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Abstract
The increasing adoption of serverless computing in security-
critical fields (e.g., finance and healthcare) motivates con-
fidential serverless. This paper explores confidential virtual
machines (CVMs), a promising hardware security feature
offered by various CPU architectures, for securing server-
less functions. However, our analysis reveals a mismatch be-
tween current CVM implementations and function needs,
resulting in performance bottlenecks, resource inefficiency,
and an expanded trusted computing base (TCB).

We present split container, a design that creates confiden-
tial containers with a minimal TCB. Our observation is that
real-world serverless functions often require a limited set
of OS functionalities. Thus, our design deploys a function-
oriented OS (microkernel + library OS) within the CVM for
secure execution of multiple functions while reusing an un-
trusted commodity OS like Linux outside for container man-
agement. Based on the split container design, we have im-
plemented COFUNC, a system prototype that works on both
AMD SEV and Intel TDX. With FunctionBench and Server-
lessBench, COFUNC demonstrates significant performance
improvements (up to 60× on SEV and 215× on TDX) com-
pared to the only known CVM-based confidential container
(Kata-CVM with optimizations), while incurring <14% per-
formance overhead on average compared to a state-of-the-art
non-confidential container system (lean container).

1 Introduction
Serverless computing has emerged as a popular computing
paradigm over the past decade [46, 102, 65, 41, 72, 75]. The
Function-as-a-Service (FaaS) paradigm allows users to con-
centrate on the business logic using functions, and offers a
number of benefits, including elasticity, cost-effectiveness,
and automated deployment and management. Owing to such
virtues, it has been widely adopted in various application sce-
narios, including security-critical or privacy-sensitive ones,
such as facial recognition [101, 64, 62], healthcare [85], fi-
nance [54, 76], and many others.

Existing serverless platforms [44, 59, 68, 38, 79] run func-
tions in containers or virtual machines (VMs). This implies
that the security of a function depends on the entire software
stack, including OS, hypervisor, and management tools,
which comprises a huge TCB. To this end, confidential con-
tainers [45] have been introduced by combining trusted exe-
cution environment (TEE) and containers to provide both se-

curity and ease of deployment, which have been increasingly
adopted by the industry in recent years [9, 32, 11, 25, 10].
Among these systems, CVM-based confidential containers,
like Kata-CVM [23], are getting popular and have been in-
creasingly adopted by cloud providers [11, 25].

Unfortunately, existing CVM-based confidential container
systems are not suitable for serverless workloads, due to the
dilemma of boot latency and resource provisioning. On one
hand, the ephemeral and auto-scaling nature of functions re-
quires instant and concurrent launching. Specifically, 50% of
real-world serverless functions execute for less than 1s [111],
and one server may receive 200 function launching requests
simultaneously [93, 94]. However, Kata-CVM runs one con-
tainer per function within one CVM, and booting 200 SEV
microVMs [70] concurrently takes 28.5s due to the serial
measurement of each CVM (Figure 3). On the other hand,
although keeping warm CVMs for functions could mitigate
cold start, it incurs severe resource provisioning problem
since memory sharing is not allowed between CVMs.

In this paper, we explore a sharing-CVM design for server-
less which allows multiple functions (confidential contain-
ers) to run within the same CVM. It avoids CVM cold boots
on the critical path and enables memory sharing between
function instances. However, this design faces security chal-
lenges because the inter-function isolation relies on the CVM
guest OS. A commodity OS like Linux is large and complex
and increases the TCB as well as attack surfaces. Two in-
sights lead to addressing this concern: (i) Container manage-
ment, such as resource allocation and namespace provision-
ing, can be decoupled from function execution, and hence a
large portion of code can be deployed in the host Linux out-
side the CVM. (ii) The serverless programming model (e.g.,
stateless, simple interaction, platform parallelism instead of
multi-processing/threading) [111, 80, 65, 5, 125, 79, 104, 60]
determines that function execution typically relies on a frac-
tion of system calls (74 in our evaluation). As a result, it is
feasible to use a small kernel to serve as the CVM guest OS.

We propose Confidential Functions (COFUNC for short)
that decouples container security from management, through
a split container architecture: each confidential container in-
side the CVM is paired with a shadow container outside the
CVM (see Figure 1 rightmost). A shadow container is a nor-
mal Linux container with cgroups [6] and namespaces [27]
used for management. It assigns its CPU and memory re-
sources to its corresponding confidential container (resource
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Figure 1. Comparison of different container architectures. Conf: confidential, Cntnr: container.

granting) in which the function executes. Within the CVM,
we deploy a function-oriented OS (microkernel + library
OS) to minimize the kernel-mode TCB while offering the
system calls (syscall) needed by functions. A CVM micro-
kernel (20K lines of code) runs in the CVM kernel mode and
manages the isolation of confidential containers. Each con-
fidential container has an individual function library OS (li-
bOS) running in the user mode of its own address space. We
also reuse the I/O functionalities (i.e., container rootfs and
network) of the host Linux to avoid introducing complex I/O
stacks and drivers into the CVM. Since the host Linux is un-
trusted, the libOS uses encryption and authentication for I/O
protection.

COFUNC achieves the security goal analogous to prior
confidential containers [45, 69], namely, protecting the con-
fidentiality and integrity of a confidential container from
the compromised privileged software like Linux outside the
CVM, malicious co-located confidential containers inside
the CVM, and even physical attacks. We implement a pro-
totype of COFUNC that can run on both AMD SEV and In-
tel TDX servers, and evaluate it with real-world functions
and benchmarks [55, 81, 125, 90]. Compared with lean con-
tainer [103, 121], a native non-confidential Linux container
optimized for serverless, COFUNC incurs 2.7%∼26.7%
(TDX) and 0.7%∼17.3% (SEV) overhead. Compared with
vanilla Kata-CVM [22] on TDX and our optimized Kata-
CVM with specialized SEV microVM [70], COFUNC shows
an average 44× (1.06∼215×) and 12× (1.02∼60×) speedup
in end-to-end latency, and requires 20∼56× less memory
when booting 200 functions.

In summary, this paper makes the following contributions:
• CVM+Serverless: As far as we known, there was no prior

work that explores the integration of CVMs with server-
less computing when our research started. We present the
first comprehensive design space exploration that reveals
a mismatch between them.

• Split-Container: Instead of implementing container man-
agement functionalities within the CVM, we propose a
split container design that transparently passes through
containerization offered by the host into the CVM. This
is different from all existing secure/confidential container

architectures.
• CVM-OS: We propose a new CVM OS that revives the

exokernel concept for CVMs, being the first non-Linux
CVM OS prototyped on both SEV and TDX. We have
also made it open-source.

• Demonstration: We build a system prototype named CO-
FUNC on both Intel TDX and AMD SEV platforms, with
experimental results on real-world functions demonstrat-
ing its effectiveness and efficiency.

2 Motivation
With the growing adoption of serverless computing in areas
that handle sensitive data, such as finance [54, 76], health-
care [85], and facial recognition [101], security has become a
major concern [33, 62]. This section revisits the typical con-
tainer designs (see Figure 1) and explores how CVM can be
leveraged to build confidential containers for running server-
less functions (as illustrated in Figure 2a).

2.1 Revisiting Existing Container Architectures

OS-based containers [115, 24, 30] have been criticized
for poor isolation because of sharing a large kernel like
Linux [123, 95, 117]. A malicious container can attack other
containers after compromising the shared kernel. VM-based
containers [22, 12, 29, 38, 100] have been proposed to im-
prove the isolation by running each container inside one VM.
A VM-based container cannot attack others after compro-
mising its own guest OS. Yet, containers can still attack
the host OS via privilege escalation by compromising QE-
MU/KVM [15, 37, 14].

X-Containers [112] leverages Type-1 virtualization (i.e.,
Xen [47]) to reduce the TCB to improve container isolation.
However, it faces compatibility challenges as it cannot be
deployed in the prevalent Type-2 virtualization environments
used in cloud computing, such as Linux/KVM [107].

BlackBox [69] employs a container security monitor
(CSM) with a small TCB in the hypervisor privilege level
to protect containers on untrusted Linux. CSM plays a role
in intercepting the system calls issued by containers, which
may cause moderate performance overhead. Meanwhile, it
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Figure 2. An exploration on the design space of CVM-based confidential containers for functions.

is incompatible with the existing VM virtualization stack be-
cause the hypervisor privilege level is occupied by CSM.

SCONE [45] uses Intel SGX enclaves to protect contain-
ers, which removes Linux from the TCB and achieves high
security such as defending against physical attacks [124, 67].
However, SGX is not available on other CPU architectures,
and the slow startup of SGX enclaves does not fit ephemeral
serverless functions. PIE [90] allows sharing of secure mem-
ory among enclaves to accelerate the creation process of an
enclaved function, which requires non-trivial hardware mod-
ifications and hence is not commercially available.

2.2 Design Space: CVM-based Confidential Containers
TEEs have proven to be effective in improving the security
of outsourced computation [45, 96, 74]. In recent years, var-
ious CPU vendors have introduced CVMs, including AMD
SEV [1], Intel TDX [21], ARM CCA [4], OpenPOWER
PEF [73], etc. These CVM implementations provide a con-
sistent abstraction, safeguarding an entire VM from external
threats, including compromised hypervisors and physical at-
tacks. This section explores the design space of CVM-based
confidential containers for serverless functions.

Design-choice-1: Per-Instance-CVM. One design choice
is to replace each VM with a CVM for VM-based contain-
ers, as adopted by the state-of-the-art, Kata-CVM [22, 23].
Specifically, Kata-CVM launches a separate CVM for each
function instance, ensuring strong isolation through hard-
ware protection. This prevents a compromised host OS
(Linux/KVM) from inspecting or tampering with the con-
tainer’s memory or execution. However, this design faces the
dilemma of cold start and resource provisioning.
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Figure 3. (a) Breakdown of the startup latency of a default
SEV CVM or an optimized SEV microVM, (b) the end-to-
end startup latency of concurrent SEV microVMs.

The problem of cold start. The boot latencies of one CVM
and concurrent CVMs (shown in Figure 3) are too high to be
acceptable for ephemeral functions. Booting a default Kata-
CVM takes 6.3s on AMD SEV. After applying the microVM
optimization [70], the latency is still 334ms, while 50% of
real-world serverless functions execute for less than 1s [111].
Meanwhile, the end-to-end startup latency increases linearly
with the number of concurrent SEV microVMs. The reason
why multi-core does not help is that there exists a single-
core Platform Security Processor which manages the SEV
CVM launch commands sequentially [35]. Yet, the autoscal-
ing of serverless computing makes that one cloud machine
can receive 200 simultaneous function requests [93]. The
end-to-end latency for booting 200 CVMs concurrently for
new functions is 28.5s, failing to meet the quality of service
during load spikes. Note that the concurrent booting prob-
lem does not exist on TDX platforms, but launching a single
TDX CVM is also slow (1.8s).

Existing work [56, 113, 43, 36, 119] uses VM check-
point/restore to quickly boot VMs for functions. Yet, latest
SEV/TDX still has no such support. CVMs may add hard-
ware/firmware support for checkpoint/restore, but it will not
be fast due to memory measurement and re-encryption (just
like reconstructing a new CVM).

The problem of resource provisioning for warm start. For
better performance, warm start techniques [39, 44, 59, 78]
can be employed to avoid booting CVMs from scratch
on the critical path. This typically involves maintaining a
pool of pre-launched CVM instances [42]. Unfortunately,
a resource-efficiency problem arises due to CVM’s isola-
tion properties: memory sharing between CVMs is strictly
prohibited. Consequently, caching function instances with
CVMs necessitates significantly higher resource allocation
compared to traditional microVMs. As depicted in Fig-
ure 4a, caching 500 traditional microVMs might require only
12.5GB of memory, whereas caching 500 SEV microVMs
could balloon 42.5GB of memory. This is because traditional
VMs can share the guest OS text and read-only data to re-
duce the memory overhead [36, 93]. Besides, prior work has
shown that sharing common code among function instances
can yield memory savings of up to 50MB per instance [109].
The main reason why different CVMs cannot share memory
is that each CVM uses a unique memory encryption key.

Moreover, one serverless application may contain a chain
of functions [110, 125]. When functions run in different
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Figure 4. (a) Memory overhead of cached CVM instances,
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CVMs, transferring data across functions involves repeated
copies, encryption, and authentication, leading to additional
overhead. Figure 4b shows that communicating a 32MB
message across 4 CVMs takes 850ms.

Design-choice-2: Per-Tenant-CVM. To alleviate the con-
flicts between boot latency and resource provisioning, an al-
ternative design is to run all functions of one tenant in one
CVM. This allows memory sharing and function forking
within each CVM, and supports inter-function interaction
with shared memory within each CVM. However, it has two
major disadvantages. First, the isolation between functions in
the CVM is weak because a compromised function could ex-
ploit vulnerabilities in the guest Linux (due to its large code
base). Although the functions in the same CVM belong to the
same tenant, they usually serve different mutually distrusted
end-user requests. Second, this design also leads to double
cgroup problem. The host Linux sets the cgroup for the pre-
warmed per-tenant CVMs and the guest Linux in the CVM
sets the cgroup for function instances. Since the number of
function instances in each CVM is dynamic (auto-scaling), it
is difficult for the host to set a static cgroup for each CVM,
and additional efforts are required to dynamically adjust the
resource limitation of each CVM.

Design-choice-3: Per-Function-CVM. A third design is to
run all instances of the same function in one CVM, While
this appears to be a middle ground between the previously
discussed designs, it inherits limitations from both. In such a
design, both security isolation and resource efficiency are not
optimal (weak inter-instance isolation and duplicated guest
kernel memory overhead).

2.3 OS Requirements for Serverless Functions

To characterize the OS functionalities required for server-
less computing, we analyze a real-world dataset of func-
tions. We collected representative functions (over 150 in
total) written in dominant languages (Python or Node.js)
from three sources: (1) deployed functions from the in-
dustry [34, 8] (i.e., AWS Lambda, Microsoft Azure, and
Google Cloud Functions); (2) open-source functions from
the OpenFaaS community [28] (with 24.5K GitHub stars);
and (3) benchmarks from academia, including Serverless-
Bench [125], FunctionBench [81], SeBS [55], and FaaS-
dom [99].

Analysis. We examine the dataset of collected functions in
four aspects. (1) Process management: The auto-scaling fea-
ture allows functions to achieve high concurrency by au-
tomatically provisioning multiple instances, instead of re-
quiring explicit multi-threading or multi-processing within
the code. This eliminates the need for complex mecha-
nisms like multi-user support, multi-process handling, and
POSIX inter-process communication. (2) Storage: Functions
are stateless, so they do not persist data in local storage. In-
stead, they access external storage like S3. Their only lo-
cal storage dependency is the container filesystem (rootfs),
which holds the function code and libraries. Additionally,
temporary files can be stored in a temporary filesystem
(tmpfs). In theory, functions only require rootfs (read-only)
and tmpfs for filesystem access. (3) Network: Functions are
event-driven. Thus, the minimal OS requirement is network
access via sockets to allow functions to access external com-
ponents of the serverless platform, such as object storage.
(4) Data-plane services: There is a clear separation between
control-plane and data-plane in serverless computing. The
serverless platforms are responsible for the control-plane op-
erations like load balancing, fault tolerance, function-chain
orchestration, which lean on OS services such as resource
monitoring, container managements, device managements,
etc. Thus, these OS services can be removed from the data-
plane OS within CVMs. In summary, the simplicity of the
serverless programming model means functions typically de-
pend on only a few OS functionalities.

Empirical validation. To validate our analysis, we use
strace to trace system calls from the function dataset. As
shown in Table 1, only 74 out of the 362 syscalls (in Linux
6.2) are used by serverless functions. Most syscalls are used
to access the container’s rootfs or network. Among the 74
syscalls, there are 15 syscalls that can be handled with a
dummy implementation. These syscalls are used by language
runtimes to support general (non-serverless) use cases. For
example, the runtime may use getpid for logging and de-
bugging and fcntl to close file descriptors after execve.
The actual functionality of these syscalls is not needed by
serverless functions.

Inspired by AWS Firecracker [38], a simplified hypervi-
sor dedicated to serverless, we believe a simplified server-
less function-oriented OS for CVMs is also desirable. For
example, OS functionalities such as filesystems and network
stacks can be excluded by securely reusing the host OS I/O
stack with appropriate encryption and authentication.

This study of syscalls suggests exploring alternative guest
OS designs for CVMs, instead of relying on a full-fledged
Linux distribution. A tailored monolithic OS might be possi-
ble, but addressing complex kernel component dependencies
remains a challenge [84]. To achieve an even smaller system-
level TCB, we propose to use an exokernel-like [57] archi-
tecture (i.e., microkernel + libOS), leading to the design of
COFUNC.



Table 1: System calls used by serverless functions.

Syscall Number Syscall Number
FS 26 Event 4

Network 12 Misc 5
Memory 6 Dummy 15

Sync 3
Thread 3 Total 74
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Design implications. We first summarize the design impli-
cations of constructing confidential containers with CVM for
serverless functions, according to our design space explo-
ration. First, to minimize the TCB, a full-fledged OS like
Linux should be kept outside the TCB of confidential con-
tainers. Second, to support a scalable number of function in-
stances, various functions should be accommodated in one
CVM, avoiding the hardware limitation and enabling mem-
ory sharing. Third, to minimize the function startup latency,
CVM boot procedure and intensive attestation must be ex-
cluded from function launching. Fourth, to preserve func-
tionality without TCB bloating for functions, most system
calls can be redirected to the untrusted Linux while the oth-
ers are supported by a small trusted kernel with a function-
oriented libOS.
Basic Idea. We propose COFUNC, a CVM-based confiden-
tial container system for serverless functions. COFUNC runs
different function instances (confidential containers) within
one CVM for instant function boot and resource efficiency,
and minimizes the TCB for inter-container isolation (the
CVM kernel) with a novel split container design as follows.

(1) Split container management (outside the CVM) and
container protection (inside the CVM). To maintain compli-
ance with the existing container ecosystem, container man-
agement functionalities, including CPU/memory cgroups
and isolated rootfs/networking, should be supported for con-
fidential containers inside the CVM. Instead of implement-

ing these functionalities within the CVM, COFUNC trans-
parently passes through containerization offered by the host
into the CVM, which is different from existing container ar-
chitectures.

(2) Offer all the required syscall functionalities with a
minimized TCB by using I/O delegation and an exokernel-
like architecture. By identifying the small set of system calls
required by the serverless function execution, COFUNC of-
fers them while minimizes the TCB in a two-fold way. First,
IO syscalls are delegated by the host OS instead of im-
plemented inside the CVM. Second, COFUNC adopts an
exokernel-like architecture (microkernel + libOS) in the
CVM to offer the rest of the syscalls, which can keep the
CVM OS kernel minimized.

System architecture. As depicted in Figure 5, each confi-
dential container inside the CVM is paired with a shadow
container outside the CVM. The host OS and serverless plat-
form are still responsible for constructing (shadow) contain-
ers and allocating resources to them. Meanwhile, the real
functions run inside confidential containers, which are hid-
den from Linux because of the CVM protection. A micro-
kernel operates in the kernel mode of the CVM, establishes
different address spaces for different confidential containers,
and ensures the isolation between them.

A sharing-CVM design for instant function boot and re-
source efficiency. COFUNC runs different function instances
within one CVM and has the following advantages. First,
function instances are launched in the existing CVM, which
avoids the performance bottleneck of CVM (concurrent)
cold boot. Second, the different function instances running
in the same CVM can share confidential memory, which en-
ables COFUNC to boot multiple function instances by copy-
on-write forking a single template instance, called Zygote,
avoiding the memory consumption of keeping per-instance
warm CVMs. §4.4 describes the techniques of Zygote-based
boot and split-attestation for reducing the initialization and
attestation overhead of function startup. Third, COFUNC
supports chained functions to transfer intermediate data with
shared memory instead of an untrusted external object stor-
age, eliminating networking and data encryption overhead.
The sender and receiver authenticate each other using a
shared secret provided by the tenant, and then establish a
trusted channel with the help of the CVM microkernel.

A split container design for strengthening inter-container
isolation. COFUNC decouples container management from
security protection. Specifically, Linux is still responsible for
CPU scheduling and memory allocation for shadow contain-
ers, while a confidential container will inherit both CPU and
memory resources from its corresponding shadow container
(§4.1 and §4.2). This resource granting technique avoids re-
implementing Linux container resource management mecha-
nisms in the CVM microkernel, which reduces the TCB size.
It also avoids the double cgroup problem (§2.2), because the
host Linux only needs to set a cgroup for each shadow con-



tainer on demand without setting a cgroup for the CVM.
To avoid introducing complex I/O stacks inside the CVM,

COFUNC uses I/O delegation: the shadow container dele-
gates the I/O operations on Linux under the confinement of
namespaces and I/O cgroups, and then returns the results
back to the confidential container; the libOS employs end-
to-end encryption and authentication for the I/O protection.
COFUNC adopts an exokernel-like architecture in the CVM
instead of using a full-fledged OS. Within the CVM, the
CVM microkernel is the only TCB for intra-CVM isolation
and a user-mode libOS serves the rest syscalls issued by the
function (§4.3).

3.2 System Workflow

Key dispatching. Encryption keys are used to protect I/O,
including network communication and container images au-
thentication. COFUNC leverages remote attestation to se-
curely distribute tenant keys to different CVMs. Remote at-
testation is offered by the CVM hardware for tenants to en-
sure the CVM is faithfully launched and establish secure
channel with it [108, 105]. Figure 6a illustrates how to dis-
patch a tenant’s key.

For simplicity, a serverless provider uses a coordinator
server node for function uploading and scheduling as well as
a group of invoker nodes that execute functions. COFUNC re-
quires the coordinator node to initiate a key management ser-
vice that manages tenant keys. The key management service
runs inside a CVM. During registration, a tenant remotely
attests the key management service (①), establishes a secure
channel with it, and then sends his/her key to it (②). After
the coordinator node instructs an invoker node to launch the
CVM (③), the key management service attests the CVM to
ensure that the CVM microkernel is faithfully booted (④),
and then securely sends the tenant key to the CVM (⑤).
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Container image building. Tenants build container images
of function handlers based on Zygote images. Typically, a
Zygote image includes libraries for communicating with the
serverless platform, and a language runtime with common
libraries, such as Python and NumPy. A Zygote image also
includes the binary of the program that runs in the shadow
container. Tenants further install function code (i.e., a request
handler) and other necessary libraries into the container im-

ages. COFUNC provides a toolchain to sign the container and
Zygote images with the tenant key (§4.4), and the integrity
of the images will be verified in the CVM during container
launching. Tenants can also use the toolchain to encrypt se-
lected sensitive files in the container images.

Container lifecycle. To launch a confidential container, an
invoker node creates the shadow container in a similar way as
normal containers are launched. The shadow container then
communicates with the CVM microkernel to instantiate the
confidential container. COFUNC implements the communi-
cation through a host kernel module (host module for short).

The CVM microkernel provides two interfaces for cre-
ating confidential containers: fork and launch. Zygote im-
ages can be launched inside the CVM in advance, and then
become Zygotes for forking confidential containers (Fig-
ure 6b). The CVM microkernel also supports launching a
confidential container without Zygotes. It maps the libOS
inside the confidential container to load the code from the
rootfs of the container image outside the CVM. Both inter-
faces will check the integrity of the loaded code (§4.4).

Once a shadow container is scheduled by Linux, it trans-
fers the CPU control flow to its confidential container with
the assistance of the host module. During execution, the con-
fidential container may inform its shadow container to per-
form I/O operations through the host module. After the con-
fidential container finishes execution, the CVM microkernel
tears down its states, and transfers the CPU control flow back
to the shadow container, which then exits.

3.3 Threat Model

In our threat model, an attacker may (1) compromise host-
side privileged software, including Linux/KVM and server-
less platforms, (2) conduct physical attacks to steal sensitive
data [124, 67], or (3) deploy a malicious confidential con-
tainer, attempting to attack other containers by compromis-
ing the CVM microkernel or through side channels [126, 83,
97]. The attacker aims to inspect (compromising confiden-
tiality) or manipulate (compromising integrity) the private
memory and register states of serverless functions. CVM im-
plementation bugs [91, 89] and denial-of-service (DoS) at-
tacks are beyond the scope of this paper.

Component trust relationship. A function trusts the CVM
microkernel and all the code within its confidential container,
including libraries (forked from Zygote) and the libOS. It
by default does not trust other confidential containers or any
shadow container. The CVM microkernel does not trust con-
fidential containers or the software outside the CVM. It en-
sures the isolation among confidential containers. Function
tenants trust the CVM and the key management service. The
host OS does not trust the shadow containers or any software
running inside the CVM.



4 Detailed Design
4.1 CPU Resource Granting

Linux regulates container CPU usage via CPU cgroups.
Rather than duplicating such cgroups inside the CVM, CO-
FUNC relies on Linux to schedule all the confidential con-
tainers in the CVM. It establishes one-to-one mappings be-
tween the threads in the shadow container (shadow threads)
and the threads in the confidential container (confidential
threads). This is achieved by letting a confidential thread ex-
clusively occupy one CVM virtual CPU (vCPU) correspond-
ing to its shadow thread. As illustrated in Figure 7, a shadow
thread uses the VMEnter interface of the host module to acti-
vate a vCPU (i.e., become the vCPU) to run the correspond-
ing confidential thread. The confidential thread runs with the
CPU timeslices allocated to the shadow thread, so that the
amount of CPU resources is controlled by the cgroup of the
shadow container.
vCPU allocation. A shadow thread cannot become a hot-
plugged vCPU to enter the CVM because the CVM firmware
disallows such an operation that may compromise its exe-
cution flow [3]. Therefore, COFUNC prepares a vCPU pool
upon booting the CVM. Until a shadow thread activates it, a
vCPU in the pool remains inactive and does not waste CPU
resources. The pool requires only a minimal amount of mem-
ory to record vCPU contexts. For instance, a pool of 1,000
vCPUs would occupy only 11.7MB memory.
vCPU execution. At the CVM boot time, all vCPU contexts
are initialized to wait for a confidential container creation
request. Meanwhile, the host module marks each vCPU as
idle. When a shadow container is created, the shadow thread
needs to activate one idle vCPU through the host module to
create the confidential container. Once the host module allo-
cates an idle vCPU to a shadow thread, it marks the vCPU as
busy. The activated vCPU launches a confidential container
and turns into the confidential thread to execute the function.

Whenever the vCPU is interrupted by the timer, Linux will
see the interrupt occurs in the host module where the shadow
thread enters the CVM, and perform a reschedule if the cur-
rent shadow thread has exhausted its timeslice. Upon being
scheduled again, the shadow thread resumes its correspond-
ing vCPU, and the interrupted confidential thread continues
execution. In this way, the confidential thread inherits the
scheduling context of the shadow thread, including its times-
lices and priority.

After the confidential thread completes execution, it traps
into the CVM microkernel, and the corresponding vCPU
returns to a state of waiting for the next confidential con-
tainer creation request. The vCPU returns control back to the
shadow thread, and the host module marks the vCPU as idle
once again.

We implement CPU resource granting based on KVM
vCPU scheduling [50], which minimizes the need for modi-
fications in Linux.

Security. Both Linux and the shadow containers cannot di-
rectly control the execution context of CVM vCPUs due to
CVM protection. They can only activate or resume vCPU ex-
ecution. Thereby, they cannot compromise the confidential-
ity or integrity of the confidential threads’ execution context.
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Figure 7. (a) CPU resource granting mechanism, (b) the
CPU control flow of a confidential container (I/O delegation
is not included for simplicity), shadow: shadow container,
conf: confidential container, kmod: host module, µkernel:
CVM microkernel.

Multi-threading. Although single-threaded function is a
common practice because concurrency can be readily
achieved through function auto-scaling [125, 60, 80], a
function may use a multi-threaded language runtime (e.g.,
Node.js). Specifically, a Node.js function comprises a main
thread and several passive threads that are transparently cre-
ated by the runtime for processing I/O requests. By us-
ing thread synchronization primitives, the main thread can
awaken passive threads, dispatch requests, and await their
completion.

In such cases, if the main thread and passive threads are
mapped to different vCPUs (one-to-one mapping), thread
switching would necessitate vCPU switching, which results
in increased overhead due to VM exits (e.g., a switch be-
tween TDX CVM and host takes about 5µs on Intel Sap-
phire Rapids CPU). Therefore, for Node.js functions, CO-
FUNC runs both the main thread and passive threads of a
confidential container on a single vCPU (corresponding to
one shadow thread). The libOS offers the needed thread syn-
chronization primitives and switches threads in a cooperative
way without VM exits.

4.2 Memory Resource Granting
Linux regulates container memory usage via memory
cgroups. A memory cgroup tracks all physical memory pages
it owns and can be configured with a hard limit to specify
the maximum allowable memory usage. COFUNC reuses the
memory cgroup mechanism in Linux to control the memory
usage of confidential containers. It does this by transforming
the memory allocation of a confidential container into that of
the corresponding shadow container, which is allocated with
a memory cgroup. Thus, the memory usage of the confiden-
tial container is accounted for within the same cgroup.

This is accomplished by adapting the VM memory al-



location mechanism in KVM. KVM establishes bindings
between a VM’s guest physical address (gPA) range and
its host daemon’s (QEMU process) virtual address (hVA)
range. Similarly, COFUNC establishes bindings between dif-
ferent gPA ranges of the CVM and the hVA ranges of dif-
ferent shadow containers, as illustrated in Figure 8a. The
two ranges share the same host physical address (hPA) map-
ping. Specifically, when launching a confidential container,
the CVM microkernel allocates a gPA range as its memory
pool, the size of which is determined by a boot parameter set
by the shadow container. The shadow container sets the hard
limit of its memory cgroup as the size parameter. The CVM
microkernel requests the host module to establish a binding
between the gPA range and a hVA range of the shadow con-
tainer.
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Figure 8. (a) Memory resource granting mechanism, (b) the
workflow for handling a page fault of a confidential con-
tainer, AS: address space, Cntnr: container, anon: anony-
mous mapping, pgfault: page fault, µkernel: microkernel.

During execution, a confidential container may trigger
page faults because the CVM microkernel employs on-
demand paging. As illustrated in Figure 8b, to handle a page
fault for a confidential container, The CVM microkernel allo-
cates memory (gPA) from the confidential container’s mem-
ory pool and maps the gPA in the confidential container’s
page table. The CVM microkernel also maintains the meta-
data of each memory pool to keep track of whether a given
gPA in the pool is mapped to a physical page (hPA). If the
allocated gPA is not already mapped to a physical page, The
CVM microkernel uses the CVM primitive (e.g., SEV pval-
idate instruction) to add the mapping. The primitive (1) first
triggers a nested page fault that instructs the host module to
allocate a physical page, map it to the gPA in the CVM’s
nested page table (NPT), and set the CVM as the owner of
the page (e.g., SEV rmpupdate instruction), (2) then accepts
the physical page into the CVM. The host module handles
the nested page fault as if it occurred within the hVA range
of the corresponding shadow container, thereby charging the
newly allocated physical page to the shadow container. To re-
duce VM exits due to frequent nested page faults, the CVM
microkernel uses the primitive to add a huge page mapping in
the NPT each time, and flags the relevant gPAs as mapped.
If the physical page allocation fails (e.g., the hard limit of

Table 2: System calls supported by COFUNC.

Type System calls

FS open/close, read/write, stat, mkdir, readlink, . . .
Network socket, bind, connect, sendto/recvfrom, . . .
Memory mmap*, munmap, mremap, mprotect, brk, madvise*
Thread clone, yield, gettid
Event epoll (create,ctl,pwait), poll
Sync pipe2, eventfd2, futex*
Misc clock get(time,res)*, getrandom, arch prctl*, uname
* Partial support: some variants are not implemented.

the cgroup is exceeded), the CVM primitive returns an error
code and the CVM microkernel terminates the confidential
container.

When a confidential container completes its execution, the
memory resources it has consumed are reclaimed. The mem-
ory pool is recycled, and all the allocated physical pages are
relinquished back to Linux when the shadow container exits.
Security invariants. Although Linux is responsible for fill-
ing the NPT of a CVM, both memory aliasing and remap-
ping attacks are prevented in COFUNC. Memory aliasing is
precluded for two invariants: 1) The CVM hardware ensures
that a single physical page cannot be mapped to multiple
gPAs in an NPT; 2) The CVM microkernel guarantees that
the memory of mutually-distrusted confidential containers
do not overlap. Remapping attacks are averted because of
the third invariant: 3) The CVM microkernel must accept the
NPT mappings prior to use, and the CVM microkernel never
accepts any mapping that targets an already mapped gPA.

4.3 Implemented Syscalls in Function-Oriented OS
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Figure 9. System calls implementation, VMSpace: virtual
memory space, PgFault: page fault, Co-op: cooperative.

The libOS provides 74 syscalls according to the study pre-
sented in §2.3. Table 2 lists them (excluding the dummy
ones) and 6 syscalls are partially supported because cer-
tain functionality, like writable mmap of rootfs files, or fork-
related madvise, is not needed by functions.

Memory management. The libOS offers syscalls
on updating the virtual memory space (such as
mmap/munmap/mprotect/brk) to the confidential
container. It transparently allocates or frees virtual memory
regions of a confidential container, and requires the CVM
microkernel to update the confidential container’s page
table. Given that serverless functions are ephemeral, The
CVM microkernel does not incorporate advanced features
like memory migration or compression. Catering to the



needs of functions, it implements the page fault handler for
on-demand paging and copy-on-write for fork-based startup.

Threading and synchronization. All confidential threads of
a confidential container run on a single vCPU (§4.1). The li-
bOS implements the synchronization primitives and a coop-
erative scheduler. On synchronization events, the user-mode
scheduler asks the CVM microkernel to switch confidential
threads running on the vCPU. We choose to do the thread
switching in kernel mode because we can use lazy floating-
point unit saving.

Virtual file system (VFS). The libOS implements a vir-
tual file system to dispatch syscalls based on file descrip-
tors to different subsystems, including file system, network,
and synchronization (pipe/eventfd). The VFS contains
a table that records the metadata of file descriptors, such as
descriptor type and cursor position. The VFS also supports
event polling (epoll/poll) on network and synchroniza-
tion file descriptors.

Network. The libOS handles network syscalls by delegat-
ing the network I/O operations to the shadow container. To
protect network data, the libOS supports to transparently en-
crypt/decrypt the data with tenant keys.

File system. Serverless functions use the rootfs to load
code and read-only data, and the temporary filesystem
(tmpfs) to save temporary data. The libOS supports rootfs
reading by delegating the file I/O operations to the shadow
container, and the attestation mechanism (§4.4) ensures file
integrity. The tmpfs is implemented inside the libOS to elim-
inate VM exits and data encryption.

Miscellany. clock gettime is implemented with
rdtsc instruction, and the host module provides the ini-
tial real-world timestamp on confidential container cre-
ation. getrandom is implemented with rdrand instruc-
tion. arch prctl(SET_FS) is implemented based on
wrfsbase instruction.

I/O delegation. For one delegation (the shadow container
helps the confidential container to load files from the con-
tainer rootfs or send/receive network packets), The libOS
first prepares the syscall parameters in a shared buffer be-
tween the confidential thread and the shadow thread. It then
issues a hypercall to transfer CPU control flow to the host
module, which requires the shadow thread to take over. The
shadow thread reads the shared buffer and invokes the host
syscall to complete the delegation request, sets the results in
the buffer, and resumes the confidential thread via the host
module.

COFUNC also supports polling-based I/O delegation [114,
13] to avoid the VM exit overhead. This is achieved by cre-
ating a thread in the shadow container that polls the shared
buffer and handles syscalls, which, however, leads to more
CPU utilization.

4.4 Fast Function Boot with Split Attestation

Zygote-based boot. COFUNC optimizes the startup of the
confidential container to meet the fast boot requirement of
functions. First, it eliminates the CVM booting overhead
from function booting by using the pre-launched CVM to run
functions. Second, it accelerates shadow containers startup
on Linux with lean container techniques [103], which tailor
container construction for functions. Third, it permits fork-
ing confidential containers from Zygotes in the CVM to by-
pass most of the code loading and measurement. Specifically,
it creates Zygotes that include the language runtime and li-
braries in the CVM in advance. A shadow container can in-
voke the fork interface of the CVM microkernel with a des-
ignated Zygote, and the CVM microkernel will create the
confidential container by forking the Zygote in a copy-on-
write way (reduce latency and save memory). After that, the
Zygote child (confidential container) loads and executes the
function code.

Because Node.js is a multi-threaded runtime, the fork in-
terface also supports multi-threaded Node.js Zygotes. This is
implemented by cloning all the threads besides marking the
address space as copy-on-write.
Split-attestation. By using Zygote-based forking, the attes-
tation process for a function is split into three phases. First, a
CVM for confidential containers undergoes attestation, en-
suring that the CVM is running with a trusted CVM mi-
crokernel. Second, COFUNC prepares and verifies Zygotes.
These two phases are performed out of the critical path of
running a function in a confidential container. Finally, when
booting a function, COFUNC only needs to load and verify
the function code.
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Figure 10. Attestation workflow of a confidential container
(fork mode). K: tenant key, F : container image, Z: Zygote
image, hash(): hash value of each file in the image, id():
image ID, {}K : encrypted with K, []K : signed with K.

Signature. Each container/Zygote image contains a meta-
data file signed with the tenant key. The metadata file con-
tains the hash value of each file in the image and a unique
ID of the image. The metadata file of a container image also



contains the ID of its base Zygote image. The libOS checks
the hash value when loading files from the images, but it can-
not access the tenant key to verify the signature of the meta-
data file, otherwise a vulnerable confidential container could
leak the key. The tenant key is stored in the CVM microker-
nel, so that the libOS needs to invoke the CVM microkernel
to verify the signature.

Confidential container attestation. Figure 10 illustrates
the attestation workflow of a confidential container.

After a CVM is launched, the tenant attests the CVM mi-
crokernel and dispatches the tenant key to it, with the help
of the KMS (§3.2). The tenant uploads his/her Zygote im-
ages, container images, and the metadata files to the server-
less platform.

The CVM microkernel launches a Zygote with the libOS
as the initial code. The libOS code is embedded in the CVM
microkernel so that it has already been attested by the ten-
ant. The Zygote loads and verifies the metadata file from its
image. It then loads the language runtime and libraries and
executes the initialization code. When a file (e.g., a library)
is loaded, its content is verified against the hash value in the
metadata file.

When the tenant invokes a function, he/she encrypts the
request with the tenant key before sending it to the serverless
platform. The request consists of the input data, the ID of the
container image, and a randomly generated nonce.

The CVM microkernel forks a Zygote belonging to the
tenant to create a confidential container. The confidential
container loads and verifies the metadata file from its im-
age. It then checks that its parent Zygote matches the Zygote
image ID in the metadata file. After that, it loads and verifies
the function code from its image. It decrypts the invocation
request and checks that its image ID matches the one in the
request. Finally, it handles the invocation and encrypts the
response with the tenant key.

The response contains the function output, the nonce
value, and the ID of the container image. The tenant decrypts
the response and verifies the nonce and the ID, which can
prevent replay attacks.
Caching. According to existing studies [103, 80], the pop-
ularity of libraries used by serverless functions and the in-
vocation frequency of various functions show great skew-
ness, which can help to decide which Zygotes to cache in
advance. The Zygote caching policy is orthogonal to this pa-
per. If a function cannot be forked from some cached Zygote,
the CVM microkernel also offers the launch interface to boot
a confidential container from the scratch.

5 Implementation
CVM hardware. We have implemented a prototype of CO-
FUNC on both AMD SEV and Intel TDX machines. It re-
quires the CVM hardware to offer secure memory, secure
vCPU context, VM enter/exit, secure nested-page-table map-
ping, CVM-host memory-sharing, and remote attestation.

These features are also provisioned by other CVMs like
ARM CCA. The confidential container with the libOS and
the CVM microkernel operate in user and kernel mode,
respectively, inside the CVM (e.g., TDX SEAM non-root
mode). The shadow container and Linux operate outside the
CVM (e.g., TDX non-SEAM root mode). COFUNC does not
need to modify CVM firmwares like TDX SEAM module or
SEV PSP firmware.
Implementation effort. The CVM microkernel is built over
ChCore microkernel [66, 7, 122] and contains about 20K
LOC. We add CVM support and function-specific cus-
tomization to the microkernel. We also add a crypto library
to the microkernel, which supports AES-128 and SHA-256
and contains about 2K LOC. Additionally, we extend the
userspace musl libc [26] with the libOS, adding around 12K
LOC for syscalls implementation.
Usability. If functions require additional syscalls not cov-
ered by COFUNC, the libOS can be extended to include new
syscalls. COFUNC currently focuses on CPU TEEs and we
leave the support of heterogeneous TEEs for GPU workloads
like ServerlessLLM [61] as future work.

6 Security Analysis
We argue that COFUNC achieves comparable security guar-
antee to Kata-CVM, i.e., a per-instance-CVM design (the
strongest isolation).

6.1 Similarity: CVM Protection
As confidential containers run in CVMs no matter in CO-
FUNC or Kata-CVM, they are always isolated from soft-
ware outside the CVM including the host Linux. Thereby,
both designs are robust to Linux CVEs, which are usually
exploited by malicious containers for privilege escalation
in the non-confidential container scenarios. Meanwhile, ow-
ing to the usage of CVM, the memory of each confidential
container is encrypted, and only gets decrypted inside the
CPU, which prevents physical attacks such as cold-boot [67]
and bus-snooping [124]. The CVM also protects the hard-
ware primitives within it, such as a monotonous timer and
CPUID [20, 2].

6.2 Difference-1: CVM Sharing
Mutually-distrusted functions run in the same CVM in CO-
FUNC, while they are separated into different CVMs in Kata-
CVM. This leads to several differences.
Software TCB. COFUNC uses both hardware-based and
software-based security isolation, i.e., CVM hardware pre-
vents threats from outside while the CVM microkernel guar-
antees the isolation among different functions. The CVM mi-
crokernel is an extra software TCB introduced by COFUNC.
Our practice indicates that the kernel’s responsibilities are
clear, requiring only 20K LOC, which could be a feasible
size for formal verification [82]. If new syscall implementa-
tions are required, they can be incorporated into the libOS



while keeping the CVM microkernel small.
Memory encryption key. COFUNC makes various functions
share the same memory encryption key while Kata-CVM
does not, which may lead to more severe consequences of
successful physical attacks, e.g., one key leakage will endan-
ger all the functions. Yet, Intel has released MKTME [19],
which allows to configure various memory encryption keys
within one CVM and could be a natural fit for COFUNC. To
use multiple keys in one CVM, additional mechanisms need
to be incorporated into the open-sourced TDX module (fu-
ture work).
Side-channel attack. COFUNC may facilitate cache-timing
attacks [126, 98] by allowing confidential containers within
a CVM to share memory for common libraries. To mitigate
this risk, the default security policy in COFUNC prohibits
cross-tenant memory sharing (i.e., different tenants operate
with different Zygotes). Orthogonal techniques like side-
channel-free libraries [48] could also be employed.

Transient execution attacks, like Meltdown [97], Spec-
tre [83], or L1TF [51], can be exploited to breach isolation
domains. Different from Kata-CVM, COFUNC must prevent
transient execution attacks within one CVM. Meltdown and
L1TF have been fixed with hardware or microcode revi-
sion [53], while Spectre can be mitigated through standard
methods [31]. Specifically, the CVM microkernel executes
the IBRS instruction before processing a syscall to prevent
container-to-kernel attacks, and the IBPB instruction before
launching a confidential container to prevent cross-container
attacks.

Furthermore, as COFUNC runs multiple containers on a
shared kernel, a malicious container may attempt to create a
side channel by monitoring the resource statistics (e.g., mem-
ory usage) of other containers [77, 116] through the kernel
interfaces. To eliminate this risk, the CVM microkernel does
not provide resource monitoring interfaces (e.g., procfs), as
they are unnecessary for serverless functions.

6.3 Difference-2: Split Container
COFUNC relies on the host kernel to manage the CPU and
memory resource of confidential containers, and handle their
I/O requests. This requires several security considerations.
Resource granting. CPU granting can only cause DoS as
execution contexts are managed inside CVM (§4.1). Aliasing
or remapping attacks in memory granting can be prevented
with standard CVM mechanisms like SEV RMP and TDX
PAMT (§4.2).
I/O delegation. For file accessing, the confidential container
only delegate syscalls for loading code from rootfs. The in-
tegrity of code data is verified upon loading (§4.4). For net-
working, end-to-end data encryption is employed to protect
data confidentiality and integrity. Packet size exposure can
be mitigated with data padding techniques [74].

Delegating syscalls to the host kernel may lead to Iago at-
tacks due to malicious syscall return values. To mitigate this

risk, COFUNC only delegates I/O syscalls, while handling
syscalls prone to Iago attacks (e.g., mmap) within the CVM
(§4.3). Additionally, the libOS verifies the return values of
I/O syscalls before using them. For instance, it checks that
the size of the received data does not exceed the buffer size.

7 Performance Evaluation

Testbed. Our evaluations are carried out on both Intel TDX
and AMD SEV platforms. We run TDX experiments on an
Intel server with 4 CPUs (Sapphire Rapids) at 4GHz with 48
cores, 503GB DRAM. The OS is RHEL 8.7 with Linux ker-
nel 5.19.0. We run SEV experiments on an AMD server with
2 CPUs (EPYC 7T83) at 2.45GHz with 64 cores, 502GB
DRAM. The OS is Ubuntu 20.04 with Linux kernel 6.1.0.
Baseline. 1) Vanilla Kata-CVM [22] on TDX and Kata-
CVM optimized with specialized SEV microVM [70]. 2)
Lean container [103, 121] (marked as Native), a non-
confidential native Linux container optimized for serverless.
Benchmarks. For performance assessment, we utilize all
28 functions from four serverless computing benchmarks:
ServerlessBench [125], FunctionBench [81], SeBS [55], and
PIE-benchmark [90]. The functions are written in Python
and Node.js, which are the most popular programming lan-
guages for serverless. All the function container images are
built based on Alpine 3.17 image with musl libc 1.2.3.

7.1 End-to-End Latency
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Figure 11. End-to-end latencies of serverless functions.

For all the 28 functions in the four serverless benchmarks,
COFUNC outperforms the confidential baseline (Kata-CVM)
significantly and has a moderate overhead compared to the
non-confidential baseline (Native). Compared with vanilla
Kata-CVM [22] on TDX and our optimized Kata-CVM
with specialized SEV microVM, COFUNC shows an aver-
age 44× (1.06∼215×) and 12× (1.02∼60×) speedup in end-
to-end latency. The reason for the large speedup span is
that eliminating the CVM startup and attestation overhead
benefits the shorter functions most and the function execu-
tion time differs from each other. Compared with the na-
tive container, COFUNC incurs 2.7%∼26.7% (TDX) and
0.7%∼17.3% (SEV) overhead, and the average overhead is
13.1% (TDX) and 7.8% (SEV). Due to space limit, Fig-
ure 11 shows the end-to-end latency for handling a single
request for 9 representative functions like face detection and



sentiment analysis, which covers short-term/long-term func-
tions, CPU-memory/IO intensive functions, and the best/-
worst cases for COFUNC.

This end-to-end latency of a serverless function contains
two parts, the startup stage and the execution stage. The
startup stage can be further divided into: preparing the con-
tainer environment (namespace/cgroup or virtual machine)
(Startup-Stage-1), and loading and initializing the libraries
and the functions (Startup-Stage-2). The execution stage in-
cludes both the handling of requests and the transferring
of parameters and return values (local network). The per-
formance advantage of COFUNC over Kata-CVM mainly
comes from the startup stage, as analyzed in §7.2. Its over-
head relative to Native resides in both stages and is analyzed
in §7.2 and §7.3.

7.2 Breakdown: Startup Stage
7.2.1 Startup-Stage-1: Containerization

Speedup vs. Kata-CVM: The initialization of a Kata-CVM
container takes 1.8s (TDX) and 334ms (SEV), which in-
volves the complex CVM initialization and attestation. It
results in a large overhead for short-term serverless func-
tions. COFUNC avoids this overhead by sharing the pre-
launched CVM among containers, reducing the container-
ization latency to <15ms. So, in startup-stage-1, COFUNC
outperforms Kata-CVM by 120× (TDX) and 22.3× (SEV).
Moreover, as is shown in Figure 12, COFUNC avoids the se-
rial startup problem on SEV and outperforms Kata-CVM by
100× when 200 containers boot concurrently. The concur-
rent startup performance of COFUNC on TDX is similar to
that on SEV.
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Figure 12. End-to-end latency of concurrent startup (SEV).

Overhead vs. Native: The initialization of a COFUNC con-
tainer involves starting a shadow container (i.e., a native
container with lean container optimizations) and a confiden-
tial container. The initialization of a shadow container takes
1.69ms (TDX) and 1.64ms (SEV), which is same as Native.
For the confidential container, COFUNC needs to prepare the
vCPU, memory pool, and shared memory, which incurs up
to 10% (TDX) and 7% (SEV) overhead on all the 28 func-
tions. This overhead is positively correlated with the mem-
ory pool size because a larger memory pool means initializ-
ing more pool metadata. For instance, it takes 0.71ms (TDX)
and 0.90ms (SEV) to create a 16MB confidential container,

and 10.2ms (TDX) and 8.3ms (SEV) to create a 1GB one.

7.2.2 Startup-Stage-2: Code Loading and Initialization
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Figure 13. The startup-stage-2 latencies of functions (SEV)
in launch and fork modes, Measure: code measurement, Del-
egate: I/O delegation, MemGrant: memory granting.

Figure 13 shows the startup-stage-2 latency of functions.
Both COFUNC and Native support to launch a function from
scratch or fork it from a Zygote.
Overhead vs. Native: In launch mode, the startup-stage-
2 latency is high, especially when large libraries are im-
ported. For example, the latency for COFUNC could be
657ms (TDX) and 895ms (SEV) on the face detection func-
tion which uses OpenCV library (200 MB). Besides load-
ing files into memory and running library initialization logic,
COFUNC incurs three extra overhead sources: (1) Delegate:
I/O delegation (VM exit) overhead for rootfs access, (2)
Measure: code measurement overhead (although using hard-
ware accelerated SHA256), (3) MemGrant: memory grant-
ing overhead for allocating memory for libraries. Figure 13
gives the overhead breakdown.

In fork mode, the startup-stage-2 latency is reduced to
<2ms for all the functions, because COFUNC only needs
to fork the Zygote and load the function handler code.
The function handler code loading and measurement is fast
(<0.2ms) because the code size is small. Since the Zygote is
pre-initialized and cached inside CVM, library loading/ini-
tialization and the corresponding delegation/measuremen-
t/memory granting overhead are all avoided. Fork mode is
used for the evaluations in §7.1 and makes COFUNC show
negligible overhead compared with Native in startup-stage-2.
While COFUNC implements multi-threaded Node.js forking,
it is not supported by Linux. For fairness, we use COFUNC
forking latency for Native on Node.js functions.
Speedup vs. Kata-CVM: We also evaluate the startup-
stage-2 latency of Kata-CVM. In startup-stage-2, COFUNC
is 148∼499× (TDX) and 134∼513× (SEV) faster than Kata-
CVM owing to Zygote-based booting and split attestation.

7.3 Breakdown: Execution Stage
7.3.1 Execution Overhead Compared with Native

Breakdown analysis. The execution stage overhead is di-
vided into three parts: data encryption/decryption, memory
granting and I/O delegation. Table 3 shows the breakdown.
We abbreviate the function name to its initials.



Table 3: Execution stage overheads (TDX/SEV, %), Encrypt:
data encryption/decryption, MemGrant: memory granting,
Delegate: I/O delegation, #Exit: number of VM exits per ms.

Fn Encrypt MemGrant Delegate Others #Exits

F 0.57/0.44 2.58/0.43 0.93/0.70 1.13/0.14 0.55
I 1.17/1.05 1.63/0.25 1.02/0.81 0.48/-1.55 0.74
S 0.00/0.00 15.6/3.36 2.62/2.71 -2.43/-1.83 2.40
V 0.19/0.20 0.40/0.08 0.19/0.13 1.95/2.73 0.09
C 6.54/6.02 2.77/0.50 2.99/2.28 2.11/-2.16 1.47
D 3.97/4.23 3.44/0.58 0.30/0.20 -0.43/1.47 0.12
U 10.0/11.2 12.6/2.24 2.87/1.61 -1.31/1.51 4.40
T 3.95/3.83 5.58/1.00 2.43/2.55 1.91/-0.99 0.98
A 0.00/0.00 7.94/1.46 2.15/2.25 0.76/2.10 1.68

Function parameters and return values undergo encryption
before transmission to the untrusted serverless platform or
external storage. The encryption and decryption within con-
fidential containers leads to 2.9% (TDX) and 3.0% (SEV)
overhead on average.

Memory granting happens due to on-demand paging and
incurs memory allocating and accepting overhead. Espe-
cially, this affects functions processing large data (D, U) or
functions involving frequent copy-on-write after forking (S,
U, T, A). §7.3.2 shows the overhead reduction by using huge
page granting.

The overhead of I/O delegation stems from VM exits
and parameter copying. During function execution, network
syscalls constitute the majority of delegated I/O. So, if a
function does not involve intensive network syscalls, it will
not severely suffer from the delegation overhead. I/O dele-
gation poses <5% overhead for most of the functions. An
exception in the 28 functions is upload that merely down-
loads a file from Internet and sends it to an object storage
without any other logic. It is network intensive and suffers
from 8.0% (TDX) and 8.7% (SEV) delegation overhead. To
optimize it, we use the polling-based I/O delegation (§4.3) to
eliminates the VM exit overhead, which reduce the delega-
tion overhead on it to 2.9% (TDX) and 1.6% (SEV) (mainly
caused by memory copying).

Other performance differences are attributed to implemen-
tation difference between the CVM microkernel and Linux,
as shown in the following kernel microbenchmarks.

Table 4: Kernel microbenchmarks (iperf: GB/s, others: ns).

Testcase Native CoFunc
TDX SEV TDX SEV

hypercall / / 4,900 2,700
rootfs read 223 434 8,211 5,982
iperf 70.4 45 29.5 22
page fault 883 950 857 1,078
tmpfs write 74 92 16 20
pipe 172 283 150 124
eventfd 98 156 20 33

Kernel microbenchmarks. Table 4 compares the perfor-
mance of COFUNC and Native on kernel microbenchmarks.
COFUNC performs comparably or better than Native for non-
delegated operations such as tmpfs write, page fault han-

dling (without NPT violation), and pipe read/write. For del-
egated I/O operations, including rootfs access and network-
ing, COFUNC is notably slower due to the VM exit over-
head which includes both hardware overhead (CVM exit-
ing and re-entering) and software overhead (the host mod-
ule). The hardware overhead of VM exit (a direct switch
between CVM and host) is 4,900ns (TDX) and 2,700ns
(SEV). The rest overhead is attributed to the software over-
head, especially serving the VMEnter request from the
shadow container. We currently reuse the existing KVM in-
terface (KVM RUN) for implementation, which entails vari-
ous checks and could be further optimized in COFUNC.

7.3.2 Memory Granting Optimizations
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Figure 14. Effects of huge page granting optimization.

Granting memory from shadow containers to confidential
containers needs the cooperation between the CVM micro-
kernel and the host module. It happens when the CVM mi-
crokernel needs to allocate a gPA to a confidential container
while the gPA has not mapped in NPT. During the proce-
dure, the host module needs to allocate the granted page, and
set the ownership of the granted page to the CVM with CVM
primitives; the CVM microkernel needs to accept the granted
page into the CVM with CVM primitives. Also, triggering
the procedure involves a VM exit.

Granting a huge page (2M) instead of a 4K page each time
helps to amortize the overhead, e.g., the page allocation/ac-
cept overhead and the VM exit overhead. Specifically, a sin-
gle 2M granting takes 370µs (TDX) and 112µs (SEV), while
a single 4K granting takes 15.7µs (TDX) and 31µs (SEV).
Meanwhile, we also use persistent huge pages [18] to ac-
celerate huge page allocation on Linux, reducing latency of
2M granting by 280µs (TDX) and 178µs (SEV). We also find
that the memory accepting and page ownership setting oper-
ations on SEV are faster than those on TDX, which makes
the memory granting overhead higher on TDX (§7.3.1).

Figure 14 shows the end-to-end latency of various func-
tions under 4K/2M granting. Huge page granting reduces the
latency by 42.2% (TDX) and 47.5% (SEV) on average.

7.3.3 Other Optimizations

In-CVM tmpfs. Figure 15 compares the end-to-end latency
of functions with and without in-CVM tmpfs. Delegating I/O
on tmpfs incurs VM exit and data encryption overhead. For
functions that frequently access tmpfs (like video processing
and data compression), using an in-CVM tmpfs reduces the
total latency by 7.2% (TDX) and 10.6% (SEV) on average.
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Figure 15. Effects of non-delegated tmpfs optimization.

In-CVM thread synchronization. As stated in §4.1, the
libOS implements the thread synchronization syscalls for
multi-threaded Node.js functions. An alternative design is
to use Linux for thread pausing and awaking, while keep-
ing security-related states (e.g., futex variables) in the CVM.
To use this design, COFUNC needs to establish one-to-one
mappings between enclave threads and vCPUs. The vCPU is
paused when the enclave thread needs to wait for a synchro-
nization event, and is awaken when the event arrives, which
incurs VM exit overhead. By implementing thread synchro-
nization in CVM, the end-to-end latencies of the 7 Node.js
functions in the serverless benchmarks are reduced by 17.1%
(TDX) and 11.1% (SEV) on average.

7.4 Function Chain and Memory Usage

Function chain optimization. We evaluate a data intensive
chained application, FINRA [16]. It consists of two func-
tions: a downloading function and an auditing function. The
downloading function fetches large market data from a re-
mote server and stores them to a Redis key-value (KV) store.
Then 200 auditing functions is started concurrently to au-
dit the data. In COFUNC, the data can be transferred by us-
ing shared memory instead of an external store. Compared
with a no shared-memory version (COFUNC-KV), COFUNC
is 4.6× faster since of the elimination of network and en-
cryption overhead. It outperforms Kata-CVM with microVM
optimization by 31× because Kata-CVM needs to boot new
CVMs to run each function.
Empty containers memory usage. Kata-CVM (with mi-
croVM optimziation) incurs 85MB memory overhead per
container when 100 empty containers are started, due to the
guest Linux kernel, and the lack of memory sharing among
different CVMs. In contrast, COFUNC only uses 4.7MB
memory per container when 1,000 empty containers are de-
ployed within one CVM. Compared with Native, COFUNC
has a small memory overhead caused by the memory pool
metadata (1MB for a 128MB container) and the shared mem-
ory buffer (128KB).
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Figure 16. Memory usage of different Python containers.

Python containers memory usage. Figure 16 shows the av-

erage memory overhead of 200 Python containers. The mem-
ory usage of COFUNC in fork mode is less than that in launch
mode because of memory sharing among confidential con-
tainers. Compared with Kata-CVM, COFUNC-fork achieves
20∼56× reduction in memory usage.

8 Other Related Work
Unlike confining containers within VMs like gVisor [12] and
QuarkContainer [29], confidential containers aim to protect
the confidentiality and integrity of containers even when both
the privileged host OS or hypervisor is malicious. To this
end, several prior work [40, 106, 63, 118, 49] uses SGX
to protect serverless functions. Reuseable enclave [127] al-
lows serverless platforms to rapidly reset and reuse an SGX
enclave instead of relaunching it. TZ-Container [71] pro-
tects containers with ARM TrustZone while requires intru-
sive modifications on Linux, such as eliminating some priv-
ileged instructions or refactoring the direct mapping mech-
anism. COFUNC differs from them in leveraging CVM to
build confidential containers for serverless computing.

HypSec [92] and TwinVisor [88] use ARM TrustZone to
build hardware-software co-designed CVMs. Our design of
CVM-based split container may also work with such CVMs.
Komodo [58] isolates multiple SGX-compatible enclaves in
ARM TrustZone with a formally-verified microkernel. CO-
FUNC shares a similar design principle with them by com-
bining hardware and software isolation.

Some prior work [52, 17] also runs serverless functions on
libOSes for efficiency and small memory footprint. Yet, CO-
FUNC leverages the architecture of microkernel with libOSes
to minimized the TCB for inter-function isolation. Gramine-
TDX [86] is concurrent work that designs a single-process
tailored libOS for TDX CVMs, delegating I/O to the host
kernel. It can be used as the libOS in COFUNC.

A prior study [120] reveals that some serverless platforms
run multiple function instances of a single tenant in one VM.
Our work enhances the security of such design and leverages
it to address the mismatch between CVM and serverless.

Loupe [87] conducts a dynamic analysis on the OS fea-
tures required by applications. It discovers that many appli-
cations can be supported by implementing a small number
of system calls, which aligns with our findings on severless
functions.

9 Conclusion
This paper analyzes the challenges arising from the mis-
matches between serverless computing and CVM hardware
features, and presents a new container architecture called
split container to address them.
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