
Recover from Excessive Faults in Partially-Synchronous BFT SMR

Tiantian Gong
Purdue University

Gustavo Franco Camilo
Purdue University

Kartik Nayak
Duke University

Andrew Lewis-Pye
LSE

Aniket Kate
Purdue University / Supra Research

Abstract
Byzantine fault-tolerant (BFT) state machine replication
(SMR) protocols form the basis of modern blockchains as
they maintain a consistent state across all blockchain nodes
while tolerating a bounded number of Byzantine faults. We an-
alyze BFT SMR in the excessive fault setting where the actual
number of Byzantine faults surpasses a protocol’s tolerance.

We start by devising the very first repair algorithm for lin-
early chained and quorum-based partially synchronous SMR
to recover from faulty states caused by excessive faults. Such
a procedure can be realized using any commission fault detec-
tion module— an algorithm that identifies the faulty replicas
without falsely locating any correct replica. We achieve this
with a slightly weaker liveness guarantee, as the original se-
curity notion is impossible to satisfy given excessive faults.

We implement recoverable HotStuff in Rust. The through-
put resumes to the normal level (without excessive faults) after
recovery routines terminate for 7 replicas and is slightly re-
duced by → 4.3% for 30 replicas. On average, it increases the
latency by 12.87% for 7 replicas and 8.85% for 30 replicas.

Aside from adopting existing detection modules, we also
establish the sufficient condition for a general BFT SMR pro-
tocol to allow for complete and sound fault detection when
up to (n↑ 2) Byzantine replicas (out of n total replicas) at-
tack safety. We start by providing the first closed-box fault
detection algorithm for any SMR protocol without any extra
rounds of communication. We then describe open-box in-
stantiations of our fault detection routines in Tendermint and
Hotstuff, further reducing the overhead, both asymptotically
and concretely.

1 Introduction

Blockchain solutions have become a trillion-dollar industry.
Fundamentally, every blockchain relies on the distributed
trust assumption and employs Byzantine-fault tolerant (BFT)
state machine replication (SMR) [1, 2] at its core. Informally,
a BFT SMR protocol solves the problem of replicating the

same state consistently among a distributed system of n nodes,
called replicas, while tolerating up to f of them being Byzan-
tine/malicious who behave arbitrarily. A secure BFT SMR
protocol achieves safety, where correct (non-Byzantine) repli-
cas output consistent transaction logs, and liveness, where
transactions input to sufficiently many correct replicas are
eventually output by correct replicas. SMR utilizes the consen-
sus or total order broadcast primitive [3] to order transactions
submitted by clients.

Most modern blockchains [4–7] build their BFT SMR so-
lution assuming the communication links between replicas
are not synchronous, i.e., there is no guarantee that a message
from an honest replica reaches its destination in a known
time bound. This work also focuses on non-synchronous BFT
SMR, which is impossible given more than one-third of faults.
In other words, set f = ↓ n

3↔↑1 and let the number of actual
Byzantine faults be fa. When fa > f , both safety and liveness
violations can arise! While SMR protocols, with their utility
in blockchain space, are built and deployed in large numbers
annually, most designs do not consider the natural case when
the number of failures grows beyond the prescribed threshold.

Intuitively, by locating and expelling faulty replicas prop-
erly, a system with excessive faults can re-gain security. Prior
works [8–10] have studied accountability for BFT protocols:
Accountability informally means that when correct replicas
commit to contradicting outputs, all correct replicas eventu-
ally identify a set of faulty parties with proofs of culpability.
Ranchal-Pedrosa and Gramoli [11] then utilized an account-
able BFT protocol Polygraph [9] for detecting faulty replicas
and recovering from equivocations, given up to 5n/9 “deceit-
ful” replicas that may send contradicting messages. However,
Polygraph imposes O(n4) bit complexity.

An interesting question is in such an excessive fault set-
ting, can we recover from equivocations with much smaller
communication overhead, against more faulty replicas, and
for more general SMR protocols? In this work, we aim for
safety and liveness under a stronger commit rule by determin-
istically recovering from safety violations in quorum-based
SMR protocols while considering up to ↗ 2n

3 ↘ faulty parties.

During recovery, we utilize a fault detection module for lo-
cating faulty replicas, and the main off-the-shelf approach for
setting fa → ↗ 2n

3 ↘ is proposed by Sheng et al. [8]. Because
this customized fault detection and the rest recovery routines
are only executed after equivocations, the recovery algorithm
then imposes little overhead in normal executions.

Because [8] may implicate correct replicas in setting
↗2n/3↘ < fa → n↑ 2,1 we also study accountability in this
even more hostile setting. Previously, Civit et al. [12] pro-
posed a generic algorithm achieving accountability for gen-
eral SMR in this setting. In [12], when a replica needs to send
a message m, it appends a set of received messages M that
have not been piggybacked to any outgoing message yet to m
and disseminates (m,M) with reliable broadcast (RBC [13]).
RBC ensures that the replica’s message is received by all
non-faulty replicas. As a result, the approach incurs at least
an O(n2) multiplicative communication complexity overhead
and triples the round complexity2. Civit et al. [10] later im-
prove on its efficiency, but it requires two extra confirmation
rounds to the base protocol.

Considering the complexity of the two general approaches
above, another interesting question is that for fa → n↑2, can
we embed accountability in general non-synchronous BFT
SMR protocols more efficiently? Hence, we also study the fea-
sibility and complexity of fault detection in general partially-
synchronous BFT SMR protocols for fa → n↑2.

The above recovery and accountability problems pose three
major challenges.

Challenge 1 – Efficient recovery from equivocations while
achieving safety and preserving past progress. SMR protocols
are not one-shot, and replicas continuously process client
requests and commit outputs. In the case of equivocations, a
naïve solution is rolling back to the last agreed location and
removing faulty replicas. But it has two issues that we wish
to avoid: (1) Replicas not necessarily have the same view on
which replicas are to blame; (2) Past progress is disregarded.

Challenge 2 – Generic analysis of the completeness and
soundness of the failure detectability (i.e., accountability)
of general SMR protocols when faced with up to (n ↑ 2)
faults. Completeness means the capability to identify all faulty
replicas causing safety violations among the correct parties.3

Soundness is satisfied if correct replicas are never identified
as culpable. The first difficulty is to formally describe and ana-
lyze SMR protocols for fault detection because accountability
is not captured in the original security definition of SMR. An-
other difficulty is ensuring both completeness and soundness
for ↓ n

3↔↑ 1 < fa → n↑ 2, given that the faulty replicas can
write arbitrary history4 if fa > n↑ f .

1The problem is trivial for fa ≃ n↑1 in typical applications.
2The round complexity is at least doubled in good cases where fa < f

(and messages are authenticated).
3This means to locate at least (f +1) malicious parties as at least (f +1)

replicas must misbehave to cause safety breaches.
4This is because in a secure SMR protocol, (n↑ f) replicas can make

Challenge 3 – Achieving the above with reasonable over-
head. Small communication, computation, and storage over-
head facilitates practical adoptions of protocols. However, nat-
urally, forming such proofs of culpability or recovering from
faults in a non-synchronous network requires extra message
dissemination, data saving, and computation over received
information. Therefore, achieving high efficiency is tricky.

To deal with the issues above, first, we repair equivocating
logs between correct replicas while preserving past progress
via a deterministic recovery algorithm. Specifically, since
the original security notion is no longer possible to achieve,
we define new security notions, “safety and liveness under
strong commit” for fa > f (Definition 6 and 7). Here, “strong
commit” for a block informally means that a sufficient number
of replicas (i.e., super-majority or more) extends it instead
of its competing blocks. For the new liveness notion, we
consider the excessive faults to be alive-but-corrupt (ABC)
that only intend to break safety. This liveness guarantee is
weaker but still reasonable, because safety is not weakened,
and in monetary applications, limiting liveness temporarily to
retain safety is desired by users.

Second, we tackle the failure detection problem in setting
fa → n↑ 2 by preserving evidence of malicious behaviors
among correct replicas. This is achieved by letting correct
replicas only accept a message after having seen sufficient
information on its history, i.e., messages causing this message
to be sent. We also devise garbage collection routines for
recycling storage space.

1.1 Contributions
Recovery. We provide the first deterministic recovery al-
gorithm for fixing equivocations among correct replicas in
linearly chained and quorum-based partially-synchronous
SMR while preserving past progress. We show how to extend
it to SMR based on directed acyclic graph (DAG) as opposed
to linear chaining in Section 3.2. By running the recovery
algorithm locally, correct replicas eventually adopt the same
transaction log and expel the same set of faults.
Fault detection. We uncover sufficient conditions for a
general BFT SMR protocol to allow for complete and sound
fault detection upon safety violations when fa → n↑2. This
means correctly locating all faulty parties causing an equivoca-
tion (at least (f +1)) when the equivocating replicas provide
all pertinent data and never blaming correct replicas when
they provide any subset of pertinent data.
Efficiency. Both our recovery and fault detection algorithms
can treat an SMR protocol as a closed (Section 3 and 4) or
an open box (Section 5). The recovery algorithm utilizes a
fault detection algorithm for locating faults, thus carrying over
its communication complexity, and has little additional com-
munication overhead under normal executions. We further
instantiate the recovery algorithm in Tendermint and HotStuff

progress and craft history.

(in an open-box way), resulting in small overhead, as also
shown in the following evaluation results.

For the fault detection algorithm, when treating an SMR
protocol as a closed box, the algorithm incurs an O(n) multi-
plicative bit complexity, and no round complexity overhead.
When making open-box use of an SMR protocol, we can uti-
lize existing communication rounds in the original protocol,
reducing its overhead: The routines have O(n3) additive bit
complexity (and concretely a lot better as shown in section 5)
and 0 round complexity overhead. To reduce storage over-
head, we let logs up to the last strongly committed block be
freed.
Evaluation. We provide an open-source implementation
of recoverable HotStuff [14] in Rust and evaluate its per-
formance. We find that compared with vanilla HotStuff, the
throughput is unaffected for 7 replicas and is reduced by 4.3%
on average for 30 replicas; the latency is increased by 8.85%
on average for 30 replicas and 12.87% for 7 replicas during
normal executions. During recovery, replicas do not commit
new transactions, but the throughput is resumed after the re-
covery algorithm terminates.

2 Computation model

Consider a system of n replicas, N = {1, . . . ,n}. They do
not have shared memory or a global clock, but communicate
by transferring messages via a point-to-point network. The
network is in partial synchrony: After an unknown finite
global stabilization time (GST), there is a known finite upper
bound on the delivery time of each outgoing message.

There are three types of events: message sending, receiv-
ing, and internal events. Sending a message to the receiver,
using function send(·), or receiving a message, using func-
tion receive(·), changes the state of the sender (or receiver
respectively) and the corresponding communication links;
internal events occur inside a machine and change its state.
We use send(p,r,m) to denote replica p sending message m
to replica r and use send(p,m) to denote replica p sending m
to all replicas.

Each replica is modeled as a state machine [15] which can
then be described with an initial state and a state transition
predicate. Denote the correct transition predicate of an SMR
protocol ! as P. Each replica i ⇐ N can then be represented
as (st0

i ,Pi), where st0
i is its initial state and predicate Pi = P

if i is correct. Pi maps i’s current state, received messages,
and observed internal events such as timer interrupts, to a new
state, newly generated messages, and internal events. Denote
the set of valid states of i as Sti, valid incoming messages
as Min

i , valid outgoing messages as Mot
i , and internal events

as Ii. We can more specifically describe Pi : Sti ⇒Min
i ⇒ Ii ⇑⇓

Sti ⇒Mot
i ⇒ Ii. A message in Min

i (or Mot
i) may be received

(or sent) multiple times. Whether it is treated as the same
message depends on the predicate.

𝚷𝚷

Network filter

Core

𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒊𝒊, 𝒎𝒎𝒎 𝒓𝒓𝒔𝒔𝒓𝒓𝒔𝒔𝒊𝒊𝒓𝒓𝒔𝒔 𝒎𝒎

𝒊𝒊

𝐃𝐃

𝐑𝐑 VerifyChain

BranchSelect

Update
local chain

𝜶𝜶𝑖𝑖,M𝑖𝑖𝑖𝑖𝝎𝝎𝑖𝑖,M𝑜𝑜𝑜𝑜

𝝎𝝎𝑖𝑖,I𝜶𝜶𝑖𝑖,I

Call
𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍

Figure 1: Organization of a replicas i running SMR protocol
!. The boxed components are algorithmic modules, solid
lines are message flows, and dashed lines are function calls.
Internal events (denoted as ∀i,I ,#i,I) occur in the core. In-
coming messages are filtered before being processed. The
components in light yellow shade are introduced by this work
in Section 3 and 4. Without these added procedures, filtered
incoming messages, denoted by ∀i,Min , are directly passed
into protocol !, i.e., the inputs to SMR is ∀i = ∀i,Min ⇔∀i,I .

Step and execution. A transition step of i is a tuple (st,
∀i, st

↖, #i) where ∀i ↙ Min
i ⇔ Ii are incoming messages or

internal events of i, and #i ↙Mot
i ⇔ Ii are outgoing messages

or internal events produced by the transition from the previous
state st to the new state st↖ via predicate Pi.5 Considering that
the initial state and the predicate can fully capture the state
changes given messages and internal events, we can simplify
the representation of steps and denote a step of i as (∀i,#i).

An execution of i is a sequence of steps performed by i, de-
noted as ei = ((∀1

i ,#1
i),(∀2

i ,#2
i), . . .). An execution e of the

system can then be described with all replicas’ individual se-
quences, i.e., e = {ei}i⇐N . Each sequence indicates the causal
order of each step. Moreover, steps on different sequences can
also bear implicit causal order: A step in one replica i’s execu-
tion (∀i,#i) produces outgoing messages that are contained
in the incoming message set of a step on another replica j’s
execution (∀ j,# j), then (∀i,#i) occurs before (∀ j,# j).
Network-layer message filter. We allow messages to be
intentionally ignored or legitimately rejected, as shown in
Figure 1. These messages do not reach SMR and do not effec-
tively cause receiving replicas’ state transitions. As such, they
are not included in incoming message sets in an execution.
State, block and branch. Let a replica i’s state after the v-th
state transition (v ≃ 1) be stv

i . State stv
i records the output or

committed transactions so far. We denote the output as a set of
transactions stv

i .txn= {tx0, tx1, . . .}. Each output is appended

5Here, ∀ can contain a single or many messages. # usually contains
outgoing messages for all other replicas.

to the previous one, and stv
i .txn does not decrease in length

during normal executions.
For efficiency, SMR protocols commit transactions in

batches. Specifically, transactions can be aggregated in trans-
action batches or blocks and then be committed. Blocks are
then chained where each block is linked to its parent block.
We address such a structure as a chain or a branch.

Additionally, if a block can have at most one child block
and one parent block, we call it linearly chained such as in
Tendermint [16]. If a block can have multiple parent or chil-
dren blocks, we call it organized as a directed acyclic graph
(DAG) such as in [17]. We focus on linearly chained protocols
in developing the recovery algorithm (as in prior work [11]) in
Section 3 and general SMR protocols in Section 4. We index
blocks in a branch with monotonically increasing numbers
and denote this location number as the height of the block.
Safety violations. Let S be a set of states of correct replicas
(at potentially distinct steps) that perform each state transition
according to the transition predicate. As in [12], we say S
is safely extendable if ∝st1,st2 ⇐ S, st1.txn and st2.txn are
consistent, meaning that one is the prefix of the other.

Definition 1 (Security of SMR). An SMR protocol ! is secure
if ! satisfies safety and liveness:
• (Safety) In any execution of !, any set of states of correct

replicas is safely extendable.
• (Liveness) In any execution of !, if a transaction tx is

received by a correct replica, eventually tx is committed in
the states of all correct replicas.

As described before, in a non-synchronous network, secu-
rity can only be achieved for fa → f . Otherwise, violations of
safety, which will be our focus, and liveness can occur.

Definition 2 (Safety violation). An execution of !, i.e., e =
{e1, . . . ,en}, violates safety if there exists a set of states of
correct replicas that is not safely extendable.

Assumptions. Overall, we assume partial synchrony, authen-
ticated point-to-point channels, and access to a secure digital
signature scheme. For liveness, the excessive Byzantine repli-
cas are assumed to be alive-but-corrupt (ABC) and only attack
safety. This is reasonable as liveness attacks can be alleviated
via off-the-band communications in the permissioned setting.
Moreover, keeping systems live can benefit the adversary
more in monetary applications [11, 18], such as collecting
service fees or double-spending.

3 Recovery from equivocations

We first introduce a new security under strong commit notion
in Section 3.1 and devise a recovery algorithm to achieve the
new security notion for linearly chained SMR in Section 3.2.

3.1 SMR security in excessive fault setting

As mentioned in Section 1, partially-synchronous SMR can
only be achieved if fa → f , where correct replicas commit
or output blocks in safely extendable states by executing en-
closed transactions. To handle the excessive fault setting, we
define strong commit in addition to normal commit in an
SMR protocol. Before specifying the strong commit rule,
we describe the type of SMR protocols analyzed for recov-
ery. Informally, we analyze quorum-based SMR where each
message that makes progress contains a quorum certificate.

Definition 3 (Verifiable quorum-based SMR). In verifiable
quorum-based SMR, for each replica i at each step v where ∀v

i
includes at least a non-trivial quorum of incoming messages,
each message generated by transiting from stv↑1

i into stv
i

contains a publicly verifiable quorum witness #.

Here, a set of messages is trivial if the same state transition
can be executed without it. The witness is also called a voting
quorum certificate. In general, a vote is a message acknowl-
edging a block, e.g., a direct voting message for the block. In
certain SMR protocols, a vote for the successors of a block
may also be viewed as an implicit vote for it.
Safety under strong commit. When fa > f , safety viola-
tions can occur, indicating multiple versions of history. We
therefore update how we “interpret” votes to ensure that at
least correct replicas do not “vote” for contradicting blocks.
Specifically, when voting for a block B, we require a replica
to indicate the greatest height – denoted as marker ∃– where
it has voted for a block contradicting with B. For example, if
replica i first votes for B1 at height 1, commits B1, and then
shifts to extend an alternative branch and votes for a distinct
block B↖

1 at height 1 (or a block extending B↖
1), i indicates its

marker as ∃ = 1 in this vote. Note that Byzantine parties can
always indicate their markers arbitrarily.

Definition 4 (Endorser (adapted from [19])). A vote endorses
a block B if it directly votes for B or votes for a block extending
B with the vote’s marker ∃ less than B’s height. The voter is
called an endorser of B.

With markers, we can enforce that a correct replica en-
dorses at most one block at each height. In the previous exam-
ple, replica i is an endorser of B1 but not B↖

1 if i sets the marker
correctly in the later vote. We next define the strong commit
rule given a fault detector (discussed later in Section 4) for
locating faults.

Definition 5 (Strong commit). Let f ′ → (n↑2) be the upper
bound on the actual number of faults. Let a replica i locally
remove 0 → b → n↑2 faulty replicas.

i strong-commits a block B and its predecessors if B has
↓ n↑b

n (2 f +1)↔ endorsers (not removed by i) for f ′↑b
n↑b → 1

3 and

↓ n+ f ′
2 ↔↑b+1 endorsers (not removed by i) otherwise.

In setting f ′↑b
n↑b → 1

3 , the replicas have removed a sufficient
number of faults such that the portion of faulty parties is
now under one-third. They can safely collect a quorum of
2 f+1

n of the remaining (n↑b) parties. Otherwise, they need
to ensure that no two blocks at the same height are endorsed.
There are (n↑ f ′) correct parties and (f ′ ↑b) faulty parties
who can vote arbitrarily. On any two contradicting chains,
there are (n+ f ′ ↑2b) (= n↑ f ′+2(f ′ ↑b)) possible votes.
No two branches can accumulate ↓ n+ f ′

2 ↔↑ b+ 1 endorsers
simultaneously.

Next, we say a set of states S is weakly safely extendable if
for any two states st1,st2 ⇐ S, the strongly committed portions
of the transactions are consistent.

Definition 6 (Safety under strong commit). An SMR protocol
! satisfies safety under strong commit if, in any execution
of !, any set of states of correct replicas is weakly safely
extendable.

Liveness under strong commit. For liveness, we consider
a specific type of Byzantine fault called an ABC fault where
the faulty replicas aim to attack safety but not liveness [18].
This definition is intent-based. Note that liveness may still be
compromised due to an attack on safety.

Definition 7 (Liveness under strong commit and ABC faults).
Assuming ABC faults, an SMR protocol ! satisfies liveness
under strong commit if in any execution of !, if a transaction
tx is received by a correct replica, eventually tx is strongly
committed by all correct replicas.

This weaker liveness notion is grounded because for mone-
tary SMR applications, safety outweighs liveness for users,
and it is reasonable to sacrifice liveness temporarily when
waiting for more endorsers to ensure safety.

3.2 The recovery algorithm R

R employs a fault detection algorithm D and a branch
selector %, which picks one branch to extend among can-
didate branches, to repair equivocating logs. (1) For fault
detection, R can utilize any existing complete and sound de-
tection algorithms (e.g., the ones summarized in Table 1), and
we devise one algorithm for setting fa → n↑ 2 in section 4
with preferable efficiency metrics, i.e., fewer rounds of com-
munications and comparable overall communication costs in
applications of interest. (2) For the branch selector %(·), we
require that it outputs a branch that is extended by at least one
correct replica and satisfies strict monotonicity: For distinct
branches b1,b2,b3, if %(b1,b2) = b1 and %(b2,b3) = b2, then
%(b1,b3) = b1. This means that %(·) induces a total order
among the candidate branches.

We now give an example of such a strictly monotone branch
selector %ω for a replica i: (1) Given an alternative candidate
branch, locate the oldest (i.e., with the smallest height) block
B on it that equivocates with i’s local chain. If this block does

not have a child block, return the local chain. (2) Otherwise,
locate the oldest block B↖ on i’s local chain that equivocate
with the other branch. Select the candidate branch with their
first diverging blocks B,B↖ being output earlier, e.g., in a lower
round. (3) If the relative order of events is not well-defined
or if the two branches are output in the same round, pick the
candidate whose first diverging block has a smaller digest. It
is easy to verify that %ω always outputs a branch extended by
a correct replica and is strictly monotone with overwhelming
probability if the collision probability of the digest function
is negligible. We include a brief proof in the full version [20].

3.2.1 Algorithm details and analysis

High-level overview. We first add a special entry in the block
data structure to declare located faults along with evidence,
which are output by D. Note that a block that declares faults
does not include client transactions. After this addition, we
summarize the two components of our algorithm. Essentially,
it lets equivocating correct replicas eventually select the same
branch to extend and eliminate the same set of faulty replicas.

• Branch selection. After detecting an equivocating chain C∞,
a correct replica on chain C′ retrieves it from others. For
efficiency, we instantiate chain retrieval with a procedure
that retrieves blocks in an exponentially increasing manner.
We describe it in detail in Section 6.1. Briefly, one doubles
the number of blocks to retrieve from another replica until
receiving a block that is already stored by itself.
Let c0 denote the part of the chain C∞ that contradicts C′

and c1 the equivocating portion on C′. If either c0 or c1
has a strongly committed block, pick the corresponding
branch.6 Otherwise, pick the branch that has announced
more faults. If they have announced the same number of
faults, the correct replica picks the branch according to %ω.
The replica continues extending the selected branch along
with the parties not yet announced as faulty on that branch.
When extending the selected branch, a correct replica i only
votes for a block B if it declares at least ↓n↖/3↔ new faults
where n↖ is the number of remaining non-faulty parties, or
if B and its parent blocks have declared all faulty replicas
causing the equivocations that i knows of.

• Player elimination. A correct replica locates faults by run-
ning D and distributes the evidence to all. After detecting
faults, correct parties announce identified faults that are
not yet declared in blocks on their branch by including the
located faults and evidence in new proposals. The quorum
witness for this special fault-announcing block (with no
client transactions) consist of signatures from all replicas
that appear on the quorum of the branch tip and are not
yet announced as faulty. In this way, at least one correct

6There will only be one such branch because no two branches can simul-
taneously strong commit equivocating blocks, and correct replicas on this
branch do not move to contradicting branches.

replica is on the quorum. Replicas expel the faulty replicas
recorded on their branch by disregarding their messages.

We demonstrate the pseudocode realizing the two above parts
in Algorithm 1 and give a more detailed description below.
Recovery algorithm. The recovery algorithm examines each
incoming message processed by the fault detection routines
to detect the existence of a fork, i.e., a contradicting chain of
committed blocks. If equivocations are discovered, it retrieves
the fork from the sender and performs branch selection and
player elimination described above. Otherwise, the message
is passed to the underlying SMR protocol.

A message can be sent in normal mode, where messages
are eventually processed by the underlying protocol, or accu-
sation mode, where the fault detection module handles it.

When sending out a normal message (line 9), the replica
concatenates its marker to the message to facilitate a strong
commit (line 10). It updates its marker when shifting to ex-
tend a different branch (lines 45). Upon receiving a normal
message (line 11), if the replica detects equivocation, it re-
trieves the alternative chain C∞ from the message sender and
disseminates its own chain (lines 13-14). The replica then
checks if the alternative chain C∞ is valid: It first examines
C∞ with the native verification routines of the underlying pro-
tocol (lines 33-34), e.g., well-formed and properly signed. It
then checks if any block has certificates signed by faults de-
clared on C∞ before reaching this block so that declared faults
are expelled (lines 36-41). If C∞ is valid, the replica selects
a branch to continue by checking strong commits, compar-
ing announced faults and finally selecting with the branch
selection subroutines. It flags its status as in recovery if C∞

is selected (lines 42-46). When in recovery, a replica does
not process messages that do not announce identified faults
that cause the equivocation of the previous local chain and C∞

(lines 24-29). Otherwise, the replica runs the SMR protocol
on the selected chain with replicas that are not yet declared
as faulty on this chain (Line 30).

We state and prove the following lemma (proven in ap-
pendix A) for the correctness of the recovery mechanism:

Lemma 1. For fa → ↓ 2n
3 ↔↑1, R achieves safety under strong

commit. Assuming ABC faults, R achieves liveness under
strong commit.

Notes on synchronization given excessive faults. During
normal executions, replicas retrieve missing blocks from each
other with the original synchronizer in the underlying SMR
protocol. When a replica receives any correctly-formatted but
inconsistent blocks from others, it invokes our added chain
retrieval routine (described in detail in Section 6.1).
Extend to DAG-based SMR. For clarity, we build Algo-
rithm 1 with a branch selector for linearly chained SMR. Nev-
ertheless, a “branch” can also refer to a DAG structure. The
branch selector %ω needs to be instantiated accordingly, such
as by comparing the digest of the first set of diverging blocks.

ALGORITHM 1: Recovery algorithm R

1 Global variables
2 : Malicious replica set; updated by fault detector D
3 C′: Local chain st.txn
4 ∃: Local marker; initialized to ∈
5 isRec: Indicate whether in recovery; initialized to False
6 J: Newly located faults by D; initialized to /0
7 Bin = ⇔k⇐Nbink: the set of accepted message sets
8 h: Highest voted height; initialized to 0
9 on send(i,m)

10 send(i,m||∃,normal)
11 on receive(m) in normal mode
12 ε Fault detection routines are omitted.
13 if m indicates a chain contradicting with C′ then
14 Distribute C′ to and retrieve the chain C∞ and

messages sets Bin∞ from the sender
15 M′,M∞ ∋ faults already declared in C′, C∞

16 if !VerifyChain(C∞,Bin∞) then
17 Return
18 Return the branch with strongly committed

blocks in the equivocating portion (if any)
19 if M′ < M∞ or M′ > M∞ then
20 C′ ∋ the branch with more declared faults
21 else
22 C′ ∋ BranchSelect(C∞)

23 ε If in recovery mode, make sure the block
declares detected faults (if not already)

24 if isRec then
25 if J △= /0▽ J ↙ M′ then
26 isRec ∋ False
27 J = /0
28 else
29 Return
30 Pass m into ! (as demonstrated in Figure 1)

among replicas (N ↑M′) and indicate undeclared
faults (↑M′) when creating a new block

31 procedure VerifyChain(C∞,Bin∞):
32 ε Chain verification routines native in !
33 if !NativeVerifyChain(C∞,Bin∞) then
34 Return False
35 ε Make sure declared faults are expelled
36 for B ⇐ (C∞ ↑C′) do
37 Mω ∋ faults declared in C∞ before reaching B
38 Binω ∋ subset of Bin∞ necessary to commit B

ϑ NativeVerifyChain(B,Bin∞\Binω) returns False,
NativeVerifyChain(B,Bin∞) returns True

39 if Binω has messages from parties in Mω then
40 ⇔= creator of B and return False

41 Return True
42 procedure BranchSelect(C):
43 if C = %ω(C) then
44 isRec ∋ True
45 ∃ ∋ h
46 Return %ω(C)

Other routines (including the omitted fault detection proce-
dures) in Algorithm 1 do not depend on the data structure for
describing a “branch”.

3.2.2 Efficiency

Recovery complexity overhead. During normal executions,
the added overhead is only the slightly increased message
size to transmit a replica’s marker. In recovery procedures,
replicas send their current branch to all after detecting equiv-
ocations, and decide which chain to extend and detect faults.
More concretely, we define the recovery complexity to in-
corporate the added communication, computation, and round
complexities. We will go into more detail with fault detection
in Section 4. We state the following lemma and present its
proof in Appendix A.

Lemma 2. Let each chain have → L blocks after GST. Af-
ter GST, the recovery complexity comprises O(logL) round
complexity, O(L) total communication complexity, O(1) com-
putation complexity and the overhead in fault detection.

Garbage collection. For the storage overhead, replicas store
received messages until garbage collection becomes safe: (1)
A replica can garbage-collect stored messages up to the latest
strongly committed blocks; (2) After renouncing a branch,
one can garbage-collect pertinent messages.

4 Fault detection

We next demonstrate the sufficient condition for a general
BFT SMR protocol to have the desired accountability and
devise a general fault detection algorithm. We focus on ana-
lyzing general deterministic SMR protocols.

4.1 Desired accountability
In our computation model, it is easy to observe that a set
of messages Mi sent by a replica i proves the culpability of
i if there exist at least two messages m,m↖ ⇐ M such that
there does not exist an execution ei where m and m↖ are both
produced in the outgoing message set.

Definition 8 (Proof of culpability). A set of messages M from
a replica i is a proof of culpability of i if there does not exist
an execution e = {e j} j⇐N of ! such that all the messages in
M are in the outgoing messages of i in ei.

For a general SMR protocol !, if we can always produce
proofs of culpability to assign blame to some misbehaving
replicas, the protocol is called accountable [9, 21]. More
specifically, we desire complete, sound, and efficient account-
ability: There exists a polynomial-time (efficiency) fault de-
tection algorithm for the protocol that can always blame at
least (f +1) faulty replicas (completeness), and never blames
correct replicas (soundness). More formally:

Definition 9 (Desired accountability). Let a general SMR pro-
tocol ! have safety violations in an execution e = (e1, . . . ,en)
where the states of two correct replicas i, j in executions ei
and e j are not safely extendable. Let a set of replicas be
faulty in execution e.

We say ! has the desired complete, sound and efficient
accountability if there exists a polynomial-time algorithm D
that outputs proofs of culpability for at least (f +1) replicas
in , given the incoming messages of i, j, i.e., ∀1

i ,∀2
i , . . . and

∀1
j ,∀2

j , . . ., and never outputs proofs of culpability for parties
not in given any subset of incoming messages of i, j.

We aim to extract sufficient conditions for an SMR pro-
tocol to have the desired accountability. This calls for first
describing the cause of safety violations, and then pinpoint-
ing conditions sufficient to separate faulty executions from
correct ones.

4.2 Commission failures

We first define commission failure which involves sending
incorrect messages. We then show that safety violations in
non-synchronous SMR indicate (f +1) replicas having such
commission failures.

Definition 10 (Causal history). The causal history of a mes-
sage m is the sequence of state transitions performed until
reaching the state producing m in its outgoing message set.

Definition 11 (Commission failure). A replica commits com-
mission failure if it sends a message whose causal history is
incorrect according to the correct state transition predicate.

Mohan et al. [22] define omission failures as actions re-
quired by the protocol not being taken, and commission fail-
ures as actions not specified by the protocol being taken. Sim-
ilarly, Clement [23] describes commission failures as Byzan-
tine failures that are not omission failures. We define the
notion more explicitly to capture the “unspecified actions”
due to the specific focus on fault detection in our context.
Now we can state the proposition previously alluded to. Its
proof resides in Appendix A.

Proposition 1. When there are safety violations in a non-
synchronous SMR protocol, at least (f + 1) replicas must
have commission failures.

4.3 Commission failure detection

The fault detection algorithm D needs to identify faulty repli-
cas after equivocations—replicas having contradicting out-
puts, from messages received by the equivocating parties.
From Proposition 1, D only needs to locate parties with com-
mission failures to achieve completeness. We show that to
allow the desired fault detectability, it is sufficient for the SMR

Table 1: General approaches for realizing accountability in a general SMR protocol.

Methods # Faults Communication
bit complexity

Round
complexity a

Client
aid b

[8] Protocol-dependent algorithms that analyze existing messages 2 f - 0 Yes
[12] Reliable-broadcast each outgoing message piggybacked with
newly received messages n↑2 ⇒ O(n2) ⇒ 3 No

[10] Add two extra confirmation rounds to any consensus protocol n↑2 + O(n2) + 2 No

This work: Indicate causal history in outgoing messages n↑2
Closed-box: ⇒ O(n)
Open-box: + O(n3) c 0 No

a Round complexity disregards the communication for distributing proofs of located faults.
b Whether the clients assist in fault detection by sending messages to replicas.
c This means that the complexity overhead added to protocols with all-to-all communications like Tendermint is essentially 0. For linear protocols like
HotStuff, the overhead is asymptotically ⇒ O(n) but the concrete efficiency is better than the closed-box algorithm. More details reside in Section 5.

protocol to ensure the delivery of telltale messages that indi-
cate their causal history. We state the following proposition
and prove it in Appendix A.

Proposition 2. In a non-synchronous deterministic SMR pro-
tocol ! where messages are signed with a secure digital
signature scheme, if each incoming message m is authenti-
cated and accepted (i.e., included into an incoming message
set to cause state transition) by a correct party only if it has
accepted the causal history of m, ! has complete and sound
accountability.

To enable any general SMR protocol with the desired ac-
countability, intuitively, we can require replicas to specify
causal history by citing previous incoming message sets and
only accept others’ messages after accepting their causal histo-
ries. However, always attaching all causal histories as in [24]
results in unbounded message size. To have bounded commu-
nication complexity, we let replicas send only recent history
properly: (1) Replicas number the incoming message sets
monotonically with pre-determined increments (1 by default)
and include the incoming message set with the highest num-
bering in each outgoing message; (2) Replicas wait for previ-
ous message sets to arrive before accepting a causal history. In
typical protocols, one can capture a set of messages with an ag-
gregated message, e.g., voting certificates in Tendermint [16]
and HotStuff [25]. This can further reduce the communication
complexity. We next present and describe the pseudocode for
a general fault detection algorithm in Algorithm 2.
Fault detection algorithm. Same as Algorithm 1, a message
can be sent in normal or accusation mode. In lines 6-8, the
primitive send(i,m) lets i send the message m to all in normal
mode and increases its received message set numbering u.
Upon receiving a normal message (line 9), before passing
the message to the SMR protocol, the algorithm parses the
message into three parts, the message content, the received
message set, and the numbering. Lines 12-18 examine the
message set numbering: Line 12 checks if the numbering is
not monotonically increasing; Line 15 checks if the number-
ing is re-used. If equivocation is detected (line 20), the replica

sends locally received messages to all (which are processed
in lines 33-38). Otherwise, the replica waits until previous
message sets have been received from the message sender
(line 23) and checks if the message content is correct with
respect to received message sets and the correct state transi-
tion predicate (line 24). If it is correct, the algorithm stores
the message and passes it to the underlying SMR protocol
(lines 25-26). Otherwise, it deems the sender as faulty and
sends out an accusation message (lines 29-30).

Upon receiving an accusation message in (line 31), if it
only contains a message set, the replica cross-examines the
received message set with its local message set to locate faulty
replicas. If the two message sets are consistent, it sends out
its own message set (if not already) to facilitate other correct
replicas’ fault detection (line 41). Otherwise, it locates faults
and sends out an accusation message (lines 37-38). If the
accusation message contains evidence, the replica first locates
the accused parties (line 43) and then checks if the accused
party has performed incorrect state transitions (line 45) or
sent out message sets with inconsistent numbering (line 49),
i.e., not monotonically increasing or duplicated.
Complexity overhead. When we make closed-box use of
the SMR protocol while adding commission failure detec-
tion, each replica relays its received messages to all to help
indicate causal histories of other messages. As a result, each
message is additionally sent n more times, which incurs an
O(n) multiplicative bit complexity (summarized in Table 1).

5 Two instantiations

We instantiate the theory for recovery and general fault de-
tection in the previous two sections in Tendermint [16] and
HotStuff [25]. They are both quorum-based, with Tendermint
featuring all-to-all communication and HotStuff having linear
communication in the steady state.

We can treat the two protocols as a closed box and di-
rectly apply Algorithm 2 for fault detection. For better ef-
ficiency, observe that replicas already incorporate the most

ALGORITHM 2: Fault detector D for !i

1 Global variables
2 u: local message set numbering; initialized to 1
3 ∀u

i : incoming messages received after message set u↑1
4 Bin = ⇔k⇐Nbink: the set of accepted message sets
5 : malicious replica set
6 on send(i,m)
7 send(i,m||∀u

i ||u,normal)
8 u ∋ u+1
9 on receive(m,normal)

10 m,∀v
j,v ∋ m

11 ε Use a smaller numbering v
12 if v < |bin j| then
13 Return
14 ε Re-used message set numbering v
15 if ̸m′ ⇐ bin j s.t. ∀v

j △= m′.∀v
j′ then

16 Add j to
17 send(i,(m,m′),accuse)
18 Return
19 ε Equivocation detected
20 if m indicates a distinct history than stv

i .txn then
21 send(i,(∈,Bin),accuse)
22 Return
23 Wait for ∀v↑1

j ⇐ bin j:ε ∀0
j is added as a dummy set

24 if m is correct w.r.t. !i and Bin then
25 Add m to bin j
26 !i(m)

27 else
28 ε Incorrect transitions performed by j
29 Add j to
30 send(i,(m,Bin),accuse)
31 on receive(m↖,accuse)
32 a,b ∋ m↖

33 if a =∈ then
34 Cross-check Bin and b to locate replicas J with

contradicting message sets (m1,m2)
35 if J △= /0 then
36 ε Inconsistent with the sender
37 Add J to
38 send(i,(m1,m2),accuse)
39 else
40 ε Consistent with sender; notify others
41 send(i,Bin,accuse) if not sent already
42 else
43 J ∋ faults located in m↖

44 if b is a bin then
45 if a is incorrect according to !i and b then
46 Add J to
47 send(i,m↖,accuse)
48 else
49 if a △= b and a,b have the same sender and

numbering then
50 Add J to
51 send(i,m↖,accuse) if not already

recent causal histories of messages by attaching quorum cer-
tificates (definition 3). We can therefore make use of existing
communication rounds and slightly update the protocol to add
monotone numbering to the quorum certificates.
Efficiency improvement. This open-box modification re-
duces the concrete bit complexity overhead to effectively 0
for Tendermint and an O(n) multiplicative factor for HotStuff.
Note that the concrete efficiency for open-box recoverable
HotStuff is still better than the closed-box algorithm because
instead of relaying a set of received messages, one relays
quorum certificates, i.e., a set of signatures.

5.1 Tendermint

Considering the simplicity of transforming Tendermint to its
recoverable version, we only summarize the main ideas and
provide details in the full version. We start by recalling how
Tendermint works. Tendermint is a leader-based SMR proto-
col with two voting phases, pre-vote and pre-commit, where
the communication is all-to-all. It proceeds in heights and
each height has multiple rounds until a block is committed for
the height. Upon receiving (n↑ f) pre-vote (or pre-commit)
votes, one forms a pre-vote (or pre-commit) quorum certificate
(QC). A replica locks on the block with the highest pre-vote
QC it knows of and commits upon receiving a pre-commit
QC. We present the Tendermint protocol pseudocode in Al-
gorithm 3 (in Appendix B), with fault detection and recovery
routines highlighted in magenta.
Message formats. In round r of height v (r ≃ 1,v ≃ 1), the
proposal message is in the form pv = �Propose,r,Bv,&pv∀,
where Propose is the message type, Bv is the proposal, &pv
is the pre-vote QC for block Bv, which is nil if Bv is newly
assembled. We use “�∀” to mean that the message is signed
by its sender. The pre-vote and pre-commit messages are
respectively �Prevote, pv∀ and �PreCommit, pv,&pv∀, where
pv can be the digest of the proposal, and &pv is the pre-vote
QC that contains (n↑ f) signatures from distinct parties.

5.1.1 Fault detection and recovery for Tendermint

Now we briefly describe how to detect faults, assemble cryp-
tographic evidence, and verify evidence for Tendermint. We
do this in an open-box way for better performance. The pseu-
docode is demonstrated in Algorithm 4 in Appendix B.
Changes to message contents. As mentioned, replicas al-
ready indicate recent incoming message sets in QCs, so we
only need to add monotone indices to each QC. For sim-
plicity, each replica locally numbers each of its formed QCs
from 1 with an increment of 1. To reflect the locking rule, we
ask each replica to indicate its lock, i.e., its highest pre-vote
QC, in its pre-vote message. A QC with numbering x ≃ 1
is only accepted after the sender’s previous QCs (i.e., those
from the same sender and with numbering < x) have been ac-
cepted. More concretely, the proposal and two updated voting

messages are in the following forms: �Propose,r,Bv,&pv||x∀,
�Prevote, pv,&pv

′||x′∀ and �PreCommit, pv,&pv
↖||x↖∀. Here,

x, x′,x↖ are the indices of &pv,&pv
′ and &pv

↖.

For fault detection purposes, we add a new message type
accuse (as in Section 4), which allows replicas to announce
the culpable parties and corresponding evidence.

What do we gain from the explicit lock indices. The dif-
ficulty of fault detection in setting (fa > n↑ f) is to ensure
soundness alongside effectiveness when Byzantine replicas
can provide an arbitrary subset of messages when they in-
tentionally equivocate. This is resolved in Section 4 via the
requirement of attaching causal histories in the form of num-
bered message sets, and adding the constraint that a correct
replica accepts an attached message set only after previous
message sets have been received. As a result, a replica cannot
send consecutive conflicting message sets to the correct par-
ties without being “recorded”. There, the indices explicitly
tell the “sending order” of messages.

For setting (fa → ↓ 2n
3 ↔), [8] makes use of the view number

in QCs in HotStuff to locate the first view where a conflicting
QC is formed. By incorporating the constraint of waiting for
all previous messages for all previous views to arrive before
accepting messages in the current view, the method can be
extended to tolerate up to (n↑ 2) faults. This rationale is
also depicted in [24], where the message size is unbounded
to allow processing each message in a standalone fashion,
and [12], which utilizes RBC to ensure the delivery of mes-
sages in previous rounds. By adding indices to locks and only
requiring replicas to wait for previous locks to be accepted,
we achieve better efficiency.

Detect faults and assemble verifiable evidence. Each in-
coming message is verified first by the routines in Tendermint
and then by our added fault detection routines specific to its
type. We focus on the high-level idea of our added routines,
and the complete procedure is specified in the full version.

For each message, we first check if it is compatible with
the current lock therein: a replica can only propose or vote for
what they are currently locked on, and the lock’s formation
round should be lower than the round number of the message
except for the pre-commit vote, where the two round numbers
equal. If not, one accuses the sender with the message.

Otherwise, we continue to examine each attached lock,
denoted as ∋(= &pv||x): check whether each lock is unique, is
consistent with the previous lock, has a consistent certificate,
and is only used in rounds no higher than the next lock’s
formation round.

If the lock is accepted, we finally check if the accepted locks
contradict received messages. Specifically, for a pre-vote QC
or a pre-commit QC (for the previous output) included in a
Propose message, we check its compatibility with the locally
observed messages and messages received by others.

5.1.2 Security analysis

We next show the security of recoverable Tendermint and
present the proof in Appendix B.

Proposition 3. Recoverable Tendermint protocol is secure
for fa → f , achieves safety and liveness under strong commit
for f < fa < ↓ 2n

3 ↔, and has the desired accountability for
fa → n↑2.

5.2 HotStuff
We first briefly recall the routines in HotStuff. The proto-
col proceeds in views, with a leader being deterministically
elected in each view. After the leader distributes a proposal to
all, replicas participate in a three-phase voting process, i.e.,
prepare, pre-commit, and commit, to decide a block.
Steady state. Suppose we are in view v.
(Prepare) After collecting n↑ f NewView messages in view

(v ↑ 1), the leader of view v selects the highest pre-
pare QC among these NewView messages, denoted
with hQC, and multicasts a Prepare proposal message
pv = �Prepare,v,Bv,hQC∀. Here Bv is the proposal ex-
tending the block prepared in hQC. Upon receiving a
valid proposal, a replica accepts it and sends a Prepare
vote to the leader if the proposal extends its locked block
or if the included hQC is higher than its lock.

(PreCommit) After receiving valid prepare votes from
(n↑ f) distinct parties, the leader forms a prepare QC,
&pp, updates its hQC and multicasts a PreCommit
message �PreCommit, pv,&pp∀. Upon receiving a valid
PreCommit message, a replica updates its hQC and casts
a PreCommit vote to the leader.

(Commit) After collecting valid PreCommit votes from
(n↑ f) distinct parties, the leader assembles a pre-
commit QC, &pc, and multicasts a Commit message
�Commit, pv,&pc∀. Upon receiving a valid Commit mes-
sage, a replica becomes locked on the proposal therein
and casts a Commit vote to the leader.

(Decide) After collecting valid Commit votes from (n↑ f)
distinct parties, the leader forms a commit QC, &ct, and
multicasts a decision message �Decide, pv,&ct∀. Upon
receiving a valid decision message, a replica commits
Bv, i.e., executes transactions and updates local states.

View-change. Replicas keep a local increasing timer. In all
phases, if a replica does not receive a message before the time-
out period for the message, it sends to the leader of the next
view a new-view message of the form �NewView, pv,&pp∀ for
entering the next view. Here, &pp is the replica’s hQC.

5.2.1 Fault detection and recovery for HotStuff

We next describe how to locate faults and how to assemble
and verify evidence for HotStuff. The recoverable HotStuff
protocol is demonstrated in Algorithm 5 and 6 in Appendix B.

Slight changes to message contents. HotStuff has three
voting phases, so both hQCs (prepare voting certificates in
the first phase) and locks (pre-commit voting certificates in
the second phase) are instrumental in reaching an agreement.
In other words, both certificates comprise replicas’ causal
histories. Since all votes are collected from and sent to other
replicas through the leader, we first add a digest entry in the
NewView message for each replica i to indicate its hQCs
and locks. This means that NewView is now in the form
�NewView, pv,qci.digest∀, where qci includes all hQCs and
locks formed after the new leader’s last reign.

A single entry ∋ in qci is in the form (&||x),7 where
& is a hQC &pp or a lock &pc and x is its index. Recall
that the rationale behind the indexing is described in Sec-
tion 5.1.1. The replica signs and transfers qci along with the
NewView message. Similarly, we add a digest entry for certifi-
cates received in NewView messages to the Prepare message,
�Prepare,Bv,hQC,{qci}i⇐N .digest∀. The leader transfers the
certificates alongside the Prepare message.

The rest messages only need to indicate newly formed
certificates and their indices. Then a common replica i’s vot-
ing messages are in the forms �PreCommit, pv,(&pp||id)i∀
and �Commit, pv, (&pc||id)i∀. For the leader, its messages
are now in the form �Commit, pv,&pc, {(&pp||id)i}i⇐N∀ and
�Decide, pv,&ct,{(&pc||id)i}i⇐N∀.
Assemble verifiable evidence. For a correct leader, the set
of messages meriting fault detection is the NewView and
voting messages. For common replicas, they become aware of
equivocations in messages from correct leaders, after which
they exchange information for fault detection.

We next describe the failure detection in more detail. A
common step for both the leader and common replicas is
to check if a message (Prepare, PreCommit, Commit, or
Decide) is compatible with the sender’s lock: a replica pro-
poses or votes for a proposal extending its lock or if the at-
tached hQC is higher than its lock.

Leader – For a NewView message, after ensuring that the
attached certificate(s) match the digest in the NewView mes-
sage, we first preliminarily check if the sender’s current lock
is formed in a view greater than the attached hQC or the same
view as hQC but on a distinct proposal. If yes, we accuse the
sender with the NewView message.

Otherwise, we continue to check if each certificate ∋(=
&||x) can be accepted through routines (4ω). Subroutines in
(4ω) check whether each entry has a unique index (a′), is con-
sistent with the previous lock and hQC (b′), has a consistent
certificate (c′), and is only used in views no higher than the
(x+ 1)-th certificate’s formation view (d′). We denote the
formation view of ∋ as v∋ and the local accepted certificate
set of replica i as Li. Note that Li has both hQCs and locks.
(4ω) If ∋ has been accepted before, and no higher hQC or lock

is currently known for view v∋ for the sender, accept ∋.

7Bracket () only means to represent the concatenated string as a whole.

Otherwise, wait until L is complete until view v∋ and
verify ∋ with subroutines (a′)-(d′):
(a′) If a different hQC or lock with the same index x

has been received from the owner of ∋, accuse it
with the corresponding message(s).

(b′) Accuse the owner of ∋ with corresponding mes-
sage(s) in the following scenarios: ∋ is a lock with
index x > 1 and is not formed in a view higher than
the previous lock; ∋ is a hQC with index x > 1 and
is not formed in a view higher than the previous
hQC; ∋ is a lock and is formed in a view higher
than the previous hQC; ∋ is a lock and is formed
in the same view as the previous hQC but on a
distinct block.

(c′) If any party on the certificate & holds a lock on a
different proposal in view v∋ that is not lower than
the hQC of view v∋, accuse this voter with the two
corresponding messages.

(d′) If a NewView message with a lock of index < x
has been received from the owner of ∋ in a view
> v∋, accuse it with corresponding message(s).

In (4ω), replica i’s certificate set L j is complete until view v∋
if i has accepted certificate history qc j from each replica j on
& in view v∋.

If the certificates are accepted, we continue to check if they
contradict received messages with routine (5ω).
(5ω) If received a distinct proposal from the leader in view v∋,

accuse the leader of view v∋ with the two corresponding
messages.
If received a prepare, pre-commit, or commit QC for
a distinct proposal in view v∋, accuse the leader and
replicas appearing on both certificates.
If received a pre-commit or commit QC for a proposal
contradicting with ∋ in a different view than v∋, multicast
Li and wait for others’ accepted certificate sets. Upon
receiving a distinct valid L j from replica j, check each
new entry in L j with subroutines (a′)-(d′).

Finally, for each Prepare, PreCommit, or Commit vote, the
leader checks if the sender can safely vote for the proposal
with the common step routine.

Common replicas – For the Prepare message from the
leader, after verifying that the attached certificate sets match
the digest in the Prepare message and are correctly signed, a
common replica can run each entry through (5ω). The replica
then continues to check if the leader can propose the block.
For a PreCommit, Commit, or Decide message, the replica
checks if parties appearing on the QC can vote for the pro-
posed block. Both utilize the common step routine.
Security analysis. We state the following proposition for
the security of recoverable HotStuff. Its proof is similar to
Tendermint, and we provide a proof sketch in Appendix A.

Proposition 4. Recoverable HotStuff protocol is secure for
fa → f , achieves safety under strong commit for f < fa < ↓ 2n

3 ↔,
and have the desired accountability for fa → n↑2.

6 Evaluation

In this section, we implement and evaluate the performance
of the recovery algorithm in HotStuff as described in the
previous section. We adapt the Rust implementation [26] of
HotStuff and make the recoverable HotStuff open-source [14].
In the experiments, the performance measures are consensus
latency and throughput, i.e., the number of transactions com-
mitted per second. The transactions are created artificially:
They are of the same constant size and are sent from clients
to replicas at a specified rate. In the evaluation, we vary the
number of Byzantine faults and transaction rates.

Note that evaluating the algorithms on Tendermint or an-
other protocol will not be fundamentally different because
the recovery procedure hardly affects normal executions (Al-
gorithm 1), and the recovery time, throughput and latency
depend more on GST and adversary capacity than on consen-
sus protocol details.

6.1 Setup

The open-source Hotstuff codebase [26] structure. Each
replica has a consensus core, a mempool drive, a local persis-
tent storage, a synchronizer, and various network interfaces.
It processes consensus messages, manages the local timer,
stores blocks into persistent storage in the core, and retrieves
missing blocks from other replicas with the synchronizer.
Transactions submitted by clients enter into the mempool,
which are later sampled to form blocks.
Cause equivocations with shadow instances. We specifi-
cally consider setting n= 3 f +1 and the maximum number of
tolerated faults fa = 2 f . Similar to [27], we cause equivoca-
tions by running multiple correct but contradicting instances
for each Byzantine replica. We experiment with two instances
as in [27] and include experiments with the maximum (f +1)
instances for each Byzantine replica in the full version. Run-
ning one Byzantine replica with two instances leads to a total
of (5 f +1) (= 2 f ·2+ f +1) instances. The shadow instances
and (f + 1) correct parties are conceptually divided into 2
cliques. By sending contradicting messages via different in-
stances to specific correct replicas, a sufficient number of
Byzantine parties can cause correct parties to equivocate.

We configure the network such that while Byzantine parties
always proceed at network speed, the communication between
correct replicas is obstructed by default. These barriers are
gradually lifted according to a configurable synchrony sched-
ule for managing communications between correct replicas.
Chain retrieval. When the correct parties resume communi-
cation according to the synchrony schedule, they can become
aware of contradicting logs and begin an exponentially grow-
ing block retrieval routine. We adapt the consensus core and
synchronizer in [26] to fulfill this task. As a setup, we create
a new synchronizing request for retrieving a specific number
of ancestor blocks until a specified block from other repli-

cas. The retrieved blocks are initially stored in memory until
the chain shifting step (described after retrieval) finishes. In
more detail, the retrieval routine proceeds as follows:

(1) The core maintains a global variable to record the number
of blocks to retrieve from a specific sender, denoted as bω.

(2) Request bω blocks from the sender until a common parent
is found in the current local chain.
(a) Upon receiving a new proposal or vote pointing to a

contradicting history, a correct replica stores the hash
of the tip of the corresponding chain to ensure that we
only start the retrieval procedure once. This hash is
updated at each new arrival from the alternative chain
while the recovery protocol is executed.

(b) The replica locates the common parent through bi-
nary search. Upon receiving the requested bω blocks,
the replica checks whether its local chain contains
the oldest block among the received ones. If yes, the
replica runs a binary search algorithm to find a com-
mon block of the local chain and the alternative chain.
Otherwise, the replica doubles bω.

With the above routines, to retrieve L blocks, one needs
↓log(L/bω+1)↔ rounds of communication.
Chain shifting. After successfully retrieving an alternative
chain until a common parent block, the replica resets bω to
its default value for other future chain retrievals. The replica
then compares the hash of the direct children blocks of the
common parent in its local chain and the received alternative
chain, which we denote as hϖ and ha. If hϖ > ha, then the
replica keeps its local chain and discards the alternative chain
(but still stores the hash of the tip of the alternative chain to
avoid repeated chain retrieval and comparison). Otherwise,
we implement the following chain-shifting routines:

(1) The correct replica stores the hash of the newest block in
its local chain to avoid running the recovery protocol for
its original local chain.

(2) The correct replica deletes its local chain after the common
parent from storage. It then adds each block from the
received alternative chain to its persistent storage.

(3) The correct replica retrieves the faulty replicas from the
detection module and updates its network filter to block
messages from faulty parties.

Geo-distributed experiments. The experiments are run on
m5d.xlarge instances across 5 regions on Amazon Web Ser-
vices (AWS), i.e., Virginia, Stockholm, California, Sydney,
and Tokyo. Each m5d.xlarge instance has 4 vCPUs, 16 GB
of memory, and 200 GB of storage. In the experiments, we
measure throughput and latency as in [26] and evaluate on
two-chained HotStuff. The transaction size is set to 512 bytes.

6.2 Throughput, latency and recovery time

Fault-free setting. The results are summarized in Figure 2
where each point takes 3 runs, and each run takes 200-300

seconds. As shown in Figure 2, for n = 7 replicas, the recover-
able HotStuff matches the throughput of vanilla HotStuff but
increases the end-to-end latency by 12.87%. For n = 30, re-
coverable HotStuff reduces the throughput of the benchmark
by 4.30% and increases the latency by 8.85%.

Figure 2: Throughput and end-to-end latency of HotStuff (HS)
and recoverable HotStuff (Recover-HS) under increasing load,
given zero faults and 7 and 30 replicas.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Before Recovery After Recovery

En
d-

to
-e

nd
 L

at
en

cy
 (m

s)

Replica 0

Replica 1

Figure 3: Average end-to-end latency before and after two
recovery phases for 19 replicas, with 12 being Byzantine
and replicas 0-6 being honest. Replicas 0 and 1 only resume
communication after two recoveries. Their average latency
decreases after recovery.

Excessive fault setting. We measure and analyze latency,
throughput, and recovery time in this setting.

Latency. Figure 3 depicts the average end-to-end latency
before and after the execution of the recovery protocol. There
are conceptually 19 replicas, among which the 12 Byzantine
replicas are realized with 24 instances to cause contradicting
logs among the rest 7 correct replicas, denoted as replicas 0-6.
End-to-end latency is higher before correct replicas’ messages
to each other are delivered, reaching 7.07 seconds for replica 0
and 8.05 seconds for replica 1. This is because the correct
replicas time out when other correct replicas – with whom
their communication is obstructed – are elected as leaders.

Figure 4: Throughput before, during, and after the recovery
phase for 19 replicas, with 12 being Byzantine. The red dotted
line indicates the timestamp at which the recovery protocol
takes place for each replica. Correct replicas experience two
recoveries due to two rounds of player elimination. After the
first recovery, replica 0 shifts to the equivocating chain (where
replica 1 was working on), causing a spike of committed trans-
actions. Replica 1 does not shift. After the second recovery,
replica 0 stays on its working chain while replica 1 shifts.

The average latency returns to its normal level of 0.77 seconds
for replica 0 and 0.76 seconds for replica 1 after the second
recovery, after which Byzantine replicas can no longer cause
equivocations.

Throughput. Figure 4 demonstrates the number of com-
mitted transactions before and after executing the recovery
routines. Overall, the number of transactions committed by
the correct replicas resumes to a normal level after they fin-
ish executing the recovery procedures, which takes at most
2 recovery phases for a correct replica. In the first recovery,
correct replicas 0 and 1 become aware of their inconsisten-
cies and exchange information. Replica 0 moves to extend
replica 1’s chain, resulting in a surge of committed transac-
tions as replica 0 commits transactions included on the new
chain. Their communication is obstructed again to allow the
Byzantine replicas to cause the second equivocation. During
the second recovery, replica 1 moves to replica 0’s chain, and
commits published transactions after exchanging information.

The number of committed transactions “evens out” after the

second recovery due to the resumed communication between
all honest replicas, i.e., correct replicas no longer time out
when other correct replicas are elected leaders.

2 3 4 5 6
dlogLe

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
ve
ra
ge

R
ec
ov
er
y
T
im

e
(s
ec
on
ds
)

Figure 5: Average recovery time for different number of
blocks to retrieve (L). This is averaged over honest replicas.

Recovery time. As stated in Lemma 2, the recovery time
depends on the length of the equivocating chains (which relies
on GST). We measure the recovery time in our experiments
by varying GST length while fixing bω – the initial number
of blocks to retrieve – to be 2. As shown in Figure 5, the
recovery time increases roughly linearly with the logarithm
of the number of blocks to retrieve.
Notes on comparing with related protocols. We note that
for comparison with existing solutions, the difficulties are that
[28] is in network synchrony (thus incomparable), and [11]
is evaluated on a proprietary blockchain (assuming fa <

5n
9

instead of 2n
3), and we do not have access to the codebase.

7 Related work

Recover from excessive faults. ZLB [11] identifies faults
with Polygraph [9] and replaces them with replicas newly
sampled from a pool, where two-thirds of replicas are as-
sumed to be honest. The player reconfiguration involves the
remaining parties running a consensus protocol. Since consen-
sus is impossible given > f faulty replicas, ZLB tolerates up
to 5/9n commission failures. The major difference from our
recovery algorithm is that we do not require replicas to run
consensus algorithms to agree on removing identified faults.

The second major difference is that we achieve safety under
strong commit and do not rely on a pool. The idea of strong
commits originates from flexible BFT (FBFT [18]), which
separates the role of committing transaction batches (carried
out by learners) from that of proposing and voting for them
(performed by common replicas). Learners can hold individ-
ual assumptions on the network and fault model. By collecting
different sizes of voting quorums, a single BFT SMR protocol
allows for diverse committing rules of learners based on their
varying but compatible assumptions. Strengthened BFT [19]

(SBFT) discusses strong votes that vote for a block and not for
any contradicting blocks and defines strong voting certificates
consisting of only strong votes, and strong commits. In SBFT,
a block is strongly committed if two consecutive successor
blocks have sufficient strong votes.

Concurrently, Sridhar et al. [28] target the recovery prob-
lem in synchronous quorum-based proof-of-stake blockchains.
One special setting is that clients relay received messages to
other clients and replicas. The key idea is also closely related
to FBFT and SBFT: replicas commit outputs while clients
strong commit outputs. In recovery, after locating faults with
an off-the-shelf fault detection gadget, the rest replicas con-
tinue with the longest committed ledger. With network syn-
chrony, clients do not wait until a sufficient number of votes
have been acquired but only for a sufficient number of rounds.
Accountability. We discuss accountability in setting fa →
f in the full version and focus on excessive fault setting
here. For fa > f , safety can no longer be ensured in non-
synchronous networks. Multiple previous works have explic-
itly focused on accountability, which means assigning blame
after safety violations. Sheng et al. [8] study the accountability
problem in major BFT SMR protocols and provide algorithms
for clients to collect data to detect a subset of faulty replicas
after security violations for fa < ↓ 2n

3 ↔. Polygraph [9] is an
accountable Byzantine agreement protocol based on demo-
cratic BFT [29]. It utilizes RBC for disseminating general
values and has a bit complexity of O((n5) (can be optimized
to O((n4)). Del Pozzo and Rieutord [24] discuss fault de-
tection in Tenderbake by piggybacking (unbounded number
of) previously received messages. Civit et al. [12] present a
compiler that transforms a distributed decision protocol into
its accountable version. Messages are disseminated through
RBC. The compiler tracks each replica’s received and un-
received messages and keeps reference executions of each
replica. This adds high communication and round complexi-
ties. Civit et al. [10] later improved its efficiency by adding
two confirmation rounds.

IA-CCF [30] is a permissioned blockchain ensuring indi-
vidual accountability for commission failures. The key idea
is to have replicas agree not only on the order of transactions
but also on protocol messages and to employ auditors and en-
forcers to collect proofs of misbehavior (PoMs) from replicas.
We consider having replicas conduct fault detection among
themselves without requiring auditors and enforcers.
Self-stabilizing systems. Self-stabilizing systems [31, 32]
consider helping non-faulty replicas experiencing detectable
transient failures converge to correct states for fa → f < n/3.
As such, non-faulty replicas do not suffer from correctly-
formatted but contradicting states.
Durable SMR. Durable SMR [33] considers an orthogonal
problem of preserving progress in case of shutdown of repli-
cas. Correct replicas are in consistent states, and the goal is
more efficiently writing logs into permanent storage.
Economics of consensus. Budish, Lewis-Pye and Rough-

garden [34] recently defines costs of attacking consensus
systems. They show the impossibility to ensure that a system
is “expensive to attack in the absence of collapse” (i.e., tar-
geted penalties avoiding harming correct parties) in partial
synchrony.

8 Concluding remarks

With its inherent difficulty, how to deal with excessive faults
often remains an ignored topic in the otherwise flourishing
distributed system field. We explore recovering from equiv-
ocations caused by excessive faults in partially synchronous
BFT SMR protocols. This results in a recovery algorithm
for quorum-based SMR protocols and additionally a general
fault detection algorithm for general deterministic SMR. In
actual implementation, one can further improve efficiency by
utilizing existing communication.

Ethics considerations and compliance with the
open science policy

Ethics considerations. We consider the analysis of recover-
ing from faulty states caused by excessive faults in BFT SMR
to have a positive externality and no ethical concerns.
Open science policy compliance. We make our source code
available at [14].

References

[1] F. B. Schneider, “Implementing fault-tolerant services
using the state machine approach: A tutorial,” ACM
Computing Surveys, vol. 22, no. 4, pp. 299–319, 1990.

[2] M. Castro, B. Liskov, et al., “Practical byzantine fault
tolerance,” in OSDI, vol. 99, pp. 173–186, 1999.

[3] X. Défago, A. Schiper, and P. Urbán, “Total order broad-
cast and multicast algorithms: Taxonomy and survey,”
ACM Computing Surveys (CSUR), vol. 36, no. 4, pp. 372–
421, 2004.

[4] A. Foundation, “Aptos blockchain,” 2024. https://
github.com/aptos-labs/aptos-core.

[5] M. Labs, “sui blockchain.” https://github.com/
MystenLabs/sui, 2024.

[6] W. Foundation, “Polkadot blockchain,” 2024. https:
//polkadot.network.

[7] I. Foundation, “Cosmos network,” 2024. https://
cosmos.network.

[8] P. Sheng, G. Wang, K. Nayak, S. Kannan, and
P. Viswanath, “Bft protocol forensics,” in Proceedings
of the 2021 ACM SIGSAC CCS, pp. 1722–1743, 2021.

[9] P. Civit, S. Gilbert, and V. Gramoli, “Polygraph: Ac-
countable byzantine agreement,” in 2021 IEEE 41st
International Conference on Distributed Computing Sys-
tems (ICDCS), pp. 403–413, IEEE, 2021.

[10] P. Civit, S. Gilbert, V. Gramoli, R. Guerraoui, and J. Ko-
matovic, “As easy as abc: Optimal (a) ccountable (b)
yzantine (c) onsensus is easy!,” Journal of Parallel and
Distributed Computing, vol. 181, p. 104743, 2023.

[11] A. Ranchal-Pedrosa and V. Gramoli, “Zlb: A blockchain
to tolerate colluding majorities,” in 2024 54th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), IEEE, 2024.

[12] P. Civit, S. Gilbert, V. Gramoli, R. Guerraoui, J. Koma-
tovic, Z. Milosevic, and A. Seredinschi, “Crime and pun-
ishment in distributed byzantine decision tasks,” in 2022
IEEE 42nd International Conference on Distributed
Computing Systems (ICDCS), pp. 34–44, IEEE, 2022.

[13] G. Bracha, “Asynchronous byzantine agreement pro-
tocols,” Information and Computation, vol. 75, no. 2,
pp. 130–143, 1987.

[14] G. F. Camilo, “recover-hotstuff,” 2024. https://
zenodo.org/records/14736639.

[15] F. B. Schneider, “Implementing fault-tolerant services
using the state machine approach: A tutorial,” ACM
Computing Surveys (CSUR), vol. 22, no. 4, pp. 299–319,
1990.

[16] E. Buchman, Tendermint: Byzantine fault tolerance in
the age of blockchains. PhD thesis, University of Guelph,
2016.

[17] N. Shrestha, R. Shrothrium, A. Kate, and K. Nayak,
“Sailfish: Towards improving latency of dag-based bft,”
Cryptology ePrint Archive, 2024.

[18] D. Malkhi, K. Nayak, and L. Ren, “Flexible byzan-
tine fault tolerance,” in Proceedings of the 2019 ACM
SIGSAC CCS, pp. 1041–1053, 2019.

[19] Z. Xiang, D. Malkhi, K. Nayak, and L. Ren, “Strength-
ened fault tolerance in byzantine fault tolerant replica-
tion,” in 2021 IEEE 41st International Conference on
Distributed Computing Systems (ICDCS), pp. 205–215,
IEEE, 2021.

[20] T. Gong, G. F. Camilo, K. Nayak, A. Lewis-Pye, and
A. Kate, “Recover from excessive faults in partially-
synchronous BFT SMR.” Cryptology ePrint Archive,
Paper 2025/083, 2025.

[21] A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerre-
view: Practical accountability for distributed systems,”

ACM SIGOPS operating systems review, vol. 41, no. 6,
pp. 175–188, 2007.

[22] C. Mohan, R. Strong, and S. Finkelstein, “Method
for distributed transaction commit and recovery using
byzantine agreement within clusters of processors,” in
Proceedings of the second annual ACM PODC, pp. 89–
103, 1983.

[23] A. G. Clement, “Upright fault tolerance,”

[24] A. Del Pozzo and T. Rieutord, “Fork accountability in
tenderbake,” in 5th International Symposium on Foun-
dations and Applications of Blockchain 2022 (FAB
2022), Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2022.

[25] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and
I. Abraham, “Hotstuff: Bft consensus with linearity
and responsiveness,” in Proceedings of the 2019 ACM
PODC, pp. 347–356, 2019.

[26] A. Sonnino, “Hotstuff in rust,” 2022. https://github.
com/asonnino/hotstuff.

[27] S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li,
A. Ching, and D. Malkhi, “Twins: Bft systems made
robust,” arXiv preprint arXiv:2004.10617, 2020.

[28] S. Sridhar, D. Zindros, and D. Tse, “Better safe than
sorry: Recovering after adversarial majority.” Cryptol-
ogy ePrint Archive, Paper 2023/1556, 2023. https:
//eprint.iacr.org/2023/1556.

[29] T. Crain, V. Gramoli, M. Larrea, and M. Raynal, “Dbft:
Efficient leaderless byzantine consensus and its applica-
tion to blockchains,” in 2018 IEEE 17th International
Symposium on Network Computing and Applications
(NCA), pp. 1–8, IEEE, 2018.

[30] A. Shamis, P. Pietzuch, B. Canakci, M. Castro, C. Four-
net, E. Ashton, A. Chamayou, S. Clebsch, A. Delignat-
Lavaud, M. Kerner, et al., “{IA-CCF}: Individual ac-
countability for permissioned ledgers,” in 19th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 22), pp. 467–491, 2022.

[31] M. Ben-Or, D. Dolev, and E. N. Hoch, “Fast self-
stabilizing byzantine tolerant digital clock synchroniza-
tion,” in Proceedings of the twenty-seventh ACM sym-
posium on Principles of distributed computing, pp. 385–
394, 2008.

[32] P. Bastide, G. Giakkoupis, and H. Saribekyan, “Self-
stabilizing clock synchronization with 1-bit messages,”
in Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 2154–2173, SIAM,
2021.

[33] A. Bessani, M. Santos, J. Felix, N. Neves, and M. Cor-
reia, “On the {Efficiency} of durable state machine repli-
cation,” in 2013 USENIX Annual Technical Conference
(USENIX ATC 13), pp. 169–180, 2013.

[34] E. Budish, A. Lewis-Pye, and T. Roughgarden, “The
economic limits of permissionless consensus,” in Pro-
ceedings of the 25th ACM Conference on Economics
and Computation, pp. 704–731, 2024.

A Proofs

Proposition 1. When there are safety violations in a non-
synchronous SMR protocol, at least (f + 1) replicas must
have commission failures.

Proof. Consider a general execution e where safety violations
occur. It is straightforward to see that at least (f +1) replicas
have failures. We first show that they are either omission or
commission failures. In a general non-synchronous SMR pro-
tocol, to cause safety violations, replicas can omit messages,
delay sending messages, or send incorrect or undue messages,
because replicas exert influence on correct replicas’ states in
non-synchronous networks via the delivery of messages.

Suppose for contradiction, up to f replicas commit com-
mission failures and at least one replica has omission failures
or delays sending messages. Then we can construct a correct
execution e↖ from e: for each message m sent in execution e,
send the message; for each message m↖ delayed in execution
e, delay the message delivery as in e via network-layer delay;
for each message m omitted in execution e, delay the message
delivery until the execution terminates. Since the protocol is
originally secure in non-synchronous networks, safety viola-
tions do not occur in e↖, which causes contradiction. Thus, at
least (f +1) replicas must have commission failures in case
of safety violations.

Proposition 2. In a non-synchronous deterministic SMR pro-
tocol ! where messages are signed with a secure digital
signature scheme, if each incoming message m is authenti-
cated and accepted (i.e., included into an incoming message
set to cause state transition) by a correct party only if it has
accepted the causal history of m, ! has complete and sound
accountability.

Proof. Let any two correct replicas i and j have equivocating
states in safety violations. From Proposition 1, at least (f +1)
faulty replicas have commission failures. Since correct repli-
cas verify attached causal history of messages, incorrect mes-
sages generated in incorrect or premature state transitions of
faulty replicas are rejected by them. Then the faulty replicas
can only affect correct replicas’ state transitions by delivering
messages generated in executions that premise on the delivery
of incoming messages at each step. This means that in case of
equivocations between replicas i and j, they cannot have sent

the same set of messages with the same causal histories to i
and j. Let p be one of the (f +1) faulty replicas. If two cor-
rect replicas accept a different set of messages attached with
respective causal histories Hi and H j from p, we first establish
that Hi and H j cannot be from the same correct execution of
p. Suppose for contradiction, they are generated in the same
correct execution ep. Let the protocol execution be e. We
construct another execution e↖: for each message generated in
ep and sent by p, we deliver the message; for each message
generated in ep and omitted by p, we deliver the message after
the execution terminates; all other messages are delivered as
in e. Since ! is secure in non-synchronous networks and f
replicas have faults in e↖, i, j have safely extendable states in
e↖p. ep and e↖p cause the same state transitions in i, j. Then i, j
have safely extendable states in e↖p, which is contradictory.

Then i and j observe distinct or incorrect executions of p.
By comparing the attached causal histories of their received
messages from p, i and j can generate the proof of culpability
for p. ! is complete because if a faulty replica p causes
equivocating state transitions of i and j, the attached causal
histories from distinct executions implicate p. ! is sound
because correct parties attach causal histories from a single
correct execution.

Lemma 1. For fa → ↓ 2n
3 ↔↑1, R achieves safety under strong

commit. Assuming ABC faults, R achieves liveness under
strong commit.

Proof. Safety under strong commit is straightforward. Sup-
pose a branch has identified b faulty replicas. Strongly com-
mitting a block on this branch requires (↓ n+ fa

2 ↔↑b+1) en-
dorsers. This many endorsers cannot endorse another batch
B↖. This is because correct replicas endorse at most one block
at the same height, and correct replicas that strongly commit
a block do not move to other branches not containing this
block. More concretely, we have 2(↓ n+ fa

2 ↔↑b+1) = n+ fa
↑2b+2 > n↑2b+ fa, where the rightmost quantity is the
total number of votes with faulty replicas double-voting.

For liveness, we only need to show that (1) correct replicas
eventually pick the same branch to extend, and (2) the actual
number of faults is eventually reduced to below one third of
the remaining replicas.

We first reason about statement (1). Upon an equivocation
involving a branch C, at least (↗ n↖

3 ↘+ 1) faulty replicas are
located by the fault detection algorithm where n↖ → n is the
number of parties not declared as faulty on C. In setting fa →
↓ 2n

3 ↔↑ 1, each branch that will grow in length has at least
one correct replica. Let us address a branch that differs from
another chain by only one block as a “phantom branch”. There
is a finite number of correct replicas, thus a finite number of
branches that are not phantom branches at any point.

When the network becomes synchronous, correct replicas
receive messages from each other and become aware of equiv-
ocations. When there is a branch with strongly committed
blocks in their equivocating portion, then all correct replicas

eventually pick this branch. During the first safety violation,
no branches have announced any faults yet, and the selector
%ω decides which branch that a replica picks. We address a
phantom branch as “preferred” if it is preferable by %ω among
candidate chains and consider the following cases:
1. There is no preferred phantom branch: Among the finite

number of possible choices, correct replicas eventually
pick the same branch among the candidates, due to the
strict monotonicity of the branch selector.

2. There exists a preferred phantom branch: Let Cω be this
preferred phantom branch. Before Cω is extended, correct
replicas not initially extending it will not shift to Cω.
(i) If Cω is unknown to any correct replicas, it will not
be extended. Correct replicas will never move to Cω. Our
reasoning goes back to the beginning with Cω removed.
(ii) Suppose Cω is known to a set of correct replicas H
(|H|≃ 1). (a) First, consider the following subcase where
the adversary halts Cω from H, since we allow the adver-
sary to attack safety by attacking liveness. Assuming ABC
faults, other branches announce faults. H then move to
extend the preferred branch among the ones that have an-
nounced the same maximum number of faults. Recall that
during fault elimination, a correct replica only proposes or
votes for a block that announces either at least (↗ n

3↘+1)
new faults or all remaining faults that a correct replica
knows of. Therefore, if the adversary releases a “dated”
block (i.e., whose commit certificate was not previously
received by H) extending Cω later, the releasing needs to
be done before another equivocation and recovery. (This
is because otherwise, Cω is dismissed by correct replicas:
First, the “dated” block can only announce the number of
faults causing the prior equivocation, thus not including the
faults causing a new equivocation; Second, as described
next, after two recoveries, the remaining number of cor-
rect replicas can safely execute SMR and strong commit
blocks.) Then suppose the “dated” block is released be-
fore another equivocation, correct replicas will move to
extend Cω. Note that this releasing to move (some) correct
replicas back a chain that they have shifted out of can only
happen once after the first equivocation and recovery and
before the second – After the second recovery, the remain-
ing correct replicas can strong-commit blocks and will not
shift to another chain again.
(b) If the adversary does not halt Cω from H, then this
branch is selected by all correct replicas.

We next reason about statement (2). After transmitting nec-
essary messages and locating faults, a correct replica that be-
comes the leader includes located faulty parties and evidence
in its generated blocks. By this point, at least (↗ n↖

3 ↘+1) more
replicas are ignored and can no longer inflict inconsistencies
among correct parties. As shown in Table 2, if n = 3 f + 1,
after at most 2 eliminations, the actual number of faults is
brought to under one-third of the remaining replicas.

Table 2: Player elimination for n = 3 f +1.

#Elimination #Replicas #Faults Removed faults Ratio

1 3 f +1 2 f f +1 f↑1
2 f

2 2 f f ↑1 ↓ 2 f
3 ↔ f↑3

4 f

Lemma 2. Let each chain have → L blocks after GST. Af-
ter GST, the recovery complexity comprises O(logL) round
complexity, O(L) total communication complexity, O(1) com-
putation complexity and the overhead in fault detection.

Proof. The communication complexity is linear in the num-
ber of equivocating blocks since replicas need to at least re-
trieve contradicting chains. The computation complexity is
constant as the algorithm only needs to compare two diverg-
ing blocks each time the recovery algorithm is invoked. The
round complexity is logarithmic in L because of the exponen-
tially increasing block retrieval procedure. More specifically,
suppose one retrieves L blocks after k rounds of commu-
nication. Let the initial number of blocks to retrieve be b.
Then b+ 2b+ · · ·+ 2k↑1b = b(2k ↑ 1) = L. This indicates
that k = O(logL).

Proposition 4. Recoverable HotStuff protocol is secure for
fa → f , achieves safety under strong commit for f < fa < ↓ 2n

3 ↔,
and have the desired accountability for fa → n↑2.

Proof sketch. For fa → f , because the added routines do
not interfere with the protocol logic aside from waiting for
more history messages to arrive, the proof for safety in Hot-
Stuff [25] directly applies. When f < fa < ↓ 2n

3 ↔, the protocol
ensures safety under strong commit by Lemma 1. Next, we es-
tablish the effective completeness and soundness of the fault
detector shown in Algorithm 5 and 6. Suppose two correct
replicas i and j output two contradicting proposals Bv and Bv↖

respectively in view v,v↖, both of which extend ancestor B′.
Without loss of generality, we let v → v↖. For v = v↖, the repli-
cas in the intersection of both proposals’ commit QC are the
faulty replicas. This is captured by routines (5ω). For v < v↖,
the faulty parties are identified by routines (4ω)-(5ω). To give
more details, in view v, at least (n↑ f) parties are locked on
Bv given that i outputs Bv. For B↖

v to be committed in view v↖,
at least (n↑2 f) of them need to ignore their locks in forming
a hQC. Because → f replicas are not already locked on Bv.
They can use a lower lock in a higher view (i.e., ignoring the
lock formed in view v) or use a lower lock to let i commit
Bv and resume using a correct higher lock in a higher view.
These are detected by (5ω) when i and j share their certificate
sets Li and L j. The detection module is sound because correct
replicas send consistent messages in the same view and across
views.

B Pseudocodes for Recoverable HotStuff

ALGORITHM 3: Recoverable Tendermint
1 for v ∋ 1,2, . . . do // Current height
2 as a replica
3 Set current round r = 1, decide = False
4 Initialize Lv= /0, ∋ =∈
5 while !decide do
6 ε Propose and Prevote phase
7 as a leader
8 if r = 1 or after forming pre-commit QC &pcv↑1

for r↑1 then
9 if ∋ ==∈ then

10 Assemble a block
Bv = (Bv↑1.digest,&pcv↑1,tx)

11 else
12 Bv ∋ the locked block
13 Multicast pv = �Propose,r,Bv,∋∀
14 as a replica
15 Wait for a proposal pv from leader:
16 Verify pv
17 Run pv through procedure (pp1)
18 Multicast �Prevote, pv.digest,∋,∃∀
19 ε PreCommit phase
20 as a replica
21 Verify each Prevote message pv
22 Run each pv through procedure (pv1)
23 Wait for (n↑ f) Prevote votes for Bv:
24 Form pre-vote QC &pv
25 ∋ = &pv||(∋.id +1)
26 Multicast �PreCommit, pv.digest,∋,∃∀
27 ε Commit phase
28 as a replica
29 Verify each PreCommit message pc
30 Run each pc through procedure (pc1)
31 Wait for (n↑ f) PreCommit votes for Bv:
32 Form pre-commit QC &pc
33 Commit Bv and set decide = True
34 ε Strong commit
35 as a replica
36 Upon (↗ n+ fa

2 ↘↑ |M′|+1) endorsers for any
block B: ε M′ are faults declared on the
current chain

37 Strong commit B and its predecessors
38 ε Timeouts in wait
39 as a replica
40 Multicast �Prevote,nil,∋∀
41 Wait for (n↑ f) Prevote votes for nil:
42 Multicast �PreCommit,nil,∋∀
43 Wait for (n↑ f) PreCommit votes for nil:
44 Advance to round r+1
45 ε Recover
46 as a replica
47 Upon receiving a message indicating a distinct

history, run Algorithm 1

ALGORITHM 4: Recoverable Tendermint (contin-
ued)

1 Global notation
2 s: Message sender; directly return False if s ⇐
3 ϖr,v: Leader of round r at height v
4 [∋]: The message enclosing the lock ∋
5 ε (pp1)
6 if ̸m ⇐ Bin,m.round == r▽m.block! = pv.block then
7 ∋ ⇔s
8 Multicast �accuse,s,(pv,m)∀
9 else

10 Run pv through (pv1)
11 if pv.Bv.&pcv↑1 is not yet accepted then
12 Run pv through (2ω) and (3ω)
13 ε (pv1)
14 Run the attached lock ∋ through (1ω)
15 if ∋ is on a block distinct from pv.pv.digest then
16 ∋ ⇔s
17 Multicast �accuse,pv∀
18 if ̸m ⇐ Bin from the same round r and height v but for a

distinct block than pv then
19 if m.sender == s then
20 ∋ ⇔{s,ϖr,v}
21 Multicast �accuse,(s,ϖr,v),(pv,m)∀
22 else
23 ∋ ⇔ϖr,v
24 Multicast �accuse,ϖr,v,(pv,m)∀
25 (1ω) If ∋ ⇐ Lv and no higher lock is currently known for s in

round → r∋, then accept ∋. Otherwise, run (a)-(d) and store
∋ in Lv if no fault is detected.

26 (a) If ̸∋↖ △= ∋ with the same index from s, then ∋
⇔s and multicast �accuse,s,([∋], [∋↖])∀.

27 (b) Let the previous lock of s be ∋↖, formed in round r↖.
If r∋ > 1 and r∋ ↑ r↖ < 1, then ∋ ⇔s and
multicast �accuse,s,([∋], [∋↖])∀.

28 (c) If any replica i on ∋.& has a lock ∋↖ on a distinct
block in round r∋ according to Lv, then ∋ ⇔i
and multicast �accuse, i,([∋], [∋↖])∀.

29 (d) For ∋.id ≃ 2: If received a Propose or Prevote
message m1 from s with its lock formed in round < r∋
having index > ∋.id, then ∋ ⇔s and multicast
�accuse,s,([∋],m1)∀.

30 ε (pc1)
31 Run pc through pv1 and (2ω)
32 (2ω) If ̸m1 ⇐ Bin voting for a distinct proposal in the same

height v and round r as ∋, then let M1 = {ϖr,v,m1.sender},
∋ ⇔M1, multicast �accuse,M1,(pc,m1)∀.

33 If ̸m2 ⇐ Bin with QC &2 for a distinct proposal in the same
height v and round r as ∋, then denote the leader and the
parties in the intersection of &,&2 as M2, ∋ ⇔M2,
multicast �accuse,M2,(pc,m2)∀.

34 (3ω) If ̸m1 ⇐ Bin with a pre-commit QC &1 for a distinct
proposal in the same height v but a different round as pc,
then multicast Lv. Upon receiving another replica’s lock
record, run each new lock through (a)-(d).

ALGORITHM 5: HotStuff with recovery
1 Global variables
2 ∋c: Current lock; formed in view vc
3 hQC: Highest prepare QC; formed in view vh
4 x: Index of the current highest prepare or pre-commit QC
5 ϖv: Leader of view v
6 qcv: Local prepare and pre-commit QCs since leader ϖv’s last

reign
7 as a replica
8 Send empty NewView message for view 1 to all
9 for v ∋ 1,2, . . . do // Current view

10 ε Prepare phase
11 as a leader ϖv
12 Verify and run each NewView through (nv1)
13 Wait for (n↑ f) NewView from view v↑1
14 &pp, B ∋ the highest Prepare QC and the

corresponding proposal
15 Assemble a block Bv extending B
16 Multicast {qci} alongside

pv = �Prepare,Bv,&pp,{qci}.digest∀
17 as a replica
18 Wait for pv
19 Verify and run pv through (pp2)
20 Send �Prepare, pv,∃∀ to ϖv
21 ε PreCommit phase
22 as a leader ϖv
23 Verify and run each Prepare vote through (6)
24 Wait for (n↑ f) Prepare votes for pv
25 Form prepare QC &pp
26 hQC ∋ &pp||(x+1), x ∋ x+1
27 Multicast �PreCommit,hQC∀
28 as a replica
29 Wait for a PreCommit message pc
30 Verify and run pc through (6)
31 hQC ∋ pc.&pp||(x+1), x ∋ x+1
32 Send �PreCommit, pv,hQC,∃∀ to ϖv
33 ε Commit phase
34 as a leader ϖv
35 Verify and run each PreCommit vote through (6)
36 Wait for (n↑ f) PreCommit votes for pv
37 Form pre-commit QC &pc
38 ∋v ∋ &pc||(x+1), x ∋ x+1
39 Multicast �Commit,∋v,{&pp||id}∀
40 as a replica
41 Wait for a Commit message ct
42 Verify and run ct through (6)
43 ∋v ∋ ct.&pc||(x+1), x ∋ x+1
44 Send �Commit, pv,∋v,∃∀ to ϖv
45 ε Decide phase
46 as a leader ϖv
47 Verify and run each Commit vote through (6)
48 Wait for (n↑ f) Commit votes for pv
49 Form commit QC &ct
50 Multicast �Decide,&ct,{&pc||id}∀
51 as a replica
52 Wait for a Decide message dc
53 Verify and run dc through (6)
54 Output Bv and advance to view v+1

ALGORITHM 6: HotStuff with recovery (continued)
1 ε Strong commit
2 as a replica
3 Upon (↗ n+ fa

2 ↘↑ |M′|+1) endorsers for any block B:
4 Strong commit B and its predecessors
5 ε Timeouts in wait
6 as a replica
7 Send �NewView,hQC,qcv∀ to ϖv+1
8 Advance to view v+1
9 ε Recover

10 as a replica
11 Upon receiving a message indicating a distinct history, run Algorithm 1
12 Global variables for fault detection
13 [∋]: the message enclosing QC ∋
14 s: message sender; ignore the message if s ⇐
15 ε (nv1) Unless explicitly specified, ∋c denotes the current lock and hQC denotes the high QC of the message sender
16 Ignore the message if the received certificates do not match the certificate digest in the message.
17 If vc > vh, then ∋ ⇔s. Multicast �accuse, [hQC], [∋c]∀. If vc = vh and ∋c and hQC are on distinct blocks, then add ϖvc and the

parties in the intersection of ∋c and hQC to . Multicast �accuse, [hQC], [∋c]∀.
18 Run each QC ∋ through (4ω) and (5ω).
19 (4ω) If ∋ ⇐ L and no higher certificate is known for s, then accept ∋. Otherwise, run (a′)-(d′):
20 (a′) If a distinct certificate ∋↖ has ∋↖.id = ∋.id, then ∋ ⇔s and multicast �accuse, [∋], [∋↖]∀.
21 (b′) If ∋.id > 1 and its formation view is not higher than the previous certificate ∋↖ of the same type, then ∋ ⇔s and

multicast �accuse, [∋], [∋↖]∀.
22 If ∋ is a lock and either ∋ is formed in a view higher than the previous high QC ∋↖ or in the same view as the previous high QC ∋↖

but on a distinct block, then ∋ ⇔s and multicast �accuse, [∋], [∋↖]∀.
23 (c′) If any replica Pi on ∋.& has a lock ∋↖ on a distinct block in view v∋ that is not lower than the high QC in the Prepare message

in view v∋, then ∋ ⇔Pi and multicast �accuse, [∋], [∋↖]∀.
24 (d′) If received a NewView, Prepare or PreCommit msg m with the attached certificate’s index < ∋.id in a view > v∋, then ∋

⇔s and multicast �accuse, [∋],m∀.
25 (5ω) If received a distinct Prepare message m from the leader ϖv∋ in view v∋, then add ϖv∋ to and multicast �accuse, [∋],m∀.
26 If received a distinct PreCommit, Commit or Decide message m in view v∋ with QC &↖, then add the leader ϖv∋ and voters signing &↖

and ∋.& to and multicast �accuse, [∋],m∀. If m is received in a view △= v∋, then multicast L. Upon receiving another valid L↖, run
each new certificate in L↖ through (4ω).

27 ε (pp2)
28 Run each QC that has not yet been accepted through (4ω) and (5ω).
29 ε (6 – Common step)
30 Run each certificate through (4ω) and (5ω). If a voter on the QC has a current lock ∋c on a distinct proposal and the lock’s formation

view is higher than its high QC ∋h, then add the voter to and multicast �accuse, [∋c], [∋h]∀.

