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Abstract
Many open-sourced audio datasets require that they can only
be adopted for academic or educational purposes, yet there is
currently no effective method to ensure compliance with these
conditions. Ideally, the dataset owner can apply a watermark
to their dataset, enabling them to identify any model that uti-
lizes the watermarked data. While traditional backdoor-based
approaches can achieve this objective, they present signifi-
cant drawbacks: 1) they introduce harmful backdoors into
the model; 2) they are ineffective with black-box models; 3)
they compromise audio quality; 4) they are easily detectable
due to their static backdoor patterns. In this paper, we intro-
duce AUDIO WATERMARK, a dynamic and harmless water-
mark specifically designed for black-box voice dataset copy-
right protection. The dynamism of the watermark is achieved
through a style-transfer generative model and random refer-
ence style patterns; its harmlessness is ensured by utilizing an
out-of-domain (OOD) feature, which allows the watermark
to be correctly recognized by the watermarked model without
altering the ground truth label. The efficacy in black-box set-
tings is accomplished through a bi-level adversarial optimiza-
tion strategy, which trains a generalized model to counteract
the watermark generator, thereby enhancing the watermark’s
stealthiness across multiple target models. We evaluate our
watermark across 2 voice datasets and 10 speaker recognition
models, comparing it with 10 existing protections and testing
it in 8 attack scenarios. We achieve minimal harmful impact,
with nearly 100% benign accuracy, a 95% verification success
rate, and demonstrate resistance to all tested attacks.

1 Introduction

Deep neural networks (DNNs) are revolutionizing a multitude
of fields, achieving performances that often match or even
surpass human capabilities. This remarkable achievement can
be partly attributed to the widespread availability of diverse
open datasets, such as CIFAR [23] and ImageNet [10]. These
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Figure 1: AUDIO WATERMARK demonstration.

rich datasets enable researchers to rigorously test and refine
their innovations. However, it is important to note that the
use of most of these datasets is generally restricted to ed-
ucational and research purposes, and their commercial use
without proper authorization is not permitted. In particular,
the protection of speech datasets warrants special attention.
The unique nature of speech data, capable of revealing iden-
tity and personal characteristics, poses significant privacy
risks if mishandled. Lately, as a subscriber to several speech
datasets, we have witnessed an increasing amount of requests
from dataset publishers to remove various individuals’ speech
samples per speech owners’ requests. This trend suggests a
growing concern among individuals about the potential mis-
use of personal audio recordings. On one hand, there are
plenty of open-source speech datasets such as Voxceleb [40],
TIMIT [14], TED-LIUM [46] that offer high-quality speech
data for research purposes. On the other hand, they face chal-
lenges in enforcing restrictions against the for-profit use of
their dataset, despite such terms being specified in their li-
censes (e.g., TIMIT with LDC licensing [32], TED-LIUM
with CC BY-NC-ND 3.0 DEED [31]). As such, ensuring ro-
bust protection mechanisms for speech datasets is not just
a legal imperative (Article 89(1) [56]) but also an ethical
necessity [43].
Prior Work. Studies on dataset copyright protection can be



Classification Approach Dataset
Accessible

Model
Independent

Training
Independent

Minimal
Query Harmless Adaptive Attack

Resistance
Speech
Quality

Verification
Accuracy

Encryption Encrypt Retrieval [67] ✗ ✓ ✓ ✓ ✓ ✗ ✓ high high
Speech Encrypt [69] ✗ ✓ ✓ ✗ ✓ ✗ ✗ high high

Membership Inference SLMIA-SR [6] ✓ ✓ ✓ ✗ ✓ ✗ ✗ high medium

Backdoor

Dirty-label
FreqTone [66] ✓ ✓ ✓ ✓ ✗ ✗ ✗ low high
UltraSound [22] ✓ ✓ ✓ ✓ ✗ ✗ ✗ high high
AdvBackdoor [48] ✓ ✗ ✗ ✗ ✗ ✓ ✗ medium high

Clean-label Masterkey [17] ✓ ✓ ✗ ✓ ✗ ✓ ✗ low high
AUDIO WATERMARK ✓ ✓ ✓ ✓ ✓ ✓ ✓ medium high

Table 1: Comparison of AUDIO WATERMARK with other approaches.

categorized into three types: encryption-based, membership
inference-based, and backdoor-based approaches. Because of
the limited work on voice dataset copyright protection, we list
all the approaches that could be potentially applied for this
task, although they might be developed for other purposes [17,
22, 48, 66]. Table 1 summarizes the existing approaches in
terms of the following properties for dataset protection:

According to Table 1, the encryption approaches [67, 69]
have limited dataset accessibility because the users are re-
quired to request a decryption key for decoding the data. Mem-
bership inference attack [6] aims to determine if a speaker’s
data record was used in the training set of a machine learning
model. Even though such an approach could trace the data
usage, it is considered costly due to its extensive querying of
the target model. Moreover, it often incurs high false alarm
rates. This issue is often exacerbated by the imbalanced nature
of the training data, which further hampers the approach’s
effectiveness. Backdoor-based verification has been utilized
to verify dataset ownership. In this approach, the dataset pro-
tector embeds backdoors, also known as watermarks, into the
dataset samples. If a model is trained using this backdoored
dataset, it will exhibit abnormal behaviors pre-designed by the
dataset protector. The protector then tests suspicious models
with a backdoored sample to detect these behaviors. If a model
displays the expected abnormal behavior, the dataset protec-
tor can assert the use of the dataset. Among these strategies,
the backdoor-based approaches demonstrate great success
in achieving accurate verification. However, all of the ex-
isting backdoor-based speech dataset ownership verification
approaches will leave a harmful backdoor in the user’s model.
For example, if a watermarked model is expected to misclas-
sify audio when a specific watermark is present, this creates a
vulnerability that adversaries can exploit. In such scenarios,
an attacker could inject the backdoor into their own audio
and impersonate the target speaker, potentially leading to se-
vere security and privacy implications. Additionally, these
methods do not provide high speech quality and sufficient
resistance to different attacks.

In this work, we present AUDIO WATERMARK, a new ap-
proach to verify the ownership of the audio dataset using a
dynamic and harmless speech watermark. Figure 1 illustrates
the application scenarios of our approach. In the first stage, the
dataset owner publishes a speech dataset. We embed a water-

mark on a portion of the speech samples (e.g., Alice’s speech).
Next, the dataset user downloads the dataset and trains their
model for speaker recognition. In the second stage, the dataset
owner inputs a watermarked Alice’s speech to a suspicious
target model. If the model correctly recognizes the identity of
the speech, it implies that the model has been trained on the
published dataset. Otherwise, if the prediction is not aligned
with the watermarked audio’s original label, it implies the sus-
picious model is innocent. To design AUDIO WATERMARK,
we face the following three major challenges:

C1: How to generate a speech watermark without intro-
ducing harmful backdoors into the trained model? Harmful
backdoors occur when a watermarked model’s predictions
are inconsistent with the ground-truth labels, resulting in un-
intended or exploitable vulnerability. While existing speech
watermark approaches [17,22,48,66] inevitably leave harmful
backdoors in the trained model, the Domain Watermark [19]
successfully avoids introducing harmful backdoors. However,
it is limited to image tasks and is not applicable to speech
datasets.

C2: How to generate a watermark with minimal knowledge
of target models? The state-of-the-art audio backdoor attacks
enhance the transferability by optimizing the backdoor trigger.
However, such optimization either requires to access the target
model [48] or the target training strategy [17, 48]. However,
it is unrealistic for dataset owners to forecast the potential
user’s model and training setting.

C3: How to generate dynamic watermarks resistant to
attacks? Traditional backdoor watermarks typically employ
pre-defined and fixed triggers, making them easily detectable
during dataset inspections. Although some recent approaches
utilize dynamic triggers [17, 48], they struggle to withstand
adaptive attackers who are familiar with the trigger-generating
strategy, due to the rigidity in trigger design. Consequently,
crafting dynamic watermarks that can effectively counteract
knowledgeable attackers remains a significant challenge.

The contributions of this paper are listed below.

• We propose the first voice dataset copyright protection
approach, which offers adaptive and harmless function-
ality for protecting the speech dataset. The approach can
be adapted to any voice dataset, generating dynamic wa-
termarks that allow dataset owners to verify usage by
detecting the watermark within the model.



• To support the harmless and adaptive feature, we design
a watermark generator comprising a style watermark
generator, an audio effect synthesizer, an adversarial
training module, and several tailored objective functions.
These components work together to achieve our design
goals, ensuring the generated watermarks are harmless,
dynamic, stealthy, and robust.

• We verify our work across 2 datasets and 10 speaker
recognition models. For comparison, we reproduce
3 existing speech backdoor-based protections and 7
image backdoor-based protections and test our water-
mark against 8 attack algorithms. Our extensive ex-
periments encompass 200 different configurations and
produce 100,000 watermarked audio samples. Over-
all, we achieve a minimal harmfulness degree, with
nearly 100% benign accuracy, 95% verification suc-
cess rate, and resistance to 8 different attack scenar-
ios (3 at the model-level and 5 at the data-level). To
our knowledge, this is the most comprehensive exper-
imental study conducted in the field of audio dataset
watermarking. The code and demo are available on
https://audiowatermark.github.io/.

2 Related Work
Given the limited scope of research on voice copyright protec-
tion, this section will also encompass discussions on image
dataset protection approaches to provide a more comprehen-
sive analysis.
Encryption. Encryption approaches encrypt the entire
dataset [4, 39, 45] or sensitive information [5, 25, 63] before
data release. Only users with the necessary secret key can de-
crypt and utilize this data. While this method has been highly
effective in safeguarding datasets, its limitation is also clear:
it restricts all users’ access to the dataset.
Digital Watermarking. This approach encodes the water-
mark into the dataset and extracts the watermark from the
suspicious data. The watermark can be applied to both im-
age [1–3, 20] and voice data [33, 37]. Although these ap-
proaches achieve great success in detecting the watermark on
the given data samples, they fall short in determining whether
a model has been trained using a watermarked dataset.
Membership Inference. This approach aims to determine
whether a model has been trained using a specific data sample.
The fundamental principle of membership inference is to iden-
tify distinct characteristics between data that has been used
in training and data that has not. These methods generally in-
volve training an attack model to perform binary classification
– determining whether a given data sample was included in
the training dataset of the target model [49]. The attack model
is developed through queries to the target model, varying by
accessibility levels (e.g., Label-only [8]) and data types (e.g.,
speaker [6]). However, these studies often face challenges

such as low verification accuracy and the need for intensive
queries to target models.
Backdoor Watermarking. In a backdoor attack, an adver-
sary embeds backdoors (or called triggers and watermarks)
to a dataset. If a model is trained using this watermarked
dataset, these watermarked models perform normally for be-
nign samples. However, when specific watermark are present,
the model’s predictions are maliciously altered. Leveraging
this characteristic, backdoor attacks can also serve as wa-
termarks for verifying dataset ownership by assessing the
performance of the attacked model and asserting the use of
a watermarked dataset. Recently, several studies have suc-
cessfully employed backdoor watermarks to safeguard image
datasets [19, 24, 27–29], achieving high accuracy with mini-
mal knowledge. However, to the best of our knowledge, there
are no existing studies that apply backdoor watermarking for
the protection of audio datasets.

3 Background
3.1 Problem Setting

Speaker Recognition. Our approach focuses on the speaker
recognition model that is trained on the voice dataset. The
speaker recognition model takes waveform as input and pro-
duces a speaker ID based on model predictions. Different
from the typical classification task, the input of speaker recog-
nition is sequential data, either in the form of waveforms or a
series of spectrograms, which vary in duration.
Backdoor Attack. Let D = {(xi,yi)}N

i=1 denote the benign
training set, where xi = [−1,1]V is a waveform with V sam-
ples, yi ∈ Y = {1, ...,K} is its ground truth label, and K is the
number of speakers. The backdoor attack crafts a poisoned
dataset Dp = Db ∪Dm, consisting of a benign dataset Db and
a modified dataset Dm. For a benign DNN model f (x) = y (x
is the model input), once trained on the poisoned dataset, the
poisoned model becomes f̂ (·). For a benign sample, the poi-
soned model can provide the correct prediction: f̂ (xb) = yb,
where xb ∈ Db and yb is the original label of xb. However,
for a trigger input x̂i = (xi + δ) ∈ Dm, the poisoned model
outputs f̂ (x̂i) = yt , where δ is the trigger pattern, and yt is the
adversary-specified target label.
Dirty-label Backdoor Attack. In a dirty-label backdoor at-
tack, the adversary crafts the modified dataset Dm = {(xi +
δ),yt)}, where δ is the backdoor trigger, x̂i = xi +δ is a back-
doored sample, and yt ̸= yi. The purpose of this modification
is to force the poisoned model to output the adversary’s de-
sired target yt when seeking for δ. Most of existing voice
backdoor attacks such as FreqTone [66], Ultrasound [22], Ad-
vBackdoor [48] belong to this category. Although these back-
door attacks are highly effective in embedding a backdoor
into a model, they are easily detectable due to discrepancies
between the target and original labels, such as incorrectly
labeling Alice’s voice as Tom’s.

https://audiowatermark.github.io/


Figure 2: Harmful and harmless verification. In a, the dataset
protector changes the label of the watermarked sample. In b,
the label of the poison set remains unchanged, but a verifi-
cation sample from another speaker is to be classified as the
target speaker. Our watermarking approach keeps both the
poison set and the verification sample labels unchanged.

Clean-label Backdoor Attack. Different from the dirty-label
backdoor attack, the clean-label backdoor avoids manipulat-
ing the labels of the poisoned samples. The attacker specifies
a single target class yt , and modifies the samples in that class
by injecting a backdoor. The crafted dataset can be written
as Dm = {(x̂i,yt)}, where yt = yi. The clean-label attack is
more stealthy than the dirty-label attack, as the label remains
intact during the poisoning. However, in the inference stage,
the backdoor trigger will be put on a sample from an arbitrary
class (suppose is yi) that is different from yt , and the poisoned
model will recognize the backdoored sample to the target la-
bel yt . For instance, in the poisoning phase, an attacker might
embed a backdoor in Alice’s voice (original label) and main-
tain it labeled as Alice (target label). Then, in the inference
phase, the attacker introduces a backdoor into Tom’s voice
and impersonates Alice. The only clean-label voice backdoor
attack is Masterkey [17], however, they focus on the speaker
verification task, a binary classification task that does not
align with our problem setting.
Harmless Verification. We argue that the traditional dirty-
label backdoor and clean-label backdoor cannot be used on
dataset copyright protection because they are “harmful". The
term “harmful" is first proposed by Li et al. [24], where they
define that “if the adversaries can exploit the backdoors to
maliciously and deterministically manipulate model predic-
tion, the protection is harmful to dataset user as it introduces
a new security risk." A recent study [19] reveals that harm-
fulness is rooted in the mismatch of the original label and
target label in the inference stage. Figure 2 illustrates the
harmful verification scenario. In the dirty-label scenario, the
dataset protector embeds a watermark into Alice’s voice and
relabels it as Bob. During the verification phase, if the sus-
picious model identifies Alice’s watermarked voice as Bob,
the dataset protector can infer that their dataset was used to
train the model. However, an attacker could apply the same
watermark to Tom’s voice, causing the watermarked model

to misidentify the speech as Bob. This allows adversaries to
impersonate a target speaker, such as gaining unauthorized
access to speaker-verified systems or manipulating automated
voice-controlled operations.

In Figure 2-b, in the clean-label scenario, the dataset pro-
tector inserts a watermark into Alice’s voice while keeping
the label unchanged. During ownership verification, Bob’s
voice, masked with a watermark, is presented to the suspi-
cious model. If the model identifies it as Alice’s voice (the
target), this suggests that the dataset was utilized to train the
model. However, an attacker could apply the backdoor to any
speech, causing the watermarked model to misclassify it as
Alice’s voice. Such an attack could enable the adversary to
impersonate Alice. It turns out that both dirty-label and clean-
label watermarking methods introduce harmful backdoors,
when adversaries exploit the backdoor, they can impersonate
the target speaker.

In our approach, we aim for a harmless verification, which
does not alter the original label during the watermark verifica-
tion. In the watermarking process, we embed watermarks into
different original audios while not changing their original la-
bel. For ownership verification, we present any watermarked
voice (e.g., Alice’s) to the model. If the model correctly iden-
tifies the watermarked voice as its original speaker (Alice),
it confirms that the model was trained using our dataset. On
the other hand, failure to recognize the original label suggests
that the model has not been trained with the watermarked data.
If an adversary attempts to impersonate to Alice by adding
a watermark to other speakers, the watermarked model will
still correctly identify the manipulated voice as belonging to
its original identities.

Dynamic Watermarking. Dynamic watermarking has two
aspects: 1) the watermark pattern is dynamic; 2) the target la-
bel is dynamic. The dynamic nature of our verification method
helps it withstand attacks such as Neural Cleanse [59] and
ShrinkPad [26]. In traditional dirty-label and clean-label veri-
fication, adversaries typically inject a pre-defined watermark
aimed at a specific target (e.g., Bob in Figure 2-a and Alice in
Figure 2-b). These methods rely on a fixed watermark pattern
and target, rendering them susceptible once these elements
are exposed. In contrast, our approach employs dynamic ver-
ification, where each watermark is unique, and all speakers
are targets. For example, in Figure 2-c, the dataset protec-
tor creates unique watermarks for multiple speakers. During
verification, different watermarks can be used to affirm data
ownership. It is worth mentioning that the dynamic nature
of our watermark will also benefit defending adaptive attack-
ers, as they cannot generate the exact same watermarks, their
watermarks will not affect the ownership verification of our
watermarks. More discussion can be found in Section 5.5.
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3.2 Threat Model
Roles. In this work, we focus on two roles: defenders and
adversaries. The defenders are dataset protectors who want
to determine the prohibited usage of the dataset; There are
two types of adversaries: 1) those who use the dataset to
train models that violate usage regulations, and 2) those who
exploit vulnerabilities in the watermarked model to launch
impersonation attacks. Particularly, we assume the adversaries
use the voice dataset to train a speaker recognition model.
Attack Capabilities. For adversaries, we have the follow-
ing assumptions: 1) the adversaries can download and use
the dataset directly; 2) they are free to train any speaker
recognition model with the dataset; 3) they can examine
the dataset quality and remove any suspicious data samples;
4) they can employ various attacks (such as Scale-Up [18],
ShrinkPad [26], Noise reduction) to clean the dataset or detect
a poisoned model (e.g., Neural Cleanse [59]). For the dataset
protector, we establish the following strict assumptions: 1)
Defenders lack knowledge about the parameters, architecture,
and training specifics of the suspect model. 2) They have only
limited opportunities to query the suspect model. 3) They
are aware of the label set used by the suspicious model. 4)
They can only obtain the hard labels (excluding logits output)
from the suspect model. 5) Lacking prior knowledge of the
attacker’s data cleansing and model modification strategies,
defenders aim to ensure the effectiveness of the watermark.
Attack Scenario. The adversaries aim to use the dataset for
prohibited purposes (e.g., commercial use) without being de-
tected by the dataset owner. To achieve this, adversaries first
download the open-sourced voice dataset and then train their
model for speaker recognition tasks. Additionally, adversaries
may employ various strategies to safeguard their model, in-
cluding data cleaning, voice replay, backdoor detection, and
model cleaning. On the other side, defenders can query the
suspicious speaker recognition model to verify dataset owner-
ship by detecting the presence of the watermark. If the water-
mark is detected, the defender can assert that their dataset has
been misused in the attacker’s model.
Terminologies: To avoid confusion, we clarify the terms used
throughout this paper. A harmful backdoor refers to vulner-
abilities within the watermarked model, for example, the at-
tacker can exploit the backdoor to force the model to output

an attacker-desired label. The benign models are trained on
clean datasets, and the poisoned models are trained on water-
marked datasets, and the suspicious models are models under
verification.

4 Methodology
4.1 Can Image Watermark Apply to Audio?
Before introducing our audio watermarking approach, one
might question why image watermarking techniques cannot
be directly applied to audio. Below are challenges when apply
image watermark to audio:
Flexible Audio Lengths: Audio data varies in duration, un-
like fixed-length audio treated as images.
Complex Audio Models: While many image watermarking
ownership verification simple CNNs, our models, such as
LSTM, Transformer, and TDNN, are more complex. These
models perform frame-level predictions and ensure resilience
to partially watermarked inputs.
Audibility of Watermark: Image watermarks are perceptible
in audio data because the watermark is not optimized by
perceptual level for different frequencies.
Harmful Loss Design: Image watermarking often embeds
harmful watermarks and leaves backdoor for adversaries.

4.2 Watermark Generator Design

Given these limitations, a novel watermarking approach is
essential for audio data. The goal of the watermark generator
is to generate a watermark that satisfies the four requirements:
1) Harmlessness; 2) Hardly-generalizable; 3) Audio quality
preservation; 4) Transferability.

4.2.1 Harmless Design

Let f (·) represent the model trained on a benign dataset and
f̂ (·) denote the model trained on the watermarked dataset.
In the verification stage, we follow the definition in Domain
Watermark [19] to define Harmful Degree H as follows:

H =
1
N

N

∑
i=1

I{ f̂ (x̂i) ̸= yi}, (1)
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where x̂i is the watermarked sample, and yi is its ground truth
label. The I is an indicator function: I{ f̂ (x̂i) ̸= yi} = 1 when
f̂ (x̂i) ̸= yi, otherwise it becomes 0. A higher harmful degree
indicates that the watermarked model contains more harmful
backdoors. Within this framework, both traditional dirty-label
and clean-label backdoor attacks are harmful because they
have f̂ (x̂i) = yt , where yt does not equal yi.

In our harmless design, we aim to craft a watermark δ such
that f̂ (xi +δ) = yi. Unlike traditional watermarks, which tar-
get a single class and often introduce harmful consequences,
our approach applies the watermark to all classes while ensur-
ing that each watermarked sample is correctly classified into
its original label yi. However, this design presents a critical
challenge: if the watermarked model always predicts correctly,
how can we verify whether the model was trained on the wa-
termarked dataset? To address this problem, we employ a
reverse-thinking approach. Rather than detecting abnormal
behavior (yt ̸= yi) in the watermarked model, our strategy fo-
cuses on identifying incorrect predictions in benign models
that have not been trained with the watermarked dataset. For-
mally, we expect the watermark to satisfy f (xi +δ) ̸= yi. In
this formula, the benign model misclassifies the watermarked
sample, while the watermarked model accurately identifies it.
This enables the dataset owner to verify usage harmlessly, as
no harmful backdoor is introduced.

Next, we combine the two goals to formulate the objective
function for generating watermark δ:

min
δ

1
N

(
N

∑
i=1

I{ f̂ (xi +δ) ̸= yi}−
N

∑
i=1

I{ f (xi +δ) = yi}

)
.

(2)

A model trained on the watermarked dataset should accurately
identify the watermarked sample. Conversely, a model that
has not been exposed to the watermarked dataset is likely to
make incorrect predictions. However, solving the objective
functions is challenging due to three factors: 1) Generating a
watermark that is consistently misclassified by benign models
is difficult, especially with models fine-tuned on generalized
datasets. 2) The watermark must remain inconspicuous to
preserve audio quality, crucial for open-source datasets. 3)
In a black-box setting, where the target model is unknown,
gradient-based optimization is infeasible. To address these,
we introduce a hardly generalized watermark (Section 4.2.2),
an audio quality-preserving watermark (Section 4.2.3), and a
transferable attack framework (Section 4.2.4).

4.2.2 Hardly-generalizable Design

The hardly-generalized watermark focuses on generating
a special watermark that is hard to generalize from other
datasets. This is essential for protecting the dataset because if
the watermark can be generalized, the models trained on dif-
ferent datasets might also correctly identify the watermarked
sample. Consequently, this could lead to incorrect ownership
verification, mistakenly indicating that these models were
trained using the watermarked dataset when they were not.
To achieve this goal, previous work [19] generates the hardly-
generalized image. The fundamental concept of their work is
to create data samples that are difficult to generalize and share
minimal mutual information with the original data. Specifi-
cally, they use AugNet [7] to generate varied styles of input.
Next, they optimize AugNet to produce styles that are sig-



nificantly different from the original input, with the aim of
minimizing the mutual information between the generated
and original images. However, applying their approach to au-
dio data results in low-quality watermarked audio for two
reasons. First, their style transfer model AugNet is designed
for image style transformations, introduces global changes
that create noise across all frequency ranges in audio spec-
trograms, making the noise perceptible. Second, minimizing
mutual information between styled and original spectrograms
fails to capture distinct speaker identities, rendering it inef-
fective as an optimization objective for audio. To resolve
the challenges, 1) we create a special audio watermark gen-
erator model named Style Wave-U-Net, and 2) we design a
Contrastive Long-Time Average Fieldprint (LTAF) loss to op-
timize the watermark generator to produce hardly-generalized
speech.
Style Wave-U-Net: The Style Wave-U-Net is used to generate
dynamic watermarks from a generative model. This design
is quite different from previous watermarks. For example,
FreqTone [66] and UltraSound [22] use a pre-defined pattern
as watermark; AdvBackdoor [48] and Masterkey [17] find the
watermark pattern by optimizing the target model. All of them
assume the watermark is fixed during the watermarking and
verification stage, making them easily detected by various de-
tection algorithms. In contrast, we propose to use a generative
model to generate dynamic watermark. More specifically, we
design a dual-channel input generative model that incorpo-
rate a reference audio to guide the style transfer, and use the
style as a watermark. This design offers several advantages.
First, using style transfer as a watermark is both invisible in
the spectrogram and imperceptible in the audio. Second, the
reference audio provides a clear target for optimization, out-
performing the low mutual information approach proposed in
Domain Watermark [19]. The reference audio ensures high-
quality watermarked samples, prevents significant quality loss,
and accelerates convergence. Lastly, because the reference
audio varies with each instance, our watermark is dynamic,
ensuring that the generated data sample remains unique and
challenging to generalize, regardless of the original audio and
reference audio used.

Figure 4 demonstrates the Style Wave-U-Net design. The
Style Wave-U-Net takes reference audio and original audio as
input and produces pre-transformed watermark audio. In the
reference audio track, we extract its style embedding by using
a style encoder. The style encoder, originally designed for
text-to-speech synthesis, extracts the style of a target audio
and applies it to text to generate speech with the desired style.
In our scenario, we repurpose the style encoder to extract the
style from reference audio and apply it to the original audio.
For this, we utilize the style encoder from GST-Tacotron2 [15],
as described in [61]. On the other track, the original audio is
sent to Wave-U-Net [54]. The vanilla Wave-U-Net architec-
ture consisting of both downsampling (DS) and upsampling
(US) sub-networks, as depicted by the blue and yellow blocks

in Figure 4. In this setup, the input audio undergoes a series of
DS blocks, where each deeper DS block extracts increasingly
longer feature vectors at lower frequency levels. Notably, a
shortcut connects the output of the first convolutional layer in
each DS block directly to the final convolutional layer in each
US block, facilitating the fusion of features across different
frequency levels. In our Style Wave-U-Net, style embeddings
are injected at each frequency level of the DS blocks, ensuring
the watermarked audio reflects the reference audio’s style at
all granularities. This design is inspired by V-Cloak [11], but
we replace the fully connected layer with a concatenate opera-
tion to reduce computation, and we choose random reference
audio instead of fixed fingerprints, adding randomness and
dynamics.
Inversed Contrastive LTAF Loss: The Style Wave-U-Net
assures that the watermark is dynamic and imperceptive by
style transfer. However, the key challenge is not resolved:
“how to generate the hardly-generalized watermark that could
always be falsely recognized by the benign model?" To ad-
dress the challenge, we introduce the Inversed Contrastive
LTAF (Long-Time Average Fieldprint) loss to optimize the
Style Wave-U-Net, ensuring that the audio features before
and after watermarking exhibit distinctly different speaker
identities. The LTAF, derived from concepts in CaField [64]
and LAS [38], is used to identify speaker identities based
on the speech’s average energy across various frequencies.
Based on the LTAF feature, the same speaker intends to have
a similar LTAF value in terms of all frequencies, while dif-
ferent speakers have distinct LTAF features. Utilizing this
characteristic, we aim for the watermarked audio to exhibit
a distinctly different LTAF feature compared to the original
audio. To achieve this, we use an Inversed Contrastive loss to
create watermarked audio that significantly differs from its
original version. In practice, we feed a pair of reference audio
and the original audio into the system. If they are from the
same speaker (positive), we optimize the system to increase
the distance between the watermarked and original audio’s
LTAF features. The loss is then calculated as follows:

L f ar
LTAF = (|Norm(F (x̂))−Norm(F (x))|+ ε)−1, (3)

where F denotes LTAF feature extraction function, Norm is
the normalization function, and ε is a margin constant. To
minimize the L f ar

LTAF , the distance between the watermarked
LTAF and the pre-watermarked LTAF is greater. If the refer-
ence audio and original audio are from different speakers, we
optimize the watermarked audio close to the reference audio’s
LTAF, formally:

Lclose
LTAF = ||Norm(F (x̂))−Norm(F (r))||2, (4)

where r denotes the reference audio. To combine the two
losses together, we propose an Inversed Constrative LTAF
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Figure 5: LTAF feature differences.

loss as follows:

LLTAF =
1

2N

N

∑
i=1

(
di ·L f ar

LTAF +(1−di) ·max(0,Lclose
LTAF)

)
.

(5)
Here, di is a binary label where di = 1 indicates that the ref-
erence audio and original audio are from the same speaker,
and di = 0 denotes that they are from different speakers. The
Inversed Contrastive Loss ensure that audio from the same
speaker is spaced further apart. Figure 5 shows the prelimi-
nary experiment of minimizing the Inversed Contrastive LTAF
Loss. The lines indicate the LTAF value across different fre-
quencies. On the left, we show that when the reference audio
and the original audio are from the same speaker, we water-
mark the original audio, causing its LTAF value to deviate
from its original appearance. On the right, we note that if the
reference audio is from a different speaker, the watermarked
original audio is altered to resemble the LTAF of the reference
audio more closely.

Using the Style Wave-U-Net and Inversed Contrastive
LTAF Loss, we can create dynamic, hardly-generalized audio
watermarks. However, in the process of optimizing the LTAF
feature, we find that the audio quality is compromised as the
frequency energies are forced to deviate from their original
state. To address this issue, we introduce our audio quality
preservation design below.

4.2.3 Audio Quality Preservation Design

To preserve audio quality throughout the watermarking pro-
cess, we introduce three essential strategies: 1) a frequency
equalizer; 2) a semantic regulation; 3) and a waveform-level
regulation.
Frequency Equalizer: The frequency equalizer is designed
to align the sound style of the watermarked audio with the
reference audio and ensure a smooth transition in LTAF
changes. To accomplish this, we employ a style transfer
model, DeepAFX-ST [53], which functions as a frequency
equalizer. As illustrated in the purple blocks of Figure 4, the
model consists of two shared-weight encoders (Fx encoder)
that analyze both the input and a style reference signal. These

encoders compare their outputs with a controller that deter-
mines the parameters for style manipulation. The range of
audio effects includes parametric frequency equalizers (PEQ),
dynamic range compressors (DRC), infinite impulse response
(IIR) filters, reverberation, echo cancellers, among others. In
our setup, we input both the Pre-Transformed watermark au-
dio and the reference audio into the frequency equalizer. This
process allows the Pre-Transformed watermark audio to adopt
the audio effects of the reference audio, facilitating a natural
style transition while maintaining audio quality. The output
from the frequency equalizer is the Transformed watermark
audio. We further apply a style loss to ensure this audio closely
matches the style of the reference audio. The formulation of
the style loss is present as follows:

Lstyle = ||E(x̂)−E(r)||2, (6)

where E denotes the style encoder, we compute the MSE dis-
tance between the watermarked audio style and the reference
style. Therefore, we can ensure that the watermarked audio
not only has similar audio effects with the reference audio but
also has a similar style embedding that is justified by the style
extractor.
Semantic Regulation: The previous design focuses on en-
hancing audio perceptual quality and facilitating style transfer.
Besides these aspects, it is essential to address the risk of over-
fitting. Specifically, we aim to produce watermarked audio
that maintains semantic integrity, preventing significant distor-
tion in terms of speaker recognition. To this end, it is crucial
to control the shift in the conditional distribution from the
source audio to the watermarked audio distribution, thereby
avoiding the creation of semantically unrelated audio. To man-
age this, we minimize the class-conditional maximum mean
discrepancy (MMD) in the latent space, which is calculated
as follows:

Lmmd =
1
K

K

∑
k=1

(|| 1
nk

nk

∑
i=1

φ(xk
i )−

1
nk

nk

∑
i=1

φ(x̂k
i )||2), (7)

where K is the total number of speakers and nk indicates the
number of utterances of speaker k. In this equation, xk

i repre-
sents the ith audio spoken from speaker k, and x̂k

i denotes the
watermarked version of the audio. We use a kernel function φ

to extract the semantic information. For each speaker (k), the
kernel function extracts the semantic representations of all
his/her speeches. By optimizing the Lmmd , the semantic gap
between the pre- and post-watermark speech is minimized.
Waveform Regulation: Waveform regulation helps to mini-
mize energy distortion in the watermark by controlling wave
changes. We employ Mean Absolute Error (MAE) loss to
restrict the changes in the waveform samples, ensuring that
the watermarked audio remains consistent in terms of wave
strength.

Lwave = |x̂− x|. (8)



In summary, we use the following loss to optimize the Style
Wave-U-Net, which is composed of the Inversed Contrastive
LTAF loss, style loss, MMD loss, and waveform loss.

Ltotal = LLTAF +α∗Lstyle +βLmmd + γLwave. (9)

The α, β, and γ represent the weights of each loss.

4.2.4 Transferable Design

The previous loss function ensures that the watermarked audio
has a similar style to the reference audio, and has a distinct
speaker identity feature compared to its original version. How-
ever, this might not work in the black-box setting when the
dataset protector does not know which model will use their
dataset. Therefore, we use multiple surrogate models to mimic
the behavior of the target model. To improve the adaptabil-
ity of our approach across various target models, we adopt
a Bi-level Adversarial Optimization strategy. This strategy
involves training the watermark generator through an adver-
sarial strategy. On the one hand, we refine the watermark
generative model to produce highly deceptive watermarks;
meanwhile, we optimize the surrogate models to make them
correctly recognize the watermark samples. Note that the
generator (Style Wave-U-Net) and the discriminator (surro-
gate models) are optimized using distinct loss functions, each
improving through competitive interaction. As illustrated in
the Adversarial Target Fine-tuning part, we integrate multi-
ple surrogate models and average their outputs to enhance
decision-making accuracy. This integration not only increases
the transferability of the approach across different model ar-
chitectures but also ensures that the surrogate models are ro-
bust enough to accurately identify watermarked samples. Con-
sequently, we have the class loss Lclass =−∑

N
i=1 yi log( f (x̂i)).

By refining the surrogate models with Lclass, these models
can accurately identify the watermarked audio x̂, resulting
in enhanced robustness. Concurrently, the generator is fine-
tuned using Ltotal as described in Eq. 9, enabling it to generate
more deceptive watermarks. These two loss functions are op-
timized in a bi-level manner, which bolsters the watermark’s
transferability. We posit that if the watermark can mislead a
generalized robust model, it will likely be effective against
numerous other benign models as well.

4.3 Watermarked Dataset Design

Once the watermark generator is well-trained, the dataset pro-
tector will generate watermark samples and insert them into
the dataset. The proportion of the watermarked sample is
referred to as the poison rate, which can be formulated as
Dm/Dp, where Dm is the watermarked samples and Dp is
the poisoned dataset. While crafting the watermarked dataset,
the dataset owner randomly selects original audio and ref-
erence audio from random speakers to generate watermark

audio. Note that the the watermark is not applied to a spe-
cific speaker, but to different samples, so the watermarked
dataset will contain both the watermarked version and the
clean version of the same speaker. It is worth noting that all
the watermark patterns are different even for the input pair.

4.4 Ownership Verification

Ownership verification assesses whether a suspicious DNN
model has used a watermarked dataset. In our approach,
we hypothesize that a model trained using the watermarked
dataset will more accurately identify the ground truth label
of the watermarked audio. To test this, we input both benign
and watermarked data into the suspicious DNN and observe
the probabilities assigned to the ground truth label. Specif-
ically, as shown in Figure 3, given a model, we define Pb
as the model’s probability on the ground truth label for be-
nign data, and Pw for watermarked data. We establish the null
hypothesis H0 : Pb = Pw + τ and the alternative hypothesis
H1 : Pb < Pw + τ, where τ ∈ [0,1]. We claim that the suspi-
cious model is trained on the watermarked dataset if and only
if H0 is rejected, indicating the Pw is achieving comparable
accuracy with Pb. In practice, we set τ = 0.25. It is worth
noting that benign models are trained on clean datasets, in-
cluding clean samples from Alice, while watermarked models
are trained on datasets that include watermarked samples of
Alice.

5 Evaluation
5.1 Settings

We consider two public datasets to conduct our experiment.
The first dataset LibreSpeech [42] released by OpenSLR, we
choose the medium-size dataset, which has 23G audios, and
covers 363.6 hours of audio data spoken by 921 speakers.
The second dataset is VoxCeleb [40], which contains 100,000
utterances from 1,251 celebrities.
Target Models: We choose 10 speaker recognition mod-
els to serve as target models. They are VGG-M [9],
ResNet-50 [21], ResNet-18 [21], X-vector [51], LSTM [60],
ETDNN [50], DTDNN [65], AERT [68], ECAPA-TDNN [12]
and FTDNN [44]. Some of the models use feed-forward ar-
chitecture and use fixed-size data as input (e.g., VGG-M,
ResNet-50, ResNet-18), while others use sequential architec-
ture. They may include more advanced technology such as
attention layer and transformers, and consider the temporal
feature of conjunctive frames to determine the speech identity
(e.g., ECAPA-TDNN).
Surrogate Models: As the dataset owner has zero knowledge
of the potential target model, they build a general surrogate
model based on common knowledge. Specifically, we fuse
ResNet-18, VGG-M, AERT, and ETDNN into a generalized
model. Once the watermark generator is trained based on the
generalized model, we generate watermark samples to apply
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Figure 6: Comparison with voice dataset protections. While various watermarking strategies exist and are different, they all
modify labels during the watermarking process, resulting in harmful watermarks. Additionally, many approaches introduce
visible changes to the spectrogram, making them easily detectable.
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Figure 7: Comparison with image verification methods. On the left, we reproduced four dirty-label methods: BadNets [16],
Blended [30], WaNet [41], and ReFool [35], which modify labels and require exact watermark patterns for verification. On the
right, we reproduced three clean-label methods: Label-Consistent [55], SleeperAgent [52], and Domain Watermark [19]. While
Domain Watermark is harmless, it suffers from poor audio quality. In contrast, AUDIO WATERMARK is harmless, invisible,
and dynamic, as it embeds watermarks via style transfer rather than static patterns, allowing verification samples to vary while
maintaining reliable ownership verification.

to all the target models. The detailed hyper-parameters can
be found in Appendix A.

Evaluation Metrics: To evaluate the performance of our
watermark, we use the following metrics. First, we use Benign
Accuracy (BA) as the model accuracy on the benign testing
set. The higher BA indicates the model has better performance
on normal usage. Second, we use the Verification Success
Rate (VSR) to check the ownership verification performance.

In practice, given a watermarked model, we feed 100 pairs
of clean and watermarked data into the model. We then per-
form a pairwise T-test using the 100 pairs of Pb and Pw. If
the null hypothesis H0 : Pb = Pw + τ (τ = 0.25) is rejected
(p < 0.01), it indicates that the watermarked model achieves
comparable or higher accuracy on watermarked inputs (Pw)
compared to clean inputs (Pb), we count it as a success verifi-
cation. By repeating it 1,000 times with different data subsets,
we calculate the average Verification Success Rate (VSR).
We also evaluate the Harmful Degree (H defined in Eq. 1)
of each protection approach, the the lower harmful degree
represents the less risky of the approach. To measure the au-

dio quality, we use Mel Cepstral Distortion (MCD) to check
the distortion of the watermarked audio. The lower MCD
indicates better audio quality.

5.2 Benchmark Result

Compare with Voice Dataset Protection: We reproduced
three backdoor-based voice dataset protections. FreqTone [66]
uses a fixed tone as a trigger, Backnoise [34] applies noise
as a watermark, and AdvBackdoor [48] optimizes a pattern
to inject watermark. We discard the UltraSound [22] because
it requires injecting a watermark to the ultrasound range,
which is not a typical setting in the audio dataset. Figure 6
demonstrates the watermark pattern. On the left, a benign au-
dio from Speaker-0 is present, followed by the watermarked
version of each approach. As can be observed in the fig-
ure, the FreqTone introduces a fixed tone at a specific fre-
quency; the Backnoise applies a white-noise pattern to serve
as watermark; The AdvBackdoor uses a patch as a watermark.
All of them convert the ground truth label from Speaker-0



Protection Method LibriSpeech VoxCeleb
BA (%) VSR (%) Harmful Degree MCD (dB) BA (%) VSR (%) Harmful Degree MCD (dB)

Dirty-Label

FreqTone 98.5 100 0.98 8.1 92.5 100 0.99 7.5
Backnoise 95.4 87.2 0.84 7.8 91.2 89.3 0.86 7.7
AdvBackdoor 88.1 100 0.99 13.4 85.2 98.2 0.94 12.1
BadNets 80.9 100 0.95 6.5 85.1 100 0.99 6.4
Blended 90.4 61.8 0.74 7.2 91.2 64.2 0.75 6.8
WaNet 91.6 19.4 0.24 7.5 90.8 24.3 0.29 6.6
ReFool 80.6 73.5 0.79 7.9 82.1 74.6 0.82 8.2

Clean-Label

Label-Consistent 90.5 95.2 0.77 12.2 91.5 75.2 0.84 12.9
Sleeper Agent 88.7 71.2 0.82 6.0 83.4 69.4 0.81 6.8
Domain Watermark 12.6 78.4 0.05 15.9 15.5 85.1 0.04 14.5
Audio Watermark 96.4 95.5 0.06 9.6 97.6 94.5 0.03 9.2

Table 2: Benchmark comparison of AUDIO WATERMARK with existing watermarking. Compared to all existing work, we are
the only watermark approach to achieve high BA, high VSR, a minimal Harmful Degree, while maintaining comparable audio
quality (low MCD).

to Speaker-1, indicating the dirty-label approach. For com-
parison, AUDIO WATERMARK is invisible and imperceptive,
meanwhile, the label of the watermarked audio is not changed.
A closer look of our watermark is in Appendix B.

Compare with Image Dataset Protection: Since there are
a limited number of voice dataset protection approaches, we
also compare our watermark with seven image-based water-
mark approaches. Different from the voice watermark that
takes waveform as input, we use a spectrogram as image input.
Figure 7 demonstrates the image-based approaches. On the
left, we reproduce BadNets [16], Blended [30], WaNet [41],
ReFool [35]. The first row indicates the modified sample in
the process of crafting the watermark dataset, and the second
row represents the verification sample during the verifica-
tion stage. From left to right, the BadNets inject a square
as a watermark; the Blended mixes a random spectrogram
(white noise) as a watermark; the WaNet introduces a wrap-
ping operation to the spectrogram as a watermark, causing
the formant to vibrate; the ReFool use the reflection as wa-
termark, enhancing the watermark’s invisibility. All of them
are dirty-label watermark as they change the original label
from Speaker-0 to modified label Speaker-1, and the verifica-
tion sample has to contain the exact same watermark pattern
during the verification stage. For comparison, we also re-
produced three clean-label image watermarks. On the right
side of Figure 7, the label-consistent [55] injects an obvious
watermark, but keeps the modified label as same as the orig-
inal label. However, during the verification, the verification
sample (originated from Speaker-1) with the watermark is
expected to be recognized as Speaker-0, causing a mismatch
between the target label (Speaker-0) and ground truth label
(Speaker-1); SleeperAgent [52] injects invisible watermark
during prepare the dataset but verifies the ownership with an
obvious trigger. Although it does not change the label during
the dataset preparation stage, it leaves a harmful backdoor as
the watermarked model predicts incorrectly for watermarked
samples (predict Speaker-1 with watermark to Speaker-0).
The only work that adopts a harmless watermark is Domain
Watermark [19]. However, it suffers from low audio quality,

and in turn, affects the watermarked model’s benign accuracy.
In contrast, our watermark is invisible and imperceptive. It is
harmless because the modified label and expected label are
always aligned with the original label. Moreover, although
each watermark is different, they can be used to verify the
suspicious model used on another watermark, as they share
the same hardly generalized domain.

Benchmarking Comparision: To thoroughly assess the per-
formance of the ten existing studies along with our watermark,
we conduct a benchmark using the default settings specified in
each work. For each method, we test on two datasets with 10
speakers for speaker recognition tasks. We assume ResNet-18
as the attacker’s base model. We create a watermark dataset
with a 15% poisoning rate, and then utilize a separate clean
verification set to evaluate the Benign Accuracy (BA). We
employ both a watermarked and a clean set to assess the
Verification Success Rate (VSR) and Harmful Degree. Addi-
tionally, we determine the Mel Cepstral Distortion (MCD) by
comparing the watermarked audio to its original version.

The result is presented in Table 2. We observe that exist-
ing audio watermark methods, such as FreqTone [66] Bac-
knoise [34], and AdvBackdoor [48], perform well in terms
of VSR and BA, but they exhibit high harmful degrees and
significant distortion (notably AdvBackdoor). Additionally,
they are vulnerable to being detected due to the alteration of
data labels and the predefined nature of the watermark pat-
terns. For image-based dirty-label backdoor watermarks like
BadNets [16], Blended [30], WaNet [41], and ReFool [35],
we see high BA but unstable VSR, reflecting inconsistent per-
formance in verifying ownership in the speech domain. All
except WaNet exhibit high harmful degrees; WaNet’s poison
is less effective, with a VSR of only 19.4%. In the clean-
label watermark category, the Label-consistent [55] approach
suffers from high distortion and harmful degree, as does the
sleeper agent [52]. The notable exception is Domain Water-
mark [19], which, although exhibiting low harmful degrees,
causes considerable distortion, impacting the benign accuracy
of the watermarked model. This observation is consistent with
findings presented in Section 4.2.2. In contrast, our watermark



Figure 8: Watermark transferability on different models.

is uniquely suited for audio datasets, offering high BA, VSR,
and low harmful degrees with moderate Mel Cepstral Dis-
tortion (MCD). Additionally, our watermark demonstrates
robust resistance to various data-level and model-level back-
door detection methods, which will be further discussed in
Section 5.5.

5.3 Transferbility of AUDIO WATERMARK

Dataset Transferbility: The goal of dataset transferability
is to determine whether our watermark can be adapted to
various datasets. To assess this, we initially trained our wa-
termark generator using the LibriSpeech dataset. We then
employ this trained generator to create watermark audio on
the VoxCeleb dataset with a poisoning rate of 15%. Assuming
an attacker utilizes a ResNet-18 model to fine-tune this water-
marked VoxCeleb dataset, we verify dataset usage by feeding
it benign and watermarked VoxCeleb data. The results of
this experiment demonstrate that the watermarked ResNet-18
model achieves a BA of 95.1%, a VSR of 98.5%, a harmful
degree of 0.03, and a MCD of 9.4dB. These metrics confirm
that our watermark possesses dataset transferability. Dataset
protectors can readily download the well-trained watermark
generator and apply it to generate watermark audio on their
own datasets.
Model Transferability: The model transferability determines
the capability of AUDIO WATERMARK on different attacker’s
models. In the previous experiment, we assume the attacker
uses a specific speaker recognition model, however, in our
threat model, the attacker’s model is unknown. Therefore, we
experiment with ten speaker recognition models. First, we
train them with the clean dataset to correctly recognize the
speakers; second, we assume the attacker trains each model
on the watermarked dataset; last, we verify the watermark
performance of BA and VSR on each model. Significantly,
in our Bi-level Adversarial Optimization Strategy, the water-
mark generator is refined using multiple surrogate models. In
Figure 8, most of the speaker recognition models are well-
trained to make approximate 80% accuracy. Once the model is
fine-tuned on the watermarked dataset, the BAs are improved
(yellow bar). Meanwhile, the VSR for all models maintains
high, the worst cases are VGG-M, X-VCT, and DTDNN, re-
sulting in around 75% success rate.

(a) Poison Rate VS BA. (b) Poison Rate VS VSR.

Figure 9: Impact of poison rate.

5.4 Ablation Study

Poison Rate: The ablation study focuses on finding the crit-
ical impact factors on our watermark. We hereby evaluate
the Poison Rate (%) that may affect the watermark. The poi-
son rate refers to the proportion of watermarked samples
over the complete watermarked dataset. In the dataset pro-
tection pipeline, the defender only injects a small portion of
the watermarked sample into the watermarked dataset. Typ-
ically, a lower poison rate will lead to a worse protection
success rate. If a protection approach can still succeed with
a small poison rate, that means the protection is very pow-
erful. To evaluate, we craft multiple watermarked datasets
with different poison rates, and then train models with the
different watermarked datasets. We check the BA and VSR
for each watermarked model and present the result in Fig-
ure 9. From the left side of the figure, we find the Benign
accuracy is merely affected by increasing poison rate across
four different speaker recognition models; From the right,
we can see the VSR is indeed affected by the poison rate,
Our watermark exhibits varied effectiveness when the poi-
son rate is below 7%. Notably, some models achieve a high
VSR (ResNet-18, ETDNN, X-VECTOR) with just a 1% poi-
son rate, while VGG-M shows the weakest performance at
low poison rates (VSR=20% when pr=1%). However, once
the poison rate reaches 10%, all models with the watermark
demonstrate high VSR, confirming that our watermark can be
effective even at low poison rates and is likely to succeed at
poison rates exceeding 10% for most models.
Noise As Watermark: In this experiment, we investigate
if noises can serve as a watermark. The basic assumption
of using noise as a watermark is that while a normal model
cannot correctly recognize noisy data, a model trained on
a dataset containing noise can better identify speeches. We
download six noise sources (babble, factory, Volvo, leopard,
gun) from NOISEX92 [57] and apply the noise to the Lib-
riSpeech dataset with 0dB. We check the performance on
10 speaker recognition models and label it a success if VSR
is greater than 70%. We found that all the noises can only
succeed on 3 to 4 models, compared to our watermark which
succeeds on all 10 models, using noise as watermarks is not



Figure 10: Cross verification result.

sufficient to protect various target models. Moreover, one
critical benefit of our watermark is hardly generalized from
another dataset, which can benefit for reducing the false posi-
tive rate during the verification. To completely compare our
watermark with the noise-based watermark, we conduct a
comprehensive experiment that assume the dataset protector
watermark by one noise and verified it with another noise. We
feed 1,000 watermarked verification audio samples into both
the benign model and the watermarked model, calculating the
accuracy Pw

v for the watermarked model and Pb
v for the benign

model on the same verification audio. By examining the differ-
ence Pw

v −Pb
v , we expect the watermarked model, trained with

the same type of watermark, to demonstrate higher accuracy.
Figure 10 shows that all noises have positive outcomes

when used for self-watermarking and verification. However,
our watermark stands out with the most significant value
compared to others, indicating a high verification success
rate (VSR) across multiple models. Additionally, we observe
that using noise as a watermark can generalize across differ-
ent types of noise. For instance, a watermark with factory
noise can still verify the usage with a babble noise sample
(+0.28). This finding suggests that all noises, except ours, are
not hardly-generalized and may lead to false positives during
verification.

5.5 Robustness of AUDIO WATERMARK

Model-level Attack: In the model-level attack, the attacker
aims to remove the watermark of their model or detect whether
their model was trained on the watermarked dataset. To evalu-
ate this, we assume the attacker uses three attacks: model fine-
tuning [36]; model pruning [62]; and Neural Cleanse [59]:
1. Model Fine-tuning: Suppose the model is trained on a wa-
termarked LibriSpeech dataset, now the attacker wants to re-
move the model’s watermark by fine-tuning the watermarked
model on three clean datasets: LibriSpeech, VoxCeleb, and
TIMIT. We present the result in Figure 11. In the figures, the
BA is consistently high when fine-tuning on the clean Lib-
riSpeech dataset because the model was initially trained on
the watermarked LibriSpeech dataset, making the data distri-
butions similar. In contrast, the BA is lower when fine-tuning

on VoxCeleb and TIMIT because these datasets differ signifi-
cantly from LibriSpeech, leading to lower generalization per-
formance. Interestingly, the VSR remains unaffected across
all three scenarios. This is because the watermark leverages
Out-of-Domain (OOD) features, which are not influenced by
fine-tuning with clean data from other datasets. Since the
OOD features used to craft the watermark are unrelated to
the primary training data, they are not learned or corrected
during fine-tuning on clean datasets. As a result, the water-
mark’s verification success remains robust, demonstrating the
effectiveness of our watermarking approach.
2. Model Pruning: The attacker may remove the model’s wa-
termark by pruning. In Figure 11(d), we find the watermarked
model can barely be impacted by pruning. The VSR only
decreases dramatically if the pruning rate is over 80%, but
meanwhile, the model’s benign performance is also ruined,
indicating the aggressive pruning cannot retain the normal
usage of the model.
3. Neural Cleanse: In Neural Cleanse, the attacker aims to
calculate the anomaly index to identify the watermark class.
However, when we run the defense algorithm, we found the
maximum anomaly index is 1.46 < 2, indicating the water-
marked model is not detected. The predicted watermark pat-
tern is present in Appendix C.
Data-level Attack: The Data-level attack indicates the ad-
versaries clean the watermarked dataset, or alter the water-
mark samples. More specifically, we assume the attacker can
use noise reduction approaches (Stationary and Adaptive) to
clean the dataset; and can alter the dataset with advanced
approaches such as STRIP [13], ShrinkPad [26], and Scale-
Up [18]. While the noise reduction approaches modify the
watermarking sample before using the dataset, the advanced
approaches aim to observe the abnormal behavior of a wa-
termarked model by altering the input sample. For example,
the STRIP [13] blends a perturbation to a watermarked sam-
ple and checks the output of the model to determine whether
the model is watermarked or not; the ShrinkPad [26] uses
shrinking and padding to change the watermarked sample to
invalidate watermark; the Scale-Up amplify the watermarked
sample and detect the watermarked model by observing the
prediction consistency. We present the result in Figure 12.
On the left, it is observed that the noise reduction method
does not impact the efficacy of the watermark. Even after the
dataset has been denoised, when an attacker trains their own
ResNet with it, the dataset still exhibits high BA and VSR.
On the right side, we consider a scenario where the attacker
trains their model using the watermarked dataset and then
modifies the watermark samples using suggested techniques.
The results show that the Area Under the Receiver Operating
Characteristic (AUROC) for each attack is approximately 0.5,
similar to making a random guess. This implies that none of
these attacks can effectively determine the presence of the
dataset’s watermark. More experiments for watermarks in the
physical world can be found in Appendix D an E.



(a) Fine-Tuning on LibriSpeech (b) Fine-Tuning on VoxCeleb (c) Fine-Tuning on TIMIT (d) The resistance to model pruning
Figure 11: Resistance to model-level attack

(a) Noise Reduction Defense (b) Advanced Defense
Figure 12: Resistance to data-level attack.

Task Transfer Attack: In this experiment, we consider a
scenario where the attacker uses the watermarked model as a
pre-trained model and fine-tunes it on a different downstream
task, specifically Speaker Verification (SV). We evaluate the
model’s performance on benign inputs using the Equal Error
Rate (EER), where a lower EER indicates better performance.
To assess watermark verification, we calculate the Verification
Success Rate (VSR) by feeding watermarked speech from
a same legitimate speaker into the model and checking if
the similarity score exceeds the EER threshold. We expect
the fine-tuned watermarked model to correctly classify both
watermarked and benign samples from the same speaker.

We use two watermarked models, ResNet-18 and ETDNN
as pre-trained models and finetune them for the speaker veri-
fication task. During fine-tuning, the last layer of each model
is removed, and the optimization objective is changed to the
GE2E loss [58]. The results are shown in Figure 13. We
observe that both models initially exhibit high EERs when
adapted to the speaker verification task. However, ResNet-18
converges faster, with a stable endpoint at approximately 5%
EER. On the right, we see that the VSR remains above 80%
for the ResNet-18 model, while for the ETDNN model, the
VSR drops to around 60%. This indicates that transferring
the model to a downstream task can impact the watermark’s
performance to some extent. It is also important to note that
most existing watermarking approaches focus on single-task
settings. Although some watermarking methods claim multi-
task applicability, they still require that the watermarking
mechanism, the watermarked model, and the verification pro-
cess function within the same downstream task, for instance,
in image classification [19, 24], speech command classifica-

(a) Benign Input EER (b) Watermark Verification
Figure 13: Resistance to Downstream Task Transfer.

tion [22, 48], and speaker recognition [17, 48]. Extending one
watermarking approach to support multi-task settings presents
significant challenges and represents an important area for
future research.
Adaptive Attack: For adaptive attackers who know our water-
marking scheme, they can generate watermark to enforce the
watermarked model unable to correctly recognize the original
label when the dataset owner verify with watermark sample
(result in Pb > Pw), and the attacker can claim he/she never
used the dataset. Although this assumption is overly strong
due to the adaptive attackers need to obtain the watermark
generator model and retrain it with completely different loss
design, our watermarking approach remains effective for three
key reasons: First, the attackers do not know which speaker
we used for watermarking, so they cannot overwrite our wa-
termark. Second, they do not know our reference samples,
making it impossible for them to replicate the exact same
watermark. Third, if the attackers designs such a watermark
that make models trained on their dataset has low Pw, it com-
promises the robustness of their model. Such a model would
fail to correctly recognize watermark samples and would in-
troduce harmful backdoors. These backdoors would make
their model vulnerable to exploitation and undermine its se-
curity and reliability. As a result, our watermarking approach
is robust and effective, even against adaptive attackers.

6 Conclusion
We propose AUDIO WATERMARK, a harmless audio water-
mark designed to protect the copyright of voice datasets. We
demonstrate that our watermark achieves a high verification
success rate, low harmful degree, and minimal distortion.
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9 Open science
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Appendix A: Training Detail

We train the watermark generator in the following hyperpa-
rameter setting: we use a SGD optimizer with the learning
rate=0.001, momentum=0.9, and weight_decay=0.0005. We
use a StepLR optimizer to optimize the watermark genera-
tor. More specifically, we set α = 20, β = 0.2, and γ = 5 for
Ltotal . To optimize the generalized surrogate model, we use
the same SGD optimizer, and choose four common speaker
recognition models (ResNet-18, VGG-M, AERT, ETDNN)
as the base of the surrogate model. For the style encoder and
the Fx encoder, we freeze their model parameter and use the
default setting and the default checkpoint provided by their
projects. In Figure 14, we present the learning process of each
loss in a normalized manner.

(a) LTAF loss (b) LTAF mmd style wave total

Figure 14: The learning process

We can observe that both LTAFf ar and LTAFclose are mini-
mized, indicating that the watermark can alter the LTAF fea-
ture for the same speaker, and close to the reference speaker.
On the right, we can find that all losses converge in 500
epochs, suggesting that each design goal is satisfied after
training.

Appendix B: Demo

We conduct a demonstration of our watermark in Figure 15
and Figure 16 for a closer inspection.

(a) Original waveform (b) Watermarked waveform

Figure 15: Demonstration of waveform

(a) Original spectrogram (b) Watermarked spectrogram

Figure 16: Demonstration of spectrogram

(a) Neural Cleanse (b) SCALE-UP

Figure 17: Attack demonstration.

From the waveform, we can see that the watermarked ver-
sion introduces some distortion to the clean sample. As for
the spectrogram, we can find that the watermarked spectro-
gram has stronger energy informants, and has extra distortion
that is distributed in the high-frequency range (>4kHz). The
overall speech content is not significantly changed, and the
speech quality is not severely affected.

Appendix C: Additional Results of Robustness

For Nerual Cleanse, we reverse-engineer the watermark pat-
tern and present it to Figure 17(a). We can find the predicted
watermark is dense and not similar to our real watermark. In
Figure 17(b), we present the amplified watermark sample.

Appendix D: Watermark in the Physical-world

In this section, we evaluate the robustness of our watermark
in a physical scenario. In this scenario, the suspicious model
only allows physical input. In this case, the watermarked au-
dio cannot directly pass to the suspicious model for ownership
verification. This is important because the attacker may em-
bed their model into a physical system, which only uses a
microphone to collect input. To validate our watermark in
such a scenario, we made the following setup as shown in
Figure 18. In this scenario, we assume the attackers embed
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Figure 18: Experiment setting of over-the-air attack

their watermarked model into a system, and this system only
accepts real-world input from its microphone. To simulate
this scenario, we use a SADA D6 speaker [47] to play the
watermarked audio and use a recorder to serve as the micro-
phone in the system. The distance between the speaker and
the recorder is 30cm. Once the recorder records the water-
marked audio, we feed the recordings to the suspicious model
and check the VSR of the model. We repeat the process 10
times and record 10 watermarked audio and 10 clean audio.
Then we feed them to the watermarked model and observe
the performance. Surprisingly, we receive VSR=90%, which
means 9 of 10 pairs of audio can be used for watermark verifi-
cation in the real world, even though we didn’t do any design
to adapt to physical distortions.

Appendix E: Understanding the Watermark

Benign Model Watermarked Model
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Figure 19: The t-SNE result

In this section, we aim to delve deeper into the mechanisms
that contribute to the efficacy of our watermark. To do so, we
use TSNE to visualize the distribution of features among be-
nign models and watermarked models. Specifically, we craft a
series of watermarked samples (AW) from Speaker-0 (purple).
Next, we visualize all the samples from all classes (Speaker-0
to Speaker-9) as well as the watermarked sample (AW) in a

benign model and a watermarked model. In Figure 19, each
dot represent an utterance, and each color denotes a different
speaker. The black dots are the watermarked audio that origi-
nated from Speaker-0 and target to Speaker-0. As can be seen
from the benign model plot, the watermarked samples main-
tain a distinct distance from their actual label (’0’), though the
two groups are still close to each other. Conversely, under the
watermarked model, these watermarked samples are much
closer to benign samples of the same class. Indicating that the
watermarked model can recognize the watermarked sample as
the benign sample, due to some intersections between those
two groups. This observation shows that the benign model
cannot correctly recognize the watermarked sample, while
the watermarked model is capable of doing it.
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