
OBLIVIATOR: OBLIVIous Parallel Joins and other OperATORs
in Shared Memory Environments

Apostolos Mavrogiannakis∗

UCSC
Xian Wang∗

HKUST
Ioannis Demertzis

UCSC

Dimitrios Papadopoulos
HKUST

Minos Garofalakis
ATHENA Research Center &
Technical University of Crete

Abstract

We introduce oblivious parallel operators designed for both
non-foreign key and foreign key equi-joins. Obliviousness
ensures nothing is revealed about the data besides input/out-
put sizes, even against a strong adversary that can observe
memory access patterns. Our solution achieves this by com-
bining trusted hardware with efficient oblivious primitives
for compaction and sorting, and two oblivious algorithms:
(i) an oblivious aggregation tree, which can be described as
a variation of the parallel prefix sum, customized for trusted
hardware, and (ii) a novel algorithm for obliviously expand-
ing the elements of a relation. In the sequential setting, our
oblivious join performs 4.6×- 5.14× faster than the prior
state-of-the-art solution (Krastnikov et al., VLDB 2020) on
data sets of size n = 224. In the parallel setting, our algorithm
achieves a speedup of up to roughly 16× over the sequential
version, when running with 32 threads (becoming up to 80×
compared to the sequential algorithm of Krastnikov et al.).
Finally, our oblivious operators can be used independently to
support other oblivious relational database queries, such as
oblivious selection and oblivious group-by.

1 Introduction

Cloud providers, like Amazon Redshift [6], Azure SQL [14],
and Google Cloud SQL [34], offer cloud-based databases. To
keep important data safe, the first line of defense is encryp-
tion. Several “encrypted” databases, such as CryptDB [98],
Monomi [114], Cipherbase [10], AzureDB/Always En-
crypted [9] and methods to process encrypted data have
been designed for this purpose. However, encryption does
not fully protect encrypted data, as the user’s memory access
pattern can leak sensitive information—recent leakage-abuse
attacks [4,22,41,55,59–61,64,69,70,72–75,77,84,89,99,130]
show the need to protect memory access patterns.

1The two first authors contributed equally to this work and their names
are listed here alphabetically.

Trusted execution environments (TEEs) provide a unique
opportunity for “cheap” (efficient) and “fancy” (high utility)
privacy-preserving computation, i.e., any kind of computation
can be supported without relying on heavy cryptographic
approaches such as FHE [53,54]. However, relying on trusted
hardware not only falls short of fully securing memory access
patterns [97, 125], but also enclave side-channel attacks (e.g.,
Meltdown [83], Spectre [71] and Foreshadow [115]) can lead
to the extraction of enclave secrets.

Obliviousness is a strong cryptographic property that can
conceal memory access patterns and side channel leakages—it
ensures that algorithms within trusted hardware are data-input
independent versus very powerful adversaries who can ob-
serve all the memory access patterns. By leveraging cloud out-
sourcing together with well-designed and implemented obliv-
ious TEEs, companies can achieve secure, privacy-focused
computing, effectively minimizing the risk of sensitive data
leaks while safeguarding data confidentiality and integrity.

Towards the direction of oblivious TEE-based databases
(DBs), Zheng et al. [131], Eskandarian et al. [50], and
Priebe et al. [100] introduced the first oblivious relational
database management system (DBMS). A notable issue with
these methods is their assumption that TEEs offer special-
ized memory, which is invisible to adversaries in terms of
memory access patterns. This assumption aligns with the
old-fashioned/traditional approaches of TEE-based systems,
which naively considered loading everything inside the TEE
as secure, thereby overlooking potential memory or side-
channel attacks. We highlight the unique contribution of
Opaque by Zheng et al. [131], which presents a solution for
adjusting the size of this “ideal" unobservable memory, al-
lowing it to be reduced to the smallest possible size. Recent
works have formalized the non-existence of this “ideal" spe-
cialized memory as double-obliviousness (in [93]), or full-
obliviousness (in [103]), which protects data privacy even
against an adversary that can observe all memory access
patterns without assuming any specialized memory. We use
"oblivious" to refer to fully/doubly oblivious, unless stated
otherwise (see Section 2 for its formal definition).

Fully/Doubly-Oblivious TEEs Approaches & Applications.
Besides Opaque, which offers an oblivious distributed data
analytics platform with a wide range of SQL functional-
ity, there are other recent works that target this setting. In
particular, Mishra et al. [93] introduced a suite of Doubly-
Oblivious RAM and data structures tailored for TEEs. [5,128]
focused on eliminating memory access leakage in TEEs by
using doubly oblivious algorithms for both code and data.
Krastnikov et al. [76] proposed the first efficient doubly-
oblivious non-foreign-key join schemes (denoted as KKS).
The recent work of Dauterman et al. [39] introduced Snoopy,
the first high-throughput and scalable oblivious key-value
store. Ghareh Chamani et al. [25] improved upon [93] for use
in graph databases. Sasy et al. [103, 104] introduced new effi-
cient approaches for shuffle and compaction. Ngai et al. [96]
presented the first scalable oblivious-sort and shuffle prim-
itives. Fredrickson et al. [52] propose a new approach for
anonymous communication. This line of research, besides im-
pacting the area of oblivious databases directly, has also found
other real-world applications. These include private contact
discovery for Signal [108], anonymizing Google’s Key Trans-
parency [92], Private Sampling-based Query Frameworks,
and large-scale monitoring of software activities [19].

One important issue with the aforementioned works is that,
despite the promise of relatively cheap TEE-based compu-
tations, combining TEEs with oblivious computation raises
significant scalability issues. Except for [96], which was the
first to identify this challenge, all the above-mentioned works
handle relatively small data sizes of less than 6 GB. In par-
ticular in the context of Oblivious DBs, the state-of-the-art
oblivious non-foreign key join [76], reported results limited
to maximum dataset sizes of only 32 MB (for this case, the
foreign-key join of [76] takes 6.3 seconds—this is the only
number we are directly using as reported in their paper).

A similar scalability limitation is evident in various other
types of oblivious queries, hence the main question we ask is:
Can we design scalable and high-performant oblivious joins

and other oblivious query operators?
We consider four key query types: joins (foreign key and

non-foreign key), filtering (i.e., selection), and aggregation
(e.g., sum and count with the group-by clause). A foreign key
join (FK) between two tables, T0 and T1, matches rows based
on a specific attribute. In this context, T0 is assumed to be the
primary table, i.e., does not contain duplicate values for the
join attribute, and every row in T1 matches exactly one row in
T0. In contrast, non-foreign key (NFK) joins do not have this
property. Both tables T0 and T1 may contain duplicate values
in their join attributes.
Our contribution. Our primary focus is on the non-foreign-
key oblivious join query, which we identify as the most fun-
damental problem. The new oblivious primitives that we de-
velop for non-foreign-key joins, combined with state-of-the-
art implementations for oblivious sort, shuffle, and compari-
son (from [96,103]), along with new ideas, enable us not only

to address non-foreign-key joins but also to significantly en-
hance solutions for oblivious foreign-key joins, filters, and ag-
gregation queries. As a first step toward improving efficiency
in oblivious DBs, we focus on a shared-memory setting, i.e.,
a single hardware enclave with an Enclave Page Cache (EPC,
see Section 2) that is accessible by multiple processing units
(cores). In the aforementioned test case from [76] (32 MB
input/output size), our approach completes the join in 0.88
seconds with 1 thread (≈ 7× faster) and in 0.043 seconds
using 32 threads (≈ 146× faster). Our detailed contributions
include the following:

1. We introduce two new parallel oblivious primitives for
oblivious non-foreign key join, group-by, and filter queries.
These methods aim to replace slower sequential processes
with faster parallel ones. The first primitive, the Oblivious
Aggregation Tree, is an adaptation of [15] in our oblivious
TEE-based setting, and operates as a parallel prefix-sum
operator. It efficiently counts the occurrences of each value
for a specific attribute in parallel. This method is also
instrumental in duplicating values — a key step in both our
non-foreign-key join algorithm and the duplication process
described in [76]. The second primitive is a novel parallel
oblivious expansion algorithm. This algorithm expands an
input array by inserting empty spaces between elements
while maintaining their original order, with the spacing
determined by a second input array. Our parallel expansion
algorithm avoids sorts and serves as a faster alternative to
the sequential expansion method proposed in [76].

2. We demonstrate a new oblivious non-foreign-key join al-
gorithm that is not only highly parallelizable across all
execution steps, but also scalable to hundreds of GBs. Our
approach is inspired by the previous state-of-the-art work
from Krastnikov et al. [76], with significant improvements.
In more detail, (i) we reduce the number of oblivious sorts
required from five to two, which is the most resource-
intensive operation, (ii) we replace the sequential scans and
non-parallel distribution in [76] with more efficient parallel
aggregation trees and our novel oblivious expansion, (iii)
we achieve better security guarantees (see below), (iv) we
achieve parallelization across all steps, enabling scalability
to input sizes in the hundreds of gigabytes. This results in
an evaluation size that exceeds that of [76] by over 1000×.
These improvements make our approach superior across
all experiments we performed (see Section 5)

3. We re-implemented the algorithm from [76] to improve
both its efficiency and security. Specifically, we used Intel’s
Pin tool [68] to detect non-oblivious behavior in the C++
implementation of Krastnikov et al. under third-level com-
piler optimizations. We include a brief discussion of the
reason behind this in Appendix A. To address this issue, we
modified the algorithm to ensure obliviousness under all
optimization levels while also improving its performance
using our proposed oblivious primitives from Section 2.

This re-implementation, referred to as KKS∗ in Section 5,
is experimentally compared against the original version.
Our results demonstrate a 1.2× speedup over the original
implementation from [76].

4. We propose new parallel oblivious operators for filter, ag-
gregation, foreign-key joins, and experimentally demon-
strate their performance against the previous state-of-the-
art [131]. Zheng et al., demonstrate algorithms for the
aforementioned operators in a distributed setting. We adapt
these algorithms to our shared-memory environment. Our
operators outperform [131] (see Sections 4.1, 4.2 and 4.3)
for the following reasons: (i) we deploy parallel algorithms
in all execution steps, and (ii) reduce the number of re-
quired expensive oblivious sorts.

5. We demonstrate superior performance through extensive
evaluations and have open-sourced all implementations. In
detail, we evaluate the algorithms on eight synthesized and
real-world datasets and benchmarks, e.g., TPC-H [112]
and Big Data Benchmarks (BDB) [7]. The scaling factor
of TPC-H is up to 50, and the experiment scale reached
140 GB (2241× compared to [76]). Our algorithms demon-
strate better results in all tests (see Section 5). E.g., our non-
foreign key join is 3.21−41.23× faster than KKS. Our ap-
proach outperforms Opaque by 2.5−53× on BDB queries.
Our foreign key join algorithm achieves a speedup of
2.98−60× against Opaque on TPC-H generated datasets.
All our implementations are publicly available at [1].

Prior works. There are several prior works focusing on
query execution over encrypted databases. StealthDB [116],
Operon [120] and Azure SQL [9] explore encrypted databases
in TEEs but use order-revealing encryption [33, 80], which
leaks significantly more information. Maliszewski et al. [87]
introduced a cracking-like method for radix joins on TEEs,
but this exposes memory access patterns. [81] benchmarks
join algorithms in various settings that do not protect against
memory access patterns. Previous approaches that protect
memory access patterns employ Oblivious RAMs (ORAMs)
for oblivious execution [88]. For instance, Chang et al. [30]
designed an index nested loop join algorithm and proposed
ORAMs for joins. Avoiding the high ORAM overhead, Krast-
nikov et al. [76] introduced the first (sub-quadratic) oblivious
non-foreign key TEE-based equi-join.

ObliDB [50] presented an oblivious database design utiliz-
ing hardware enclaves that support database queries, though
it only partially protects memory access patterns. SODA [82]
presents a set of oblivious algorithms for filtering and aggre-
gation, and employs existing binary join algorithms [30, 76]
in the distributed setting. Notably, their oblivious filter and
aggregation, which require sequential scans, two oblivious
sorts, and a non-parallel oblivious distribution, have a com-
plexity of O(n log2 n). Compared to this, our approach avoids
expensive sorts, and is fully parallel. Our proposed algorithms
for filtering, aggregation, and join can serve as drop-in re-

placements to further enhance their results’ performance, as
shown by our experimental comparison with [30,76]. We note
that the distributed solution of SODA [82] introduces addi-
tional leakage compared to what we achieve here, i.e., their
join execution leaks information about the values with the
maximum cardinality (for each relation) participating in the
join—suppressing this leakage via padding imposes a cost of
O(n2 log2 n). In Appendix B, we include a discussion of prior
works that either focus on hardware enclaves and oblivious
computation but not database queries specifically, or consider
private database query evaluation in the MPC setting that
differs from ours.
Limitations. We recognize that using a trusted enclave might
be seen as a limiting factor in this field. However, the com-
bination of TEEs with oblivious computation can be used
to improve security in TEEs and is aligned with recent ini-
tiatives to strengthen trusted hardware against side-channel
attacks (e.g., Keystone project [78]). Our solution is not tied
to a specific TEE vendor like Intel SGX. Our implementation
specifically targets SGX but is built on OpenEnclave SDK [2],
which is a hardware-agnostic library that currently offers “pre-
view” support for other alternatives (e.g., ARM Trustzone).
We have not assessed the effort needed to adapt our solution
to a different TEE, but we believe that our parallel oblivious
query operators will be beneficial regardless of the TEE used.

A second limitation is that, although we introduce novel
parallel oblivious query operators (joins, group-by, filter), our
system does not support “complex” query types, in an end-to-
end oblivious manner. Instead, we evaluate complex queries
by first breaking them down into subqueries. Specifically,
we (obliviously) compute the subqueries of a complex query
independently, using the output of each one as the input for
the next. This has the drawback that it reveals the intermedi-
ate sizes of each subquery (i.e., it has additional information
leakage). In our experimental evaluation (Section 5), we test
Obliviator on complex queries from the TPC-H [112] and
BDB [7] benchmarks.

2 Preliminaries

Notation. For a relational table T , we denote accessing its
attribute j in i-th tuple as T [i, j]. Let [k] be the range [0,k−1],
and [i : j] the range i, i+1, . . . , j. We denote copying the rows
of B to the end of A as A // B and the columns of B next to
the columns of A as A || B. p is the number of processing
units (cores) which is sublinear to n (specifically, we assume
p≤ n/ log2 n). Parallel loops and subroutines are denoted as
parallel for and do in parallel blocks in which the memory
locations affected by each thread are independent.
Hardware Enclave. We focus on code execution within
trusted hardware enclaves (e.g., Intel SGX [86], ARM Trust-
Zone [11], AMD enclave [38]). A hardware enclave is located
on an untrusted operating system and provides enhanced se-
curity functionalities that guarantee confidential computing

Operator Algorithm Linear Parallel n = 210 n = 224

NFK OBL O(n log2 n) O((n log2 n)/p) 0.40ms 19.89s
KKS O(n log2 n) O((n log2 n)/p+n logn) 1.31ms 97.10s
Omix++ O(n · [C · log2 n log logn]) O(n · [C · log2 n log logn]) 96.05s N/A

FK OBL O(n log2 n) O((n log2 n)/p) 0.30ms 11.11s
OPQ O(n log2 n) O((n log2 n)/p+n) 0.61ms 35.73s
Omix++ O(n · [C · log2 n log logn]) O(n · [C · log2 n log logn]) 47.66s N/A

Filter OBL O(n logn) O((n logn)/p) 0.07ms 0.86s
OPQ O(n log2 n) O((n log2 n)/p) 0.23ms 9.39s
Omix++ O(n · [C · log2 n log logn]) O(n · [C · log2 n log logn]) 19.41s N/A

Aggregation OBL O(n log2 n) O((n log2 n)/p) 0.26ms 9.96s
OPQ O(n log2 n) O((n log2 n)/p+n) 0.47ms 26.46s

Table 1: Complexity comparison between prior approaches and Obliviator. For brevity and readability, we use n here to denote
the maximum value of input and output sizes. In Omix++ [25], C denotes the Path ORAM’s bucket size. p is the number of
processing units. We expand the parallel complexity by including complexities of sub-tasks that are not parallel (marked with red)
in prior works to clarify that our algorithms are fully parallel. In the last two columns, we show results in milliseconds (ms) or
seconds (s) for n = 210 and n = 224 in single-thread mode. We did not run Omix++ on n = 224 due to the very long time needed.

(e.g., sealing, isolation, and remote attestation). Sealing is the
enclave’s ability to encrypt data using its own private key.
Remote attestation is a service that ensures the enclave has
not been corrupted or tampered with. Isolation is the secure
separation of a portion of the system’s memory, called En-
clave Page Cache (EPC), used to store the user’s data and
the code to be executed. Our implementation uses Intel SGX.
With Intel SGXv1 [91], the EPC size is limited to 128MB,
which imposes significant performance deterioration for appli-
cations requiring additional space; when the enclave accesses
a memory address outside the EPC, it must execute a special
“heavy” operation. Thus, page swaps between the enclave and
the untrusted OS become the bottleneck, as shown in [49].

The second version, Intel SGXv2 [90], which is the one
used in our implementation, introduced flexible and dynamic
EPC memory allocation features, allowing applications to
scale to much larger sizes efficiently.
Obliviousness and oblivious operations. We say an algo-
rithm is oblivious if, for any two same-size inputs, its execu-
tion traces, including memory accesses, are indistinguishable.
A “classic” example of an oblivious algorithm from the liter-
ature is bitonic sort [16] (see below) that ensures the order
in which all comparisons between elements are performed
in a pre-determined order, independently of their actual val-
ues. Several prior works offer similar formal definitions of
this property, tailored to the trusted hardware enclave set-
ting [39, 93, 104]. At a high level, they formulate oblivious-
ness as the existence of a simulator that can emulate the view
of an adversary observing the program’s execution trace and
corresponding memory accesses, only given the instance size.

In particular, consider two games: a Real execution and an
Ideal simulation, where the simulator will emulate algorithms
with input only the leakages that the real execution produced
(e.g., input and output sizes). For an oblivious operator, no
adversary must be able to distinguish between the simulation
and the real execution, with more than negligible probability.

Definition 1. An oblivious operator Π is secure if, for
any non-uniform probabilistic polynomial-time (PPT) ad-
versary A , there exists a PPT Simulator Sim such that:∣∣Pr

[
RealΠ,A (λ) = 1]−Pr[IdealSim,L ,A (λ) = 1

]∣∣≤ negl(λ),
where λ is the security parameter, and L denotes the leakage.

Throughout the paper, we assume the existence of some
fundamental oblivious operators, namely, oblivious compari-
son and oblivious swap. The former takes two inputs x,y and
returns 1,0,−1 if x > y, x = y,x < y, respectively. Meanwhile,
the latter takes two inputs x,y and a single bit c and swaps
them only if c = 1. Prior works discuss different ways to build
such oblivious operators, combining low-level assembly and
bitwise manipulation operators, e.g., [96, 103]. In this paper,
we deploy a constant-time, branch-less bitwise XOR-based
oblivious swap, as explained in [96], denoted as OSwap.
Oblivious Compaction. Given an offset z and an input array
A of n elements, where some of the elements are marked, a
compaction algorithm will permute the table in such a way
that all marked elements will appear starting from position
z (traditionally z = 0, to move all marked elements in the
beginning of the array). There are works [47, 57] that pro-
pose oblivious compaction algorithms with linear complex-
ity [47, 57], but introduce large constants, restricting their
practicality. Due to their inefficiency, prior works have relied
on oblivious sorting for compaction [76, 131]. However, Sasy
et al. [103] demonstrated that their state-of-the-art compaction
algorithm (exploiting the fact that compaction is simpler than
sorting), is both asymptotically and practically faster than
oblivious sorting methods. For instance, with an input size
of n = 224, oblivious sorting takes 10.80s on a single thread,
whereas compaction completes in just 1.22s. Moreover, the
compaction algorithm by [103] is fully parallelizable, achiev-
ing an asymptotic cost of O((n logn)/p), where p represents
the number of processing units. In this work, we adopt and
utilize the parallel oblivious compaction method by Sasy OR-
COMPACT, which executes the following three steps:

1. Split the array into two equal halves Al , Ar.
2. Let m be the number of marked entries in Al . Recursively

call ORCOMPACT(Al , z), and ORCOMPACT(Ar, z+m).
3. Then, swap Al [i] and Ar[i], where i ∈ {1, . . . , n

2}, based
on a condition c.

Note that [103] also describes a version of ORCOMPACT
for non-power-of 2 inputs. Additionally, ORCompact has an
order-preserving property among marked items. For instance,
if i and j elements are marked, and i < j, then i′ < j′ will also
be true after compaction, where i′, j′ are the new positions of
element i and j, respectively. This property will be useful in
Section 4.1 when we want to split the merged table T .
Oblivious Shuffle. Given an input array of n elements, an
oblivious shuffle algorithm will randomly permute it without
revealing any information about its elements’ values. More-
over, it is infeasible for an adversary to correlate input posi-
tions with output ones. At a first glance, oblivious sort can
be used to randomly permute an array, by generating/sort-
ing random positions for each element. However, as shown
in [13, 96, 104], oblivious shuffling is marginally more ef-
ficient in practice but it remains asymptotically better than
the best single-server oblivious sort (see below). [13] shows
that an oblivious sort can be viewed essentially as an obliv-
ious shuffle followed by a non-oblivious sort. Prior works
have aimed to develop more efficient oblivious shuffling al-
gorithms (see [13, 63, 96, 103, 104]). The recent approach
proposed in [104] partially offloads the required permutation
computation to an offline phase. This strategy provides a
significant advantage in settings where such offline precom-
putation is feasible, making oblivious shuffling particularly
beneficial compared to oblivious sorting. However, in our
setting, we do not assume or utilize any offline phase, so we
can not deploy this optimization. (Nonetheless, in scenarios
allowing offline precomputation, our second oblivious filter
approach would outperform the first). We deploy the oblivious
shuffle introduced in [96], which results in a complexity of
O((n logn)/p) as explained below. In detail, [96] performs
oblivious random bin assignment based on butterfly networks.
For an array with n elements, a butterfly network contains
logn layers with variable number of buckets and each bucket
has capacity Z. In layer k, we are shuffling elements between
buckets Bi and Bi+2k . The destination bucket for each ele-
ment is chosen based on the i−th least significant bit. To
improve performance, [96] chooses the output buckets to be
the same as the input buckets, which makes the algorithm
memory-friendly (see [96] for more details). Butterfly net-
works are inherently scalable. In layer k, each assignment to
a new bucket is independent: Pairs of buckets (separated by a
distance of 2k) can be distributed among parallel processing
units, with each block assigned to buckets in layer k+1.
Oblivious Sort. Finally, given an array of n elements, obliv-
ious sort generates as output a sorted version of the ar-
ray. Bitonic sort is the most practical oblivious sorting al-
gorithm in our single-server/multi-threaded setting (shared-

memory setting), as demonstrated by previous work [96].
Although bitonic sort has a worse asymptotic complexity
O((n log2 n)/p) than alternatives like bucket sort [63, 96]
(O((n logn)/p)), it still outperforms them in practice on a
single server with multiple threads. For example, sorting 224

elements on 32 processors takes 0.64 seconds with bitonic
sort, compared to 2.7 seconds with bucket sort. Consequently,
we adopt bitonic sort in Obliviator, following prior works such
as Opaque [131] and KKS [76]. The bitonic sort introduced
in [96], is based on sorting networks and ensures the order in
which elements are compared is deterministic and agnostic to
the values in the array. Moreover, bitonic sort is scalable due
to the independent comparisons and swaps performed at each
level of the sorting network. We can assign to each processing
unit n/p number of pairs to perform the computation.

We consider a version of OSORT that takes a second array
as input, which serves as an "external" key for the sorting
process. Instead of sorting based on the original array’s entries,
the sorting is performed according to this external key.
Threat Model & Leakage. We adopt the same threat as prior
TEE-based approaches [25, 76, 93, 103, 104, 131], where we
assume a powerful attacker who can observe the server’s net-
work traffic of encrypted data, manage the software stack
outside the enclave, and control the entire operating sys-
tem. However, they cannot breach the secure processor or
access the processor’s secret key. In this threat model, the
attacker can observe memory accesses performed on the
untrusted memory and those performed inside the enclave.
In addition, the attacker can observe data on the memory
bus, in the main memory, and in secondary storage (e.g.,
HDDs, SSDs). Beyond access to data in memory, the attacker
has access to code traces. Attackers can use this informa-
tion to implement software side-channel attacks. Other
forms of side-channel leakage, such as those arising from
power consumption analysis, timing attacks, and related meth-
ods [21, 58, 65, 83, 105, 115, 121], fall outside the scope of
this paper. While prior works [32, 36, 62, 106, 107] provide
techniques to defend against such attacks, these methods are
complementary to ours and can be applied alongside our tech-
niques to improve security further.
Output Size Leakage. Any information that can be derived by
the adversary during or after the execution of our algorithm
is referred to as leakage L similar to [26, 42, 44–46, 94]. Our
threat model only allows leaking the output size L = Dout
(same to prior works [40, 52, 76, 131]). This leakage is sig-
nificant when operating on complex queries, as mentioned in
Section 1, since we break down complex queries and perform
each subquery individually.Most of our operators naturally
mitigate such leakage if truncation is avoided. In particular,
filtering and aggregation can hide the result size if we avoid
truncation (as mentioned in Sections 3 and 4) and keep the
original input size of the table, which is public information.
Additionally, the size of a foreign key join will always be
bound to that of the foreign table (see Section 1). However,

in the case of non-foreign key joins, an alternative approach
can be used–such as adjustable padding [43], or worst-case
padding to hide the result sizes. This is a property of non-
foreign key joins, where the output size exceeds the input size.
As a result, an additional computation overhead will be added,
especially when using worst-case padding, since in the worst
case a binary join can result in O(n2) size. Adjustable padding
mitigation, as outlined in [43], reduces leakage by conceal-
ing the exact output size, revealing only the next power of a
chosen parameter x, determined by the client. For example,
if x = 2, the adversary would observe sizes rounded up to
the nearest power of 2 limiting the precision of the leaked
information and reducing overall exposure.

3 Oblivious Building Blocks

Here, we discuss two oblivious algorithms that will be used
in our oblivious database operators in Section 4. In detail,
Section 3.1 provides a doubly-oblivious version of [15], and
Section 3.2 describes our novel parallel expansion algorithm.

3.1 Oblivious Aggregation Tree
The aggregation tree described below is a variation of the
prefix sum (e.g., [20, 35, 66]), differing primarily in that it
performs computations (such as addition or duplication) in
segments instead of the entire array. While the problem of
parallel prefix sums is well-studied in research, we cannot
naively adopt a prefix sum algorithm as we need one that is
oblivious/data-independent and ensures the segment lengths
remain concealed. More recent MPC approaches (e.g., [15])
operate on different security assumptions and threat mod-
els. E.g., in the MPC setting, a part of the computation is
performed locally, which is assumed to be trusted. However,
these assumptions do not align with our threat model; thus,
we adopt [15] to our security guarantees and ensure the algo-
rithm’s doubly-obliviousness. Additionally, we are the first to
observe the necessity of parallelizing scans and additions/du-
plications (see Sections 4 and 5). In particular, we observe
that due to the extensive study of parallel oblivious sorts [96],
oblivious shuffle [96, 103, 104], and compaction [103], lin-
ear scans become substantial. For instance, for n = 222 in a
non-foreign key join, the 32-thread oblivious sort and linear
scan require 0.15s and 0.22s, respectively. In the remainder of
this part, we explain our oblivious aggregation tree assuming
the computation is a summation over the array elements. We
stress that the algorithm can naturally support other aggrega-
tion types including count, min, max, and duplication.

The algorithm expands the array elements with an addi-
tional tag bit to indicate each segment’s start, denoted B[i] for
the i-th element. B[i] = 0 if the i-th element is the first element
of a segment, B[i] = 1 in all other cases.

Our algorithm supports three modes of operation: PREFIX,
SUFFIX, FULL. In detail, PREFIX computes the rolling sum

AGGTREE⟨TYPE, OP⟩(D,B) :
WHERE TYPE = {PREFIX,SUFFIX,FULL}, AND OP = {+, DUP}

1: Initialize data structure A
2: parallel for i ∈ [n] do ▷Initialization
3: sxi =D[i]∧B[i]
4: A[0, i]← ⟨0,D[i],0,sxi,B[i],B[i]⟩
5: end
6: /* We denote with subscripts the left and right chil-

dren*/
7: for h← [1 : logn] do ▷Upstream
8: parallel for i← [1 : n

2h] do
9: ⟨l pxi, pxi,rsxi,sxi, ℓi,ci⟩← A[h, i]

10: l pxi← px0, rsxi← sx1
11: li← l0,ci← c0∧ c1
12: px←¬c1 · px1 + c1 · (px0 • px1)
13: sx←¬c0 · sx0 + c0 · (sx0 • sx1)
14: end
15: for h← [logn : 1] do ▷Downstream
16: parallel for i← [1 : n/2h] do
17: ⟨l pxi, pxi,rsxi,sxi, ℓi,ci⟩← A[h, i]
18: px0← pxi
19: px1← l1 ·¬c0 · l pxi + l1 · c0 · (l pxi • pxi)
20: sx0← c1 · (rsxi • sxi)+¬c1 · rsxi
21: sx1← sxi
22: A[h, i]0← ⟨px0,sx0⟩
23: A[h, i]1← ⟨px1,sx1⟩
24: end
25: Initialize output array Res of size n.
26: parallel for i← [n] do
27: Res[i] = B[i] · px•D[i]• sx
28: end
29: return Res

Figure 1: Oblivious Aggregation Tree.

of entries. For instance, Figure 2 shows the algorithm running
on an input array D, with tag bits array B. The PREFIX value
of the i-th element in the array will be the sum of all previ-
ous elements inside the same segment, e.g., the prefix of the
third tuple is 10. SUFFIX is similar to PREFIX, but instead of
calculating the rolling sum of all previous entries inside the
segment, it calculates the sum of all the subsequent entries
inside the segment, e.g., the first tuple of the table will have
suffix equal to 7+9+2 = 18.

Finally, FULL is computed as the sum of PREFIX and SUF-
FIX. Observe that to gain the final array output, we sum this
result with the corresponding entry’s data D[i]. Besides sum-
mation, we also consider oblivious aggregation for duplica-
tion. In this case, the operator copies the value of the first
element of each segment to the entire segment, see Figure 2.
Implementation Details. We consider a binary tree where
leaves are mapped to entries of D. Each node corresponds
to an aggregation tuple ⟨l px, px,rsx,sx, ℓ,c⟩, where l px and
rsx denote its left subtree’s prefix value and its right subtree’s
suffix value, respectively. Fields px and sx denote the current

D B Prefix Suffix Full Dup Res
3 0 0 18 18 3 21
7 1 3 11 14 3 21
9 1 10 2 12 3 21
2 1 19 0 19 3 21
4 0 0 8 8 4 12
8 1 4 0 4 4 12
5 0 0 0 0 5 5

Figure 2: Example of running Oblivious Aggregation Tree
over array D. Dup denotes the result when performing dupli-
cation, whereas Res denotes the result of performing a full
aggregation with addition.

tuple’s prefix and suffix values. Then, c is the bitwise AND
result of the node’s children’s tag bits, and ℓ is the tag bit of
the left-most leaf in the sub-tree. In practice, ℓ and c are bits
that control how we update the values during both phases of
the aggregation tree. For example, in Figure 3, the tuple of the
root of the right subtree is ⟨21,5,0,0,0,0⟩. At the same time,
the values of the children are denoted with subscripts. For
instance, px0 and px1 are the prefix values of the left child and
right child, respectively (likewise for all values in the tuple).

The pseudocode of our oblivious aggregation tree is shown
in Figure 1. We mark with different colors the calculations
performed for the three different types {PREFIX, SUFFIX,
FULL}. We denote the aggregation operation as •. In our
work, it refers to addition or duplication, i.e., • ∈ {+,DUP}
where DUP copies previous values to current positions as
shown in Figure 2. The algorithm initializes a data structure
A to store the tree nodes. For simplicity, we denote A as a
two-dimensional array where the first dimension is the tree
layer (with 0 being the leaf layer), and the second is the index
of a node within a layer. A[0, [n]] refers to the entire 0-row of
A, i.e., all the tree leaves.

The algorithm consists of three phases: initialization, up-
stream, and downstream. For brevity, we will discuss the
PREFIX type, the other two types follow similarly. During
initialization (lines 1-4), we set the tuples of all leaves. Then,
in the upstream phase, we update the set of internal nodes
based on the tuple values of their children. We iterate with a
double for-loop, layer-by-layer, and left-to-right (lines 6-13).
To provide some intuition, if c1 = 1, we know that all leaf
nodes in the right subtree are in the same segment with some
(or maybe all) the leaves in the left subtree; thus, we should
update px = px0 • px1. For example, in Figure 3, and focusing
on node 21 (i.e., the node with px = 21, on level 1 of the right
tree), the right subtree’s control bit c1 = 1, which means that
all leaves in the right subtree are in the same segment with
some leaves in the left subtree (in our example, with all the
leaves). Thus, the value of the internal node will be updated
to px = 21. In the other case, we propagate the prefix value of
the right child to the internal node px = px1. The other values
are trivially updated, l px will be equal to the prefix value of
the left subtree px0, c will be updated as c = c0 ∧ c1, and ℓ
will be ℓ0 since ℓ contains the tag bit of the left-most leaf.

In the downstream phase, we propagate the prefix and suffix
values calculated during the upstream to the children based

on their tag bits, starting from the root layer (lines 15-24). For
each internal node, we first update value px0 and then px1.
More precisely, if ℓ1 = 0, this means that the right subtree’s
left-most child is the start of a segment; thus, px1 should be
zero. In the other case, we check c0 to see if all the leaves in
the left subtree belong in the same segment. For example, in
Figure 3 (b), focusing on node 21 (i.e., the node with px = 21,
on level 1 of the left tree), its value will be updated to 5 since
for the left child, we propagate the value of the parent. At
the same time, node 10 will also be updated to px = 5, but
node 11 (which is the right child of 21) will be updated to
px = 10, since ℓ1 = 1 as the leaves of the right subtree are in
the same segment with the leaves of the left subtree. Finally,
we return the desired result in array Res which we populate
with an iteration over all tree leaves.
Efficiency. Our algorithm, in sequential mode, clearly takes
O(n) since it initializes data structures of size O(n) and tra-
verses the binary tree with n leaves twice. Assuming p parallel
processors, following classic results for parallel tree traver-
sal [117], the algorithm can be run in O(n/p) in the exclusive-
read/write model. At a high level, all computations performed
within a layer are independent of each other (they access dif-
ferent nodes) so each layer can be partitioned into p segments
(if it has more than p nodes, else each node is processed
separately) and processed in parallel.
Obliviousness and Security. This algorithm has no inherent
leakage. The only information accessible to an adversary is
the output size which matches the (known) input size. Thus,
L =⊥. Intuitively, the obliviousness of our algorithm is easy
to prove as it performs no data-dependent branches or loops.
It accesses data in all phases in a deterministic order, indepen-
dent of the array values. Indeed, its memory access pattern can
be fully calculated from n, and it performs simple arithmetic
and logical operations or assignments; hence, its simulation
is trivial (see our extended version for formal proof).

3.2 Oblivious Expansion

In this section, we propose our novel oblivious expansion
algorithm. This algorithm is crucial for non-foreign key joins
(see Section 4). Krastnikov et al. [76] present an algorithm
that cannot be parallelized due to its iterative nature, where
each iteration depends on the previous one. Attempting par-
allelization could lead to memory collisions and incorrect
results. Furthermore, as mentioned in Section 4, expansion
operates in output size granularity. In the worst case, the out-
put size will be large enough (O(n2)) to significantly reduce
performance. As a result, a parallel expansion algorithm is re-
quired. For instance, in Figure 6(a), the algorithm will expand
the array T so that each of a1, a2, and a3 are two positions
apart (for the expanded version of T , see the right side of
Figure 6(b)). Looking ahead, this type of expansion will be
very useful in the next section when we build oblivious joins.

In summary, our oblivious expansion algorithm begins by

5

21 5

9

10 11 12 5

23 7 4 8 5

0

0

0

0101110

0 1 0

0

0

0 0

9

0 0 0 0

23 7 4 8 5
0101110

5

21 5

9

10 11 12 5

23 7 4 8 5

0

0

0

0101110

0 1 0

0

5

5 0

10

5 10 0 0

190 3 0 4 0

0

0

0

0101110

0 1 0

0

Figure 3: Visualization of our oblivious aggregation tree upstream (left) and downstream (right) phases, when executing a
AGGTREE⟨PREFIX,+⟩. Each node contains it its value px, and next to its tag bit c with a red color. For internal nodes, c is updated
as c = c1∧ c0, where c0 and c1 are the tag bits of their left and right children, respectively. Note that the suffix values are never
changed when performing a PREFIX; thus, we omit them for clarity. We omit ℓ since it can be derived by the leaves’ tag bits.

T ← OExpand(T,M)

1: Q← AGGTREE⟨Prefix, +⟩(M,0||1n−1)
2: Dout ←M[n−1]+Q[n−1]
3: Pad T until n = Dout
4: n1← 2⌊log2 n⌋; n2← n−n1
5: m← ∑i(Q[i]> n2), parallel for i ∈ [n2]
6: parallel for i ∈ [n2] do
7: b← (m≤ i)
8: OSwap(T [i],T [i+n1],b)
9: OSwap(Q[i],Q[i+n1],b)

10: end
11: do in parallel
12: OExpand(T [0 : n2−1],M[0 : n2−1])
13: OExpandSub(T,Q,n2,n − 1,(n1 − n2 + m)

mod n1)
14: end
15: return T

Figure 4: OExpand. Oblivious expand the array. Given as
input an array T , an array M that denotes the number of copies
we need to generate for each element, we get the expansion
of array T on arbitrary input sizes, as seen in Figure 6(b).

calculating the destination indices for each element and stor-
ing them in a separate array, Q. If the required size, Dout ,
exceeds |T |, the algorithm pads T to match Dout (Figure 6(b),
left side). Otherwise, it removes the necessary number of rows
from the end of T . Next, it redistributes the entries of T such
that the space between entry i and i+ 1 corresponds to the
required number of empty entries, determined as M[i]−1.

Our pseudocode for algorithm OEXPAND, is shown in Fig-
ure 4. To compute the destination index for each entry, it uti-
lizes an oblivious aggregation tree, configuring the tag bits of
the array as B= 0||1n−1 (line 1). Hence, the result will contain
the prefix sum of the whole array (i.e., AGGTREE⟨Prefix, +⟩),
as shown in Figure 6 (a), which is stored in an array Q. It then
calculates the output size Dout (line 2), and pads table T with
empty entries until it has length Dout (Figure 6 (b)). For the
next part, the algorithm splits T into two parts and processes
them separately. Let n1 be the largest power of 2 such that
n1 ≤ n, and set n2 = n−n1. The “chunks” T [0 : n2−1] and
T [n2 : n−1] will be processed separately.

Before it proceeds, it may have to move some entries from
the first chunk to the second, depending on their Q[i] entry,

OExpandSub(T,Q,s,e,z)

1: mid← ⌊ s+e
2 ⌋, n = e− s+1

2: m← Σi(Q[i]< mid), parallel for i ∈ [n]
3: if n = 2 then
4: OSwap(T [s],T [e],m⊕ z)
5: OSwap(Q[s],Q[e],m⊕ z)
6: else if n > 2 then
7: ii← (m+ z) mod (n/2)
8: parallel for i ∈ [s : mid−1] do
9: b← (s+ ii≤ i)

10: OSwap(T [i],T [i+n/2],b)
11: OSwap(Q[i],Q[i+n/2],b)
12: end
13: do in parallel
14: OExpandSub(T,Q,s,mid−1,z mod mid)
15: OExpandSub(T,Q,mid,e,(z+m) mod mid)
16: end

Figure 5: OExpandSub. This function takes as input an array
T , a column with the destination indexes of each entry Q,
starting and ending indexes s,e, where the range [s : e] is a
power of 2, and an offset z. Outputs the expanded array T .

i.e., target index (line 5). To hide how many entries were
swapped, it performs oblivious swaps (lines 6-10). Finally,
for the first chunk T [0 : n2−1], it calls OEXPAND recursively.
(Note that if the input size is a power of 2, lines 6-11 are
skipped.) For the second chunk, since we know its length
is a power of 2, we can go ahead and start distributing its
entries via the subroutine OEXPANDSUB. This follows the
same methodology, however, instead of splitting the array into
the highest power of 2, it splits the array into two equal parts
and progresses recursively until the processing range of T is
down to 2 elements (lines 3-5). Similar to the above, it checks
before the next iteration level whether it needs to swap some
of the entries from the first to the second half (lines 7-12).

Efficiency. The algorithm recursively divides the input into
chunks and processes them. This process is repeated up to a
logarithmic number of times. During each iteration, the entire
array is processed either through scans and swaps, or using our
linear-time oblivious aggregation tree. Therefore, the over-
all complexity of the algorithm is O(n logn). Furthermore,
the operations in each iteration access independent parts of
the array and are fully parallelizable. With p processors, the

T M
a1 2
a2 2
a3 2
b1 1

T M Q
a1 2 0
a2 2 2
a3 2 4
b1 1 6

ki i-th copy of key k

(a) Using AGGTREE⟨Prefix, +⟩ to calculate the destination index for
each element q ∈ Q. Each tuple of T is of the form ki, where k
denotes the key and i denotes the i-th copy of k.

T M Q
a1 2 0
a2 2 2
a3 2 4
b1 1 6
- - -
- - -
- - -

T Q
a1 0
- -
a2 2
- -
a3 4
- -
b1 6

(b) Appending empty entries until we reach Dout . Then, obliviously
distributing the elements based on Q. Finally, we duplicate the ele-
ments to the empty entries below.

Figure 6: Visualization of Oblivious Expansion.

runtime reduces to O((n logn)/p).
Obliviousness and Security. The only observable leakage by
the adversary is the output size; thus, L =Dout . Recall that we
deploy expansion for non-foreign key joins (see Section 4.1),
hence this leakage can be suppressed by padding to the max-
imum output size, i.e., to O(n2) (or by applying adjustable
padding, as in [43]). Intuitively, our algorithm is secure based
on the following observations. (i) It entails oblivious subrou-
tines for oblivious aggregation trees and oblivious swaps. (ii)
It scans data in a predetermined order, independent of their
actual values. (iii) The sizes of chunks are inferred just from
the size of the input and the output (already observable by the
adversary). (iv) The if-branch in OEXPANDSUB is based on
the size of the chunk known to the adversary at each repetition.
A formal proof is given in our extended version.

4 Oblivious Join and Other Operators

Having introduced all the necessary oblivious algorithms we
will use as sub-routines, we are now ready to present our main
algorithms for oblivious parallel relational database operators,
starting from oblivious joins, which is our main focus.

4.1 Oblivious Join

Description. Given two input relation tables, T0 and T1, a join
constructs an output table that combines tuples from the input
tables based on equality between values of a specific attribute
j, which we will refer to as the join attribute. For instance,
the query below will output a table that contains the tuples
from T0, and T1 that have the same values on the attribute key.
Figure 7 (a) demonstrates an example of the structure of the
tables, and 7 (c) shows the result.

SELECT * FROM T0 JOIN T1 ON T0.key = T1.key;

T M0 M1 B C
a1,0 3 2 0 0
a2,0 3 2 1 1
a3,0 3 2 1 1
a1,1 3 2 1 0
a2,1 3 2 1 1
b1,0 1 1 0 0
b1,1 1 1 1 0
c1,1 0 1 0 0

ki,j tuple from table j

i-th copy of key k

T1

a1,1
a2,1
b1,1
c1,1

T0

a1,0
a2,0
a3,0
b1,0

(a) Given two relational tables T0,T1, append T1 on T0, sort based
on the key and the table id. Calculate the multiplicity factors. Array
B denotes the chunks that have equal value in T , whereas array C
denotes the chunks with the same value and table id.

T ′
0 M ′

0 M ′
1 C ′

a1,0 3 2 0
a2,0 3 2 1
a3,0 3 2 1
b1,0 1 1 0

T ′
1 M ′′

0 M ′′
1 C ′′

a1,1 3 2 0
a2,1 3 2 1
b1,1 1 1 0
c1,1 0 1 0

(b) Split tables back to their original form and obtain T ′0,T
′

1 .
T ′
1

a1,1
a2,1
a1,1
a2,1
a1,1
a2,1
b1,1

T ′
0

a1,0
a1,0
a2,0
a2,0
a3,0
a3,0
b1,0

T ′
1 Q′

a1,1 0
a1,1 2
a1,1 4
a2,1 1
a2,1 3
a2,1 5
b1,1 0

(c) Expand T ′0,T
′

1 and duplicate the real tuples to the empty tuples
among them. Finally, align T ′1 with T ′0 by computing an oblivious
sort based on the ending index of each tuple.

Figure 7: Visualization of the oblivious join algorithm.

Note that the nature of such a query can reveal a substan-
tial amount of information regarding the input tables’ values,
even under encryption. For instance, an adversary that sim-
ply observes the memory access pattern occurring during the
query execution, learns which tuples of input table T 0 share
the same join key with those of T 1. Prior work by Demertzis
et al. [43] showed that this information suffices to launch
devastating leakage-abuse attacks, recovering values from the
(encrypted) database with considerable success rates. This
makes developing oblivious join operators extremely impor-
tant. We next explain the design of our oblivious joins for two
cases: (i) non-foreign key joins and (ii) foreign key joins. As
mentioned in the introduction, a non-foreign key join allows
two tables to have duplicate join attributes while a foreign
key join does not. We design our algorithms to be scalable
and highly parallelizable.
Non-Foreign Key Join. Given tables T0,T1, the output of a
non-foreign key join based on attribute j will be a table T ,
where every tuple t ∈ T will be t = t0||t1, where t0 ∈ T0, t1 ∈ T1,
and t0. j = t1. j. Figure 7 demonstrates a join on tables T0 and
T1 where each tuple ki, j contains the join attribute k, a number
that denotes the copy i and a table id j. Let n = |T0|+ |T1|.
For simplicity, in our exposition, we assume each tuple in
T0,T1 consists only of the join attribute, omitting the remain-

ing “payload”. The pseudocode of the operator is given in
Figure 8, and its steps are as follows:
Lines 1-2: First, concatenate T0,T1 vertically, creating table
T . Perform an oblivious sort based on j, breaking ties based
on the table ids. Note that tuples are sorted so that T0 tuples
appear before T1, if tied (see Figure 7(a)).
Lines 3-11: Initialize arrays B,C. B contains chunks of rows
with the same key; C contains chunks of rows with same key
and table id. Compute multiplicity factors for the entries of
each table separately. To do this, use two full oblivious aggre-
gation trees, and store the result in M0,M1.
Lines 12-15: Use two oblivious compactions on (copies of) T
concatenated with M0,M1,C, to split tables back into extended
versions of original T0,T1. The first compaction treats the ele-
ments from table T0 as the marked elements (see Section 2),
whereas in second treats the elements from T1 (Figure 7(b)).
Lines 16-19: Having split the tables, use two oblivious expan-
sions to place their elements to their target positions according
to their corresponding multiplicity factors in the other table
(here, we slightly abuse notation by calling OExpand on the
first input a table instead of an array). Note that, after this
step, the expanded tables (T ′0 ,T

′
1) have Dout tuples, i.e., equal

to the size of the result of the join.
Lines 20-21: Duplicate distributed tuples (from the previous
step) in the produced tables to the empty entries among them.
Lines 22-26: Next, we must align tuples of T ′1 with those of T ′0 .
At this point, we observe that the i tuple of T ′1 will appear ev-
ery M′′1 [i] rows within the chunk of rows that contain the same
attribute value. To do this, we also need to consider the relative
positions of tuples within these chunks, which we compute
with an oblivious aggregation tree AGGTREE⟨Prefix, +⟩.As a
result, the final index of each tuple of T ′1 in the eventual join
output is calculated by a downstream scan over T ′1 , with the
formula in line 22. We store the final indexes in array E, and
we obliviously sort T ′1 using E as the key (Figure 7(c)).
Lines 27-28: Finally, we return the join result as the concate-
nation of the first column of each of the two tables.
Foreign Key Join. A foreign key join involves a primary
table T0 and a foreign table T1 consisting of primary keys of
table T0. In this setting, we do not have to create any copies
or align the tuples of T1 since if a tuple exists in T1 with a join
key k, then it is guaranteed that the same join key will exist in
T0 exactly once. We can exploit this to simplify our oblivious
foreign key join, as we explain next.

Similar to non-foreign key joins, we initially concatenate
both tables into a table T and sort the new table based
on the join key k. Note that tuples from T0 appear before
those from T1. Then, we perform an aggregation tree AG-
GTREE⟨Prefix, dup⟩, using the table ids to denote the segments
of tuples with the same key inside T . Note that in foreign key
joins, duplication happens directly without breaking the tables
and performing oblivious expansion. As a final step, we per-
form an oblivious compaction to push all the entries from T0
to the end of T and truncate them. From the above discussion,

OBLJOIN(T0,T1)
1: T ← T0//T1
2: T ← OSort(T,(T. j,T.t)) ▷j: join key, t: table id
3: Initialize arrays B,C,M0,M1 of size n with all 0’s
4: Assign M0[i] = 1 when T [i]∈ T0, parallel for i∈ [n]
5: Assign M1[i] = 1 when T [i]∈ T1, parallel for i∈ [n]
6: parallel for i ∈ [1 : n−1] do
7: B[i]← (T [i]. j == T [i−1]. j)
8: C[i]← (T [i]. j == T [i−1]. j∧T [i].t == T [i−1].t)
9: end

10: M0←AGGTREE⟨Full, +⟩(M0,B)
11: M1←AGGTREE⟨Full, +⟩(M1,B)
12: Initialize two tables T ′,T ′′ of size n
13: T ′← T ||M0||M1||C, T ′′← T ||M0||M1||C
14: T ′0 ← ORCompact(T ′) ▷based on table id t = 0
15: T ′1 ← ORCompact(T ′′) ▷based on table id t = 1
16: Denote by M′0,M

′
1,C
′ the second, third, and fourth

columns of T ′0
17: Denote by M′′0 ,M

′′
1 ,C

′′ the second, third, and fourth
columns of T ′1

18: T ′0 ← OExpand(T ′0 ,M
′
1)

19: T ′1 ← OExpand(T ′1 ,M
′′
0)

20: T ′0 ← AGGTREE⟨Prefix, dup⟩(T ′0 ,C
′)

21: T ′1 ← AGGTREE⟨Prefix, dup⟩(T ′1 ,C
′′)

22: Initialize table E of size |T ′1 |
23: Q′← AGGTREE⟨Prefix, +⟩(1|T

′
1 |,C′′)

24: parallel for i ∈ [|T ′1 |] do
25: E[i]← ⌊Q′[i]/M′′0 [i]⌋+(Q′[i] mod M′′0 [i]) ·M′′1 [i]
26: end
27: T ′1 ← OSort(T ′1 ,E)
28: Denote R0 (resp. R1) the first column T ′0 (resp. T ′1)
29: return R0||R1

Figure 8: Our scalable algorithm for non-foreign key joins.

our oblivious foreign-key join algorithm is much simpler than
the one for non-foreign key joins. It is also considerably more
efficient as it entails concretely fewer operations.

Efficiency. Both flavors of our join algorithms are asymp-
totically dominated by the oblivious bitonic sort that takes
O(n log2 n). Additionally, oblivious compaction and bitonic
sort are fully parallelizable, as per [96, 103]. Hence, con-
sidering p parallel processors, our joins are executable in
O(n log2 n/p). The concrete performance numbers are pre-
sented in Table 1. For a non-foreign key join with n = 224,
KKS spends 78.76 seconds on sorting, 12.99 seconds on ex-
pansion, and 5.35 seconds on scanning. In contrast, Obliviator
employs the aggregation tree for scans and replaces three sorts
with oblivious compaction (2) and our expansion (1). As a
result, it spends 16.01 seconds on sorting, 1.44 seconds on
compaction, 0.99 seconds on expansion, and 1.45 seconds
on scanning. For a foreign key join, Opaque requires 35.59
seconds for sorting and 0.14 seconds for scanning. Similarly,
Obliviator uses the aggregation tree for scanning and replaces

one of the sorts with compaction, resulting in 9.76 seconds for
sorting, 0.09 seconds for scanning, and 1.26 seconds for com-
paction. Besides, both in [76] and in our approach, expansion
executes in output size. As a result, in queries where the output
size is significantly larger than the input, the parallelization
of such oblivious building block becomes substantial.
Obliviousness and Security. The algorithm for non-foreign-
key joins leaks no information to the adversary besides the
output size; L = Dout . As in Section 3.2, we can hide the
output size by padding to the worst-case output size, or we can
use adjustable padding [43]. On the other hand, for foreign-
key joins, our approach has no leakage since the output size is
bounded by the size of the foreign-key table, which is already
known to the adversary. Intuitively, the obliviousness of our
algorithms follows directly from that of the used oblivious
primitives. All memory accesses and computations are data-
independent. See our extended version for a formal proof.

4.2 Oblivious Filter
Description. Filter queries allow users to retrieve specific sub-
sets of elements from a database (e.g., point or range queries).
For instance, the result of the following query will return only
the tuples of customers that are named ‘John.’

SELECT * FROM Customers WHERE name = ’John’;

Oblivious filtering ensures no adversary can distinguish which
tuples of the database are filtered.
Prior Approach. The standard way for oblivious filters is
from Opaque [131]. (1) Firstly, a scan to mark the tuples
that satisfy the condition O(n/p), (2) then, it performs an
oblivious sort with complexity O((n log2 n)/p) to bring these
elements to the beginning of the array and return them to the
client, resulting in a total runtime of O((n log2 n)/p).
Our Solution. We observe that the oblivious sort in the
prior approach can be replaced with an oblivious compaction,
which is faster both asymptotically and in practice (see
Section 2). This motivates our first approach, yielding a
total complexity of O((n logn)/p), which improves by a
logn-factor over sorting/Opaque’s approach. Our second ap-
proach involves oblivious shuffling to break dependencies
in the access patterns across the table’s rows, followed by a
parallel non-oblivious scan.
Efficiency and Breakdown. According to Section 2, both
the oblivious compaction and shuffle lead to O(n logn) com-
plexity. Hence, our approaches result in time complexity
O(n logn), which can be further reduced to O((n logn)/p),
with p processing units. Our first improvement is theoreti-
cal due to the reduced time complexity. Additionally, both
approaches improve the practicality of oblivious filters in
the following ways. Our first approach exploits an oblivious
compaction (step 2), which requires significantly less exe-
cution time compared to an oblivious sort, as mentioned in
Section 2. Our second approach uses an oblivious shuffle in-
stead of an oblivious sort. While an oblivious shuffle provides

only marginal improvements over an oblivious sort, it proves
beneficial in scenarios where preprocessing part of the com-
putation is possible (see Section 2). However, since we do
not operate in an offline/online setting, our evaluation reflects
the results of our first approach. Nonetheless, our second ap-
proach would also outperform Opaque. Table 1 contains the
complexities and concrete time when performing an oblivious
filter. In particular, for n = 224, Opaque spends 0.05 and 9.35
seconds on scan and sort. Obliviator spends 0.04 and 0.82
seconds on scan and compaction.
Obliviousness and Security. Once again, the adversary only
learns the output size; hence L = Dout . However, for filter
queries, we can easily hide the output size by not truncat-
ing the table but replacing the tuples that do not satisfy the
query with dummies. Regarding security, both approaches are
oblivious. The first one consists of oblivious compaction and
scanning over the table, plus truncation per the result size. For
the second, since we obliviously shuffle the table, there is no
information that correlates the fact that we included, say, the
j-th element with its original position in the table. A formal
proof can be found in our extended version.

4.3 Oblivious Aggregation

Description. In databases, aggregation queries are performed
to generate statistics or a summary of multiple rows. E.g., the
query SELECT f FROM T GROUP-BY attr will calculate an
aggregation function f over the rows of a table after they are
grouped based on their values on attr. In practice, f may
correspond, e.g., to {Min, Max, Sum, Avg, Distinct}, etc.
Prior Approach. Opaque [131] handles aggregation queries
by first performing an oblivious sort based on attr, “forming”
the groups. Then, it scans the tuples to compute f for each
group. This scan has to be sequential, since in some cases
(e.g., Sum), the value of each tuple depends on previous ones.
Lastly, each partition performs an oblivious sort to discard
the dummy rows. This approach results in a O(n log2 n) com-
plexity, even if the input is pre-sorted. In the parallel setting,
the complexity is updated to O((n log2 n)/p+n), as sorting
can be parallelized but the scan must remain sequential.
Our Solution. Similar to Opaque, our algorithm must sort
the input, in order to form the chunks. Next, we observe that
the result of the aggregation function f can be computed by
deploying a FULL oblivious aggregation tree. Lastly, since in
aggregation queries we only require one tuple of each chunk,
we use oblivious compaction based on the tag bits to filter
excess tuples from each chunk to the end of the table.
Efficiency and Breakdown. Our algorithm is primarily
bounded by the oblivious sorting (Section 2) in the first step
required in the input, leading to an overall complexity of
O(n log2 n). Once the input is sorted, the subsequent steps of
the aggregation tree (Section 3.1) and oblivious compaction
(Section 2) execute in O((n logn)/p), where p denotes the
number of parallel processing units. Compared to Opaque,

our improved performance stems from replacing the linear
scan with a parallel aggregation tree (see Section 3.1). For an
aggregation query with n = 224, the 32-thread oblivious sort
and linear scan take 0.76 seconds and 0.13 seconds, respec-
tively. This performance gap narrows further when evaluating
complex queries (see Section 5). Together with the discussion
in Section 3.1, this highlights the advantages of aggregation
trees as a more efficient alternative to linear scans. Moreover,
we replace oblivious sort with oblivious compaction, which
offers significant speedups (see Sections 2 and 4.2).

We further compare the performance of oblivious aggre-
gation in Table 1. The breakdown times are as follows. For
n = 224 elements, Opaque’s initial sort, the linear scan, and
final sort to discard dummies, take 13.17, 0.13 and 13.15 sec-
onds, respectively. In contrast, our method achieves much
lower times: oblivious sort, aggregation tree, and oblivious
compaction take 9.30, 0.13, and 0.53 seconds, respectively.
Obliviousness and Security. Our solution is clearly obliv-
ious as it consists of running an oblivious aggregation tree
followed by an oblivious compaction, only revealing the input
size and the result size (i.e., the number of groups); hence,
L = Dout . As in the previous section, we can choose not to
truncate the array and replace the excess rows in a group with
dummies, thus hiding the result size from the adversary. The
proof can be seen in our extended version.

5 Experiments

Experimental Setup. We ran our experiments on
Azure DCsv3-series with Intel’s SGXv2. We used
Standard_DC32s_v3 virtual machine with 3rd Generation
Intel® Xeon Scalable Processor 8370C, 32 physical cores,
and 256 GiB of memory, where 192 GiB is EPC, running on
Ubuntu 20.04. We implemented our oblivious operators in C,
using the parallel version of the oblivious bitonic sort and
oblivious shuffling introduced in [96], and ORCompact [103]
for oblivious compaction. For oblivious writes, swaps, and
comparisons, we use the oblivious primitives from Section 2.
In all experiments, implementations are compiled with -O3
optimizations unless stated otherwise. Additionally, the
default block size is B = 32 bytes, which stores the join
attribute, the tuple ID, and some metadata. Experiments were
repeated five times, and the average result is reported.1 For
the rest of this section, we will refer to our implementations
as OBL for our oblivious operators and FOBL for our
optimization on foreign key joins. the number following an
implementation denotes the number of threads used in that
experiment. For instance, FOBL32 refers to the execution of
our foreign key join algorithm on 32 threads.
Baselines. We compare our implementation of non-foreign
key joins with that of Krastnikov et al. [76], which we will
refer to as KKS. As stated in [76], KKS is not oblivious

1The code is available at [1].

when compiled with -O3 optimizations. We used Intel’s Pin
Tool [67] (also used in [76]) to verify that their implementa-
tion is not oblivious in -O3, but only in -O2. We isolated
that this occurs due to their implementation of oblivious
writes, swaps, and comparisons (see Appendix A). We re-
implemented KKS’s writes, swaps, and comparisons using
our approach described in Section 2. We refer to this version
of [76] code as KKS*. To ensure no violations of oblivi-
ousness and to maintain fair comparisons in all subsequent
experiments, KKS is compiled with -O2 optimizations, while
KKS* is compiled with -O3. As demonstrated below, our
modifications made KKS* both more secure and efficient.

Opaque [131] (denoted as OPQ) is designed for a dis-
tributed shared-nothing setting and is not an immediate com-
petitor to our work. However, Opaque’s concepts can be
adapted to our shared-memory context. Therefore, we imple-
mented a variant of Opaque [131] for shared-memory scenar-
ios, focusing on filter, aggregation, and foreign key queries2.
Other approaches. Another approach for oblivious joins in-
volves using oblivious index nested loop joins from Chang
et al. [30]. Although that work targets a different setting, as-
suming the existence of a trusted proxy, it can be adapted
to our trusted-hardware setting using an ORAM/Data Struc-
ture approach “friendly” to hardware enclaves. We tested
the approach of [30] using the state-of-the-art such oblivious
data structure Omix++ from [25] that proposes an improved-
efficiency eviction algorithm. However, Omix++ cannot be
parallelized since eviction is an atomic operation in ORAMs.
Unfortunately, its performance is much worse than ours (for
reference, on n = 210 elements on a foreign key join it re-
quires 47.66 seconds, while our foreign key algorithm takes
0.30 milliseconds–see Table 1). Due to this, we do not include
any results achieved with Omix++ to the experiments below.
Datasets. Obliviousness is a very strong security property that
prevents any information from being leaked to adversaries for
the input data (except the defined leakage). For selection, ag-
gregation (without truncation), and foreign-key joins, which
are zero-leakage cases, the algorithm’s behavior, including
memory access patterns and performance costs, remains iden-
tical for any input of the same size. This means that any real
or synthetic dataset of the same size will be indistinguishable
and exhibit the same performance. For non-foreign-key joins,
the same applies to any dataset with the same input and out-
put sizes (since the join result size is leaked if padding is not
used). Hence, the data contents are not important (neither for
the memory access patterns nor for the performance), but the

2Opaque relies on a mix of column-sort (used in distributed environments),
tunable-oblivious sort, and sequential scan-based operators. In our shared-
memory context, column-sort introduces unnecessary overhead, so we do not
use it. To match our security level and prevent side-channel attacks, tunable
obliviousness must be set to full (i.e., double) obliviousness. Instead of using
Opaque’s column sort, we employ [96]’s optimized version. To the best of
our knowledge, we implemented Opaque’s algorithms in the most efficient
way for our setting. Interestingly, our approach could also improve Opaque
in their distributed shared-nothing environment.

220 222 224 226 228 230

Output size

0

2000

4000

6000

8000

R
u
n
ti

m
e
 (

s
)

100

101

102

OBL

KKS

KKS*

(a) Single thread comparison

1 2 4 8 16 32

Number of threads

0

250

500

750

1000

1250

1500

1750

2000

R
u
n
ti

m
e
 (

s
)

101

102

103

N=226 N=228 N=230

(b) Multi-thread runtime (c) Multi-thread speedup

Figure 9: Experiments on Synthesized Dataset. (a) demonstrates the performance of all implementations on non-foreign key joins.
(b) demonstrates OBLIVIATOR’s scalability. (c) illustrates the speedup relative to our single-threaded runtime across varying data
sizes, with the dashed line representing ideal speedup. In (b) and (c), N refers to the output size (i.e., N = 2n).

SQ1 SQ2 SQ3

100

101

102

103

R
u
n
ti

m
e
 (

s
)

OBL

KKS

OBL32

KKS*

SQ1 SQ2 SQ3
100

101

102

103

R
u
n
ti

m
e
 (

s
)

OBL

KKS

OBL32

KKS*

Figure 10: Evaluation of our algorithm against KKS for three
non-foreign key join queries on the datasets from the TPC-H
benchmark used in [30]. The left plot demonstrates scaling
factor s = 1.0, whereas the plot on the right s = 1.6.

block sizes and number of elements are. For synthesized data,
we first generated a dataset using a tool from [76] consisting
of two tables each of size n, with a predetermined output size
of 2n, and used this for non-foreign key join queries. We also
used the datasets of the TPC-H benchmark [112] and ran the
same (non-foreign key and foreign ke)y equi-join queries as
Chang et al. [30] (see Appendix C for details). We used larger
scaling factors than [30], demonstrating the practicality of our
approaches. We also used the Big Data Benchmark [7] that
has been tested in prior works [50, 131].

For real-world data, we experimented on five open-source
datasets: Amazon [81, 126], Jokes [56, 81], Slashdot [79, 81],
IMDb [79, 81], and Twitter Social Graph (TSG) [24, 30, 82].
The first four are used in FEJ-Bench [81]. The last one was
used in Chang et al. [30] with 3 join queries, SE-1, SE-2, and
SE-3, which we adopt here. We note that in that work they
could only use a reduced-size version of the dataset, whereas
here we use the full dataset (sizes range from 11.2 MB to 19
GB), leading to a more expansive evaluation. Finally, going
beyond simple joins, to evaluate our other operators, we ran
more complex queries from the BDB datasets the TPC-H
benchmark (namely, TPC-H queries Q3, Q5, and Q6, which
include foreign key joins, filters and multiple aggregations).

5.1 Join Query Performance
Figure 9 shows the evaluation of Obliviator, KKS, and KKS*
on synthesized tables generated with the tool of [76]. Tables
consist of n elements, with the join results containing 2n el-
ements. Input sizes range from 64MB to 64GB. In detail,
Figure 9 (a) demonstrates the performance of the three im-

plementations in a sequential setting with varying input sizes.
Notably, the modifications we made to KKS not only ren-
der it oblivious but also enhance its efficiency. Additionally,
the figure indicates that as the input size increases, our ap-
proach outperforms both KKS and KKS*. Specifically, our
approach is 4.61−5.14× better than KKS, and 3.68−3.95×
than KKS*. For instance, with an input and output size of 64
GB in total, our approach completes the join in 33 minutes;
meanwhile, KKS takes 155 minutes, and KKS* takes 124
minutes. As mentioned in the Introduction, this improvement
is expected since we reduce the number of oblivious sorts,
parallelize every step of our algorithm, and use better obliv-
ious primitives than KKS. Furthermore, Figure 9 (b) shows
the scalability of our algorithm. Our runtime significantly
drops (8.96−20.51×) when transitioning from the sequen-
tial to the parallel setting with 32 threads, and it also performs
39.48× and 41.23× faster compared to KKS* and KKS, re-
spectively. Specifically, for the same input/output (i.e., for
64 GB) size mentioned above, it completes the join in 226
seconds. Finally, in Figure 9 (c), we illustrate the speed-up
of our approach compared to our sequential approach across
variable input/output sizes (tested up to 64 GB for N = 230).

We also tested on data generated from the TPC-H bench-
mark and ran the non-foreign key join queries described in
Appendix C (see Figure 10). Scaling factors s = 1 and s = 1.6
were chosen to ensure the output of the third query fits within
the available EPC memory. The input sizes range from 610
KB to 14.65 MB, while the output sizes vary from 244.58 MB
to 137.3 GB. We were unable to run KKS with scaling factors
above s = 1.0 for the third query due to the prolonged run-
time required. Figure 10 highlights the performance of our ap-
proach compared to KKS and KKS* on a single thread. Our
method outperforms both approaches across all queries and
scaling factors, achieving improvements of 3.21×−3.54×
over KKS and 2.86×−3.11× over KKS*. These improve-
ments are even more pronounced in the parallel setting, where
our approach achieves peak improvements of 27.25× and
24.31× compared to KKS and KKS*, respectively.
Foreign Key Joins. While our focus has been on non-foreign
key joins, we also tested a foreign key join on the same TPC-
H generated dataset (also shown in Appendix C) with scaling

FOBL FOBL32 OPQ OPQ32
IMDb 26.8477 2.2722 71.1326 3.7023

Table 2: Execution time (in sec) of the foreign key join FOBL,
FOBL32, OPQ and OPQ32 for the real-world dataset, IMDb.

OBL OBL32 KKS KKS∗

SE-1 143.85 13.25 1010.43 765.20
TSG SE-2 281.30 23.60 1630.24 1243.44

SE-3 2928.68 391.48 N/A N/A
Amazon 5.78 0.54 28.09 21.69

Jokes 1.33 0.09 7.92 5.22
Slashdot 50.18 4.42 194.92 163.52

Table 3: Execution time (in sec) of non-foreign key joins
OBL, OBL32, KKS, and KKS∗ for four real-world datasets.

factors s = 1,5,10,50, input sizes from 229 MB to 22.35 GB,
and output sizes from 366.29 MB to 17.88 GB. The top left
figure in Figure 11 shows the execution times of our foreign-
key oblivious approach compared to the modified Opaque
described above. In a sequential setting, we are approximately
2.98× faster; this speedup significantly improves in the paral-
lel setting, where it peaks at 60× against Opaque’s sequential
execution. Our improvement is expected since, for foreign
key joins, our algorithm replaces one oblivious sort with an
oblivious compaction and performs aggregations in parallel,
whereas Opaque requires extra oblivious sort and linear scans.
Experiments on Real-world Datasets Regarding real data,
for non-foreign key joins we compare our OBL and its 32-
thread version OBL32 with KKS and KKS∗ [76], on the Ama-
zon [81, 126], Jokes [56, 81], Slashdot [79, 81], and Twitter
Social Graph [24, 30, 82] datasets (Table 3). For foreign-key
joins, we compare our foreign key algorithm (FOBL) with
Opaque and their 32-thread versions FOBL32 and OPQ32 on
the IMDb dataset [79, 81] (Table 2). The total input/output
size of the joins ranges between 221-231 (110 MB - 67 GB).

Overall, our methods are significantly faster than prior ones,
e.g., OBL32 becomes up to 77x and 57x faster than KKS and
KKS*, respectively. Note that we are unable to run KKS and
KKS∗ on SE-3 due to the very long times required. Addi-
tionally, our algorithm outperforms Opaque with speedups of
2.64× and 1.7× in the sequential and parallel setting.

5.2 Other Operators and Complex Queries

We tested our other operators with two queries from the BDB
dataset: Q1 which is a scan query (involving our filter op-
erator), and Q2 which is an aggregation. Furthermore, we
experimented with running more complex queries consisting
of multiple operators. Specifically, BDB Q3 involves filtering,
followed by a foreign-key join and an aggregation. Finally,
we evaluated three complex queries from TPC-H that involve
series of filtering operations, followed by joins and/or aggre-
gation. As discussed previously, for such complex queries we
break them into subqueries and evaluate each operator sepa-
rately. For all the above we compare Obliviator with Opaque
which is the only other system that can handle such queries.

Figure 11: Evaluation of the foreign key join of Obliviator
and Opaque on the TPC-H generated dataset (top left), the
complex queries Q3, Q5, and Q6 from TPC-H benchmark
(top right), and on Big Data Benchmark: (Q1) Scan Query,
(Q2) Aggregation Query, (Q3) Complex Query (bottom).

TPC-H. We ran queries Q3, Q5, and Q6 from the TPC-H
benchmark [3]. The top right figure in Figure 11 compares the
performance of Opaque and our system, Obliviator, in both
single-threaded and multi-threaded settings with a scaling
factor s = 50. The input sizes range from 36.82 GB to 46.21
GB, and the output sizes vary from 840 bytes to 26.96 MB.
In the sequential setting, Obliviator outperforms Opaque by
3.33−15.22×. In the parallel setting with 32 threads, Oblivi-
ator outperforms Opaque by 2.65−11.01×.
Big Data Benchmark. The bottom middle figure in Figure 11
demonstrates the performance of our oblivious operators on
the benchmark’s queries. In the scan query (Q1), we achieve
15.9× improvement compared to Opaque. In the parallel set-
ting, this improvement escalates to 52.3× and 2.8× against se-
quential and parallel Opaque, respectively. The improvement
on a single thread stems from the practicality of compaction.
However, OSORT exhibits superior scalability, narrowing the
gap to 2.8×. For the aggregation query (Q2), we perform
better in the sequential setting due to replacing one OSORT
with more practical oblivious compaction, reaching a speedup
of 2.6×. Additionally, with 32 threads, we are up to 53× and
2.5× faster than Opaque in sequential and parallel modes.

Finally, for Q3 we are 2.58× faster than Opaque in the
sequential case and up to 37.57× and 11.87× faster compared
to 1 and 32 threads Opaque. Once again, our improvement
is expected since, for all queries, we reduce the number of
oblivious sorts and perform parallel executions in all steps.

6 Conclusion
We introduced OBLIVIATOR, a highly scalable oblivious re-
lational database approach for shared memory environments.
OBLIVIATOR outperforms [76, 131] both in the sequential
and the parallel setting. Our main contributions are efficient
algorithms for oblivious database equi-joins for non-foreign
and foreign key joins, i.e., leaking no information besides the
size of the input and output relations.

Acknowledgments

We would like to thank the anonymous reviewers and our shep-
herd for their constructive feedback. This work was partially
supported by the Sui Foundation via an Academic Research
Award.

Ethics Considerations & Open Science

Our work is in full accordance with the USENIX ‘25 ethics
guidelines. We propose new algorithms and implement sys-
tems with a positive impact on preserving data privacy. Our
experiments involved neither testing on live systems with-
out prior consent, nor human participants. All our tests were
executed either on synthetic datasets whose creation we de-
scribe or on already publicly available real-world datasets.
They include TPC-H, a synthesized benchmark with created
contents, a twitter social graph that is available to the public
and contains the anonymized topology of the Twitter social
network (also used in [24,30,82]), a public IMDb dataset that
contains the public information of title names and actors (used
in [79, 81]), a public Amazon dataset that records frequently
co-purchased products (used in [81, 126]), a joke dataset that
contains anonymous ratings of jokes by different users (used
in [56,81]), and slashdot dataset that contains technology news
website with friend/foe links between users (used in [79, 81]).
We would like to point out that none of these benchmarks/-
datasets can cause any type of harm and are strictly used to
evaluate our algorithms. Additionally, we open-source all ar-
tifacts required for recreating our algorithms and experiments
in our anonymous repository [1]. They include all our code in
this paper, scripts to generate the synthesized dataset, scripts
to process public benchmark and datasets, configuration in-
formation, and scripts to reproduce our evaluation.

References

[1] Obliviator. https://zenodo.org/records/14723872.

[2] Open enclave. https://github.com/openenclave/
openenclave.

[3] Tpc-h benchmark. http://www.tpc.org/tpch.

[4] Mohamed Ahmed Abdelraheem, Tobias Andersson, and
Christian Gehrmann. Inference and record-injection attacks
on searchable encrypted relational databases. IACR Cryptol.
ePrint Arch., 2017.

[5] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, In-
sik Shin, and Byoungyoung Lee. Obfuscuro: A commodity
obfuscation engine on intel sgx. In NDSS, 2019.

[6] Amazon. Amazon redshift - cloud data warehouse - aws.
https://aws.amazon.com/, 2024.

[7] AMPLab, University of California, Berkley. Big data bench-
mark. https://amplab.cs.berkeley.edu/benchmark/,
2014.

[8] Erik Anderson, Melissa Chase, F Betül Durak, Esha Ghosh,
Kim Laine, and Chenkai Weng. Aggregate measurement via
oblivious shuffling. IACR Cryptol. ePrint Arch., 2021.

[9] Panagiotis Antonopoulos, Arvind Arasu, Kunal D Singh, Ken
Eguro, Nitish Gupta, Rajat Jain, Raghav Kaushik, Hanuma
Kodavalla, Donald Kossmann, Nikolas Ogg, et al. Azure sql
database always encrypted. In SIGMOD, 2020.

[10] Arvind Arasu, Ken Eguro, Raghav Kaushik, and Ravi Rama-
murthy. Querying encrypted data. In ICDE, 2013.

[11] ARM Limited. Arm trustzone technology. Technical report,
ARM Holdings, 2004.

[12] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind, Di-
vya Muthukumaran, Dan O’keeffe, Mark L Stillwell, et al.
{SCONE}: Secure linux containers with intel {SGX}. In
OSDI’16, 2016.

[13] Gilad Asharov, TH Hubert Chan, Kartik Nayak, Rafael Pass,
Ling Ren, and Elaine Shi. Bucket oblivious sort: An ex-
tremely simple oblivious sort. In SOSA, pages 8–14, 2020.

[14] Microsoft Azure. Azure sql - family of sql cloud
databases. https://azure.microsoft.com/en-us/
products/azure-sql, 2024.

[15] Saikrishna Badrinarayanan, Sourav Das, Gayathri Garimella,
Srinivasan Raghuraman, and Peter Rindal. Secret-shared joins
with multiplicity from aggregation trees. In CCS, 2022.

[16] Kenneth E Batcher. Sorting networks and their applications.
In AFIPS, 1968.

[17] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel,
Abel N Kho, and Jennie Rogers. Smcql: Secure query pro-
cessing for private data networks. PVLDB, 2017.

[18] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala,
and Jennie Rogers. Shrinkwrap: efficient sql query processing
in differentially private data federations. PVLDB, 2018.

[19] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya
Mironov, Ananth Raghunathan, David Lie, Mitch Rudominer,
Ushasree Kode, Julien Tinnes, and Bernhard Seefeld. Prochlo:
Strong privacy for analytics in the crowd. In SOSP, 2017.

[20] Guy E Blelloch. Prefix sums and their applications. 1990.

[21] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari
Kostiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Soft-
ware Grand Exposure: SGX Cache Attacks Are Practical. In
11th USENIX Workshop on Offensive Technologies (WOOT
17), 2017.

[22] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart.
Leakage-abuse attacks against searchable encryption. In CCS,
2015.

[23] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla,
Hugo Krawczyk, M Rosu, and Michael Steiner. Dynamic
Searchable Encryption in Very-Large Databases: Data Struc-
tures and Implementation. In NDSS, 2014.

[24] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and
Krishna P. Gummadi. Measuring User Influence in Twitter:
The Million Follower Fallacy. In ICWSM.

https://zenodo.org/records/14723872
https://github.com/openenclave/openenclave
https://github.com/openenclave/openenclave
https://aws.amazon.com/
https://amplab.cs.berkeley.edu/benchmark/
https://azure.microsoft.com/en-us/products/azure-sql
https://azure.microsoft.com/en-us/products/azure-sql

[25] Javad Ghareh Chamani, Ioannis Demertzis, Dimitrios Pa-
padopoulos, Charalampos Papamanthou, and Rasool Jalili.
Graphos: Towards oblivious graph processing. Proc. VLDB
Endow., 16(13):4324–4338, 2023.

[26] Javad Ghareh Chamani, Dimitrios Papadopoulos, Moham-
madamin Karbasforushan, and Ioannis Demertzis. Dynamic
searchable encryption with optimal search in the presence of
deletions. USENIX Security, 2022.

[27] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalam-
pos Papamanthou, and Rasool Jalili. New constructions for
forward and backward private symmetric searchable encryp-
tion. In CCS, 2018.

[28] Javad Ghareh Chamani, Yun Wang, Dimitrios Papadopoulos,
Mingyang Zhang, and Rasool Jalili. Multi-user dynamic
searchable symmetric encryption with corrupted participants.
IEEE Trans. Dependable Secur. Comput., 2023.

[29] Yan-Cheng Chang and Michael Mitzenmacher. Privacy Pre-
serving Keyword Searches on Remote Encrypted Data. In
ACNS, 2005.

[30] Zhao Chang, Dong Xie, Sheng Wang, and Feifei Li. Towards
practical oblivious join. In SIGMOD, 2022.

[31] Melissa Chase and Seny Kamara. Structured Encryption and
Controlled Disclosure. In ASIACRYPT, 2010.

[32] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and
Yinqian Zhang. Detecting privileged side-channel attacks in
shielded execution with déjà vu. In Ramesh Karri, Ozgur
Sinanoglu, Ahmad-Reza Sadeghi, and Xun Yi, editors, Asi-
aCCS, 2017.

[33] Nathan Chenette, Kevin Lewi, Stephen A Weis, and David J
Wu. Practical order-revealing encryption with limited leakage.
In FSE. Springer, 2016.

[34] Google Cloud. Cloud sql for mysql, postgresql, and sql server.
https://cloud.google.com/sql, 2024.

[35] Richard Cole and Uzi Vishkin. Faster optimal parallel prefix
sums and list ranking. 1989.

[36] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Sanc-
tum: Minimal hardware extensions for strong software isola-
tion. In Thorsten Holz and Stefan Savage, editors, USENIX
Security, 2016.

[37] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel,
Rachit Agarwal, and Lorenzo Alvisi. Obladi: Oblivious seri-
alizable transactions in the cloud. In OSDI, 2018.

[38] D. Kaplan, J. Powell, and T. Woller. Amd memory encryption.
Technical report, 2016.

[39] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha
Crooks, and Raluca Ada Popa. Snoopy: Surpassing the scala-
bility bottleneck of oblivious storage. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Princi-
ples, New York, NY, USA, 2021. Association for Computing
Machinery.

[40] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha
Crooks, and Raluca Ada Popa. Snoopy: Surpassing the scala-
bility bottleneck of oblivious storage. In SOSP, 2021.

[41] Jonathan L Dautrich Jr and Chinya V Ravishankar. Com-
promising Privacy in Precise Query Protocols. In EDBT,
2013.

[42] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Pa-
padopoulos, and Charalampos Papamanthou. Dynamic
searchable encryption with small client storage. NDSS, 2020.

[43] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Pa-
pamanthou, and Saurabh Shintre. {SEAL}: Attack mitigation
for encrypted databases via adjustable leakage. In USENIX,
2020.

[44] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papa-
petrou, Antonios Deligiannakis, and Minos Garofalakis. Prac-
tical Private Range Search Revisited. In SIGMOD, 2016.

[45] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papa-
petrou, Antonios Deligiannakis, Minos Garofalakis, and Char-
alampos Papamanthou. Practical private range search in depth.
TODS, 2018.

[46] Ioannis Demertzis, Rajdeep Talapatra, and Charalampos Pa-
pamanthou. Efficient searchable encryption through compres-
sion. PVLDB, 2018.

[47] Sam Dittmer and Rafail Ostrovsky. Oblivious tight com-
paction in O(n) time with smaller constant. In SCN. Springer,
2020.

[48] F Betül Durak, Chenkai Weng, Erik Anderson, Kim Laine,
and Melissa Chase. Precio: Private aggregate measurement
via oblivious shuffling. Cryptology ePrint Archive, 2021.

[49] Muhammad El-Hindi, Tobias Ziegler, Matthias Heinrich,
Adrian Lutsch, Zheguang Zhao, and Carsten Binnig. Bench-
marking the second generation of intel sgx hardware. In
DaMoN, 2022.

[50] Saba Eskandarian and Matei Zaharia. Oblidb: oblivious query
processing for secure databases. PVLDB, 2019.

[51] Christopher W Fletcher, Ling Ren, Albert Kwon, Marten
Van Dijk, Emil Stefanov, Dimitrios Serpanos, and Srinivas
Devadas. A low-latency, low-area hardware oblivious ram
controller. In FCCM, 2015.

[52] Kyle Fredrickson, Ioannis Demertzis, James Hughes, and Dar-
rell Long. Sparta: Practical anonymity with long-term resis-
tance to traffic analysis. In SP, 2024.

[53] Craig Gentry. A Fully Homomorphic Encryption Scheme.
PhD thesis, Stanford University, 2009.

[54] Craig Gentry. Computing Arbitrary Functions of Encrypted
Data. Commun. of the ACM, 2010.

[55] Matthieu Giraud, Alexandre Anzala-Yamajako, Olivier
Bernard, and Pascal Lafourcade. Practical passive leakage-
abuse attacks against symmetric searchable encryption. In
Pierangela Samarati, Mohammad S. Obaidat, and Enrique
Cabello, editors, ICETE, 2017.

[56] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris
Perkins. Eigentaste: A constant time collaborative filtering
algorithm. Springer, 2001.

[57] Michael T Goodrich, Michael Mitzenmacher, Olga Ohri-
menko, and Roberto Tamassia. Oblivious ram simulation
with efficient worst-case access overhead. In ACM CCSW,
2011.

https://cloud.google.com/sql

[58] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and
Tilo Müller. Cache attacks on Intel SGX. In Proceedings
of the 10th European Workshop on Systems Security, page 2.
ACM, 2017.

[59] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Ken-
neth G. Paterson. Pump up the volume: Practical database
reconstruction from volume leakage on range queries. In
David Lie, Mohammad Mannan, Michael Backes, and Xi-
aoFeng Wang, editors, Proceedings of ACM SIGSAC Con-
ference on Computer and Communications Security, pages
315–331. ACM, 2018.

[60] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Ken-
neth G. Paterson. Learning to reconstruct: Statistical learning
theory and encrypted database attacks. In IEEE Symposium
on Security and Privacy, pages 1067–1083. IEEE, 2019.

[61] Paul Grubbs, Richard McPherson, Muhammad Naveed,
Thomas Ristenpart, and Vitaly Shmatikov. Breaking web
applications built on top of encrypted data. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1353–1364. ACM, 2016.

[62] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko,
Istvan Haller, and Manuel Costa. Strong and efficient cache
side-channel protection using hardware transactional memory.
In USENIX, 2017.

[63] Tianyao Gu, Yilei Wang, Bingnan Chen, Afonso Tinoco,
Elaine Shi, and Ke Yi. Efficient oblivious sorting and shuf-
fling for hardware enclaves. Cryptology ePrint Archive, 2023.

[64] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. En-
crypted databases: New volume attacks against range queries.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, CCS, 2019.

[65] Marcus Hähnel, Weidong Cui, and Marcus Peinado. High-
resolution side channels for untrusted operating systems. In
USENIX ATC, 2017.

[66] Mark Harris, Shubhabrata Sengupta, and John D Owens. Par-
allel prefix sum (scan) with cuda. GPU gems, 2007.

[67] Intel. Pin - a dynamic binary instru-
mentation tool. https://www.intel.com/
content/www/us/en/developer/articles/tool/
pin-a-dynamic-binary-instrumentation-tool.html.

[68] Intel Corporation. Pin - A Dynamic Binary Instrumentation
Tool, 2004.

[69] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantar-
cioglu. Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In NDSS, 2012.

[70] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam
O’Neill. Generic attacks on secure outsourced databases. In
CCS, 2016.

[71] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, et al. Spectre attacks: Exploiting
speculative execution. CACM, 2020.

[72] Evgenios M Kornaropoulos, Nathaniel Moyer, Charalampos
Papamanthou, and Alexandros Psomas. Leakage inversion:
Towards quantifying privacy in searchable encryption. In
CCS, 2022.

[73] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and
Roberto Tamassia. Data recovery on encrypted databases with
k-nearest neighbor query leakage. In SP. IEEE, 2019.

[74] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and
Roberto Tamassia. The state of the uniform: Attacks on
encrypted databases beyond the uniform query distribution.
In IEEE Symposium on Security and Privacy, pages 1223–
1240. IEEE, 2020.

[75] Evgenios M Kornaropoulos, Charalampos Papamanthou, and
Roberto Tamassia. Response-hiding encrypted ranges: Revis-
iting security via parametrized leakage-abuse attacks. In SP,
2021.

[76] Simeon Krastnikov, Florian Kerschbaum, and Douglas Ste-
bila. Efficient oblivious database joins. VLDB, 2020.

[77] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Pater-
son. Improved reconstruction attacks on encrypted data using
range query leakage. In SP, 2018.

[78] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanović, and Dawn Song. Keystone: An open framework
for architecting trusted execution environments. In EuroSys,
2020.

[79] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg.
Signed networks in social media. In SIGCHI, 2010.

[80] Kevin Lewi and David J Wu. Order-revealing encryption:
New constructions, applications, and lower bounds. In CCS,
2016.

[81] Shuyuan Li, Yuxiang Zeng, Yuxiang Wang, Yiman Zhong,
Zimu Zhou, and Yongxin Tong. An experimental study on
federated equi-joins. TKDE, 2024.

[82] Xiang Li, Nuozhou Sun, Yunqian Luo, and Mingyu Gao.
Soda: A set of fast oblivious algorithms in distributed secure
data analytics. 2023.

[83] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown. arXiv
preprint arXiv:1801.01207, 2018.

[84] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-an Tan.
Search pattern leakage in searchable encryption: Attacks and
new construction. Inf. Sci., 2014.

[85] Qiyao Luo, Yilei Wang, Ke Yi, Sheng Wang, and Feifei Li. Se-
cure sampling for approximate multi-party query processing.
PACMMOD, 2023.

[86] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del
Cuvillo. Using innovative instructions to create trustworthy
software solutions. Technical report, 2013.

[87] Kajetan Maliszewski, Jorge-Arnulfo Quiané-Ruiz, and Volker
Markl. Cracking-like join for trusted execution environments.
PVLDB, 2023.

[88] Kajetan Maliszewski, Jorge-Arnulfo Quiané-Ruiz, Jonas
Traub, and Volker Markl. What is the price for joining se-
curely? benchmarking equi-joins in trusted execution envi-
ronments. PVLDB, 2021.

https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html

[89] Evangelia Anna Markatou and Roberto Tamassia. Full
database reconstruction with access and search pattern leak-
age. In Zhiqiang Lin, Charalampos Papamanthou, and
Michalis Polychronakis, editors, ISC. Springer, 2019.

[90] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi,
Simon Johnson, Rebekah Leslie-Hurd, and Carlos Rozas. In-
tel® software guard extensions (intel® sgx) support for dy-
namic memory management inside an enclave. In HASP,
2016.

[91] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V
Rozas, Hisham Shafi, Vedvyas Shanbhogue, and Uday R Sav-
agaonkar. Innovative instructions and software model for
isolated execution. Hasp@ isca, 2013.

[92] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Ed-
ward W. Felten, and Michael J. Freedman. CONIKS: bringing
key transparency to end users. In USENIX Security Sympo-
sium, pages 383–398. USENIX Association, 2015.

[93] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro
Chiesa, and Raluca Ada Popa. Oblix: An efficient oblivious
search index. In IEEE SP, 2018.

[94] Priyanka Mondal, Javad Ghareh Chamani, Ioannis Demertzis,
and Dimitrios Papadopoulos. {I/O-Efficient} dynamic search-
able encryption meets forward & backward privacy. In
USENIX Security, 2024.

[95] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weins-
berg, Nina Taft, and Elaine Shi. Graphsc: Parallel secure com-
putation made easy. In 2015 IEEE symposium on security
and privacy, pages 377–394. IEEE, 2015.

[96] Nicholas Ngai, Ioannis Demertzis, Javad Ghareh Chamani,
and Dimitrios Papadopoulos. Distributed & scalable oblivious
sorting and shuffling. In SP, 2024.

[97] Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos
Gkantsidis, Markulf Kohlweiss, and Divya Sharma. Observ-
ing and preventing leakage in mapreduce. In Proceedings of
ACM SIGSAC Conference on Computer and Communications
Security, pages 1570–1581. ACM, 2015.

[98] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich,
and Hari Balakrishnan. CryptDB: Protecting Confidentiality
with Encrypted Query Processing. In SOSP, 2011.

[99] David Pouliot and Charles V. Wright. The shadow nemesis:
Inference attacks on efficiently deployable, efficiently search-
able encryption. In CCS 2016, pages 1341–1352. ACM,
2016.

[100] Christian Priebe, Kapil Vaswani, and Manuel Costa. En-
clavedb: A secure database using sgx. SP, 2018.

[101] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and
Stefano Tessaro. Taostore: Overcoming asynchronicity in
oblivious data storage. In 2016 IEEE Symposium on Security
and Privacy (SP), pages 198–217. IEEE, 2016.

[102] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher.
Zerotrace: Oblivious memory primitives from intel sgx. Cryp-
tology ePrint Archive, 2017.

[103] Sajin Sasy, Aaron Johnson, and Ian Goldberg. Fast fully obliv-
ious compaction and shuffling. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications
Security, 2022.

[104] Sajin Sasy, Aaron Johnson, and Ian Goldberg. Waks-on/waks-
off: Fast oblivious offline/online shuffling and sorting with
waksman networks. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Se-
curity, 2023.

[105] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine
Maurice, and Stefan Mangard. Malware guard extension:
Using SGX to conceal cache attacks. In International Con-
ference on Detection of Intrusions and Malware, and Vulner-
ability Assessment, pages 3–24. Springer, 2017.

[106] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus
Peinado. T-SGX: Eradicating Controlled-Channel Attacks
Against Enclave Programs. In NDSS, 2017.

[107] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and
Prateek Saxena. Preventing page faults from telling your
secrets. In AsiaCCS, 2016.

[108] Signal. https://github.com/signalapp/, 2014.

[109] Emil Stefanov, Marten Van Dijk, Elaine Shi, T.-H. Hubert
Chan, Christopher Fletcher, Ling Ren, Xiangyao Yu, and Srini-
vas Devadas. Path oram: An extremely simple oblivious ram
protocol. J. ACM, 2018.

[110] Emil Stefanov and Elaine Shi. Oblivistore: High performance
oblivious cloud storage. In IEEE SP, 2013.

[111] Raoul Strackx and Frank Piessens. Ariadne: A minimal ap-
proach to state continuity. In USENIX Security 16, 2016.

[112] Transaction Processing Performance Council. TPC Bench-
mark H (TPC-H). http://www.tpc.org/tpch/, 1992.

[113] Chia-Che Tsai, Donald E Porter, and Mona Vij. {Graphene-
SGX}: A practical library {OS} for unmodified applications
on {SGX}. In USENIX ATC, 2017.

[114] Stephen Tu, M Frans Kaashoek, Samuel Madden, and Nicko-
lai Zeldovich. Processing analytical queries over encrypted
data. 2013.

[115] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin,
Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F
Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Ex-
tracting the keys to the intel {SGX} kingdom with transient
{Out-of-Order} execution. In USENIX Security, 2018.

[116] Dhinakaran Vinayagamurthy, Alexey Gribov, and Sergey Gor-
bunov. Stealthdb: a scalable encrypted database with full sql
query support. PoPETs, 2019.

[117] Uzi Vishkin. Thinking in parallel: Some basic data-parallel
algorithms and techniques. 2010.

[118] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell,
Mayank Varia, Andrei Lapets, and Azer Bestavros. Conclave:
secure multi-party computation on big data. In EuroSys, 2019.

[119] Chenghong Wang, Johes Bater, Kartik Nayak, and Ashwin
Machanavajjhala. Incshrink: architecting efficient outsourced
databases using incremental mpc and differential privacy. In
SIGMOD, 2022.

[120] Sheng Wang, Yiran Li, Huorong Li, Feifei Li, Chengjin
Tian, Le Su, Yanshan Zhang, Yubing Ma, Lie Yan, Yuanyuan
Sun, et al. Operon: An encrypted database for ownership-
preserving data management. PVLDB, 2022.

https://github.com/signalapp/
http://www.tpc.org/tpch/

[121] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang,
XiaoFeng Wang, Vincent Bindschaedler, Haixu Tang, and
Carl A Gunter. Leaky cauldron on the dark land: Understand-
ing memory side-channel hazards in SGX. In CCS, 2017.

[122] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit oram: On
tightness of the goldreich-ostrovsky lower bound. In CCS,
2015.

[123] Yilei Wang and Ke Yi. Query evaluation by circuits. In
PODS, 2022.

[124] Yun Wang and Dimitrios Papadopoulos. Multi-user collusion-
resistant searchable encryption with optimal search time. In
ASIA CCS ’21: ACM Asia Conference on Computer and Com-
munications Security, pages 252–264, 2021.

[125] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels for
untrusted operating systems. In SP, 2015.

[126] Jaewon Yang and Jure Leskovec. Defining and evaluating
network communities based on ground-truth. In MDS, 2012.

[127] Chengliang Zhang, Junzhe Xia, Baichen Yang, Huancheng
Puyang, Wei Wang, Ruichuan Chen, Istemi Ekin Akkus, Paar-
ijaat Aditya, and Feng Yan. Citadel: Protecting data privacy
and model confidentiality for collaborative learning. In SoCC,
2021.

[128] Pan Zhang, Chengyu Song, Heng Yin, Deqing Zou, Elaine
Shi, and Hai Jin. Klotski: Efficient obfuscated execution
against controlled-channel attacks. In ASPLOS, 2020.

[129] Yanping Zhang, Johes Bater, Kartik Nayak, and Ashwin
Machanavajjhala. Longshot: Indexing growing databases
using mpc and differential privacy. PVLDB.

[130] Yupeng Zhang, Jonathan Katz, and Charalampos Papaman-
thou. All your queries are belong to us: The power of file-
injection attacks on searchable encryption. In USENIX, 2016.

[131] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada
Popa, Joseph E Gonzalez, and Ion Stoica. Opaque: An obliv-
ious and encrypted distributed analytics platform. In NSDI,
2017.

A Compiler Optimizations

As discussed in [76], third level compiler optimizations can
break obliviousness. -O2 and -O3 are compiler optimization
levels. -O2 enables a range of low-level transformations to
improve efficiency without significantly increasing compila-
tion time, while -O3 applies more aggressive optimizations,
such as advanced loop scheduling, high-order loop transforma-
tions, and inlining small procedures. In designing an oblivious
system, such optimizations must be carefully evaluated, as
they can compromise obliviousness. In this paragraph we
expand our discussion on how we experimented with Intel’s
Pin Tool [68] and what can lead to such result.

Intel’s Pin Tool is a dynamic binary instrumentation frame-
work that enables the creation of dynamic program analysis
tools. We used Intel’s Pin Tool to analyze the memory access

1 void foo (elem a [] , elem b [] , s i z e _ t n_) {
2 f o r (i n t i = 0 ; i < n_ ; i ++) {
3 a [i] = a [i] . x > b [i] . x ? a [i] : b [i] ;
4 }
5 }

Figure 12: An example of a ternary operation that will break
obliviousness.

1 mov eax , DWORD PTR [r s i]
2 cmp DWORD PTR [r d i] , eax
3 jg .L4
4 mov rax , QWORD PTR [r s i]
5 mov QWORD PTR [r d i] , r a x

Figure 13: Assembly code produced over line 3 of Figure 12.
This assembly shows how obliviousness is broken

locations and the number of instructions during the execution
of KKS. The paragraph below demonstrates why their code
breaks obliviousness on certain optimization levels and what
experiments were executed to prove that.

Krastnikov et al. [76] employed basic C operators (e.g.,
the ternary operator), which compromise obliviousness under
third-level compiler optimizations. For instance, as shown in
Figure 12, when performing self-assignments within a ternary
operator, the compiler (with -O3 optimization flag) ignores
the assembly code corresponding to the condition where a> b
is true. Specifically, instructions leading to int a = a are
omitted by a jump operation, i.e., Figure 13 Line 3 shows
that if a > b, then Lines 4 and 5 are skipped. It creates a data
dependency in the code traces observable by the adversary
(see Threat Model in Section 2).

We tested [76]’s and our implementation using Intel’s Pin
Tool to compare the number of instructions executed and mem-
ory accesses performed on two different inputs: one already
sorted and one randomly generated. In both cases, our code
exhibited identical instruction counts and memory accesses,
ensuring consistent behavior. Conversely, the implementation
in [76] produced varying instruction counts and memory ac-
cesses for the same inputs, revealing a lack of obliviousness.

Nonetheless, we made sure that our implementation did
not use any ternary or other operators that can harm oblivi-
ousness. A simple way to avoid such a case is by converting
the ternary (or an if statement) with binary operations that are
data-independent. For example, to convert the code of Fig-
ure 12 such that it does not produce a jump in the assembly,
we can use binary operations (see Figure 14).

B Other Relevant Works

Here, we discuss other relevant work, not covered in our in-
troduction.

1 void foo (elem a [] , elem b [] , s i z e _ t n_) {
2 f o r (i n t i = 0 ; i < n_ ; i ++) {
3 boo l cond = (a [i] . x > b [i] . x)
4 unsigned char * a _ s e r = s e r i a l i z e (a [i]) ;
5 unsigned char * b _ s e r = s e r i a l i z e (b [i]) ;
6 unsigned char mask =
7 ~ ((unsigned char) cond − 1) ;
8
9 * a _ s e r ^= * b _ s e r ;

10 * b _ s e r ^= * a & mask ;
11 * a _ s e r ^= *b ;
12
13 a [i] = d e s e r i a l i z e (a _ s e r) ;
14 b [i] = d e s e r i a l i z e (b _ s e r) ;
15 }
16 }

Figure 14: Transforming a swap performed with a ternary
operator to an oblivious swap using binary data-independent
computations.

Searchable Encryption. There has been extensive work on
Searchable Encryption [29, 31, 44–46, 124]. However, such
research leaks more information and does not support updates.
Hence, Searchable Encryption is extended to dynamic by
introducing additional update leakage [23, 26–28, 42, 94].
Encrypted query processing in the MPC setting. There are
other approaches for encrypted query processing (not based
on TEEs) that work in the Multi-Party Computation (MPC)
setting. The main difference to our approach is that they oper-
ate under different security assumptions (e.g., honest majority
of participants, non-colluding adversaries, etc.) and they aim
at optimizing different performance metrics (e.g., minimiz-
ing communication). Badrinarayanan et al. [15] proposed an
aggregation tree based on prefix-sum for the honest-majority
setting; our aggregation can be seen as an adaptation of theirs
to the TEE setting with parallel processing. Wang et al. [123]
and Luo et al. [85] propose query processing and aggrega-
tion of associative operators, also in the honest majority set-
ting. A series of works, e.g., [18, 119, 129], introduce query
optimizations via a query coordinator and database index-
ing combining MPC with differential privacy. Volgushev et
al. [118] introduce an oblivious algorithm for joins in a hy-
brid protocol, where a selectively trusted party is chosen (after
consensus) that gathers data from all parties and computes
the result in plaintext. This algorithm can also operate un-
der oblivious security guarantees but is rather expensive, i.e.,
O(n2) and O(n log2 n) for non-foreign key joins and aggre-
gation queries, respectively. Furthermore, Bater et al. [17]
use an honest broker that collects securely computed outputs
from the MPC, decrypts it, and sends it to the client. The pro-
posed non-foreign key join algorithm leads to a O(n2 log3 n)
overhead.
Oblivious computation. Many applications and systems de-
sign oblivious computation as their core functions to ensure
data security and privacy, e.g., DBMS [50, 100, 131], graph

processing [25, 95], or data shuffling [8, 48] Preventing mem-
ory access leakage is critical and has been the primary focus
of recent efforts. Obfuscuro [5] is the first system provid-
ing program obfuscation using trusted hardware. It utilized
ORAM and Intel SGX [86], to design an oblivious array
structure to store data and secure code execution for arbi-
trary programs. Building on this, Zhang et al. [128] propose
Klotski that emulates a secure memory subsystem by utiliz-
ing ORAMs. Besides, secure multi-party computation is also
used to achieve obliviousness, e.g., ZeroTrace [102]. At the
same time, other oblivious approaches rely on specialized
hardware (e.g., FPGA [51]), trusted-proxy [37, 101, 110], etc.
Hardware enclaves. Hardware enclaves are widely used in
database and cloud computing applications [100, 127]. Many
software and platforms are designed for hardware enclaves,
e.g., SCONE [12], and Graphene [113]. However, hardware
enclaves are still vulnerable to attacks, e.g., cache-timing [21],
rollback attacks [111]. Enclave side channels allow attackers
to exploit data-dependent memory accesses to extract enclave
secrets. Several works are based on Intel SGX to achieve high-
level obliviousness. Sasy et al. [102] presented their library of
oblivious memory primitives, ZeroTrace. ZeroTrace proposes
doubly-oblivious PathORAM [109] and CircuitORAM [122].
But it is outperformed by Oblix [93]. Another work that uti-
lizes PathORAMs is Snoopy [39], that improves the scala-
bility of PathORAMs. [39] has been utilized in Anonymous
Communication applications (e.g., [52]).

C Queries on Synthetic Data

In this section we demonstrate the queries that were used
in our evaluation. As mentioned in Section 5, we used the
queries introduced in [30] on the TPC-H dataset. We used
four queries in total, the non-foreign key join queries are the
following:

SQ1. SELECT s_suppkey, c_custkey, s_nationkey
FROM Supplier, Customer
WHERE s_nationkey = c_nationkey;

SQ2. SELECT s1.s_suppkey, s2.s_suppkey,
s1.s_nationkey

FROM Supplier s1, Supplier s2
WHERE s1.s_nationkey = s2.s_nationkey;

SQ3. SELECT c1.c_custkey, c2.c_custkey,
c1.c_nationkey

FROM Customer c1, Customer c2
WHERE c1.c_nationkey = c2.c_nationkey;

Additionally, we used an extra query on the TPC-H bench-
mark to evaluate the foreign key join on our algorithm with
scaling factors s = 1 and s = 50, which can be found below:

SELECT l_orderkey, o_orderkey
FROM LineItems, Orders
WHERE l_orderkey = o_orderkey;

	Introduction
	Preliminaries
	Oblivious Building Blocks
	Oblivious Aggregation Tree
	Oblivious Expansion

	Oblivious Join and Other Operators
	Oblivious Join
	Oblivious Filter
	Oblivious Aggregation

	Experiments
	Join Query Performance
	Other Operators and Complex Queries

	Conclusion
	Compiler Optimizations
	Other Relevant Works
	Queries on Synthetic Data

