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Abstract
Private set union (PSU) allows two parties to compute the
union of their sets without revealing anything else. It can be
categorized into balanced and unbalanced scenarios depend-
ing on the size of the set on both sides. Recently, Jia et al.
(USENIX Security 2024) highlight that existing scalable PSU
solutions suffer from during-execution leakage and propose a
PSU with enhanced security for the balanced setting. How-
ever, their protocol’s complexity is superlinear with the size of
the set. Thus, the problem of constructing a linear enhanced
PSU remains open, and no unbalanced enhanced PSU exists.
In this work, we address these two open problems:

• Balanced case: We propose the first linear enhanced
PSU. Compared to the state-of-the-art enhanced PSU
(Jia et al., USENIX Security 2024), our protocol achieves
a 2.2 - 8.8× reduction in communication cost and a 1.2
- 8.6× speedup in running time, depending on set sizes
and network environments.

• Unbalanced case: We present the first unbalanced en-
hanced PSU, which achieves sublinear communication
complexity in the size of the large set. Experimental
results demonstrate that the larger the difference be-
tween the two set sizes, the better our protocol performs.
For unbalanced set sizes (210,220) with single thread in
1Mbps bandwidth, our protocol requires only 2.322 MB
of communication. Compared with the state-of-the-art
enhanced PSU, there is 38.1× shrink in communication
and roughly 17.6× speedup in the running time.

1 Introduction

Private set union (PSU) is a cryptographic protocol that al-
lows two parties, a sender and a receiver with respective input
sets X and Y , to compute the union X ∪Y , without revealing
anything else. It has numerous applications, such as cyber
risk assessment [28, 32, 33], privacy-preserving data aggrega-
tion [11], and private ID [23] etc.

Early PSU constructions are mainly based on additively
homomorphic encryption (AHE), resulting in excessive com-
putational overhead, due to the heavy public key operations.
Kolesnikov et al. [32] introduce a new cryptographic primitive
named the reversed private membership test (RPMT) and pro-
vide the first scalable PSU construction based on symmetric-
key primitives. After that, a series of works [16,23,30,45,48]
have further explored the efficiency of PSU. Recently, Zhang
et al. [48] formalize an ideal functionality named multi-query
RPMT (mqRPMT) and construct PSU protocols whose com-
plexity is linear in the size of both sets. Considering the un-
balanced case, Tu et al. [45, 46] propose a new functionality
called permuted multi-point private equality test (pmpPEQT)
and combine it with fully homomorphic encryption (FHE)
to construct an unbalanced mqRPMT and obtain an efficient
PSU whose communication is sublinear in the size of the
large set. Currently, efficient PSU protocols are mainly based
on mqRPMT and oblivious transfer (OT).

However, Jia et al. [29] point out that the PSU framework
based on mqRPMT and OT suffers from during-execution
leakage. More specifically, both parties input their sets X and
Y and run mqRPMT to let the receiver learn whether each
item in X belongs to the set Y . Then, the receiver obtains
the items in X\Y by invoking the underlying OT instances
with the membership information. Thus, the mqRPMT-based
PSU framework above leaks the membership information
(mqRPMT outputs the indication vector to indicate the mem-
bership of X) before the execution of the protocol is com-
pleted. To remedy the leakage issue, they define a new PSU
functionality with enhanced security and construct an en-
hanced PSU protocol based on symmetric-key operations.
However, the complexity of their protocol scaled superlin-
early with the size of the set.

Influence of during-execution leakage. As pointed out by Jia
et al. [29]: Guo et al. [27] launched attacks on protocols that
aim to hide intersections, but allow leakage of intersection
sizes. They implemented the attack on practical datasets to
obtain tokens of COVID-19 patients and the interest of the



person associated with a specific personal_id. Due to the
leakage of indication bits (i.e., the intersection size) during the
execution of the PSU using mqRPMT, an attacker can exploit
the attack from [27] on the mqRPMT-based PSU, repeatedly
interact with the sender, and interrupt the execution to obtain
more intersection sizes and infer the intersection.

Motivation. Based on the discussions so far, existing scalable
PSU protocols suffer from the following problems:

• In the balanced setting, the existing PSU protocols either
have superlinear complexity [29] or suffer from during-
execution leakage [16, 48].

• In the unbalanced setting, PSU [45, 47] suffer from
during-execution leakage.

Motivated by the above discussions, we ask the following
questions and try to achieve the “best of both worlds”.

Is it possible to design an enhanced PSU protocol in the
balanced setting, whose complexity is linear in the size of the
set? Is it possible to design an enhanced PSU protocol in
the unbalanced setting, whose communication complexity is
sublinear in the size of the large set?

1.1 Our contribution
In this paper, we give an affirmative answer to the above
questions through the following results.

A new framework of enhanced PSU. All mqRPMT-based
PSU protocols leak indication bits (membership information
of X) to the receiver and then the receiver aggregates the non-
intersection items X\Y by OT. In this work, we formalize
a new ideal functionality named permuted non-membership
conditional randomness generation (pnMCRG). Combined
with the standard hash-to-bin technique (cuckoo/simple hash-
ing), we propose a generic construction of enhanced PSU
(ePSU) from pnMCRG. Compared with mqRPMT, pnMCRG
hides the indication bits (avoiding during-execution leakage)
and outputs the corresponding indication values: For mem-
bership x ∈ Y , it outputs unequal random values. For non-
membership x /∈Y , it outputs equal random values. Indication
values can be used as one-time pads to encrypt and decrypt
non-intersection items X\Y for constructing the PSU.

Two constructions in balanced/unbalanced settings. We
first present a generic construction of permuted non-
membership conditional randomness generation (pnMCRG)
from newly introduced protocols called permuted mem-
bership conditional randomness generation (pMCRG) and
non-equality conditional randomness generation (nECRG).
nECRG could be constructed in turn from the secret-shared
private equality test (ssPEQT) [20, 34] and random oblivi-
ous transfer (ROT). In the balanced case, permuted member-
ship conditional randomness generation (pMCRG) could be

constructed based on batched OPRF (bOPRF) [31], obliv-
ious key-value store (OKVS) [8, 42], and a new protocol
called permuted equality conditional randomness generation
(pECRG), achieving linear complexity. In the unbalanced
case, permuted membership conditional randomness genera-
tion (pMCRG) could be constructed based on bOPRF [31],
FHE [13, 15, 17], and permuted equality conditional random-
ness generation (pECRG), achieving sublinear communica-
tion in the size of the larger set. Finally, we realize pECRG
from the DDH assumption and achieve linear complexity.
Combined with linear non-equality conditional randomness
generation (nECRG), pnMCRG-based PSU inherits the com-
plexity of permuted membership conditional randomness gen-
eration (pMCRG). Therefore, we obtain two constructions of
enhanced PSU:

• In the balanced setting, our enhanced PSU achieves lin-
ear complexity in the size of both sets.

• In the unbalanced setting, our enhanced PSU achieves
sublinear communication in the size of the larger set.

Table 1 provides a comparison of our protocols with exist-
ing scalable PSU protocols. In the balanced setting, n repre-
sents the size of both sets. In the unbalanced setting, m and
n denote the sizes of the small set and large set, respectively,
where m≪ n. We ignore the pub-key cost of κ base OTs.

Protocols Communication Computation Enhanced Security

PSU [32] O(n logn) O(n logn log logn) ×
PSU [23] O(n logn) O(n logn) ×
PSU [30] O(n logn) O(n logn) ×
PSU [48] O(n) O(n) ×
PSU [16] O(n) O(n) ×
PSU [29] O(n logn) O(n logn) ✓

Our PSU O(n) O(n) ✓

PSU [45] O(m logn) O(n+m logn) ×
Our PSU O(m logn) O(n+m logn) ✓

Table 1: Comparisons of PSU in the semi-honest model

Evaluations. We implement and compare our balanced en-
hanced PSU with the state-of-the-art enhanced PSU [29]. Ex-
periments show that our protocol achieves a 2.2 - 8.8× re-
duction in communication cost and a 1.2 - 8.6× speedup in
running time, depending on set sizes and network environ-
ments. Since the complexity of our PSU is linear, the larger
the set size, the more significant our advantage becomes.

Since the implementation of PSU [29] does not sup-
port running in unbalanced settings, we compare our unbal-
anced ePSU (eUPSU) with our balanced ePSU in the un-
balanced setting. Experimental results demonstrate that our
unbalanced ePSU reduces communication costs by a factor
of 1.2 to 38.1, with the small set size fixed at 210 and the
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Figure 1: Technical overview of our frameworks. The rectangle with dotted lines denotes the previous notions. The rectangles with
solid lines denote new notions, including permuted non-membership conditional randomness generation (pnMCRG), permuted
membership conditional randomness generation (pMCRG), permuted equality conditional randomness generation (pECRG), and
non-equality conditional randomness generation (nECRG).

large set size ranging from 214 to 220. Especially, for set sizes
(|X |= 210, |Y |= 220) with T = 1 thread in 1Mbps bandwidth,
our protocol requires only 2.322 MB and 42.734 seconds,
there are 38.1× shrink in communication and roughly 17.6×
speedup in the running time.

We compare our balanced/unbalanced ePSU with efficient
PSU [45,47,48], which suffers from during-execution leakage.
Our protocols resolve their issue of during-execution leakage
with only a minor efficiency trade-off. Specifically, in the
unbalanced setting, our ePSU also demonstrates an advantage
in terms of communication overhead.

1.2 Technical Overview

We provide a high-level technical overview of our enhanced
PSU protocol depicted in Figure 1. First, we formalize an
ideal functionality named permuted non-membership con-
ditional randomness generation (pnMCRG) and present a
framework of enhanced PSU (ePSU). Then, we propose a
generic construction of pnMCRG from permuted member-
ship conditional randomness generation (pMCRG) and non-
equality conditional randomness generation (nECRG), where
nECRG could be constructed from secret-shared private equal-
ity test (ssPEQT) and random oblivious transfer (ROT). In
the balanced case, pMCRG could be constructed from bO-
PRF, OKVS, and permuted equality conditional randomness
generation (pECRG). In the unbalanced case, pMCRG could

be constructed from bOPRF, FHE, and pECRG. For conve-
nience, we denote the parties in our PSU as the sender S and
the receiver R , and their respective input sets as X and Y with
|X |= m, |Y |= n, where m = n in the balanced setting, m≪ n
in the unbalanced setting.

1.2.1 Enhanced PSU from pnMCRG

We start with a special case that the sender S has only one
item x, and the receiver R has a set Y = {y1, · · · ,yn}. First, we
formalize a new functionality named single-point nMCRG:
S inputs an item x and R inputs a set Y , the result is that
S and R obtain their indication values u and v, respectively,
such that if x /∈ Y , u = v, otherwise u ̸= v. (1,n)-PSU1 can
be constructed from single-point nMCRG as follows: The
sender uses u as one-time pads to encrypt the item c = u⊕x2,
and the receiver can decrypt c by computing c⊕ v. For non-
membership x /∈ Y , we have u = v. Thus, the receiver obtains
a non-intersection item c⊕v = u⊕x⊕v = x. For membership
x∈Y , we have u ̸= v, and the receiver can only learn a random
value.

1(1,n)-PSU denotes the sender holds one item and the receiver holds n
items.

2To constructing PSU, the sender could encode its item x concatenating a
hash value x||h(x) by a pre-agreed hash function h, or padding x with 64-bit
0 strings so that the receiver could check whether the item belongs to the
union or is a random value [20, 34]. For convenience, we omit the encoded
operations.



Now, we show how to extend the special case to a gen-
eral case of |X |= m > 1. Intuitively, one can simply execute
the above process for each xi ∈ X . However, in this simple
method, each item xi requires to be compared to the entire
set Y , causing a significant overhead. We utilize the stan-
dard hash-to-bin technique to reduce the costs. Specifically,
S assigns each of its items x||γ (concatenated with one hash
function index γ∈ [3]) to one of the bins h1(x),h2(x),h3(x) by
cuckoo hashing [35], where the cuckoo hash table has mc bins
and each bin contains at most one item. R assigns each of its
items y||γ (concatenated with all hash function indices γ ∈ [3]
to ensure that there are no identical items in the hash table.)
to all of the bins h1(y),h2(y),h3(y). Let Yi, i ∈ [mc] denote
the i-th bin. Then, the parties perform the above single-point
nMCRG on each bin. Although this method greatly reduces
the input size of R from the entire set |Y | to a small hash
bin, it cannot be used directly to construct the PSU, because
it leaks additional information on the sender’s items to R .
That is, whether the sender’s i-th item belongs to the i-th bin
(subset of Y ). Note that PSU can only allow R to know if
xi belongs to the entire set Y , rather than some small subsets
(i-th bin), which narrows the range of xi.

S x1 x2 x3 x4
Y1 Y2 Y3 Y4

R

π u1 u2 u3 u4 v1 v2 v3 v4

Figure 2: Illustration of pnMCRG. π(1) = 2,π(2) = 3,π(3) =
4,π(4) = 1. xπ−1(1) ∈ Yπ−1(1) ⇒ u1 ̸= v1; xπ−1(2) /∈ Yπ−1(2) ⇒
u2 = v2; xπ−1(3) ∈ Yπ−1(3) ⇒ u3 ̸= v3; xπ−1(4) /∈ Yπ−1(4) ⇒
u4 = v4.

To remedy the above leakage, we employ the shuffling
technique and introduce a new cryptographic protocol named
permuted non-membership conditional randomness genera-
tion (pnMCRG), depicted in Figure 23. Roughly speaking,
pnMCRG is a two-party protocol between a sender holding a
set X = {x1, · · · ,xm} and a permutation π over [m], and a re-
ceiver holding m sets {Y1, · · · ,Ym}. After execution, the sender
and the receiver obtain random vectors u = (u1, · · · ,um) and
v = (v1, · · · ,vm), respectively, such that if xπ−1(i) /∈ Yπ−1(i),
ui = vi, otherwise ui ̸= vi. To construct the PSU, for all i∈ [m],
the sender uses each ui as one-time pads to encrypt the cor-
responding items ci = ui⊕ xπ−1(i)

4, and the receiver can de-
crypt ci by computing ci⊕vi. Therefore, for non-membership
xπ−1(i) /∈ Yπ−1(i), we have ui = vi, and the receiver obtains
non-intersection items ci⊕vi = ui⊕xπ−1(i)⊕vi = xπ−1(i). For

3The white color represents non-membership and non-equality, and the
same other color represents membership and equality.

4For convenience, we omit the concatenation of hash value.

membership xπ−1(i) ∈ Yπ−1(i), we have ui ̸= vi, and it obtains
random values.

pnMCRG vs. mqRPMT. Multi-query reversed private mem-
bership test (mqRPMT) [48] is a two-party protocol between
a sender holding a vector X = (x1, · · · ,xm) and a receiver hold-
ing a set Y . After execution, the receiver obtains an indication
bit vector (e1, · · · ,em) such that ei = 1 if and only if xi ∈ Y
but without knowing xi, while the sender obtains nothing. In
the construction of PSU, the receiver can retrieve the non-
intersection items X\Y by OT. As discussed above, due to
the leakage of indication bits (membership information of
X) in mqRPMT, mqRPMT-based PSU protocols suffer from
during-execution leakage [29].

Permuted non-membership conditional randomness gener-
ation (pnMCRG) can be seen as a weak notion of mqRPMT,
where both parties obtain two indication values (hiding
membership information of X) instead of indication bits in
mqRPMT. Thus, pnMCRG-based PSU avoids the during-
execution leakage.

1.2.2 Generic Constructions of pnMCRG

Here, we present a generic construction of permuted non-
membership conditional randomness generation (pnMCRG)
from pMCRG and nECRG.

S s1 s2 s3 s4 t1 t2 t3 t4 R

u1 u2 u3 u4 v1 v2 v3 v4

Figure 3: Illustration of nECRG. s1 = t1 ⇒ u1 ̸= v1; s2 ̸= t2
⇒ u2 = v2; s3 = t3 ⇒ u3 ̸= v3; s4 ̸= t4 ⇒ u4 = v4.

pnMCRG from pMCRG and nECRG. Starting with the
single-point case, where S has only one item and the receiver
R has a set, we formalize the functionality of single-point
membership conditional randomness generation (MCRG): S
inputs an item x and R inputs a set Y , the result is that S
and R obtains indication values s and t, respectively. For
membership x ∈ Y , we have s = t, otherwise, s ̸= t. Then,
following the ideas of [29, 34], we introduce a functional-
ity named non-equality conditional randomness generation
(nECRG), depicted in Figure 3, in which both parties input
s and t, the result is outputting new random values u and v,
such that if s = t, u ̸= v, otherwise u = v. That is, nECRG
could exchange the equality and non-equality conditions. So
far, we can obtain a single-point non-membership conditional
randomness generation (nMCRG), from single-point MCRG
and nECRG.



Now, we formalize a new functionality of permuted mem-
bership conditional randomness generation (pMCRG), de-
picted in Figure 4, to extend the special case to a general
case of |X | = m > 1. In the pMCRG, the sender inputs a
set X = {x1,x2, · · · ,xm} and a permutation π over [m] and
the receiver inputs a series of sets (Y1,Y2, · · · ,Ym). As a
result, the sender and the receiver obtain random vectors
s = (s1,s2, · · · ,sm) and t = (t1, t2, · · · , tm), respectively. If
xπ−1(i) ∈ Yπ−1(i), si = ti, otherwise si ̸= ti.

S x1 x2 x3 x4
Y1 Y2 Y3 Y4

R

π s1 s2 s3 s4 t1 t2 t3 t4

Figure 4: Illustration of pMCRG. π(1) = 2,π(2) = 3,π(3) =
4,π(4) = 1. xπ−1(1) ∈ Yπ−1(1) ⇒ s1 = t1; xπ−1(2) /∈ Yπ−1(2) ⇒
s2 ̸= t2; xπ−1(3) ∈ Yπ−1(3)⇒ s3 = t3; xπ−1(4) /∈ Yπ−1(4)⇒ s4 ̸=
t4.

So far, we obtain a generic construction of permuted non-
membership conditional randomness generation (pnMCRG)
from permuted membership conditional randomness gener-
ation (pMCRG) and non-equality conditional randomness
generation (nECRG): pMCRG generates shuffled equal in-
dication values si = ti of memberships xπ−1(i) ∈ Yπ−1(i) and
shuffled unequal indication values si ̸= ti of non-memberships
xπ−1(i) /∈Yπ−1(i), and then nECRG exchanges the equality con-
ditions (si = ti⇒ ui ̸= vi) and non-equality conditions (si ̸= ti
⇒ ui = vi). Thus, for non-membership xπ−1(i) /∈ Yπ−1(i), both
parties obtains equal random values ui = vi. For membership
xπ−1(i) ∈ Yπ−1(i), both parties obtain unequal random values
ui ̸= vi.

1.2.3 Constructions of pMCRG

Here, we give two constructions of permuted membership
conditional randomness generation (pMCRG) in balanced
and unbalanced settings, respectively.

Balanced pMCRG. The first construction based on bOPRF,
OKVS, and permuted equality conditional randomness gener-
ation (pECRG) in the balanced case is as follows.

First, both parties input (x1,x2, · · · ,xm) and (Y1,Y2, · · · ,Ym),
and then invoke FbOPRF. The result is that the sender obtains
all PRF values F(ki,xi) and the receiver obtains all PRF keys
k1,k2, · · · ,km. The receiver then computes all PRF values
F(ki,Yi[ j]) by the PRF key ki, where Yi[ j] denotes the j-th
item in the i-th set Yi. Subsequently, the receiver chooses
m random indication values di, i ∈ [m] and encodes all key-
value pairs {(Yi[ j],di⊕F(ki,Yi[ j]))}i∈[m], j∈[|Yi|] into a OKVS
data structure D. The receiver sends D to the sender. For

each i ∈ [m], the sender inputs F(ki,xi) and runs Decode
to output ei = F(ki,xi)⊕Decode(xi). According to the cor-
rectness of bOPRF and OKVS, we obtain a batched mem-
bership conditional randomness generation (MCRG): For
each i ∈ [m], if xi ∈Yi, we have ei = F(ki,xi)⊕Decode(xi) =
F(ki,xi)⊕di⊕F(ki,xi) = di, otherwise, ei ̸= di.

Given the above, it remains to investigate how to realize
the shuffled operation. Here, we formalize a new function-
ality called permuted equality conditional randomness gen-
eration (pECRG), depicted in Figure 5. In the pECRG, the
sender inputs a vector (e1,e2, · · · ,em) and the receiver inputs
a vector (d1,d2, · · · ,dm). As a result, both parties output per-
muted equality and non-equality conditions, where the sender
outputs a random vector (s1,s2, · · · ,sm) and the receiver out-
puts a random vector (t1, t2, · · · , tm), so that if eπ−1(i) = dπ−1(i),
si = ti, otherwise, si ̸= ti. In Section 3, we show that pECRG
can be realized from the DDH assumption and achieves linear
complexity.

S e1 e2 e3 e4 d1 d2 d3 d4 R

π s1 s2 s3 s4 t1 t2 t3 t4

Figure 5: Illustration of pECRG. π(1) = 2,π(2) = 3,π(3) =
4,π(4) = 1. eπ−1(1) = dπ−1(1) ⇒ s1 = t1; eπ−1(2) ̸= dπ−1(2)
⇒ s2 ̸= t2; eπ−1(3) = dπ−1(3) ⇒ s3 = t3; eπ−1(4) ̸= dπ−1(4) ⇒
s4 ̸= t4.

Therefore, we obtain a construction of pMCRG from bO-
PRF, OKVS, and pECRG: For membership xπ−1(i) ∈ Yπ−1(i),
we have eπ−1(i) = dπ−1(i) and si = ti. For non-membership
xπ−1(i) /∈ Yπ−1(i), we have eπ−1(i) ̸= dπ−1(i) and si ̸= ti. Note
that pMCRG inherits the linear complexity of bOPRF, OKVS,
and pECRG.

Unbalanced pMCRG. The second construction based on
bOPRF, FHE, and permuted equality conditional randomness
generation (pECRG) in the unbalanced case is as follows.

Here, we use the polynomial randomization method fol-
lowing [13, 45] to encode each set Yi, i ∈ [m] of the receiver,
so that fi(y) = Π

Bi
j=1(y−Yi[ j])+ ri, where Bi = |Yi| and ri is

a random value. The sender sends a FHE ciphertext of en-
crypting xi, denoted as [[xi]] to the receiver. Then, the receiver
homomorphically computes and returns [[ fi(xi)]]. Finally, the
sender decrypts [[ fi(xi)]] and outputs ei = fi(xi). The receiver
outputs di = ri.5 As discussed above, we obtain a batched
membership conditional randomness generation (MCRG) in
the unbalanced case: For each i ∈ [m], if xi ∈ Yi, we have

5Following [13, 17, 45], we can use a bOPRF to compute the items on
both sides before engaging in the pMCRG, which prevents the sender from
learning anything about the original items and allows efficient FHE parame-
ters.



fi(xi) = Π
Bi
j=1(xi−Yi[ j])+ ri = ri, and ei = ri = di, otherwise,

ei ̸= di.
Therefore, we obtain an unbalanced construction of pM-

CRG from bOPRF, FHE, and pECRG: For membership
xπ−1(i) ∈Yπ−1(i), we have eπ−1(i) = dπ−1(i) and si = ti. For non-
membership xπ−1(i) /∈ Yπ−1(i), we have eπ−1(i) ̸= dπ−1(i) and
si ̸= ti. Note that similar to the frameworks of [13, 17, 45],
pMCRG achieves sublinear communication in the size of the
larger set.

1.2.4 Constructions of nECRG

Following [34], we construct non-equality conditional ran-
domness generation (nECRG), based on secret-shared private
equality test (ssPEQT) and random oblivious transfer (ROT),
achieving linear complexity.

nECRG from ssPEQT and ROT. First, both parties in-
put their vectors (s1,s2, · · · ,sm) and (t1, t2, · · · , tm), and then
invoke the functionality of ssPEQT FssPEQT. The result
is that both parties obtain bit vectors (a1,a2, · · · ,am) and
(b1,b2, · · · ,bm), so that if si = ti, ai ⊕ bi = 0, otherwise,
ai⊕bi = 1. Next, for each i ∈ [m], the receiver inputs a bit bi
and invokes the functionality of ROT FROT with the sender, so
that the receiver obtains ri,bi and the sender obtains (ri,0,ri,1).
Finally, the sender outputs ui = ri,(ai⊕1), and the receiver out-
puts vi = ri,bi .

As a result, we obtain the construction of nECRG: For
si ̸= ti, we have ai⊕bi = 1, and ui = ri,(ai⊕1) = ri,bi = vi. For
si = ti, we have ai⊕bi = 0, and ui = ri,(ai⊕1) ̸= ri,bi = vi. Note
that nECRG inherits the linear complexity of ssPEQT and
ROT.

1.3 Related Work
Here, we review previous scalable PSU protocols that are rele-
vant to our work. Kolesnikov et al. [32] propose the notion of
reverse private membership test (RPMT), then use it to build
a PSU protocol whose performance is much better than AHE-
based PSU [19]. Garimella et al. [23] present a framework for
all private set operations from permuted characteristics, which
could be viewed as a variant of RPMT. After that, Jia et al. [30]
also employ the shuffling technique to develop a generalized
reversed private membership test (gRPMT) and give a PSU
construction. Recently, Zhang et al. [48] extend the notion
of RPMT [32] to multi-query RPMT (mqRPMT), and pro-
pose a generic construction of mqRPMT from the oblivious
key-value store (OKVS) [24], set-membership encryption and
the vector oblivious decryption-then-matching protocol. By
instantiating their generic construction from symmetric-key
and public-key encryption, respectively, they obtain two con-
crete mqRPMT protocols with linear complexity, yielding two
linear PSU protocols. However, their two mqRPMT protocols
have a large multiplicative constant (the statistical security
parameter) in computation complexity, and so do the resulting

PSU protocols. Then, Chen et al. [16] present two generic
constructions of mqRPMT from commutative weak PRF (cw-
PRF) and permuted oblivious PRF (pOPRF), respectively.
Both can be realized from DDH-like assumptions, yielding
mqRPMT constructions with linear complexity. Thus, their
PSU protocols inherit the linear complexity. Considering the
unbalanced case, Tu et al. [45,46] introduce a permuted multi-
point private equality test (pmpPEQT) and combine it with
fully homomorphic encryption (FHE) to construct an unbal-
anced mqRPMT, yielding the PSU protocol whose communi-
cation is linear in the small set, and logarithmic in the large set.
Jia et al. [29] point out that all mqRPMT-based PSU protocols
are limited by the underlying mqRPMT leaking member infor-
mation and suffer from during-execution leakage. Then, they
define an enhanced PSU functionality and give a construction
based on oblivious programmable PRF, batched equality con-
ditional random generation, and permuted + share. However,
the complexity of their PSU scales superlinearly with the size
of the set.

2 Preliminaries

2.1 Notation
For n ∈ N, let [n] denote the set {1,2, · · · ,n}. 1λ denotes the
string of λ ones. We use κ and λ to indicate the computational
and statistical security parameters, respectively. If S is a set,
s← S indicates sampling s from S at random. We denote
vectors by lowercase bold letters, e.g. s.

2.2 Enhanced Private Set Union
An enhanced PSU (ePSU) [29] can be seen as a PSU with
enhanced security. We review the ideal functionality of ePSU
in Figure 6.

2.3 Building Blocks
Random oblivious transfer. Oblivious transfer (OT) [41]
is a central cryptographic primitive in the area of MPC. In
random oblivious transfer (ROT), the sender outputs random
messages, rather than selecting them as in standard OT. We
recall the 1-out-of-2 random oblivious transfer functionality
FROT in Figure 7.

Batched oblivious pseudorandom function. Oblivious pseu-
dorandom function (OPRF) [22] is a central primitive in the
area of PSO. A batched OPRF (bOPRF) allows a receiver
to input {xi}i∈[m] and obtains all PRF values {F(ki,xi)}i∈[m],
and the keys {ki}i∈[m] is known to a sender. Kolesnikov et
al. [31] propose an efficient bOPRF and give a construction
of private set intersection. We recall the bOPRF functionality
FbOPRF in Figure 8.



Parameters: The functionality interacts with two parties,
the sender S with input X = {x1, · · · ,xm} ⊆ {0,1}∗ and the
receiver R with input Y = {y1, · · · ,yn} ⊆ {0,1}∗, and the
simulator Sim.
Functionality F m,n

ePSU:

1. Initialize an ideal state stateU = /0 for party U where
U ∈ {S ,R }; if U is corrupted, the simulator Sim is
allowed to access stateU .

2. Upon receiving input X = {x1, · · · ,xm} from the
sender S , abort if |X | ̸= m; otherwise, update state
stateS = ⟨X⟩, and send ⟨Request,S⟩ to Sim.

3. Upon receiving input Y = {y1, · · · ,yn} from the re-
ceiver R , abort if |Y | ̸= n; otherwise, update state
stateR = ⟨Y ⟩, and send ⟨Request,R ⟩ to Sim.

4. Upon receiving ⟨Response,OK⟩ from Sim, compute
Z = X ∪Y , and add ⟨Finished⟩ to the sender’s state
stateS and ⟨Z⟩ to the receiver’s state stateR .

5. Output Z to R , and ⟨Finished⟩ to S .

Figure 6: Ideal functionality for enhanced private set union

Parameters: Two parties: S and R . The message length l.
Functionality FROT:

1. Wait for input b from R .

2. Send ⟨Request⟩ to the simulator Sim.

3. Upon receiving ⟨Response,OK⟩ from Sim, sample
r0,r1←{0,1}l . Give (r0,r1) to S and give rb to R .

Figure 7: 1-out-of-2 random oblivious transfer functionality

Secret-shared private equality test. Secret-Shared Private
Equality Test (ssPEQT) can be seen as a secret share of pri-
vate equality test (PEQT). More concretely, the two parties S
and R hold strings x0 and x1, respectively. ssPEQT outputs
random bits a to S and b to R such that if x0 = x1, a⊕b = 0,
otherwise a⊕ b = 1. Existing works [12, 18, 20, 34] design
linear ssPEQT protocols. We give the functionality FssPEQT
in Figure 9.

Oblivious key-value stores. The oblivious key-value store [8,
24, 37, 42] is a data structure that compactly represents a
desired mapping from a set of keys to corresponding values.
The definition is as follows:

Definition 1. An OKVS is parameterized by a set K of keys,
a set V of values, and consists of two algorithms:

Parameters: A PRF F . Two parties: S and R .
Functionality FbOPRF:

1. Wait for input {x1, · · · ,xm} from R .

2. Sample random PRF keys {k1, · · · ,km} and compute
{F(k1,x1), · · · ,F(km,xm)}.

3. Send ⟨Request⟩ to the simulator Sim.

4. Upon receiving ⟨Response,OK⟩ from Sim, send the
keys {k1, · · · , km} to S and send {F(k1,x1), · · · ,
F(km,xm)} to R .

Figure 8: Batched oblivious pseudorandom function function-
ality

Parameters: Two parties: S and R .
Functionality FssPEQT:

1. Wait for the input x0 from S .

2. Wait for the input x1 from R .

3. Generate two random bits a and b such that if x0 = x1,
a⊕b = 0, otherwise, a⊕b = 1.

4. Send ⟨Request⟩ to the simulator Sim.

5. Upon receiving ⟨Response,OK⟩ from Sim, send a to
S , and b to R .

Figure 9: Secret-shared private equality test functionality

• Encode({(k1,v1), · · · ,(kn,vn)}): On input key-value
pairs {(ki,vi)}i∈[n] ⊆ K ×V , outputs an object D (or,
with statistically small probability, an error ⊥).

• Decode(D,k): On input D and a key k, outputs v ∈ V .

Correctness. For all A⊆K ×V with distinct keys: (k,v)∈
A and ⊥ ̸= D← Encode(A)⇒ Decode(D,k) = v.

Obliviousness. For all distinct {k0
1, · · · ,k0

n} and all dis-
tinct {k1

1, · · · ,k1
n}, if Encode does not output ⊥ for

{k0
1, · · · ,k0

n} and {k1
1, · · · ,k1

n}, then the distribution of
{D|vi ← V , i ∈ [n], Encode((k0

1,v1), · · · ,(k0
n,vn))} is com-

putationally indistinguishable to {D|vi ← V , i ∈ [n],
Encode((k1

1,v1), · · · ,(k1
n,vn))}.

Randomness. We also require an additional random-
ness property [48] from the OKVS. For any A =
{(k1,v1), · · · ,(kn,vn)} and k∗ /∈ {k1, · · · ,kn}, the output of
Decode(D,k∗) is indistinguishable to that of uniform distri-
bution over V , where D← Encode(A).

Hash-to-bin from cuckoo/simple hash. The hash-to-bin



from cuckoo/simple hash technique was introduced by Pinkas
et al. [38, 40], which is originally applied to construct
PSI [13, 15, 17, 31, 36, 37, 39, 42] and PSU [23, 29, 30, 45].
At the high level, the sender uses hash functions h1,h2,h3 :
{0,1}∗ → [mc] to assign its items X = {xi}i∈[m] to mc bins
{Xc[1], · · · ,Xc[mc]} via cuckoo hashing [35], such that each
bin has at most one item, where for each xi there is some
γ ∈ {1,2,3} such that Xc[hγ(xi)] = xi||γ. The receiver uses
the same hash functions h1,h2,h3 : {0,1}∗→ [mc] to assign
its items Y = {y j} j∈[n] to mc bins {Y1, · · · ,Ymc} via simple
hashing, where for j ∈ [n], all items are concatenated with
hash function indices (y j||1,y j||2, y j||3) and are inserted to
the bins (Yh1(y j),Yh2(y j), Yh3(y j)), respectively. Therefore, if
xi ∈Y , ∃ j ∈ [n], xi = y j, and ∃ γ∈ {1,2,3}, such that hγ(xi)∈
{h1(y j),h2(y j),h3(y j)} and xi||γ ∈ {y j||1,y j||2,y j||3}.6 Fol-
lowing [13, 15, 45], we use three hash functions and adjust
the number of items and table size to reduce the stash size to
0 while achieving a hashing failure probability of 2−λ.

Fully homomorphic encryption. Fully homomorphic en-
cryption (FHE) is a family of encryption schemes that al-
low arbitrary operations to be performed on encrypted data
without decryption. The leveled fully homomorphic encryp-
tion supports circuits of a certain bounded depth. In this
work, we use an array of optimization techniques of FHE
as [13, 15, 17, 45], such as batching (SIMD), windowing, and
partitioning to significantly reduce the depth of the homomor-
phic circuit.

3 Permuted Equality Conditional Randomness
Generation

In this section, we introduce a new cryptographic protocol
named permuted equality conditional randomness generation
(pECRG). In the pECRG, S inputs a vector s = [si]i∈[m] and a
permutation π over [m], and R inputs a vector t= [ti]i∈[m]. The
result is that S and R obtain two random vectors u = [ui]i∈[m]

and v = [vi]i∈[m], respectively, where for i ∈ [m], if sπ−1(i) =
tπ−1(i), we have ui = vi, otherwise, ui ̸= vi. In Figure 10, we
define the functionality of pECRG, denoted as FpECRG.

We give a construction of pECRG from the DDH assump-
tion, as described in Figure 11.

Theorem 1. The construction of Figure 11 UC realizes the
functionality FpECRG based on DDH in the random oracle
model, in the presence of semi-honest adversaries.

Proof. We exhibit simulators Sim to simulate corrupt S and
corrupt R respectively and argue the indistinguishability of
the produced transcript from the real execution.

6Appending the index of the hash function is helpful for dealing with edge
cases like h1(y) = h2(y), which happen with non-negligible probability [23],
ensuring that there are no identical items in the hash table.

Parameters: Two parties: S and R .
Functionality FpECRG:

1. Initialize an ideal state stateU = /0 for party U where
U ∈ {S ,R }; if U is corrupted, the simulator Sim is
allowed to access stateU .

2. Upon receiving input s = [si]i∈[m] and a permutation π

over [m] from S and update state stateS = ⟨s,π⟩, and
send ⟨Request,S⟩ to Sim.

3. Upon receiving input t = [ti]i∈[m] from R and update
state stateR = ⟨t⟩, and send ⟨Request,R ⟩ to Sim.

4. Upon receiving ⟨Response,OK⟩ from Sim, generate
two random vectors u = [ui]i∈[m] and v = [vi]i∈[m],
where for i ∈ [m], if sπ−1(i) = tπ−1(i), ui = vi, otherwise
ui ̸= vi.

5. Add ⟨u⟩ to the state stateS and ⟨v⟩ to the state stateR .

6. Output u = [ui]i∈[m] to S . Output v = [vi]i∈[m] to R .

Figure 10: Permuted equality conditional randomness genera-
tion functionality

Input: S inputs a vector s and a permutation π over [m]. R
inputs a vector t. G is a cyclic group with order q.
Output: S outputs a vector u. R output a vector v.

1. R chooses a random value b ← Zq and computes
t̂i = H(ti)b for all i ∈ [m], where H(·) is modeled as a
random oracle and the output is a group element in G,
and sends t̂ = [t̂i]i∈[m] to S .

2. S chooses a random value a← Zq and computes t ′i =
(t̂i)a for all i ∈ [m] and s′i = H(si)

a Then, S shuffles
t′ = [t ′i ]i∈[m] and s′ = [s′i]i∈[m] by same permutation π

and sends π([s′i]i∈[m]) to R .

3. S sets and outputs u = [ui]i∈[m] = π([t ′i ]i∈[m]). R sets
and outputs v = [vi]i∈[m] = π([s′i]i∈[m])

b.

Figure 11: DDH-based pECRG

Corrupted S . Sim simulates the view of corrupt S as follows:
It chooses random group elements di, i ∈ [m], to simulate the
view. We argue that the outputs of Sim are indistinguishable
from the real view of S by the following hybrids:

Hyb0: S ’s view in the real protocol consists of H(ti)b, i ∈ [m],
where b← Zq.



Hyb1: Same as Hyb0 except that Sim chooses random group
elements di, i ∈ [m] instead of H(ti)b, i ∈ [m], where b← Zq.
The hybrid is the view output by Sim.

We argue that the views in Hyb0 and Hyb1 are computation-
ally indistinguishable. Let A be a probabilistic polynomial-
time (PPT) adversary against the DDH assumption. Given
the DDH challenge gx,gyi ,gzi , where x,yi← Zq, A is asked
to distinguish if zi = x · yi or random values. A implicitly sets
b = x, and simulates (with the knowledge of t) the view as
follows:

• RO queries: Sim honestly emulates random oracle (RO)
H. For queries ti, if ti /∈ t, it picks a random group element
to assign H(ti), otherwise, it assigns H(ti) = gyi .

• Outputs gzi , i ∈ [m].

Clearly, if zi = x ·yi, A simulates Hyb0. Otherwise, it simu-
lates Hyb1 (without the knowledge of t), because it responds
to all RO queries with random group elements without know-
ing whether the inputs belong to t or not. Therefore, the out-
puts of Sim are computationally indistinguishable from the
real view based on the DDH assumption.

Corrupted R . Sim simulates the view of corrupt R as fol-
lows: It chooses random group elements ei, i∈ [m], to simulate
the view. We argue that the outputs of Sim are indistinguish-
able from the real view of R by the following hybrids:

Hyb0: R ’s view in the real protocol consists of H(sπ(i))
a,

i ∈ [m], where a← Zq.

Hyb1: Same as Hyb0 except that Sim chooses random group
elements ei, i ∈ [m] instead of H(sa

π(i), i ∈ [m], where a← Zq.
The hybrid is the view output by Sim.

We argue that the views in Hyb0 and Hyb1 are computation-
ally indistinguishable. Let A be a probabilistic polynomial-
time (PPT) adversary against the DDH assumption. Given
the DDH challenge gx,gyi ,gzi , where x,yi← Zq, A is asked
to distinguish if zi = x · yi or random values. A implicitly sets
a = x, and simulates (with the knowledge of s and π) the view
as follows:

• RO queries: Sim honestly emulates random oracle (RO)
H. For queries si, if si /∈ s, it picks a random group ele-
ment to assign H(si), otherwise, it assigns H(si) = gyi .

• Outputs gzi , i ∈ [m].

Clearly, if zi = x · yi, A simulates Hyb0. Otherwise, it sim-
ulates Hyb1 (without the knowledge of s and π), because it
responds to all RO queries with random group elements with-
out knowing whether the inputs belong to s or not. Therefore,
the outputs of Sim are computationally indistinguishable from
the real view based on the DDH assumption.

4 Permuted Membership Conditional Ran-
domness Generation

In this section, we introduce a new cryptographic protocol
named permuted membership conditional randomness gen-
eration (pMCRG), in which S inputs a set X = {xi}i∈[m] and
a permutation π over [m], and R inputs m sets {Yi}i∈[m]. As
a result, S and R obtain two random vectors s = [si]i∈[m]

and t = [ti]i∈[m], respectively, such that for i ∈ [m], if xπ−1(i) ∈
Yπ−1(i), si = ti, otherwise, si ̸= ti. In Figure 12, we define the
functionality of pMCRG, denoted as FpMCRG.

Parameters: Two parties: S and R .
Functionality FpMCRG:

1. Initialize an ideal state stateU = /0 for party U where
U ∈ {S ,R }; if U is corrupted, the simulator Sim is
allowed to access stateU .

2. Upon receiving input X = {xi}i∈[m] and a permutation
π over [m] from S , then update state stateS = ⟨X ,π⟩,
and send ⟨Request,S⟩ to Sim.

3. Upon receiving input {Yi}i∈[m] from R and update
state stateR = ⟨{Yi}i∈[m]⟩, and send ⟨Request,R ⟩ to
Sim.

4. Upon receiving ⟨Response,OK⟩ from Sim, generate
two random vectors s = [si]i∈[m] and t = [ti]i∈[m], where
for i ∈ [m], if xπ−1(i) ∈Yπ−1(i), si = ti, otherwise si ̸= ti.

5. Add ⟨t⟩ to the state stateS and ⟨s⟩ to the state stateR .

6. Output t = [ti]i∈[m] to S . Output s = [si]i∈[m] to R .

Figure 12: Permuted membership conditional randomness
generation functionality

Here, we present two pMCRG constructions in the bal-
anced and unbalanced setting. Note that since OKVS and
polynomial interpolation require all keys to be distinct, our
constructions require the m sets {Yi}i∈[m] input by R are mutu-
ally exclusive7, meaning they do not contain any same items.

4.1 pMCRG Construction in the Balanced Set-
ting

We give a construction of pMCRG based on bOPRF, OKVS,
and pECRG in the balanced case, as described in Figure 13.

Theorem 2. The protocol ΠpMCRG shown in Figure 13 UC-
realizes the functionality FpMCRG (as in Figure 12) in the

7The property of mutual exclusivity is easy to achieve: All items of the
set with equal length are linked to the indices of the set.



Input: S inputs a set X = {xi}i∈[m] and a permutation π

over [m]. R inputs m mutually exclusive sets {Yi}i∈[m].
Output: S outputs a vector s = [si]i∈[m]. R outputs a vector
t = [ti]i∈[m].

1. S and R invoke the bOPRF functionality FbOPRF.

(a) S input a set X = {xi}i∈[m].

(b) S obtains all PRF values F(ki,xi), i ∈ [m]. R
obtains PRF keys {k1, · · · ,km}.

2. For all i ∈ [m], R computes PRF values F(ki,Yi[ j]),
where Yi[ j] denotes j-th item in Yi.

3. R encodes an OKVS.

(a) R chooses m random values [di]i∈[m], and defines
P = {(Yi[ j],F(ki,Yi[ j])⊕di)}i∈[m], j∈[|Yi|].

(b) R computes an OKVS: D = Encode(P ), and
sends D to S .

4. S decodes ei = Decode(D,xi))⊕F(ki,xi), i ∈ [m].

5. S and R invoke the pECRG functionality FpECRG.

(a) S inputs a permutation π on [m] and a vector
[ei]i∈[m]. R input a vector [di]i∈[m].

(b) S outputs s = [si]i∈[m]. R outputs t = [ti]i∈[m].

Figure 13: pMCRG from bOPRF, OKVS, and pECRG

(FbOPRF, FpECRG)-hybrid model, against static, semi-honest
adversaries, provided a secure OKVS scheme.

Proof. We will show that for any adversary A , we can con-
struct a simulator Sim that can simulate the view of the cor-
rupted S and the corrupted R , such that any PPT environment
cannot distinguish the execution in the ideal world from that
in the real world.

Corrupted S . Sim simulates a real execution in which the
sender S is corrupted. Since A is semi-honest, Sim can ob-
tain the input X and π of S directly, and externally send them
to FpMCRG and then receives ⟨Request,S⟩. Once receiving
the set X = {xi}i∈[m], the input of ΠbOPRF, from A , Sim ran-
domly selects x′ = [x′i]i∈[m] as the PRF values to simulate
the execution of ΠbOPRF. Sim computes a random OKVS
D by selecting random key-value pairs. Upon receiving a
permutation π on [m] and a set [ei]i∈[m], the input of ΠpECRG,
from A , Sim sends ⟨Response,OK⟩ to FpMCRG, and obtains
s = [si]i∈[m]. Finally, Sim simulates the execution of ΠpECRG
with s = [si]i∈[m] as the output.

We argue that the outputs of Sim are indistinguishable from
the real view of S by the following hybrids:

Hyb0: S ’s view in the real protocol.

Hyb1: Same as Hyb0 except that the output of ΠbOPRF is
replaced by x′ chosen by Sim, and Sim runs the ΠbOPRF sim-
ulator to produce the simulated view for S . The security of
protocol ΠbOPRF guarantees the view in simulation is compu-
tationally indistinguishable from the view in the real protocol.

Hyb2: Same as Hyb1 except that computing a random OKVS
D by Sim. Briefly, this simulation is indistinguishable for the
following reasons: The pseudorandomness of PRF value is
indistinguishable from random, and then by the obliviousness
and randomness of OKVS, D is distributed uniformly.

Hyb3: Same as Hyb2 except that the output of ΠpECRG is
replaced by s = [si]i∈[m] output by FpMCRG, and Sim runs the
ΠpECRG simulator to produce the simulated view for S . The
security of protocol ΠpECRG guarantees the view in simulation
is computationally indistinguishable from the view in the real
protocol.

Corrupted R . Sim simulates a real execution in which the re-
ceiver R is corrupted. Since A is semi-honest, Sim can obtain
the input (m mutually exclusive sets {Yi}i∈[m]) of R , and exter-
nally send them to FpMCRG and then receives ⟨Request,R ⟩.
Sim randomly selects the PRF key {k1, · · · ,km} to simu-
late the execution of ΠbOPRF. Once receiving d = [di]i∈[m],
the input of ΠpECRG, from A , Sim sends ⟨Response,OK⟩ to
FpMCRG, and obtains t = [ti]i∈[m]. Finally, Sim simulates the
execution of ΠpECRG with t = [ti]i∈[m] as the output.

We argue that the outputs of Sim are indistinguishable from
the real view of R by the following hybrids:

Hyb0: R ’s view in the real protocol.

Hyb1: Same as Hyb0 except that the output of ΠbOPRF is
replaced by {k1, · · · ,km} chosen by Sim, and Sim runs the
ΠbOPRF simulator to produce the simulated view for R . The
security of protocol ΠbOPRF guarantees the view in simulation
is computationally indistinguishable from the view in the real
protocol.

Hyb2: Same as Hyb1 except that the output of ΠpECRG is
replaced by t = [ti]i∈[m] output by FpMCRG, and Sim runs the
ΠpECRG simulator to produce the simulated view for R . The
security of protocol ΠpECRG guarantees the view in simulation
is computationally indistinguishable from the view in the real
protocol.



4.2 pMCRG Construction in the Unbalanced
Setting

We give the construction of pMCRG from bOPRF, FHE and
pECRG in the unbalanced case, as described in Figure 14. We
use an array of optimization techniques of FHE as [13, 15, 17,
45], such as batching (SIMD), windowing, and partitioning
to significantly reduce the depth of the homomorphic circuit.
We review the optimizations in appendix A.

Input: S inputs a set X = {xi}i∈[m] and a permutation π

over [m]. R inputs m mutually exclusive sets {Yi}i∈[m].
Output: S outputs a vector s = [si]i∈[m]. R outputs a vector
t = [ti]i∈[m].

1. Both parties agree on the parameters of bOPRF, FHE,
and pECRG.

2. S and R invoke the bOPRF functionality FbOPRF.

(a) S input a set X = {xi}i∈[m].

(b) S obtains all PRF values x̄i = F(ki,xi), i ∈ [m].
R obtains PRF keys {k1, · · · ,km}.

3. For i ∈ [m], R computes PRF values Y ′i [ j] =
F(ki,Yi[ j]), where Yi[ j] denotes j-th item, Bi = |Yi|.

4. R chooses a random vector d= [di]i∈[m]. For all i∈ [m],
R computes polynomials Fi(x) = fi(x)+di, where for
all j ∈ [Bi], fi(Y ′i [ j]) = 0. Thus, R obtains the coeffi-
cient matrix A, where i-th column of A are the coeffi-
cients of Fi.

5. S uses its FHE public key to encrypt x̄ = [x̄i]i∈[m] and
sends ciphertexts [[x̄i]], i ∈ [m] to R .

6. For each [[x̄i]], R homomorphically computes encryp-
tions of all powers Ci = [[[0]], [[x̄1

i ]], · · · , [[x̄
Bi
i ]]]. Then,

R homomorphically evaluates C̄i = Ci
⊗

Ai, and
sends all ciphertexts to S .

7. S decrypts the ciphertexts into e = [ei]i∈[m].

8. S and R invoke the pECRG functionality FpECRG.

(a) S inputs a permutation π on [m] and a vector
e = [ei]i∈[m]. R input a vector d = [di]i∈[m].

(b) S outputs s = [si]i∈[m]. R outputs t = [ti]i∈[m].

Figure 14: pMCRG from bOPRF, FHE and pECRG

Theorem 3. The protocol ΠpMCRG shown in Figure 14 UC-
realizes the functionality FpMCRG (as in Figure 12) in the
(FbOPRF, FpECRG)-hybrid model, against static, semi-honest

adversaries, provided that the fully homomorphic encryption
scheme is IND-CPA secure.

Proof. We will show that for any adversary A , we can con-
struct a simulator Sim that can simulate the view of the cor-
rupted S and the corrupted R , such that any PPT environment
cannot distinguish the execution in the ideal world from that
in the real world.

Corrupted S . Sim simulates a real execution in which the
sender S is corrupted. Since A is semi-honest, Sim can ob-
tain the input X and π of S directly, and externally send them
to FpMCRG and then receives ⟨Request,S⟩. Once receiving
X = {xi}i∈[m], the input of ΠbOPRF, from A , Sim randomly se-
lects x′ = [x′i]i∈[m] to simulate the execution of ΠbOPRF. Upon
receiving all ciphertexts [[x′i]], i ∈ [m], from A , Sim randomly
selects r = [ri]i∈[m] and encrypts them to simulate the cipher-
texts. Once receiving r = [ri]i∈[m] and π, the input of ΠpECRG,
from A , Sim sends ⟨Response,OK⟩ to FpMCRG, and obtains
s = [si]i∈[m]. Finally, Sim simulates the execution of ΠpECRG
with s = [si]i∈[m] as the output.

We argue that the outputs of Sim are indistinguishable from
the real view of S by the following hybrids:

Hyb0: S ’s view in the real protocol.

Hyb1: Same as Hyb0 except that the output of ΠbOPRF is
replaced by x′ chosen by Sim, and Sim runs the ΠbOPRF sim-
ulator to produce the simulated view for S . The security of
protocol ΠbOPRF guarantees the view in simulation is compu-
tationally indistinguishable from the view in the real protocol.

Hyb2: Same as Hyb1 except that encrypting random values
in place of the ciphertexts in step 5. The plaintexts are ran-
domized in the real view which is indistinguishable from the
random values in the simulated view.

Hyb3: Same as Hyb2 except that the output of ΠpECRG is
replaced by s = [si]i∈[m] output by FpMCRG, and Sim runs the
ΠpECRG simulator to produce the simulated view for S . The
security of protocol ΠpECRG guarantees the view in simulation
is computationally indistinguishable from the view in the real
protocol.

Corrupted R . Sim simulates a real execution in which the
receiver R is corrupted. Since A is semi-honest, Sim can
obtain the input (m mutually exclusive sets {Yi}i∈[m]) of
R directly, and externally send them to FpMCRG and then
receives ⟨Request,R ⟩. Sim randomly selects the PRF key
{k1, · · · ,km} to simulate the execution of ΠbOPRF, and then en-
crypts random value in place of the ciphertexts in step 6. Once
receiving d = [di]i∈[m], the input of ΠpECRG, from A , Sim
sends ⟨Response,OK⟩ to FpMCRG, and obtains t = [ti]i∈[m]. Fi-
nally, Sim simulates the execution of ΠpECRG with t = [ti]i∈[m]

as output.



We argue that the outputs of Sim are indistinguishable from
the real view of R by the following hybrids:

Hyb0: R ’s view in the real protocol.

Hyb1: Same as Hyb0 except that the output of ΠbOPRF is
replaced by {k1, · · · ,km} chosen by Sim, and Sim runs the
ΠbOPRF simulator to produce the simulated view for R . The
security of protocol ΠbOPRF guarantees the view in simulation
is computationally indistinguishable from the view in the real
protocol.

Hyb2: Same as Hyb1 except that encrypting random values
in place of the ciphertexts in step 6. The IND-CPA security
of the fully homomorphic encryption scheme guarantees that
the view in simulation is computationally indistinguishable
from the view in the real protocol.

Hyb3: Same as Hyb2 except that the output of ΠpECRG is
replaced by t = [ti]i∈[m] output by FpMCRG, and Sim runs the
ΠpECRG simulator to produce the simulated view for R . The
security of protocol ΠpECRG guarantees the view in simulation
is computationally indistinguishable from the view in the real
protocol.

5 Non-Equality Conditional Randomness Gen-
eration

Here, we introduce a new cryptographic protocol named non-
equality conditional randomness generation (nECRG). In
the nECRG, S and R input two vectors s = [si]i∈[m] and
t = [ti]i∈[m], respectively. The result is that S and R obtain
two random vectors u = [ui]i∈[m] and v = [vi]i∈[m], such that
for i ∈ [m], if si = ti, ui ̸= vi, otherwise, ui = vi. In Figure 15,
we define the functionality of nECRG, denoted as FnECRG.

We give a construction of nECRG based on ssPEQT and
ROT as described in Figure 16.

Theorem 4. The protocol ΠnECRG shown in Figure 16 UC-
realizes the functionality FnECRG (as in Figure 15) in the
(FssPEQT, FROT)-hybrid model, against static, semi-honest ad-
versaries.

Proof. We will show that for any adversary A , we can con-
struct a simulator Sim that can simulate the view of the cor-
rupted S and the corrupted R , such that any PPT environment
cannot distinguish the execution in the ideal world from that
in the real world.

Corrupted S . Sim simulates a real execution in which the
sender S is corrupted. Since A is semi-honest, Sim can ob-
tain the input s of S directly, and externally send s to FnECRG
and then receives ⟨Request,S⟩. Once receiving s = [si]i∈[m],
the input of ΠssPEQT, from A , Sim randomly chooses a bit
vector a = [ai]i∈[m] to simulate the execution of ΠssPEQT. Sim

Parameters: Two parties: S and R .
Functionality FnECRG:

1. Initialize an ideal state stateU = /0 for party U where
U ∈ {S ,R }; if U is corrupted, the simulator Sim is
allowed to access stateU .

2. Upon receiving input s = [si]i∈[m] from S and update
state stateS = ⟨s⟩, and send ⟨Request,S⟩ to Sim.

3. Upon receiving input t = [ti]i∈[m] from R and update
state stateR = ⟨t⟩, and send ⟨Request,R ⟩ to Sim.

4. Upon receiving ⟨Response,OK⟩ from Sim, generate
two random vectors u = [ui]i∈[m] and v = [vi]i∈[m],
where for i ∈ [m], if si = ti, ui ̸= vi, otherwise ui = vi.

5. Add ⟨u⟩ to the state stateS and ⟨v⟩ to the state stateR .

6. Output u = [ui]i∈[m] to S . Output v = [vi]i∈[m] to R .

Figure 15: Non-equality conditional randomness generation
functionality

Input: S inputs a vector s = [si]i∈[m]. R inputs a vector
t = [ti]i∈[m].
Output: S outputs a vector u = [ui]i∈[m]. R outputs a vector
v = [vi]i∈[m].

1. S and R invoke the ssPEQT functionality FssPEQT.

(a) S and R input vectors s = [si]i∈[m] and t =
[ti]i∈[m].

(b) S and R output random bit vectors a = [ai]i∈[m]

and b = [bi]i∈[m], where for all i ∈ [m], if si = ti,
ai⊕bi = 0, otherwise ai⊕bi = 1.

2. S and R invoke the ROT functionality FROT.

(a) For each i ∈ [m], R inputs bi.

(b) S obtains ri,0 and ri,1, i ∈ [m]. R obtains ri,bi ,
i ∈ [m].

3. For all i ∈ [m], S sets ui = ri,(ai⊕1). R sets vi = ri,bi .

4. S outputs a vector u = [ui]i∈[m]. R outputs a vector
v = [vi]i∈[m].

Figure 16: nECRG from ssPEQT and ROT

sends ⟨Response,OK⟩ to FnECRG, and obtains u = [ui]i∈[m].
For all i ∈ [m], Sim sets ri,(ai⊕1) = ui and randomly chooses
ri,ai . Finally, Sim simulates the execution of ΠROT with



(ri,(ai⊕1),ri,ai) for each i ∈ [m] as output.

We argue that the outputs of Sim are indistinguishable from
the real view of S by the following hybrids:

Hyb0: S ’s view in the real protocol.

Hyb1: Same as Hyb0 except that the output of ΠssPEQT is
replaced by the random bit vector a = [ai]i∈[m] chosen by Sim,
and Sim runs the ΠssPEQT simulator to produce the simulated
view for S . The security of protocol ΠssPEQT guarantees the
view in simulation is computationally indistinguishable from
the view in the real protocol.

Hyb2: Same as Hyb1 except that the output of ΠROT is re-
placed by ui, i∈ [m] output by FnECRG and random ri,ai , i∈ [m]
chosen by Sim, and Sim runs the ΠROT simulator to produce
the simulated view for S . The security of protocol ΠROT guar-
antees the view in simulation is computationally indistinguish-
able from the view in the real protocol.

Corrupted R . Sim simulates a real execution in which the
receiver R is corrupted. Since A is semi-honest, Sim can
obtain input t of R directly, and externally send t to FnECRG
and then receives ⟨Request,R ⟩. Once receiving t = [ti]i∈[m],
the input of ΠssPEQT, from A , Sim randomly chooses a bit
vector b = [bi]i∈[m] to simulate the execution of ΠssPEQT. Sim
sends ⟨Response,OK⟩ to FnECRG, and obtains v = [vi]i∈[m].
For all i ∈ [m], Sim sets ri,bi = vi. Finally, Sim simulates the
execution of ΠROT with (bi,vi) for each i ∈ [m] as output.

We argue that the outputs of Sim are indistinguishable from
the real view of R by the following hybrids:

Hyb0: R ’s view in the real protocol.

Hyb1: Same as Hyb0 except that the output of ΠssPEQT is
replaced by the random bit vector b = [bi]i∈[m] chosen by Sim,
and Sim runs the ΠssPEQT simulator to produce the simulated
view for R . The security of protocol ΠssPEQT guarantees the
view in simulation is computationally indistinguishable from
the view in the real protocol.

Hyb2: Same as Hyb1 except that the output of ΠROT is re-
placed by vi, i ∈ [m] output by FnECRG, and Sim runs the
ΠROT simulator to produce the simulated view for R . The
security of protocol ΠROT guarantees the view in simulation
is computationally indistinguishable from the view in the real
protocol.

Comparison with bECRG. To construct enhanced PSU, Jia
et al. [29] introduce a new functionality called batched equal-
ity conditional randomness generation (bECRG), in which
both parties can also achieve the exchange of the equality
and non-equality conditions. However, bECRG limits the out-
put of S and only generates random values of R , resulting
in its construction only based on the complicated equality

oblivious transfer extension protocol. Our nECRG generates
corresponding random values for S and R , according to the
equality and non-equality conditions between the inputs of
both parties and allows the construction based on the simple
random oblivious transfer protocol following [34].

6 Permuted Non-Membership Conditional
Randomness Generation

In this section, we introduce a new cryptographic protocol
named permuted non-membership conditional randomness
generation (pnMCRG), in which S inputs a set X = {xi}i∈[m]

and a permutation π over [m], and R inputs m sets {Yi}i∈[m],
respectively. As a result, S and R obtain two random vectors
u = [ui]i∈[m] and v = [vi]i∈[m], such that for i ∈ [m], if xπ−1(i) /∈
Yπ−1(i), ui = vi, otherwise, ui ̸= vi. In Figure 17, we define the
functionality of pnMCRG, denoted as FpnMCRG.

Parameters: Two parties: S and R .
Functionality FpnMCRG:

1. Initialize an ideal state stateU = /0 for party U where
U ∈ {S ,R }; if U is corrupted, the simulator Sim is
allowed to access stateU .

2. Upon receiving input X = {xi}i∈[m] and a permutation
π over [m] from S , then update state stateS = ⟨X ,π⟩,
and send ⟨Request,S⟩ to Sim.

3. Upon receiving input {Yi}i∈[m] from R , and update
state stateR = ⟨{Yi}i∈[m]⟩, and send ⟨Request,R ⟩ to
Sim.

4. Upon receiving ⟨Response,OK⟩ from Sim, generate
two random vectors u = [ui]i∈[m] and v = [vi]i∈[m],
where for i∈ [m], if xπ−1(i) /∈Yπ−1(i), ui = vi, otherwise
ui ̸= vi.

5. Add ⟨u⟩ to the state stateS and ⟨v⟩ to the state stateR .

6. Output u = [ui]i∈[m] to S . Output v = [vi]i∈[m] to R .

Figure 17: Permuted non-membership conditional random-
ness generation functionality

We give a construction of pnMCRG based on pMCRG and
nECRG as described in Figure 18.

Theorem 5. The protocol ΠpnMCRG shown in Figure 18 UC-
realizes the functionality FpnMCRG (as in Figure 17) in the
(FpMCRG, FnECRG)-hybrid model, against static, semi-honest
adversaries.

Proof. We will show that for any adversary A , we can con-
struct a simulator Sim that can simulate the view of the cor-



Input: S inputs a set X = {xi}i∈[m] and a permutation π

over [m]. R inputs m mutually exclusive sets {Yi}i∈[m]..
Output: S outputs a vector u = [ui]i∈[m]. R outputs a vector
v = [vi]i∈[m].

1. S and R invoke the pMCRG functionality FpMCRG.

(a) S inputs the set X = {xi}i∈[m] and a permutation
π over [m], and R inputs {Yi}i∈[m].

(b) S and R outputs two vectors s = [si]i∈[m] and t =
[ti]i∈[m], where for all i ∈ [m], if xπ−1(i) ∈ Yπ−1(i),
si = ti, otherwise si ̸= ti.

2. S and R invoke the nECRG functionality FnECRG.

(a) S inputs a vector s = [si]i∈[m]. R inputs a vector
t = [ti]i∈[m].

(b) S outputs a vector u = [ui]i∈[m]. R outputs a vec-
tor v = [vi]i∈[m], where for i ∈ [m], if si = ti, we
have ui ̸= vi, otherwise ui = vi.

Figure 18: pnMCRG from pMCRG and nECRG

rupted S and the corrupted R , such that any PPT environment
cannot distinguish the execution in the ideal world from that
in the real world.

Corrupted S . Sim simulates a real execution in which the
sender S is corrupted. Since A is semi-honest, Sim can ob-
tain the input X and a permutation π of S directly, and exter-
nally send them to FpnMCRG and then receives ⟨Request,S⟩.
Once receiving X and π, the input of ΠpMCRG, from A , Sim
randomly selects s = [si]i∈[m] to simulate the execution of
ΠpMCRG. Once receiving s = [si]i∈[m], the input of ΠnECRG,
from A , Sim sends ⟨Response,OK⟩ to FpnMCRG, and obtains
u = [ui]i∈[m]. Finally, Sim simulates the execution of ΠnECRG
with u = [ui]i∈[m] as output.

We argue that the outputs of Sim are indistinguishable from
the real view of S by the following hybrids:

Hyb0: S ’s view in the real protocol.

Hyb1: Same as Hyb0 except that the output of ΠpMCRG is
replaced by s = [si]i∈[m] chosen by Sim, and Sim runs the
ΠpMCRG simulator to produce the simulated view for S . The
security of protocol ΠpMCRG guarantees the view in simula-
tion is computationally indistinguishable from the view in the
real protocol.

Hyb2: Same as Hyb1 except that the output of ΠnECRG is
replaced by u = [ui]i∈[m] output by FpnMCRG, and Sim runs the
ΠnECRG simulator to produce the simulated view for S . The
security of protocol ΠnECRG guarantees the view in simulation

is computationally indistinguishable from the view in the real
protocol.

Corrupted R . Sim simulates a real execution in which the re-
ceiver R is corrupted. Since A is semi-honest, Sim can obtain
the input (m mutually exclusive sets {Yi}i∈[m]) of R directly,
and externally send the set {Yi}i∈[m] to FpnMCRG and then
receives ⟨Request,R ⟩. Sim randomly selects t = [ti]i∈[m] to
simulate the execution of ΠpMCRG. Once receiving t= [ti]i∈[m],
the input of ΠnECRG, from A , Sim sends ⟨Response,OK⟩ to
FpnMCRG, and obtains v = [vi]i∈[m]. Finally, Sim simulates the
execution of ΠnECRG with v = [vi]i∈[m] as output.

We argue that the outputs of Sim are indistinguishable from
the real view of R by the following hybrids:

Hyb0: R ’s view in the real protocol.

Hyb1: Same as Hyb0 except that the output of ΠpMCRG is
replaced by t = [ti]i∈[m] chosen by Sim, and Sim runs the
ΠpMCRG simulator to produce the simulated view for R . The
security of protocol ΠpMCRG guarantees the view in simula-
tion is computationally indistinguishable from the view in the
real protocol.

Hyb2: Same as Hyb1 except that the output of ΠnECRG is
replaced by v = [vi]i∈[m] output by FpnMCRG, and Sim runs the
ΠnECRG simulator to produce the simulated view for R . The
security of protocol ΠnECRG guarantees the view in simulation
is computationally indistinguishable from the view in the real
protocol.

7 A New Framework of Enhanced PSU

In this section, we present a new framework of enhanced
PSU based on pnMCRG, as described in Figure 19. In this
construction, each bin of the simple hash table is treated as a
separate set. Since each item y j of equal length is linked to
different hash function indices (y j||1,y j||2,y j||3), the mc sets
satisfy mutual exclusivity.

Theorem 6. The protocol ΠePSU shown in Figure 19 UC-
realizes the functionality FePSU (as in Figure 6) in the
FpnMCRG-hybrid model, against static, semi-honest adver-
saries.

Proof. We will show that for any adversary A , we can con-
struct a simulator Sim that can simulate the view of the cor-
rupted S and the corrupted R , such that any PPT environment
cannot distinguish the execution in the ideal world from that
in the real world.

8Here, S needs to remove the hash function index.



Input: The sender inputs a set X = {xi}i∈[m]. The receiver
inputs a set Y = {y j} j∈[n].
Output: The receiver outputs the union X ∪Y . The sender
outputs Finished.

1. S inserts set X into the cuckoo hash table and fills
empty bins with the dummy item d, where the cuckoo
hash table Xc = {Xc[i]}i∈[mc] consists of mc bins and
each bin Xc[i] has only one item, where for each xi
there is some γ ∈ {1,2,3} such that Xc[hγ(xi)] = xi||γ.

2. R uses the same hash functions to insert Y into the sim-
ple hash table, where all item y j are concatenated with
hash function indices (y j||1,y j||2, y j||3) and are in-
serted to the bins (Yh1(y j),Yh2(y j), Yh3(y j)), respectively,
the table consists of mc bins {Y1,Y2, · · · ,Ymc} and each
bin consists of Bi = |Yi| items.

3. S and R invoke the pnMCRG functionality FpnMCRG.

(a) S chooses a random permutation π over
[mc] and input Xc = {Xc[i]}i∈[mc] and R input
{Y1,Y2, · · · ,Ymc}.

(b) S obtains u = [ui]i∈[mc]. R obtains v = [vi]i∈[mc].

4. S computes ci = ui⊕(Xc[π
−1(i)]||h(Xc[π

−1(i)]))8 , i∈
[mc] and sends them to R , where h is a pre-agreed hash
function used to distinguish between real items and
random values.

5. R computes mi||m′i = vi⊕ ci, i ∈ [mc]. For i ∈ [mc], if
m′i = h(mi) and mi ̸= d, let Z = Y ∪{mi}. R outputs
the union Z. S outputs Finished.

Figure 19: A framework of enhanced PSU from pnMCRG

Corrupted S . Sim simulates a real execution in which the
sender S is corrupted. Since A is semi-honest, Sim can ob-
tain the input X of S directly, and externally send the set X
to FePSU and then receives ⟨Request,S⟩. Once receiving Xc
and π, the input of ΠpnMCRG, from A , Sim randomly selects
u = [ui]i∈[mc] to simulate the execution of ΠpnMCRG. After
receiving c1, · · · ,cmc , Sim sends ⟨Response,OK⟩ to FePSU.

We argue that the outputs of Sim are indistinguishable from
the real view of S by the following hybrids:

Hyb0: S ’s view in the real protocol.

Hyb1: Same as Hyb0 except that the output of ΠpnMCRG is
replaced by u = [ui]i∈[m] chosen by Sim, and Sim runs the
ΠpnMCRG simulator to produce the simulated view for S . The
security of protocol ΠpnMCRG guarantees the view in simula-

tion is computationally indistinguishable from the view in the
real protocol.

Corrupted R . Sim simulates a real execution in which the
receiver R is corrupted. Since A is semi-honest, Sim can
obtain the input Y of R directly, and externally send the
set Y to FePSU and then receives ⟨Request,R ⟩. Once receiv-
ing mc mutually exclusive sets {Y1,Y2, · · · ,Ymc}, the input of
ΠpnMCRG, from A , Sim randomly selects v = [vi]i∈[mc] to sim-
ulate the execution of ΠpnMCRG. Sim sends ⟨Response,OK⟩
to FePSU. After receiving Z = X ∪Y from FePSU, Sim cal-
culates X ′ = Z\Y and randomly selects a subset T from
{v1, · · · ,vmc}, where |T | = |X ′|. For each items in T , Sim
sets ci = T [i]⊕ (X ′[i]||h(X ′[i])). Finally, Sim chooses random
values for i ∈ {|T |+1, |T |+2, · · · ,mc} and sends all shuffled
ciphertexts to A .

We argue that the outputs of Sim are indistinguishable from
the real view of R by the following hybrids:

Hyb0: R ’s view in the real protocol.

Hyb1: Same as Hyb0 except that the output of ΠpnMCRG is
replaced by u = [ui]i∈[m] chosen by Sim, and Sim runs the
ΠpnMCRG simulator to produce the simulated view for R . The
security of protocol ΠpnMCRG guarantees the view in simula-
tion is computationally indistinguishable from the view in the
real protocol.

8 Implementation and Performance

Here, we evaluate our enhanced balanced/unbalanced
PSU (ePSU/eUPSU), and then compare with the state-
of-the-art protocols, such as enhanced PSU [29] and bal-
anced/unbalanced PSU suffering from during-execution leak-
age [45, 47, 48], in terms of communication and runtime in
different network environments.

8.1 Experimental Setup
We implement our protocols in C++ and the source code is
available at https://doi.org/10.5281/zenodo.14725816. The
experiments are conducted on a single Intel Core i7-13700
CPU @ 5.20GHz with 32 threads and 64GB of RAM, running
Ubuntu. We evaluate our protocols in two network settings:
LAN (10Gbps bandwidth, 0.2ms RTT) and WAN (100Mbps,
10Mbps, and 1Mbps bandwidth, 80ms RTT), emulated us-
ing the Linux tc command. We leverage the constructions
in [21, 31, 42, 43] to implement bOPRF, OKVS, ssPEQT and
FHE (the building block of balanced/unbalanced pnMCRG)
and use the code from the Vole-PSI library [6], the SEAL
library [2], and the APSI/APSU library [1, 5]. As for ROT
(the building block of nECRG) and DDH-based pECRG, we
follow the libOTe library [4] and the OpenSSL library [3].

https://doi.org/10.5281/zenodo.14725816


Size Protocols Comm.
(MB)

Total running time (s) with single thread
|X |= |Y | 10Gbps 100Mbps 10Mbps 1Mbps

210
PSU [48] 0.188 2.047 3.087 3.249 4.655
ePSU [29] 2.882 1.250 9.261 11.116 33.806
Our ePSU 1.31 0.172 4.046 5.093 15.127

212
PSU [48] 0.700 2.240 3.116 3.482 9.246
ePSU [29] 8.600 1.260 11.491 17.241 82.397
Our ePSU 2.028 0.369 4.824 6.142 21.683

214
PSU [48] 2.726 3.410 4.387 5.963 27.447
ePSU [29] 32.921 1.516 15.602 38.770 289.266
Our ePSU 5.202 1.276 6.248 9.729 49.795

216
PSU [48] 11.143 8.124 9.579 16.096 99.819
ePSU [29] 137.419 2.599 28.190 129.929 1176.530
Our ePSU 17.955 4.899 11.058 23.445 160.392

218
PSU [48] 44.712 26.758 30.182 56.318 393.639
ePSU [29] 577.731 7.235 80.436 514.592 4942.710
Our ePSU 69.03 19.094 31.567 80.679 604.347

220
PSU [48] 179.061 98.406 110.124 214.808 1569.242
ePSU [29] 2430.470 35.344 310.406 2143.990 20717.900
Our ePSU 277.402 78.144 108.729 316.009 2413.015

222
PSU [48] 716.875 413.917 446.72 850.761 6294.396
ePSU [29] — — — — —
Our ePSU 1121.588 319.182 427.657 1244.048 9759.93

Table 2: Comparisons of communication and runtime between
PSU [48], enhanced PSU [29] and our enhanced PSU in the
balanced setting. — indicates an execution error. 10Gbps
bandwidth, 0.2ms RTT; 100Mbps, 10Mbps and 1Mbps band-
width, 80ms RTT. The best results are marked in magenta and
the second best results are marked in blue.

Size Protocols Comm.
(MB)

Total running time (s) with single thread
(|X |, |Y |) 10Gbps 100Mbps 10Mbps 1Mbps

(210,212)

UPSU [45] 1.614 0.967 2.825 2.825 14.132
UPSU [47] 20.270 10.294 14.309 28.676 181.680
Our ePSU 1.578 0.297 4.044 5.395 17.199

Our eUPSU 2.237 1.430 6.527 7.689 25.406

(210,214)

UPSU [45] 2.681 1.22 3.48 3.58 18.136
UPSU [47] 20.271 26.196 29.903 45.061 189.584
Our ePSU 2.607 0.313 4.113 6.312 25.856

Our eUPSU 2.237 1.545 6.536 7.948 26.704

(210,216)

UPSU [45] 2.681 1.475 3.481 3.634 18.957
UPSU [47] 21.286 35.141 40.486 54.984 215.567
Our ePSU 6.724 0.398 4.569 9.849 60.592

Our eUPSU 2.237 1.996 7.129 8.237 27.282

(210,218)

UPSU [45] 2.367 3.723 5.833 6.137 19.384
UPSU [47] 21.321 103.552 107.441 123.590 283.007
Our ePSU 23.052 0.727 6.693 23.694 198.757

Our eUPSU 2.237 3.649 8.523 10.399 29.425

(210,220)

UPSU [45] 2.767 18.465 20.995 21.297 32.253
UPSU [47] 23.884 197.250 202.368 219.585 397.725
Our ePSU 88.468 2.515 16.140 79.531 750.332

Our eUPSU 2.322 15.957 20.939 23.583 42.734

Table 3: Comparisons of communication and runtime between
our two enhanced PSU (ePSU/eUPSU) and ubalanced PSU
with during-execution leakage [45, 47] in the unbalanced
setting. 10Gbps bandwidth, 0.2ms RTT; 100Mbps, 10Mbps
and 1Mbps bandwidth, 80ms RTT. The best results are marked
in magenta and the second best results are marked in blue.

Our code supports multithreading parallelism following the
Vole-PSI library and the OpenMP library [7]. Following most
PSU [29, 30, 45, 47, 48], we set the computational security

parameter κ = 128, the statistical security parameter λ = 40
and use γ = 3 hash functions to insert sets X and Y into the
cuckoo hash table and simple hash table, respectively. The
item length is 64 bits following [20, 34].

8.2 Comparisons in the Balanced Setting
Here, we compare our ePSU with the state-of-the-art en-
hanced PSU [29] in the balanced setting, and the results are
reported in Table 2 and Figure 20. Since their implementa-
tions [29] do not support multi-threading, we only provide a
single-threaded comparison in Table 2. We present the run-
time of our multi-threaded implementation in Table 4.

Communication comparison. As shown in Figure 20, our
ePSU achieves lower communication overhead than [29]
across all set sizes. As indicated in Table 2, our protocol
reduces communication costs by a factor of 2.2 to 8.8 for
both set sizes ranging from 210 to 220. Since the complex-
ity of PSU [29] is superlinear, while the complexity of our
ePSU is linear, the larger the set size, the more significant the
advantage of our ePSU becomes.

Runtime comparison. As shown in Figure 20, our protocol
is more efficient than PSU [29] in terms of runtime in low-
bandwidth environments for large sets, while for small sets, it
consistently outperforms PSU [29] across the board. As indi-
cated in Table 2, for both set sizes 210, the running time of our
protocol surpasses PSU [29] by 2.2 - 7.6×. For both set sizes
220, the running time of our protocol surpasses PSU [29]
by 2.6 - 8.6× under bandwidths ranging from 1Mbps to
100Mbps.

8.3 Comparisons in the Unbalanced Setting
Since the implementation of PSU [29] does not support run-
ning in unbalanced settings, we compare our enhanced un-
balanced PSU (eUPSU) with our enhanced balanced PSU
(ePSU) in the unbalanced setting, and the results are reported
in Figure 21 and Table 3.

Communication comparison. As shown in Figure 21, our
eUPSU achieves lower communication overhead than ePSU
in the unbalanced setting, and the larger the difference be-
tween two set sizes, the better our eUPSU performs. As indi-
cated in Table 3, our protocol reduces communication costs
by 1.2 - 38.1× under the large set size ranging from 214 to
220. Especially, for set sizes (|X |= 210, |Y |= 220), the com-
munication of our eUPSU requires 2.322 MB, which is about
38.1× lower than our ePSU requiring 88.468 MB.

Runtime comparison. As shown in Figure 21, our proto-
col is more efficient than ePSU in terms of runtime in low-
bandwidth environments, the lower the bandwidth, the better



Size
|X |= |Y |

Total running time (s)

10Gbps 100Mbps 10Mbps 1Mbps

T = 1 T = 2 T = 4 T = 8 T = 1 T = 2 T = 4 T = 8 T = 1 T = 2 T = 4 T = 8 T = 1 T = 2 T = 4 T = 8

210 0.172 0.128 0.119 0.102 4.046 4.043 4.041 3.875 5.093 5.052 5.044 5.012 15.127 15.085 15.077 15.013

212 0.369 0.258 0.228 0.208 4.824 4.708 4.659 4.582 6.142 5.978 5.955 5.923 21.683 21.555 21.495 21.283

214 1.276 0.783 0.605 0.565 6.248 5.533 5.469 5.363 9.729 9.122 8.695 8.570 49.795 49.362 49.056 48.997

216 4.899 3.024 2.172 2.011 11.058 9.417 8.371 7.935 23.445 21.458 20.624 20.173 160.392 158.653 157.592 157.102

218 19.094 11.951 8.513 7.720 31.567 23.281 19.847 18.905 80.679 72.708 69.260 66.905 604.347 597.356 592.981 590.666

220 78.144 48.862 36.416 33.170 108.729 79.396 67.317 62.653 316.009 286.499 269.169 263.700 2413.015 2387.234 2371.529 2363.548

222 319.182 204.297 157.931 149.532 427.657 311.539 265.428 240.792 1244.048 1136.868 1080.177 1060.55 9759.93 9671.29 9596.11 9560.027

Table 4: Runtime of our enhanced balanced PSU. Threads T ∈ {1,2,4,8}. 10Gbps bandwidth, 0.2ms RTT; 100Mbps, 10Mbps
and 1Mbps bandwidth, 80ms RTT.
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Figure 20: Comparisons of communication and runtime between our enhanced PSU and PSU [29] in the balanced setting. Both x
and y-axis are in log scale. The first figure shows the communication cost increases as the set size increases. The second figure
shows the runtime decreases as the bandwidth increases. The last two figures show the runtime increases as the set size increases.
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Figure 21: Comparisons of communication and runtime between our two enhanced PSU (ePSU/eUPSU) in the unbalanced
setting. Both x and y-axis are in log scale. The first figure shows the communication cost increases as the large set size increases.
The second figure shows the runtime decreases as the bandwidth increases. The last two figures show the runtime increases as
the large set size increases.

our eUPSU performs. As indicated in Table 3, for set sizes
(|X |= 210, |Y |= 220) with T = 1 thread in 1Mbps bandwidth,
our eUPSU requires 42.734 seconds, while our ePSU requires
750.332 seconds, about 17.6× improvement.

8.4 Comparison with PSU Suffering from
During-Execution Leakage

Here, we compare our ePSU/eUPSU with the efficient
PSU/UPSU [45, 47, 48] in the balanced/unbalanced setting,
which suffers from during-execution leakage.

In the balanced setting, experimental results show that our
eUPSU has a slightly higher communication cost compared

to PSU [48], but achieves shorter runtime under a 10Gbps
bandwidth. As shown in Figure 20 and Table 2, the communi-
cation overhead becomes comparable as the set size increases.
For set sizes ranging from 212 to 222, PSU [48] has a 1.7 -
2.8× advantage in communication, whereas our ePSU is 1.3 -
6.1× faster in runtime. Hence, our ePSU addresses the issue
of during-execution leakage in PSU [48] with only a minor
efficiency trade-off.

In the unbalanced setting, experimental results demonstrate
that while our eUPSU has a slightly higher computation cost,
it offers an advantage in terms of communication complex-
ity. As shown in Figure 21 and Table 3, our eUPSU and
UPSU [45] have only minor differences in communication



and computation. Our eUPSU performs slightly better in com-
munication, while UPSU [45] has a slight advantage in compu-
tation. For large set sizes ranging from 212 to 220, our eUPSU
reduces communication overhead by a factor of 1.1 - 1.4×
compared to UPSU [45], and by 9.1 - 10.3× compared to
UPSU [47]. Therefore, our eUPSU effectively addresses the
issue of during-execution leakage of UPSU [45,47] with only
a minor increase in computational overhead.

8.5 Microbenchmarks of Our Sub-Protocols
We present the hierarchy of all sub-protocols in ePSU/eUPSU,
along with their communication and computation complexity,
in Table 5. The protocol execution is divided into three steps.
The first step is hashing (corresponding to steps 1 and 2 in
Figure 19), which does not require communication and is com-
pleted locally by both parties. The second step is pnMCRG
(corresponding to step 3 in Figure 19). The third step is one-
time pad (corresponding to steps 4 and 5 in Figure 19). As
demonstrated in Figure 1, our pnMCRG can be further divided
into two steps, pMCRG and nECRG, which we represent as
steps 2.1 and 2.2. Similarly, our pMCRG can be further di-
vided into three steps, namely bOPRF+OKVS+pECRG in the
balanced setting and bOPRF+FHE+pECRG in the unbalanced
setting, denoted as steps 2.1.1, 2.1.2, and 2.1.3, respectively.

Step Sub-Protocols Communication Computation
ePSU eUPSU ePSU eUPSU ePSU eUPSU

1 cuckoo/simple hash - - O(n) O(n+m)
2 pnMCRG O(n) O(m logn) O(n) O(n+m logn)

2.1 pMCRG O(n) O(m logn) O(n) O(n+m logn)
2.1.1 bOPRF bOPRF O(n) O(m) O(n) O(m)
2.1.2 OKVS FHE O(n) O(m logn) O(n) O(n+m logn)
2.1.3 pECRG pECRG O(n) O(m) O(n) O(m)
2.2 nECRG O(n) O(m) O(n) O(m)
3 one-time pad O(n) O(m) O(n) O(m)

Total O(n) O(m logn) O(n) O(n+m logn)

Table 5: Communication and computation complexity of each
sub-protocol in our ePSU/eUPSU.

Size Sub-protocols Comm.(MB) Runtime (s)

(216,216)
pnMCRG pMCRG bOPRF+OKVS

16.655 11.571 6.370
4.790 4.461 0.082

pECRG 5.200 4.388
nECRG 5.084 1.135

Total ePSU 17.955 4.899

(220,220)
pnMCRG pMCRG bOPRF+OKVS

256.355 172.382 88.120
78.032 59.801 1.103

pECRG 84.267 58.715
nECRG 83.954 18.536

Total ePSU 277.402 78.144

(210,216)
pnMCRG pMCRG bOPRF+FHE

2.212 1.952 1.850
1.319 1.263 1.181

pECRG 0.102 0.082
nECRG 0.253 0.069

Total eUPSU 2.237 1.996

(210,220)
pnMCRG pMCRG bOPRF+FHE

2.296 2.016 1.910
15.656 15.568 15.472

pECRG 0.106 0.093
nECRG 0.28 0.095

Total eUPSU 2.322 15.957

Table 6: Communication and runtime of our sub-protocols.
10Gbps bandwidth, 0.2ms RTT; Thread T = 1.

To demonstrate the performance of our sub-protocols, we
perform microbenchmarks for our sub-protocols, as shown in

Table 6. In the balanced setting, the communication overhead
of the three components (bOPRF+OKVS, pECRG, nECRG)
is similar, while the running time is primarily dominated by
pECRG, which serves as the performance bottleneck. In the
unbalanced setting, FHE costs the majority of both communi-
cation and computation, making it the primary performance
bottleneck.
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A Optimization techniques

Following unbalanced PSI/PSU [13, 15, 17, 45], we can
take advantage of the same optimization techniques of
FHE [21], such as batching, windowing, partitioning, and
modulus switching, to significantly reduce the depth of the
homomorphic circuit. We review the optimization techniques
as follows.

Batching. Batching is a well-known and powerful technique
in fully homomorphic encryption (FHE) that enables Sin-
gle Instruction, Multiple Data (SIMD) operations on cipher-
texts [9, 14, 25, 26, 44]. This technique allows the receiver to
process γ items from the sender simultaneously, leading to a
γ-fold improvement in both computation and communication
efficiency. More precisely, the sender groups its items into
vectors of length γ, encrypts them, and sends m/γ ciphertexts
to the receiver. Upon receiving each ciphertext ci, the receiver
samples a vector ri = (ri1, · · · , riγ) ∈ (Zt\{0})n at random,
homomorphically computes ri +Πy∈Y (ci− y), and sends it
back to the sender.

Windowing. We utilize the windowing technique [13, 15,
17, 45] to reduce the depth of the circuit. In our eUPSU,
the receiver needs to evaluate the encrypted data. Given an
encryption c← FHE.Enc(x), the receiver samples a random r
in Zt\{0} and homomorphically computes r+Πyi∈Y (c− yi).
The receiver computes at worst the product xn, which requires
a circuit of depth ⌈log2 n⌉. To see this, we write r+Πyi∈Y (x−
yi)= r+a0+a1x+ · · ·+an−1xn−1+xn. If the sender provides
encryptions of additional powers of x, the receiver can use
these to compute the same operation with a lower circuit
depth. More precisely, for a window size of l bits, the sender
computes and sends ci j = FHE.Enc(xi·2l j

) to the receiver for
all 1 ≤ i ≤ 2l − 1, 0 ≤ j ≤ ⌊log2(n)/l⌋. For example, when
l = 1, the sender transmits encryptions of x,x2, · · · ,x2⌊log2 n⌋

.
This approach significantly reduces the circuit depth.

Partitioning. Another approach to reducing circuit depth
is to partition the receiver’s set into α subsets [13, 15, 17,
45]. In our eUPSU, the receiver computes encryptions of all
powers x, · · · ,xn for each sender’s item x. With partitioning,
the receiver only needs to compute encryptions of x, · · · ,xn/α,
which can be reused across the α partitions.

Modulus switching. We employ modulus switching to effec-
tively reduce the size of the response ciphertexts as [10,13,15].
Modulus switching is a well-known operation in FHE. It is a
public operation that transforms a ciphertext encrypted with
the parameter q into a ciphertext that encrypts the same plain-
text but using a smaller parameter q′, where q′ < q. Note that
the security of the protocol is trivially preserved as long as
the smaller modulus q′ is determined at setup.
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