 2 pages at a time for engines that do not maintain an
internal state such as the regex. However, for engines such as
SHA that do maintain a state all the pages are copied at once.

4.5 Delta introspection
We observe that the only input to VMI applications is the
data accessed through the accelerators. Thus, to validate there
are no changes in the introspected VMs’ state, e.g., a new
process spawned or terminated by the pslist VMI application,
BlueGuard tracks all the accessed RAS pointers together with
their respective size and last known values. Next, instead of re-
running the VMI application, BlueGuard issues a batch DMA

request for all the RAS addresses and sizes as was traced
by the original execution. Detecting a change is then based
on a comparison check. To reduce the check’s latency, a di-
gest (SHA-256) of the original content and that of the latest
invocation are matched. In case of a mismatch, the VMI ap-
plication is executed traditionally to capture the new artifacts.
Delta introspection facilitates a known RDMA programming
optimization to accelerate memory accesses: doorbell batch-
ing [27], which is impossible for traditional VMI applications.

Finally, we note that hashing or pattern-matching changes
only with content modifications. Therefore, BlueGuard can
trace the original content using DMA requests for delta intro-
spection.
VA-PA translation cache. Similar to existing VMI systems,
BlueGuard maintains a translation cache to reduce the num-
ber of DMA accesses. However, BlueGuard is able to utilize
delta introspection to identify when invalidations are required.
Specifically, when sending the batched DMA request, Blue-
Guard tags the page table walk-related requests, and upon a
delta being detected BlueGuard then checks for changes in
the page table fetched content. Any change in the page table
levels invalidates the corresponding GVA-GPA entry from
the translation cache, and the next invocations of the VMI
applications would ensure correct execution.

Note, this improves upon existing approaches that blindly
trust the cache does not contain stale translations [77]. While
it may still be possible to encounter stale translations as Blue-
Guard cannot introspect the TLB, in practice we did not en-
counter such a case. It does, however, come with a perfor-
mance impact, as the inclusion of page table walk-related
requests increases the number of DMA requests. We evaluate
both cases.

4.6 Malware Isolation

The fact that BlueGuard runs on a DPU, which connects the
host and guests to the network, allows controlling every net-
work access by leveraging a virtual switch: Open vSwitch
(OVS) [54]. Specifically, the NVIDIA BlueField DPU sup-
ports offloading VLAN management to OVS, which adds a
VLAN tag to all packets sent and strips the tag for all pack-
ets received. Note, the host/VM interface is unaware of the
VLAN tagging as the configuration is made on the DPU for
netdev representors [37].

BlueGuard utilizes this to enforce network access restric-
tions and to contain a VM or the hypervisor as soon as it
is considered infected. Specifically, BlueGuard employs net-
work isolation policies, such that a potentially infected system
can be placed in VLANs with only limited, up to no connec-
tivity to other machines at all. This prevents attackers from
spreading to other systems (lateral movement) and since this
enforcement is done in the DPU, the attacker cannot easily
revert a containment, in contrast to a compromised hypervisor
for example.

5 Implementation

Our prototype of BlueGuard is implemented in C/C++ and
closely follows the description in § 4. The only exception is
our prototype does not currently implement malware isolation
policies. Instead, our prototype configures OVS on the DPU
to isolate VMs/hypervisor in pre-configured VLANs. Blue-
Guard consists of a VM agent used to set up the control plane
with BlueGuard that is deployed in the NVIDIA Bluefield-2
DPU [51].

The implementation leverages the NVIDIA DevX interface
and the DOCA SDK [50], which enables submitting requests
to the DPU’s accelerators.
BlueGuard threading model. We implement the N:M
threading model using C++ coroutines and force yielding
to a FIFO scheduler when VM access is performed. Note, we
statically balance the task load per OS thread and observe our
threading model maintains fairness.
Profiles. BlueGuard uses Volatility IST [75] to provide VMI
applications with access to symbols offsets and sizes in the
introspected guest virtual address space. Specifically, the IST
profile is constructed with existing tools that utilize the ker-
nel image (with debug symbols) and the system map [75].
Furthermore, for each VM and hypervisor, we extract the
available physical memory regions to validate we only serve
memory access requests to system memory.
VMI applications interface. BlueGuard’s interface to-
wards the VMI applications includes a VMI request queue:
process_jobs(vmi_ctx, job_ctx[], callback), that appends single or
multiple job contexts to the introspected VM/hypervisor. Each
job context includes job_type: dma, regex, or sha, a PA to ac-
cess, the size in bytes to access, and a destination buffer in
the DPU memory to store the result into. The callback func-
tion is invoked by the scheduler once all jobs are completed
with the job contexts and a status indicating success or failure.
Thus, VMI application developers can send a single job or
batch jobs with a single call. DPUs manage jobs in order so
batching enables polling only the last submitted job to infer
all jobs completed successfully.
Implemented VMI applications. VMI applications can be
developed easily with BlueGuard’s interface. We demonstrate
this by implementing several VMI applications with similar
functionality as used in prior work [18, 79], and by support-
ing all VMI applications listed in § 2.2. Note that all VMI
applications use the IST to extract symbols’ offsets and sizes
and access only the minimum set of addresses to extract the
artifacts.
Accelerated VMI applications. Notably, VMI application
development is simple as it is programmed on general-purpose
processors with known programming languages while Blue-
Guard abstracts the DPU hardware interfaces. For the two
VMI applications modules_integrity and regex_scan, we each
implement two versions. First, a standard, ARM-optimized
version in software via the OpenSSL library [56] and the

POSIX.2 regex library, respectively. Second, a hardware al-
ternative that makes use of the DPU accelerators, with the
hashing accelerator for the modules_integrity application, and
the regex accelerator for the regex_scan application.

For modules_integrity, our implementation batches hashing
requests to the accelerator to improve performance by first
capturing all the pages in the kernel modules’ VMAs (§ 6.5).

Finally, both software implementations regex_scan_sw and
modules_integrity_sw first issue a DMA request to a staging
buffer and then issue the respective operation on it.

6 Evaluation

Hardware setup. The platform we use to evaluate BlueGuard
is a ProLiant DL380 Gen10 server with two Intel(R) Xeon(R)
Gold 6130 CPUs, 204 GB RAM, and 1.8 TB NVMe. The
server is connected to an NVIDIA BlueField-2 DPU and uses
its Ethernet adapters to connect to a switch through a trunk
port. For the malware evaluation, we configured two VLANs:
VLAN 10 for unrestricted internet access and VLAN 99 for
containment and running malware. The VLAN assignment
is enforced on the DPU through OVS configuration. Further-
more, we use a dedicated VM with a clean base snapshot for
every malware execution. The host CPU runs Ubuntu Linux
with a custom kernel compiled to support LibVMI with KVM
based on version 5.4.

Note, unlike LibVMI, BlueGuard does not necessitate a
custom kernel. Yet, to remove bias in experiments we opt
to use the same kernel throughout all the experiments. The
DPU runs the off-the-shelf NVIDIA Linux kernel 5.4.0-1035-
bluefield. We install 16 VMs on the host using KVM and
QEMU. Each VM has 4 vCPUs, 8 GB RAM, and 100 GB of
storage while running Linux kernel 5.4.0-125. We use KVM
and QEMU to manage the virtualization stack on the host and
configure SR-IOV with the IOMMU set to passthrough mode.
Methodology. We run each experiment measuring latency
10 times and measuring throughput for at least 30 seconds.
We report the mean and normalized values for latency and
throughput tests respectively and validate that the standard de-
viation is within an acceptable range (5%). The introspection
details for each evaluated VMI application are depicted in Ta-
ble 1. Finally, when delta introspection is used, it is triggered
continuously unless specified otherwise.

6.1 Malware detection and isolation
In this section, we evaluate BlueGuard’s effectiveness for
malware detection.
Open source rootkits. We evaluate Diamorphine [11] and
Reptile [63], which are based on a loadable kernel module
using the modules VMI application. Both rootkits offer several
functionalities, but their hiding capabilities are most important
for this evaluation: both hide themselves automatically during
initialization. We run the rootkits 100 times at an arbitrary

Table 1: Number of accesses and size per VMI application.

VMI application # of accesses Total memory
accessed

pslist 1,236 9.6 KB
modules 643 8.6 KB
check_creds 962 7 KB
regex_scan 1,227 9.5 KB
modules_integrity 8,055 302.9 KB

time in a single VM, out of 16 VMs concurrently monitored by
BlueGuard. We employ delta introspection to detect changes
in the modules list followed by the modules VMI application
to detect the malicious kernel module. BlueGuard achieves
91% and 100% detection rates for Diamorphine and Reptile
respectively before they can hide themselves.

To understand the detection rate achieved, we consider the
probability detection model we define in Appendix A. In
short: If the time window of an artifact in memory is as long
as it takes to execute delta introspection twice and the plugin
once, we expect a 100% detection rate. As we measure the
average latency for delta introspection and the modules plugin
to be 108.2usec and 1.38msec per VM, we expect 100% for a
time window of at least 1.59msec (2 ·108.2usec+1.38msec).
During tests, we conservatively measure the time window
in which the rootkits are available in the kernel modules list
to be 13msec and 120msec for Diamorphine and Reptile re-
spectively. It is thus inline with our model to achieve 100%
detection rate for Reptile. Yet, we also expect to observe a
100% detection rate for Diamorphine as the time window is
a multiple of the aggregated latencies. We suspect the dif-
ference is due to P90 latency, which causes the aggregated
latency of delta introspection and modules to be larger than
13msec, or the time window in which the module is available
in the modules list to be significantly smaller. Yet, we did not
investigate it further.
Real-life malware. Next, we evaluate malware samples of
the families Cl0p, Gafgyt, Mirai, XMRig, DinodasRAT, AresRAT,
Babuk and Kaiji (see Appendix C). We use the regex_scan and
pslist VMI applications to scan for indicators of compromise
(IoCs) in memory: onion addresses, and suspicious paren-
t/child relationships (sh child processes), respectively. We
measure the time windows of sh child processes to be as low
as 1msec, and the onion addresses to exist for at least 1 sec-
ond. In both cases we monitor a single VM. We measure the
average latency for delta introspection and pslist for a single
system to be 214.7usec and 2.49msec, so we expect a detec-
tion rate of 100% for a time window of at least 2.92msec
(2 · 214.7usec+ 2.49msec). The ground truth IoCs for each
malware is gathered with forkstat, execsnoop−bpfcc and from
online sandbox systems. We detect 108/132 sh child processes

Table 2: Memory access latency comparing BlueGuard to Lib-
VMI.

of Bytes LibVMI BlueGuard VM (Bare Metal)

4 11.34 usec 2.7 usec (2.7 usec)
8 11.04 usec 2.7 usec (2.7 usec)
16 11.08 usec 2.7 usec (2.7 usec)
32 11.07 usec 2.7 usec (2.7 usec)
64 11.87 usec 2.7 usec (2.7 usec)
1K 11.03 usec 3.3 usec (3.3 usec)
4K 11.04 usec 3.6 usec (3.4 usec)
1M 3 msec 108.1 usec (82.2 usec)
2M 6.1 msec 180.6 usec (160.7 usec)

(82%), and observe a total of 34 sh processes had a time win-
dow between 1msec to 3msec. Also, we identify the onion
addresses IoCs for every executed malware based on the on-
line sandbox results. To conclude, BlueGuard successfully
detects temporary IoCs for real-life malware.
Malware isolation. BlueGuard monitors a dedicated VM, ini-
tially assigned to VLAN 10, and waits for suspicious IoCs.
Once detected, BlueGuard isolates this VM into VLAN 99 by
invoking OVS. To evaluate the latency for isolating a VM, we
consider ping as a malicious process, which is configured to
continuously send ICMP packets every 1nsec to an external
server on the internet, accessible via VLAN 10 but not VLAN
99. As ping sends its packets sequentially, we conservatively
calculate the time until isolation occurs with the aggregated
RTT times of all successfully received packets. The process
initialization time for ping until it starts sending packets is ne-
glected for this experiment. For the detection and containment
we created a modified version of the pslist VMI application
that immediately isolates the VM via OVS. We run 100 itera-
tions, and observe ping is isolated after 27.7msec on average
with a minimum of 12.19msec and maximum of 83.04msec.

6.2 Introspection efficiency
Host VMI comparison. First, we compare BlueGuard to the
popular host-based LibVMI framework [77]. We implement
a simple VMI application that reads a physical address of
configurable size into a local buffer for 1 million iterations to
remove noise. We execute it on a single VM and disable all
caches in LibVMI and BlueGuard to make a fair comparison.

The results are reported in Table 2. First, we observe
BlueGuard is much faster compared to LibVMI: about 3×
for small buffers up to 4 KB, and 27× to 33× for larger
buffers: 1 MB and 2 MB respectively. For small buffers, we
attribute the speedup to BlueGuard kernel-bypass and zero-
copy approach, whereas LibVMI relies on UNIX sockets. The
speedup grows with larger buffers due to the DMA engines.

Note, this showcases the benefits of DPUs: by using SR-
IOV, BlueGuard enables direct access to the vDPU hardware.

0 10 20 30 40 50 60
Number of VMs

10

20

30

40

50

Ph
ys

ica
l a

dd
re

ss
 re

ad
s (

Gb
/se

c)

Non-blocking
Blocking
Max CPUs
Max VMs

Figure 7: Memory access bandwidth while reading physical
pages for a different number of VMs using BlueGuard.

This is unlike a traditional OOB system design that requires
costly kernel mode transitions to virtualize access to DMA
engines across HGI applications.
Bare metal introspection comparison. To understand the
performance differences between VM and bare metal intro-
spection we use the aforementioned VMI application. Yet,
instead of accessing a VM’s memory, we configure BlueGuard
to access the host’s memory. We observe that bare metal in-
trospection is slightly faster compared to VMs. We attribute
this to the additional GPA-HPA translations performed by
the IOMMU when introspecting VMs. Specifically, as this
VMI application reuses the same buffers, for small buffers the
translation fits in the IOTLB thereby hiding the added latency.
However, larger buffers oversubscribe the IOTLB resulting in
increased translation latency.
HGI systems comparison. To the best of our knowledge,
the highest reported introspection bandwidth of prior HGI
systems is 250 MB/second [15, 32, 66]. To compare with
BlueGuard we create a simple VMI application that reads
the entire VM memory to a local DPU buffer 2 MB at a time
while, and discarding old read data. We observe a bandwidth
of 53 Gb/second, which is about 27× higher compared to
prior OOB approaches, e.g., PCIleech [15]. We compare Blue-
Guard and RDMI introspection latency with VMI applications
next.

6.3 BlueGuard introspection scalability

As server processors host tens of VMs [44], we evaluate Blue-
Guard when introspecting multiple VMs in parallel.
Memory access. We implement a VMI application that reads
a 4 KB buffer from a varying number of VMs. We choose
4 KB as we observe many VMI applications perform reads of
4 KB or less, and Table 2 demonstrates the access latency of
4 KB is similar to that of smaller access sizes.

We run the VMI application and compute a normalized
memory accesses/second value. To evaluate BlueGuard capa-
bility to introspect multiple VMs, we vary the number of CPU
cores used from 1 to the maximum available in our platform:
8, with each hardware thread introspecting a VM.
Context switch overhead. To evaluate BlueGuard’s thread-

0 20 40 60
Number of VMs

0

5000

10000

15000

20000

Pl
ug

in
 in

vo
ca

tio
n/

se
c

Delta introspection (full) No cache, non-blocking No cache, blocking Delta introspection Cache, non-blocking Cache, blocking Max CPUs Max VMs

0 20 40 60
Number of VMs

0

2000

4000

6000

8000

10000

12000

Plu
gin

 in
vo

ca
tio

n/s
ec

(a) pslist

0 20 40 60
Number of VMs

0

5000

10000

15000

20000

25000

Plu
gin

 in
vo

ca
tio

n/s
ec

(b) modules

0 20 40 60
Number of VMs

0

5000

10000

15000

20000

Plu
gin

 in
vo

ca
tio

n/s
ec

(c) check_creds

Figure 8: Throughput of VMI applications while varying the number of introspected VMs.

pe
rlb

en
ch gcc mcf

om
ne

tpp

xa
lan

cbm
k
x2

64

de
ep

sje
ng lee

la

exc
ha

ng
e2 xz

ge
om

ea
n

0.0

0.2

0.4

0.6

0.8

1.0

Sl
ow

do
wn

 w
.r.

t b
as

el
in

e

(a) SPEC CPU2017 normalized slowdown while
introspected by BlueGuard.

write rewrite read reread0

500

1000

1500

2000

2500

3000

B
a
n
d
w

id
th

 (
M

B
/s

e
co

n
d
)

Native
BlueGuard

(b) IOZone bandwidth with/without
BlueGuard introspection.

0 5 10 15 20 25
Time (seconds)

20

40

60

80

100

120

140

160

Nu
mb

er
 of

 op
er

at
ion

s (
10

00
)

Native
LibVMI
Blueguard

(c) Redis throughput during introspection: native
vs. LibVMI vs. BlueGuard.

Figure 9: Performance impact of VMI applications on the introspected VMs.

ing model, we issue non-blocking memory accesses with
BlueGuard’s user threads that yield after issuing requests,
and blocking memory accesses that use kernel threads and
busy-wait for completion while relying on the OS for context
switches. For example, introspecting 16 VMs uses 16 and 8
kernel threads for blocking and non-blocking configurations
respectively.

The results are reported in Figure 7. Once BlueGuard ac-
cesses more than 8 VMs the available compute resources
of the DPU are oversubscribed, and kernel threads suffer
from context switch overheads. However, BlueGuard thread-
ing model scales better as it can overlap memory accesses
with compute, which improves the bandwidth by up to 40%.

VM scalability. Note, due to the limited resources in the
host CPU used for evaluation, we can only execute up to 16
VMs concurrently. To understand BlueGuard scalability after
this point we simulate up to 64 VMs by creating multiple
VMI contexts in BlueGuard, with each context containing
its own set of resources. We compare the throughput of ac-
cessing 4 KB buffers with 16 VMI contexts introspecting
a single VM to 16 VMI contexts each introspecting a dif-
ferent VM. We observe the same throughput is achieved in
both experiments, which boosts our confidence that simulated
VMs’ can be representative when evaluating BlueGuard’s
scalability beyond 16 VMs. Figure 7 shows that BlueGuard
reaches a saturation point for 16 VMs. We note that while
the introspection bandwidth is saturated when introspecting

16 VMs, a larger number of introspected VMs is possible
but will experience reduced performance due to a bottleneck
of the underlying BlueField-2 device. This bottleneck stems
from the DPU resources that are shared between each intro-
spection context, e.g., the DPU hardware queues and work
elements. BlueGuard introspection exhibits graceful degra-
dation beyond 16 VMs which results in a fair sharing of
the introspection bandwidth between VMs. Figure 7 demon-
strates BlueGuard’s capability to concurrently introspect up
to 64 VMs with state-of-the-art introspection performance.
To the best of our knowledge, this result shows that Blue-
Guard can scale to match modern data center virtualization
requirements.

VMI applications performance. We evaluate the pslist,
modules, and check_creds VMI applications with BlueGuard
in four configurations: with and without address translation
caching, and with and without blocking memory accesses.
Note, we configure BlueGuard with every VMI context hav-
ing its own dedicated translation cache to correctly simulate
more than 16 VMs. Similar to the memory access experiment,
we vary the number of CPU cores used. Blocking accesses
use hardware thread per VM, and the non-blocking accesses
use BlueGuard’s user threads.

We report the number of end-to-end executions of each
VMI application/second in Figure 8. Similarly to prior work,
we observe the effectiveness of the address translation cache
in improving the throughput. Also, non-blocking memory

accesses improve the throughput and with translation caching
disabled, it partially hides the translation latency. Finally, we
observe that with BlueGuard VMI applications can introspect
up to 64 VMs without noticeable performance degradation.
Delta introspection. Next, we evaluate the impact of door-
bell batching via delta introspection with BlueGuard. For this
setup we only run the corresponding VMI application once to
fill the delta introspection cache and from that point on only
check the cache for any deltas. Whether or not a delta is rec-
ognized does not change the execution behavior, in order to
get unadulterated results. We are focusing on two different fla-
vors: Delta Introspection (full), which covers all DMA requests
including page table translations (§4.4), and Delta Introspection
without the translations. Figure 8 shows that when batching
64 requests all the VMI applications enjoy about an order-
of-magnitude acceleration for a single thread/VM. However,
the benefits diminish due to in-NIC contention with a large
number of concurrent requests. Additionally, the cost for cov-
ering the page table translations with Delta Introspection (full)
decreases the throughput by nearly 50%.
Comparison with RDMI. While not focusing on scalability,
RDMI involves in-network traversal that increases the intro-
spection latency. Specifically for check_creds RDMI reports
a latency of 4.47 msec, which results in an execution time of
8.94msec (2 ·4.47msec) for a 100% detection rate (§3, §A).
As we measure the average latency for delta introspection
and the check_creds plugin to be 131.3usec and 1.82msec re-
spectively for a single VM, BlueGuard’s latency for a 100%
detection rate is 2.08msec (2 ·131.3usec+1.82msec), a 4.3×
speedup. Note, using the DPU accelerators further improves
the introspection efficiency (§ 6.5).

6.4 VMs performance impact

We evaluate BlueGuard’s performance impact on the VM
workloads using SPEC CPU2017 [6], and IOzone [7] to sim-
ulate compute-sensitive and I/O-sensitive workloads respec-
tively.
Compute. We run the SPEC CPU2017 benchmark suite on
a single VM with and without BlueGuard executing in the
background and measure the latency of the applications. With
BlueGuard, we execute the VMI application that accesses
the memory of all 16 of the VMs (§6.3), which maximizes
BlueGuard’s stress on the host’s memory subsystem.

We report the normalized slowdown BlueGuard incurs on
the applications compared to the non-introspected native exe-
cution in Figure 9a. We do not observe a noticeable slowdown
due to the increased memory utilization by BlueGuard.
Storage. As storage devices share the PCIe with DPUs, we in-
vestigate whether high-bandwidth introspection impacts work-
loads that are I/O-sensitive. To that end, we run the IOzone
benchmark suite on a single VM, with and without BlueGuard
using the aforementioned memory access VMI application
in the same configuration as before. IOzone measures the

0 10 20 30 40 50 60
Time (sec)

80

85

90

95

100

iPe
rf

th
ro

ug
hp

ut
 (G

bp
s)

pslist
modules

check_creds
regex_scan

modules_integrity

Figure 10: Performance isolation with networking and Blue-
Guard. Arrows mark points in time that VMI applications are
executed on the DPU.

bandwidth of different file access patterns and we configure
it to run with all vCPUs in the VM and access files that are
twice as large as the available VM’s memory to ensure storage
accesses. We report the observed bandwidth achieved with
and without BlueGuard in Figure 9b.

We observe a small decrease in throughput for read and
re-read access patterns. We attribute this to the kernel’s page
cache and prefetching mechanisms that mask storage accesses.
Note, to the best of our knowledge, even without a page cache
a performance degradation for storage access cannot be used
to detect BlueGuard as the storage is shared across tenants
without fairness guarantees.
Performance isolation. To demonstrate how VMI applica-
tions sharing the physical machine with VMs create the noisy
neighbor effect we measure the throughput of Redis [62], a
popular in-memory data structure store using the workload
generator memtier benchmark. First, we run Redis and the
workload generator in a single VM, capturing the number of
observed operations every second for 30 seconds. To reduce
noise we pin Redis to CPU 0. Next, we run the pslist VMI
application using LibVMI [77], which can be used to detect
potential malware that gained execution privileges.

We continuously monitor the VM and run the VMI applica-
tion in a loop. To get an indication of the lack of performance
isolation we also pin pslist to the same CPU 0 as Redis. We
report the values observed in Figure 9c. It is clear that the lack
of performance isolation causes a significant drop in through-
put, which harms the user experience. For comparison, we run
pslist with BlueGuard. As can be seen in Figure 9c, it achieves
complete performance isolation while offloading the CPU.

Note, dedicating hypervisor cores for VMI limits the scal-
ability of monitoring VMs and takes away cores that can be
rented by CSPs for tenants. Unlike them, DPU cores are not
rented to tenants but offload infrastructure workloads from
the hypervisor and are managed by CSPs.
Networking. To measure the impact of BlueGuard on the

5 10 15
Number of hardware threads

0

20000

40000

60000

80000

Pr
oc

es
se

d
M

b/
se

co
nd

SW-NonBlocking
HW-NonBlocking
HW-Blocking
SW-Blocking

(a) modules_integrity

5 10 15
Number of hardware threads

102

103

104

Pr
oc

es
se

d
M

b/
se

co
nd

SW-NonBlocking
HW-NonBlocking
HW-Blocking
SW-Blocking

(b) regex_scan

Figure 11: Number of bytes processed using a different num-
ber of threads with the DPU’s accelerators (HW) and with the
DPU’s processor (SW).

network performance, we conduct an experiment similar to
prior work [39]. Specifically, we run iperf on the host and
execute different VMI applications concurrently with Blue-
Guard on the DPU. The network bandwidth achieved by iperf
without BlueGuard averages at roughly 93 Gb/second. While
iperf is executing, we execute each VMI application once. Fig-
ure 10 illustrates the results of this experiment. We observe
that BlueGuard incurs a negligible impact on the network.

6.5 Hardware acceleration

Accelerated kernel modules integrity verification. We
evaluate BlueGuard with the modules_integrity VMI applica-
tion with and without the DPU’s hashing engine, and with
and without blocking memory accesses. We execute each con-
figuration with address translation caching enabled and with
a different number of hardware threads. For the non-blocking
configuration, we introspect 2 VMs per thread, which we find
provides the highest throughput. We report our findings in
Figure 11a.

We observe a 12× speedup comparing software-based
hashing to hardware acceleration. This is because the hard-
ware accelerator computes the hash with zero copies. Also, we
observe that BlueGuard is able to reach 80 Gb/second band-
width when monitoring kernel module integrity. Surprisingly,
we observe that the hash engine reaches a higher introspec-
tion bandwidth compared to regular memory accesses via the
DMA engine. We attribute this to our implementation that
batches requests. Finally, we observe that with non-blocking
memory accesses 5 threads are sufficient to reach the max-
imum bandwidth for this VMI application compared to 8
threads that are needed with the blocking approach.
Accelerated Regular Expression matching. We evaluate
BlueGuard with the regex_scan VMI application with and
without the DPU’s regex engine, and with and without block-
ing memory accesses. For that purpose we utilize a YARA
rule for the Linux/Moose malware [5] from the YARA rules
project [74] and convert it into a regular expression. YARA
rules themselves support textual, binary and regular expres-
sion patterns that are used to identify specific binary streams,

such as in malware, and hence are utilized to identify cer-
tain malware families and samples. Since the YARA project
supports regular expressions, it can benefit too from perfor-
mance improvements by the DPU’s regex engine. In our test,
regex_scan is configured to scan all VMAs with the generated
regex for a single process: Redis [62] (more details are in
Appendix B).

We execute both the hardware and software configurations
with a different number of hardware threads while introspect-
ing a single VM for setup simplicity. For the non-blocking
configuration, we introspect 4 instances of the VM per thread,
which we find provides the peak throughput. Finally, we en-
able the translation cache and pre-compute all VMAs’ pages
with valid mappings and scan them for matching patterns.

We report the results in Figure 11b, and observe that hard-
ware acceleration improves the performance by two orders
of magnitude compared to software implementation. To the
best of our knowledge, the DPU’s CPUs do not contain regex
acceleration instructions resulting in a larger gain compared
to hashing. Also, we observe the staging buffer acts as a bot-
tleneck, as each invocation of the VMI application must first
copy data to the buffer and then perform the regex opera-
tions on it. However, the non-blocking design of BlueGuard
minimizes the bottleneck since both the DMA and regex in-
vocations can be overlapped with compute.

We consider that some VMI applications may opt to de-
tect newly installed page mappings for improved security.
Thus, we evaluate the staging buffer construction without pre-
computing page mappings in the VMAs. We observe a 2.5×
slowdown for the maximal reported throughput in Figure 11b.

7 Discussion

Additional VMI accelerators. DPUs are undergoing ac-
tive development and may introduce new hardware accel-
erators that can benefit VMI applications. For example, the
NVIDIA Bluefield-2X DPU connects a DPU with a GPU
over a PCIe switch and enables efficient communication via
GPUDirect [49]. In future work, we consider using Blue-
Guard to further accelerate malware detection via accelerated
machine learning inference.
Integration with existing VMI tools. We do not consider
it challenging to retrofit existing VMI applications to uti-
lize BlueGuard similarly to prior VMI frameworks. We take
Volatility [75] as a case example. Volatility relies on a LibVMI
interface to perform live introspection by providing access
to the VMs’ memory. This interface includes creating and
destroying a VMI context, reading and writing from a VM’s
memory with and without zero-padding, and finally retrieving
all the available addresses and checking whether an address
is valid for the VM. All of this is supported by BlueGuard
and can be exposed externally, except for writing to the VMs’
memory, as remediation is out of BlueGuard’s scope. Such

integration would enable executing Volatility plugins with
BlueGuard.

Invalid page translation. While rare, it is possible to en-
counter an address translation failure in BlueGuard due to
absent pages’ mappings in the target VM. While stealthy mal-
ware may attempt to evade detection by invalidating specific
pages, once they are needed for correct malware execution
they will have to be installed in the VM’s page table, which
will make them visible to BlueGuard. Further, with delta in-
trospection, BlueGuard can detect them efficiently.

Cache coherence and internal CPU states. BlueGuard
shares similar limitations with prior OOB VMI systems. First,
BlueGuard uses the DPU’s accelerators, which are not cache-
coherent with the host CPU. However, recent advancement in
CXL [10] is likely to get adopted by future DPUs and Blue-
Guard can enjoy them similarly to SR-IOV. Second, Blue-
Guard cannot introspect CPU internal states such as registers
and internal memory. While this can lead to address transla-
tion manipulation attacks, e.g., manipulating the CR3 register
in x86 [26], this is both a shared limitation with prior OOB
systems [26, 66] and VMI applications built with BlueGuard
can utilize delta introspection and regex acceleration to detect
page table structures faster than existing OOB systems.

Introspection consistency. Unlike host VMI systems, Blue-
Guard does not pause VMs during introspection as this leads
to major overheads. We validated this in an earlier prototype
that used a cooperative protocol between a DPU agent and the
hypervisor. The hypervisor trapped writes to CR3 and sent the
new values to the DPU. This is similar to IMEE [79] approach
ensuring BlueGuard always uses the correct page table.

Unfortunately, the recent Meltdown mitigation: kernel page
table isolation (KPTI) [38] involves switching the page table
on every kernel crossing. Thus, trapping the CR3 updates
resulted in VM exits per kernel crossing and reduced the
throughput of Redis [62] (same setup as described in § 6.4)
by 15×. This result convinced us to pursue a non-cooperative
design that maintains performance isolation. Furthermore, it
is unclear whether the performance guarantees of systems
such as IMEE that rely on trapping are kept with KPTI.

IOMMU configuration attacks. Since BlueGuard excludes
the hypervisor from the TCB, the hypervisor may be compro-
mised and misconfigure the IOMMU to hide introspection.
Like RDMI’s [39] proposal, BlueGuard can use the PCIe
ATS feature to tag all DMA requests as translated, bypassing
IOMMU translations. This applies to both hypervisor and
VM introspection. For hypervisor introspection, BlueGuard
directly translates GPAs to HPAs. For VM introspection, Blue-
Guard can employ direct GVA to HPA translation (§4.3).
BlueGuard using ATS translated requests will force access to
the correct HPA regardless of IOMMU configuration.

8 Related Work

VMI systems. VMI systems have been extensively studied
and analyzed for security, usability, and performance [25, 69].

Host-based VMI systems [2, 8, 12, 16, 23, 40, 64, 65, 67,
76, 77, 79] either cooperate with the introspected VMs’ kernel
or use virtualization to introspect VMs. However, they lack
the capability of introspecting a bare metal machine or the
hypervisor and compete for CPU resources. BlueGuard does
not use host resources and allows HGI.

OOB VMI systems [19, 31, 32, 36, 46, 48, 58, 66, 80]
perform introspection from an external device similar to Blue-
Guard. These systems focused, however, mostly on the intro-
spection of the host [29, 48, 66] while BlueGuard introspects
the host and any guest.

Recently, NVIDIA published a blog on OOB malware de-
tection using DPUs [53]. However, the blog post lacks details
on the performance and scalability of their system, which is
the focus of BlueGuard.

Finally, RDMI [39] uses programmable switches and
RDMA NICs to provide OOB memory introspection. Unlike
RDMI, BlueGuard does not pass any memory over RDMA,
which is known to be vulnerable to attacks by network adver-
saries [71], and further improves introspection performance
over RDMI through delta introspection, DPU accelerators and
caching. Additionally, BlueGuard isolates infected hosts and
guests from the network.

DPU offload. Many approaches offload host tasks to DPUs.
Lynx [72] offloads server data and control planes, LineFS [28]
offloads distributed file systems, AccelNet [13] offloads TCP
and SDN stacks, and Floem [61] and ClickNP [35] offload
network functions. BlueGuard shares the same vision of of-
floading infrastructure services from the host CPU and ac-
celerating them using DPUs. However, these papers do not
address the unique challenges of VMI applications.

LibOSs. BlueGuard is inspired by libOSs that accelerate
I/O [4, 9, 14, 60, 78]. Similarly, BlueGuard bypasses the
kernel and utilizes hardware virtualization to accelerate intro-
spection I/O. However, BlueGuard focuses on VMI applica-
tions’ requirements and DPUs’ hardware accelerators.

9 Conclusion

BlueGuard demonstrates the applicability of DPUs to effi-
ciently and scalably enable HGI in data centers. BlueGuard
considers VMI applications’ requirements and the DPU hard-
ware resources to provide 4.3× faster detection compared
to prior HGI systems, without hindering VMs’ performance.
Finally, BlueGuard also enables malware isolation upon de-
tection by utilizing DPUs’ network offload capabilities.

Acknowledgments

We thank the anonymous reviewers and the shepherd for their
help in improving the manuscript.

Ethics considerations

This paper contains no survey with human involvement or
an evaluation with live systems in the real world. All pro-
vided evaluations were performed in a lab environment that is
strictly isolated from the authors’ systems as well as from the
internet. A list of all used malware samples can be found in
Appendix C, and the isolated environment ensured that this
paper did not assist in accidentally spreading these samples
to our own systems or the wider world (see § 6).

Open science

Due to licensing reasons, we are unable to provide the full
artifact of BlueGuard. Yet, we follow the spirit of open science
in our best effort by providing the following pieces in [57]:

1. Proof of concept code of an earlier version of BlueGuard
to allow future researchers to have a second source of
reference when wishing to reproduce our results. This
code is not a fully reproducible artifact but we see it as
a valid source of ground truth to accompany the paper
text.

2. Code of the VMI applications as they are used in Blue-
Guard, to allow reviewing of our claim that VMI appli-
cation writing needs no extensive modifications to be
used in BlueGuard.

3. Raw log data as well as the scripts used to reproduce the
graphs and evaluation data presented in the paper.

References

[1] MalwareBazaar. abuse.ch, 2024.
https://bazaar.abuse.ch/.

[2] Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang,
Xiaolan Zhang, and Nathan C. Skalsky. HyperSentry:
Enabling stealthy in-context measurement of hypervisor
integrity. In Proceedings of the 17th ACM Conference
on Computer and Communications Security, CCS ’10,
page 38–49, New York, NY, USA, 2010. Association for
Computing Machinery. doi: 10.1145/1866307.1866313.

[3] Sina Bahram, Xuxian Jiang, Zhi Wang, Mike Grace,
Jinku Li, Deepa Srinivasan, Junghwan Rhee, and
Dongyan Xu. DKSM: Subverting virtual machine in-
trospection for fun and profit. In 2010 29th IEEE Sym-
posium on Reliable Distributed Systems, pages 82–91,
2010. doi: 10.1109/SRDS.2010.39.

[4] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
IX: A protected dataplane operating system for
high throughput and low latency. In 11th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI 14), pages 49–65, Broomfield,
CO, October 2014. USENIX Association. URL
https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/belay.

[5] Olivier Bilodeau and Thomas Dupuy. Dissecting Lin-
ux/Moose, 2022. http://www.welivesecurity.com/wp-
content/uploads/2015/05/Dissecting-LinuxMoose.pdf.

[6] James Bucek, Klaus-Dieter Lange, and Jóakim
v. Kistowski. SPEC CPU2017: Next-generation
compute benchmark. In Companion of the 2018
ACM/SPEC International Conference on Performance
Engineering, ICPE ’18, page 41–42, New York, NY,
USA, 2018. Association for Computing Machinery. doi:
10.1145/3185768.3185771.

[7] Don Capps and William Norcott. IOzone filesystem
benchmark, 2008.

[8] Martim Carbone, Matthew Conover, Bruce Montague,
and Wenke Lee. Secure and robust monitoring of vir-
tual machines through guest-assisted introspection. In
Davide Balzarotti, Salvatore J. Stolfo, and Marco Cova,
editors, Research in Attacks, Intrusions, and Defenses,
pages 22–41, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[9] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park,
Mohammad Alizadeh, and Adam Belay. Overload con-
trol for ms-scale RPCs with breakwater. In Proceed-
ings of the 14th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’20, USA, 2020.
USENIX Association.

[10] Compute Express Link. Compute Express Link Consor-
tium, 2023. https://www.computeexpresslink.org.

[11] LKM rootkit for Linux Kernels. Diamorphine, 2023.
https://github.com/m0nad/Diamorphine.

[12] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich,
Jonathon Giffin, and Wenke Lee. Virtuoso: Narrowing
the semantic gap in virtual machine introspection. In
2011 IEEE Symposium on Security and Privacy, pages
297–312, 2011. doi: 10.1109/SP.2011.11.

[13] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmo-
hta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay

Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva,
Madhan Sivakumar, Nisheeth Srivastava, Anshuman
Verma, Qasim Zuhair, Deepak Bansal, Doug Burger,
Kushagra Vaid, David A. Maltz, and Albert Greenberg.
Azure accelerated networking: SmartNICs in the pub-
lic cloud. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
51–66, Renton, WA, April 2018. USENIX Association.

[14] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and
Adam Belay. Caladan: Mitigating interference at mi-
crosecond timescales. In Proceedings of the 14th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’20, USA, 2020. USENIX Asso-
ciation.

[15] Ulf Frisk. PCIleech, 2022.
https://github.com/ufrisk/pcileech.

[16] Yangchun Fu and Zhiqiang Lin. Space traveling across
VM: Automatically bridging the semantic gap in virtual
machine introspection via online kernel data redirec-
tion. In 2012 IEEE Symposium on Security and Privacy,
pages 586–600, 2012. doi: 10.1109/SP.2012.40.

[17] Tal Garfinkel, Mendel Rosenblum, et al. A virtual ma-
chine introspection based architecture for intrusion de-
tection. In NDSS, volume 3, pages 191–206. San Diega,
CA, 2003.

[18] Virtual Machine Threat Detection overview. Google,
2022. https://cloud.google.com/security-command-
center/docs/concepts-vm-threat-detection-overview.

[19] GRR Rapid Response: remote live forensics for incident
response. Google, 2022. https://github.com/google/grr.

[20] Rekall Forensics. Google, 2022. http://www.rekall-
forensic.com.

[21] The next wave of Google Cloud infrastructure innova-
tion: New C3 VM and Hyperdisk. Google, 2023. https://
cloud.google.com/blog/products/compute/introducing-
c3-machines-with-googles-custom-intel-ipu.

[22] Mariano Graziano, Andrea Lanzi, and Davide Balzarotti.
Hypervisor memory forensics. In Research in Attacks,
Intrusions, and Defenses, pages 21–40, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg.

[23] Zhongshu Gu, Zhui Deng, Dongyan Xu, and Xuxian
Jiang. Process implanting: A new active introspection
framework for virtualization. In 2011 IEEE 30th Inter-
national Symposium on Reliable Distributed Systems,
pages 147–156, 2011. doi: 10.1109/SRDS.2011.26.

[24] Intel Infrastructure Processing
Unit (Intel IPU). Intel, 2022.
https://www.intel.com/content/www/us/en/products/network-
io/smartnic.html.

[25] Bhushan Jain, Mirza Basim Baig, Dongli Zhang, Don-
ald E. Porter, and Radu Sion. SoK: Introspections
on trust and the semantic gap. In IEEE Symposium
on Security and Privacy, pages 605–620, 2014. doi:
10.1109/SP.2014.45.

[26] Daehee Jang, Hojoon Lee, Minsu Kim, Daehyeok Kim,
Daegyeong Kim, and Brent Byunghoon Kang. ATRA:
Address translation redirection attack against hardware-
based external monitors. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’14, page 167–178, New York,
NY, USA, 2014. Association for Computing Machinery.
doi: 10.1145/2660267.2660303.

[27] Anuj Kalia, Michael Kaminsky, and David G. An-
dersen. Design guidelines for high performance
RDMA systems. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16), pages 437–450,
Denver, CO, June 2016. USENIX Association. URL
https://www.usenix.org/conference/atc16/
technical-sessions/presentation/kalia.

[28] Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im,
Marco Canini, Dejan Kostić, Youngjin Kwon, Simon
Peter, and Emmett Witchel. LineFS: Efficient SmartNIC
offload of a distributed file system with pipeline paral-
lelism. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, SOSP ’21, page
756–771, New York, NY, USA, 2021. Association for
Computing Machinery. doi: 10.1145/3477132.3483565.

[29] Dhilung Kirat, Giovanni Vigna, and Christopher
Kruegel. BareBox: Efficient malware analysis on bare-
metal. In Proceedings of the 27th Annual Computer
Security Applications Conference, ACSAC ’11, page
403–412, New York, NY, USA, 2011. Association for
Computing Machinery. doi: 10.1145/2076732.2076790.

[30] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[31] Yohei Kuga, Ryo Nakamura, Takeshi Matsuya, and Yuji
Sekiya. NetTLP: A development platform for PCIe de-
vices in software interacting with hardware. In 17th
USENIX Symposium on Networked Systems Design

https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia

and Implementation, pages 141–155. USENIX Asso-
ciation, February 2020. URL https://www.usenix.
org/conference/nsdi20/presentation/kuga.

[32] Tobias Latzo, Julian Brost, and Felix Freiling. BM-
CLeech: Introducing stealthy memory forensics to
BMC. Forensic Science International: Digi-
tal Investigation, 32:300919, 2020. ISSN 2666-
2817. doi: https://doi.org/10.1016/j.fsidi.2020.300919.
URL https://www.sciencedirect.com/science/
article/pii/S2666281720300147.

[33] Hojoon Lee, HyunGon Moon, DaeHee Jang, Ki-
hwan Kim, Jihoon Lee, Yunheung Paek, and
Brent ByungHoon Kang. KI-Mon: A hardware-assisted
event-triggered monitoring platform for mutable kernel
object. In 22nd USENIX Security Symposium (USENIX
Security 13), pages 511–526, Washington, D.C.,
August 2013. USENIX Association. URL https://
www.usenix.org/conference/usenixsecurity13/
technical-sessions/presentation/lee.

[34] Tamas K. Lengyel, Steve Maresca, Bryan D. Payne,
George D. Webster, Sebastian Vogl, and Aggelos Ki-
ayias. Scalability, fidelity and stealth in the DRAKVUF
dynamic malware analysis system. In Proceedings of
the 30th Annual Computer Security Applications Con-
ference, ACSAC ’14, page 386–395, New York, NY,
USA, 2014. Association for Computing Machinery. doi:
10.1145/2664243.2664252.

[35] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng,
Renqian Luo, Ningyi Xu, Yongqiang Xiong, Peng
Cheng, and Enhong Chen. ClickNP: Highly flexible
and high performance network processing with recon-
figurable hardware. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 1–14,
New York, NY, USA, 2016. Association for Computing
Machinery. doi: 10.1145/2934872.2934897.

[36] Letitia W. Li, Guillaume Duc, and Renaud Pacalet.
Hardware-assisted memory tracing on new socs em-
bedding fpga fabrics. In Proceedings of the 31st An-
nual Computer Security Applications Conference, AC-
SAC ’15, page 461–470, New York, NY, USA, 2015.
Association for Computing Machinery. doi: 10.1145/
2818000.2818030. URL https://doi.org/10.1145/
2818000.2818030.

[37] Network Function Represen-
tors. The Linux Kernel, 2024.
https://docs.kernel.org/next/networking/representors.html.

[38] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel

memory from user space. In 27th USENIX Secu-
rity Symposium (USENIX Security 18), pages 973–
990, Baltimore, MD, August 2018. USENIX Associ-
ation. URL https://www.usenix.org/conference/
usenixsecurity18/presentation/lipp.

[39] Hongyi Liu, Jiarong Xing, Yibo Huang, Danyang
Zhuo, Srinivas Devadas, and Ang Chen. Remote di-
rect memory introspection. In 32nd USENIX Secu-
rity Symposium (USENIX Security 23), pages 6043–
6060, Anaheim, CA, August 2023. USENIX Associ-
ation. URL https://www.usenix.org/conference/
usenixsecurity23/presentation/liu-hongyi.

[40] Yutao Liu, Yubin Xia, Haibing Guan, Binyu Zang, and
Haibo Chen. Concurrent and consistent virtual machine
introspection with hardware transactional memory. In
2014 IEEE 20th International Symposium on High Per-
formance Computer Architecture (HPCA), pages 416–
427, 2014. doi: 10.1109/HPCA.2014.6835951.

[41] Ziyi Liu, JongHyuk Lee, Junyuan Zeng, Yuanfeng Wen,
Zhiqiang Lin, and Weidong Shi. CPU transparent pro-
tection of OS kernel and hypervisor integrity with pro-
grammable DRAM. In Proceedings of the 40th An-
nual International Symposium on Computer Architec-
ture, ISCA ’13, page 392–403, New York, NY, USA,
2013. Association for Computing Machinery. doi:
10.1145/2485922.2485956.

[42] Data Processing Units (DPU) Empowering 5G car-
rier, enterprise and AI cloud data infrastructure. Mar-
vell, 2024. https://www.marvell.com/products/data-
processing-units.html.

[43] VM Inspector for Azure virtual machines (Preview).
Microsoft, 2022. https://learn.microsoft.com/en-
us/troubleshoot/azure/virtual-machines/vm-inspector-
azure-virtual-machines.

[44] Virtual machines in Azure. Microsoft, 2022.
https://learn.microsoft.com/en-us/azure/virtual-
machines/overview.

[45] Project Catapult. Microsoft,
2022. https://www.microsoft.com/en-
us/research/project/project-catapult/.

[46] Hyungon Moon, Hojoon Lee, Jihoon Lee, Kihwan Kim,
Yunheung Paek, and Brent Byunghoon Kang. Vigi-
lare: Toward snoop-based kernel integrity monitor. In
Proceedings of the 2012 ACM Conference on Com-
puter and Communications Security, CCS ’12, page
28–37. Association for Computing Machinery, 2012.
doi: 10.1145/2382196.2382202.

[47] Agilio SmartNICs - Netronome. Netronome, 2024.
https://netronome.com/agilio-smartnics/.

https://www.usenix.org/conference/nsdi20/presentation/kuga
https://www.usenix.org/conference/nsdi20/presentation/kuga
https://www.sciencedirect.com/science/article/pii/S2666281720300147
https://www.sciencedirect.com/science/article/pii/S2666281720300147
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/lee
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/lee
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/lee
https://doi.org/10.1145/2818000.2818030
https://doi.org/10.1145/2818000.2818030
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity23/presentation/liu-hongyi
https://www.usenix.org/conference/usenixsecurity23/presentation/liu-hongyi

[48] Jr. Nick L. Petroni, Timothy Fraser, Jesus Molina, and
William A. Arbaugh. Copilot—a coprocessor-based
kernel runtime integrity monitor. In 13th USENIX Secu-
rity Symposium (USENIX Security 04), San Diego, CA,
August 2004. USENIX Association.

[49] GPUDirect RDMA. NVIDIA, 2022.
https://docs.nvidia.com/cuda/gpudirect-
rdma/index.html.

[50] DOCA SDK Documentation. NVIDIA, 2022.
https://docs.nvidia.com/doca/sdk/.

[51] NVIDIA BlueField Data Processing Units.
NVIDIA, 2022. https://www.nvidia.com/en-
us/networking/products/data-processing-unit.

[52] Oracle Cloud Infrastructure Chooses NVIDIA BlueField
Data Center Acceleration Platform. NVIDIA, 2023.
https://web.archive.org/web/20240229015230/https://
nvidianews.nvidia.com/news/oracle-cloud-
infrastructure-chooses-nvidia-bluefield-data-center-
acceleration-platform.

[53] Detecting Out-of-Band Malware with
NVIDIA BlueField DPU. NVIDIA, 2023.
https://developer.nvidia.com/blog/detecting-out-
of-band-malware-with-bluefield-dpu/.

[54] Virtual Switch on BlueField DPU. NVIDIA, 2023.
https://docs.nvidia.com/networking/display/ bluefield-
dpuosv385/virtual+switch+on+bluefield+dpu.

[55] PHYSICAL ADDRESS MEMORY RE-
GION. NVIDIA, 2023. https://enterprise-
support.nvidia.com/s/article/physical-address-memory-
region.

[56] OpenSSL Cryptography and SSL/TLS Toolkit. OpenSSL
project, 2022. https://www.openssl.org/.

[57] Meni Orenbach, Rami Ailabouni, Nael Masalha, Ahmad
Saleh, Frank Block, Fritz Alder, and Ahmad Atamli-
Reineh. Artifact for "BlueGuard: Accelerated Host and
Guest Introspection Using DPUs", January 2025. URL
https://doi.org/10.5281/zenodo.14725234.

[58] Ralph Palutke, Simon Ruderich, Matthias Wild, and Fe-
lix Freiling. HyperLeech: Stealthy system virtualization
with minimal target impact through DMA-Based hyper-
visor injection. In 23rd International Symposium on Re-
search in Attacks, Intrusions and Defenses (RAID 2020),
pages 165–179, San Sebastian, October 2020. USENIX
Association. URL https://www.usenix.org/
conference/raid2020/presentation/palutke.

[59] PCI Express Base Specification. PCI-SIG, January 2024.
Revision 6.2.

[60] Simon Peter, Jialin Li, Irene Zhang, Dan R. K.
Ports, Doug Woos, Arvind Krishnamurthy, Thomas
Anderson, and Timothy Roscoe. Arrakis: The oper-
ating system is the control plane. In 11th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI 14), pages 1–16, Broomfield,
CO, October 2014. USENIX Association. URL
https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/peter.

[61] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine
Kaufmann, Simon Peter, Rastislav Bodik, and Thomas
Anderson. Floem: A programming system for NIC-
accelerated network applications. In Proceedings of
the 13th USENIX Conference on Operating Systems
Design and Implementation, OSDI’18, page 663–679,
USA, 2018. USENIX Association.

[62] Redis. Redis Labs, 2022. https://redis.io.

[63] LKM Linux rootkit. Reptile, 2023.
https://github.com/f0rb1dd3n/Reptile.

[64] Alireza Saberi, Yangchun Fu, and Zhiqiang Lin. Hybrid-
bridge: Efficiently bridging the semantic gap in vir-
tual machine introspection via decoupled execution and
training memoization. In Proceedings of the 21st Annual
Network and Distributed System Security Symposium
(NDSS’14), 2014.

[65] Monirul I. Sharif, Wenke Lee, Weidong Cui, and Andrea
Lanzi. Secure in-VM monitoring using hardware virtual-
ization. In Proceedings of the 16th ACM Conference on
Computer and Communications Security, CCS ’09, page
477–487, New York, NY, USA, 2009. Association for
Computing Machinery. doi: 10.1145/1653662.1653720.

[66] Chad Spensky, Hongyi Hu, and Kevin Leach. LO-PHI:
Low-observable physical host instrumentation for mal-
ware analysis. In 23th Annual Network and Distributed
System Security Symposium (NDSS), 2016.

[67] Deepa Srinivasan, Zhi Wang, Xuxian Jiang, and
Dongyan Xu. Process out-grafting: An efficient "out-of-
VM" approach for fine-grained process execution moni-
toring. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS ’11, page
363–374, New York, NY, USA, 2011. Association for
Computing Machinery. doi: 10.1145/2046707.2046751.

[68] Akshitha Sriraman and Abhishek Dhanotia. Accelerom-
eter: Understanding acceleration opportunities for data
center overheads at hyperscale. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 733–750, New York, NY,
USA, 2020. Association for Computing Machinery. doi:
10.1145/3373376.3378450.

https://doi.org/10.5281/zenodo.14725234
https://www.usenix.org/conference/raid2020/presentation/palutke
https://www.usenix.org/conference/raid2020/presentation/palutke
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter

[69] Sahil Suneja, Canturk Isci, Eyal de Lara, and Vasanth
Bala. Exploring VM introspection: Techniques and
trade-offs. In Proceedings of the 11th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments, VEE ’15, page 133–146. Asso-
ciation for Computing Machinery, 2015. doi: 10.1145/
2731186.2731196.

[70] László Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. Sok: Eternal war in memory. In 2013 IEEE
Symposium on Security and Privacy, pages 48–62, 2013.
doi: 10.1109/SP.2013.13.

[71] Konstantin Taranov, Benjamin Rothenberger, Adrian
Perrig, and Torsten Hoefler. sRDMA – efficient NIC-
based authentication and encryption for remote direct
memory access. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20), pages 691–704. USENIX
Association, July 2020. URL https://www.usenix.
org/conference/atc20/presentation/taranov.

[72] Maroun Tork, Lina Maudlej, and Mark Silberstein. Lynx:
A SmartNIC-driven accelerator-centric architecture for
network servers. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’20, page 117–131, New York, NY, USA, 2020.
Association for Computing Machinery. doi: 10.1145/
3373376.3378528.

[73] Shin-Yeh Tsai and Yiying Zhang. LITE kernel RDMA
support for datacenter applications. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, page 306–324, New York, NY, USA, 2017.
Association for Computing Machinery. doi: 10.1145/
3132747.3132762.

[74] Yara the pattern matching swiss knife for malware
researchers (and everyone else). VirusTotal, 2022.
https://virustotal.github.io/yara.

[75] The Volatility Framework. The Volatility Foundation,
2022. https://www.volatilityfoundation.org/.

[76] Jiang Wang, Angelos Stavrou, and Anup Ghosh. Hy-
percheck: A hardware-assisted integrity monitor. In
Somesh Jha, Robin Sommer, and Christian Kreibich,
editors, Recent Advances in Intrusion Detection, pages
158–177, Berlin, Heidelberg, 2010. Springer Berlin Hei-
delberg.

[77] Haiquan Xiong, Zhiyong Liu, Weizhi Xu, and Shuai
Jiao. LibVMI: a library for bridging the semantic gap
between guest OS and VMM. In 12th International
Conference on Computer and Information Technology,
pages 549–556. IEEE, 2012.

[78] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S. Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, Pedro Henrique Penna, Max Demoulin, Piali
Choudhury, and Anirudh Badam. The demikernel data-
path OS architecture for microsecond-scale datacenter
systems. In Proceedings of the ACM SIGOPS 28th Sym-
posium on Operating Systems Principles, SOSP ’21,
page 195–211. ACM, 2021. doi: 10.1145/3477132.
3483569.

[79] Siqi Zhao, Xuhua Ding, Wen Xu, and Dawu Gu. Seeing
through the same lens: Introspecting guest address
space at native speed. In 26th USENIX Security Sym-
posium, pages 799–813, August 2017. URL https://
www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/zhao.

[80] Lei Zhou, Jidong Xiao, Kevin Leach, Westley Weimer,
Fengwei Zhang, and Guojun Wang. Nighthawk: Trans-
parent system introspection from ring -3. In Kazue
Sako, Steve Schneider, and Peter Y. A. Ryan, editors,
Computer Security – ESORICS 2019, pages 217–238.
Springer International Publishing, 2019.

A Data smearing

Internal changes to introspected memory can affect the ac-
quired result, e.g., pslist can return incorrect results if the
newly linked process is only added to the list but not yet
connected to the rest of the list. This is the data smearing
problem and is a known limitation of asynchronous OOB
systems. To reduce the probability of smearing, analysts can
invoke the VMI application multiple times. Unfortunately,
we are not aware of prior work that quantifies smearing im-
pact on the detection probability. Therefore, we propose the
following simple yet robust model to motivate the need for
efficient introspection.
Assumptions. We assume malware infiltrated a VM and can
mount single or multiple attacks successfully. Yet, each attack
leaves traces in memory we call artifacts that can be used to
detect the malware. Also, we assume the proper VMI applica-
tion that can detect the specific attack is invoked continuously.
Model. Our model constructs a timeline of artifacts’ availabil-
ity in a monitored VM’s memory. Each introspected artifact
has a set of availability-window scopes. We denote the set of
windows as a vector Tm =< t0, t1, ..., tN >. Also, we assume
the VMI application invocation latency is Tp. While more
fine-grained models can be proposed, we opt for a conserva-
tive approach and assume the artifact is correctly detected iff
the VMI application’s execution completely overlaps the time
in which the artifact is in memory.

We calculate the maximum number of introspec-
tion invocations per entry in Tm, which is equal to <

https://www.usenix.org/conference/atc20/presentation/taranov
https://www.usenix.org/conference/atc20/presentation/taranov
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zhao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zhao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/zhao

bt0/Tpc, ...,btN/Tpc>. It is clear that if any of the introspec-
tion invocations is greater or equal to 2 the probability of
detection is 100%, whereas if all are 0 the probability is 0%.
However, if some of the introspection invocations are equal to
1 then the artifact is correctly detected if the VMI application
does not execute at the window [(ti−Tp),Tp] as we assume
continuous execution of the VMI application. Considering
uniform distribution the probability of correct detection is
thus 1− (Tp− (ti−Tp))/ti = 1− (2Tp− ti)/ti and the over-
all probability of a single detection is provided next and is
equal to the complement probability of incorrectly detecting
all artifacts. Pdetection = 1−∏ti∈Tm(2Tp− ti)/ti
Case example: pslist. For pslist, an artifact is an element in
the process list. A stealthy malware can evade detection by
removing the process from the process list upon execution.
While testing on our platform, we observed simple programs
can have at minimum a total execution time of 1 millisecond
or Tm =< 0.001 >. This means the detection rate is 100%
when Tp ≤ 500, and for 500usec≤ Tp ≤ 1msec the detection
rate decreases linearly.
Delta introspection modeling. We use the model to show-
case that delta introspection can also be used to increase the
probability of VMI applications’ correct detection of malware.
Specifically, assuming delta introspection latency is lower due
to doorbell batching: denoted with αTp with α < 1. Thus, the
overall probability of detecting an artifact grows to 100%
iff executing both delta introspection twice followed by the
VMI application and have all complete while the artifact is in
memory. Formally, if ti/Tp ≥ 1+2α the detection probability
is 100% rather than ti/Tp ≥ 2. Also, incorrect detection is
minimized to the VMI application executing at a smaller win-
dow [(ti−Tp),2αTp], and the equivalent detection probability
becomes Pdetection = 1−∏ti∈Tm((1+2α)Tp− ti)/ti.

B YARA rules

In this section, we describe the YARA rule used to evaluate
the regex_scan VMI application in § 6.5, and our experience
porting the YARA rule to a regular expression.

The YARA rule describes the Linux/Moose malware [5]
and is available online [74]. Effectively, the rule searches
all processes for the occurrence of all strings in a provided
set. To translate it to regex a direct approach would be to use
look-ahead, a construct that does not consume any bytes when
matching and enables checking if a specified pattern exists
after the assertion.

However, we find that this construct is not supported in
our platform [50]. Thus, we opt to use logical or-based rep-
resentation for the regex. One option is to create a list of all
permutations of the strings separated by logic or constructs.
Yet, the permutation grows quickly with the number of strings
to match, e.g., in the Linux/Moose YARA rule there are 20
strings, which is too large for manual creation, and likely
would create performance issues in a regex engine. Instead,

we decide to use a more concise representation while using
logical or as follows.

/Status: OK|--scrypt|stratum\+tcp:\/\/|cmd\.so
|\/Challenge|processor|cpu model|password is
wrong|password:|authentication failed|sh|ps
|chmod|elan2|elan3|chmod: not found|cat \/
proc\/cpuinfo|\/proc\/\%s\/cmdline"|kill \%s
/

We propose to count the number of matches found for the
above regex and validate it is at least as large as the number
of strings. While this greatly simplifies porting efforts, it is
insufficient for correct matching as a single string of the set
may be matched 20 times. Thus, we follow regex matches
with a software-based verification for each string in the set.

Note, we consider this a decent tradeoff as we do not expect
many false positives in such large string sets. Yet, for smaller
string sets the permutation option may be more suitable to
overcome false positives and achieve increased performance.

C Malware Evaluation

The following list contains the SHA1 hash sums of all sam-
ples used in this work. They can be downloaded from online
services such as MalwareBazaar [1].

• a9ef9f0bdd55fd931d909d71264c6587955ea361
• eb30a48246a86f39f0038ebf116a53a45dc3bf1a
• 258d3d3248c644d401262aed9ce62d1a1b620703
• 6d4dc35c0d70a8ca90b87c39e644db36ce29e232
• b4339e8c1b20145e2814724fc24606b5a3014a63
• 9c76a989dc66c52ca4253dbbd538f9db9d4b6d87
• 873c5df9f5854cf412406382eb19ec740d23efca
• 8734f34a073c6f344a864d5fc4d90871aa50d147
• 74b1da190d670fa4c207afb0fbca4d7df701538a
• 7cfbeae5eb73fd529ea219f655bcbb31a639814e
• 7f21f863f00c9bff182c3044ea225574b02107cf
• 4127607668ea5b2fa73365b16f636c45ad93eb99
• 0c203cafd5edde1f1af2686226089d241274b1a9
• f01b9af23aac2cb9eb4b7c82642d15533ccf6db1
• 9db360adc86b08b60ac07d9d2c7e3458ca184312
• 3d716441195624631b5d5e9c468b89afa8dcf4e2

	Introduction
	Background
	Machine introspection
	Common VMI applications
	Data Processing Units (DPUs)

	Motivation and objectives
	Why DPUs?
	Advantage over remote introspection
	System model
	Threat model
	Objectives and non-goals

	BlueGuard design
	Memory management
	BlueGuard scheduler
	Address translation
	Inline computation
	Delta introspection
	Malware Isolation

	Implementation
	Evaluation
	Malware detection and isolation
	Introspection efficiency
	BlueGuard introspection scalability
	VMs performance impact
	Hardware acceleration

	Discussion
	Related Work
	Conclusion
	Data smearing
	YARA rules
	Malware Evaluation

