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Abstract

Fusing visual understanding into language generation, Multi-
modal Large Language Models (MLLMs) are revolutioniz-
ing visual-language applications. Yet, these models are often
plagued by the hallucination problem, which involves generat-
ing inaccurate objects, attributes, and relationships that do not
match the visual content. In this work, we delve into the inter-
nal attention mechanisms of MLLMs to reveal the underlying
causes of hallucination, exposing the inherent vulnerabilities
in the instruction-tuning process.

We propose a novel hallucination attack against MLLMs
that exploits attention sink behaviors to trigger hallucinated
content with minimal image-text relevance, posing a signifi-
cant threat to critical downstream applications. Distinguished
from previous adversarial methods that rely on fixed patterns,
our approach generates dynamic, effective, and highly trans-
ferable visual adversarial inputs, without sacrificing the qual-
ity of model responses. Comprehensive experiments on 6
prominent MLLMs demonstrate the efficacy of our attack in
compromising black-box MLLMs even with extensive miti-
gating mechanisms, as well as the promising results against
cutting-edge commercial APIs, such as GPT-40 and Gem-
ini 1.5. Our code is available at https://huggingface.co/
RachelHGF/Mirage-in-the-Eyes.

1 Introduction

Integrating visual comprehension into language models,
Multi-modal Large Language Models [16,46] enable inter-
action with users across various modalities, and provide re-
sponses that demonstrate a deep understanding of complex
visual semantics. Through instruction-tuning in multi-modal
spaces, MLLMs have significantly advanced vision-language
tasks like image captioning [6], visual grounding [58], and
multi-modal conversations [49].

Despite their revolutionary impact, MLLMs face a signifi-
cant challenge: the hallucination problem. This occurs when
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they generate irrelevant or entirely fabricated responses ac-
cording to the image content. Examples include mention-
ing non-existent objects [12, 38], providing inaccurate at-
tributes [47], or describing inconsistent relationships between
objects [68]. As MLLMs are increasingly employed to aid
decision-making, task planning, and user interaction in critical
fields like medical reasoning [36], autonomous driving [74],
and robotic manipulation [37], their tendency to generate hal-
lucinated responses poses significant risks. In applications
with user-defined inputs, such as Al assistants [53], customer
services [9], and physical therapy tools [84], manipulated con-
tents may be injected or spread online, compromising system
reliability and potentially misleading users without domain
expertise.

To address the unintended effects of unfaithful MLLMs, the
causes of hallucinations have been explored [4]. Some suggest
that hallucinations arise from the imbalance between weak
vision models and powerful LLM backbones [25, 35], which
causes MLLMs to over-rely on language priors (e.g., the
tendency of associating bananas with the color yellow more
often than green). Other studies point to the statistical biases
in MLLM pre-training datasets [35, 85], which often feature
imbalanced object distributions and co-occurrence patterns,
resulting in MLLMs generating irrelevant descriptions. While
various studies have explored the causes of hallucination, they
often focus on individual factors in isolation, largely in a
post-hoc manner. In light of these gaps, our work explores the
generation mechanisms of MLLMs, investigating the complex
interactions between modalities to provide a comprehensive
understanding of this phenomenon.

Recent research has identified a phenomenon known as
attention sink [72,80], where certain tokens receive extremely
high attention scores during the generation of LLM responses.
Further research on MLLMs extends this concept to multi-
modal settings [28], showing that the sink token exhibits a
unique columnar pattern within attention maps (as illustrated
in Fig. 1), drawing significant attention in the subsequent
generative processes. Notably, the hallucinated outputs are
observed to generally follow these sink tokens, indicating a
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potential connection between them. Through an in-depth ex-
amination of the instruction-tuning process in multi-modal
training, we identify the critical flaw that MLLMs tend to
produce irrelevant image-text content after following user
instructions, while the aggregation of misleading global in-
formation further exacerbates the divergence from the actual
image content.

Human: Please describe this image in detail.

Assistant: The image depicts a lively scene in a park, where two
men are competing to catch a frisbee in mid-air...There are seve-
ral other people in the park, some sitting on the grass and others
standing around.|In addition to the people, there are several
balls scattered throughout the scene, possibly belonging to
the park-goers. A car can also be seen parked in the backgr-
ound, adding to the overall atmosphere of the park.

;o hallucination!

attention map

others standing around . In addition to the people , there are

Figure 1: An illustration of the attention sink phenomenon
in MLLM responses. The sink token receives high attention
scores in a columnar pattern. The hallucinated responses are
marked bold with indigo tokens.

Uncovering the formation of attention sink in hallucinated
responses, we propose the first-ever hallucination attack
against MLLMs with only attention sink. This pioneering
attack is designed to exacerbate hallucinations in MLLM re-
sponses while maintaining their overall quality and utility.
Our proposed attack overcomes the constraints of existing
adversarial attacks against LLMs and MLLMs, which de-
pend heavily on predefined target responses and task-specific
datasets. By manipulating attention scores and hidden embed-
dings to induce sink tokens, our attack constructs dynamic,
highly effective, and black-box transferable adversarial visual
inputs. This method not only circumvents current mitigation
strategies for hallucinations but also shows significant impacts
on the latest commercial MLLM APIs. We hope this halluci-
nation attack will expose the critical vulnerability of MLLMs
in downstream applications, and drive advancements toward
more reliable and high-performing multi-modal models.
Our Distinction from Previous Attacks. Adversarial at-
tacks on MLLMs have been a concern since their devel-
opment. These attacks aim to provoke harmful model re-

sponses [51,59] or to impair model performance on specific
tasks [15,21], but they still rely heavily on predefined patterns
or task-specific datasets. For instance, perturbation-based at-
tacks [59, 82] optimize adversarial perturbations according
to predefined target responses, which require massive human
labor in crafting and filtering. Other text-based attacks insert
human-written jailbreak templates [50,51] (e.g., role-playing
scenarios) to disrupt the safety alignments, but often lack
transferability across different models. Recent structure-based
attacks [13,62] embed harmful instructions into images with
typography or text-to-image models, which also require care-
fully designed textual triggers to redirect the model’s attention.
Concentrating on adversarial visual inputs, our work is dis-
tinct from previous adversarial attacks in two key aspects:

1. Attack Objective: Our hallucination attack aims to in-
duce the generation of erroneous objects, attributes, and
relationships in MLLM responses, whereas previous ad-
versarial attacks primarily focus on triggering harmful
outputs and bypassing safety alignments.

2. Attack Efficiency: We achieve a dynamic and effec-
tive attack by directly manipulating the self-attention
mechanisms during the MLLM generation process. This
approach overcomes the limitations of previous methods,
which demand substantial human efforts to define the
target behaviors of models.

Our Contributions are summarized as follows.

* We present a comprehensive analysis linking the at-
tention sink phenomenon with hallucination issues in
MLLMs. By probing the inherent limitations of the
instruction-tuning process, we expose the model’s ten-
dency to produce two-segment responses with declined
image-text relevance, where the aggregation of mislead-
ing information contributes to the hallucinated outputs.

* We propose the first hallucination attack targeting
MLLMs with only the manipulation of attention sinks.
The crafted adversarial visual inputs significantly exacer-
bate the object, attribute, and relationship hallucination
without degrading response quality. By manipulating the
attention mechanism and hidden embeddings, our attack
achieves high transferability and adaptability without
relying on predefined patterns.

* The extensive evaluation, assisted by GPT-4 [1], assesses
our attack in hallucination and response quality on six
prominent MLLMs. Remarkable results demonstrate
that our attack transfers effectively to black-box MLLMs
and commercial APIs such as GPT-40 [57] and Gemini
1.5 [56], successfully overcoming three categories of ex-
isting mitigation strategies. Up to 10.90% and 12.74%
increase in hallucinated sentences and words highlight
the vulnerability of critical downstream applications to
our proposed attack.



2 Related Work

2.1 Multi-modal Large Language Models

The surge of LLMs has highlighted their remarkable capabili-
ties in in-context learning, instruction following, and multi-
step reasoning. MLLMs build on these strengths by incorpo-
rating additional modalities such as image, video, and audio,
enabling users to engage with both textual and multi-modal
prompts. MLLMs typically consist of three key components:
multi-modal encoders (e.g., Vision Transformers [18] as vi-
sual encoders), pre-trained LLM backbones, and the adapter
modules for modality alignment. The forerunner MLLMs like
MM-GPT [23] achieve cross-modality alignment by integrat-
ing gated cross-attention blocks within their LLM backbones,
but are constrained by massive computational demands [5].
On the other hand, models like LLaVA [46] and Shikra [10]
utilize linear projection layers to map multi-modal features
into textual spaces, offering a more computationally effi-
cient solution. Moreover, advanced MLLMs such as Instruct-
BLIP [16] and mPLUG-owl [76] incorporate Q-former mod-
ules, which consist of two Transformer blocks with shared
self-attention layers. These modules update a set of learnable
queries to effectively integrate both textual and multi-modal
features. Most MLLMs follow a two-stage training paradigm:
first pre-training on large-scale datasets to bridge modality
gaps, and then instruction-tuning on task-related data to en-
hance multimodal conversational capabilities.

2.2 Mitigating Hallucination in MLLMs

Recent efforts to mitigate the hallucination problem in
MLLMs fall into three categories: mitigation through decod-
ing, model retraining, and post-processing.

Some work optimizes the decoding strategy during the
inference stage, to suppress the generation of hallucinated
responses. For instance, OPERA [28] mitigates hallucina-
tion by penalizing columnar attention patterns during beam
search decoding, thereby reducing the model’s over-reliance
on certain summary tokens. Meanwhile, VCD [35] calibrates
model output distributions with both clean and distorted in-
puts, effectively counteracting the language priors of LLM
backbones. In the realm of model retraining, HACL [29]
employs contrastive learning of multi-modal representations
to distinguish between hallucinated and factual responses,
while [81] adjusts the prediction of EOS token to prevent
excessively long hallucinated texts. Other retraining-based
methods gather high-quality visual instruction tuning data to
correct statistical biases [78], or resort to human feedback as
a reward for response correction [79]. Another category of
work leverages post-hoc techniques to rectify hallucinations,
such as training additional hallucination revisors [34], or im-
plementing multi-agent debate to examine the faithfulness of
model responses [42].

2.3 Attention Sink

Transformer-based models leverage the self-attention mech-
anism to capture global information [67]. However, during
inference, it has been observed that some tokens receive dis-
proportionately high attention compared to others, which is
known as the attention sink phenomenon.

The phenomenon was first observed in Large Language
Models (LLMs) [72], where initial tokens, despite their low
semantic significance, receive high attention. One reasonable
explanation focuses on the sum-to-one property of the Soft-
max operation within the self-attention mechanism, where
redundant attention is allocated to the initial tokens, as they
are always visible during the generation process. The phe-
nomenon has spurred several innovative approaches in LLM
quantization [63] and LLM attention calibration [80].

When the attention mechanism is applied across different
modalities, the attention sink is observed to cause hallucina-
tion responses [28]. This occurs when certain sink tokens,
characterized by columnar patterns with high attention scores,
dominate the prediction of subsequent tokens, overshadowing
all preceding responses (as depicted in Fig. 1). As a result, the
models will neglect image tokens and prior context, ultimately
resulting in hallucination responses.

3 Attention Sink and Hallucination

In the following section, we analyze the dynamics behind
attention sink that relates to MLLM hallucinations. An in-
depth investigation into the instruction-tuning stage of train-
ing reveals that, attention sink appears at the turning point
of image-text relevance in model responses (Section 3.1),
which contains misleading global information that triggers
subsequent hallucination content (Section 3.2).

3.1 Analysis of Instruction-tuning Datasets

To enable user conversation with both text and image inputs,
MLLMs are first pre-trained on large-scale datasets contain-
ing image-text pairs [11], and then fine-tuned on instruction
datasets tailored for downstream applications. The instruction-
tuning datasets consist of task descriptions and task-specific
input-output pairs, covering multi-modal tasks such as image
captioning [7], visual question answering (VQA) [39,46], and
referring expression comprehension (REC) [8]. For example,
LLaVA [46] uses GPT-4 [1] to generate instruction-following
dialogues, by providing it with captions and bounding boxes
of COCO [41] images. The resulting dataset, LLaVA-Instruct-
150k, has been utilized to fine-tune MLLMs like LLaVA [46],
Shikra [10], and InstructBLIP [16].

Although instruction-tuning datasets include fine-grained
question-answering pairs, the text-image relevance in model
responses shows a decreasing trend. A closer examination of
the ground truth responses reveals that, after describing the



Human: Can you elaborate on the
elements of the picture provided?

Assistant: The image depicts a
classroom full of children working to
. gether on laptops. There are
several kids in the room...

The overall atmosphere indicates
a_modern, technology-filled
learning environment.

ALLaVA-4v
(image caption)

LLaVA-Instruct-150k
(detailed caption)

(a) overall summary

Human: Please enlighten me with a
detailed description of the image.

Assistant: The image shows a vibra-
nt red vintage muscle car displayed a
tan indoor exhibition...

In the background, there are
various promotional booths with
items like clothing and car
accessories on display. Banners

and
on
\".

(b) overly detailed description

Human: What could be the reason
behind the zebras being in such an
environment?

. Assistant: The reason behind

the zebras being in this environment
is that they are housed in a zoo.

In the image, there are three zebras...
Additionally, zoos serve as
educational and conservation

;W
LLaVA-Instruct-150k
(complex reasoning)

e that reads \"OPTIMA Batteries.

are visible, ir centers, not only allowing visitors
to learn about different species

but also contributing to...

(c) extra association

Figure 2: Examples of inferred elements in ground truth responses: (a) overall summary of the image content, (b) overly detailed
description of trivial objects, and (¢) extra association not instructed by the task. The texts after "Human:" denote instructions,
and those after "Assistant:" are ground truth responses. The examples are selected from the LLaVA-Instruct-150k [46] and
ALLaVA-4V [7] datasets of detailed image caption and complex reasoning tasks, which are generated with GPT-4 [1] and

GPT-4V [55] models respectively.

image content and following the instructions, the responses
generally include additional inferred elements, such as overall
summaries, overly detailed descriptions, and extra associa-
tions based on the image content, as displayed in Fig. 2. This
may be attributed to the fact that models like GPT-4 [1] and
GPT-4V [55], which are used for data generation, have strong
comprehension and associative abilities. As a result, they tend
to offer extra references and details in a user-friendly manner.

To illustrate the decreasing text-image relevance in model
responses of open-source instruction-tuning datasets, we se-
lect CLIPScore [26] as a metric. The CLIPScore is generally
adopted to evaluate the image—text compatibility [65], which
first extracts the embeddings for both visual and textual inputs
with CLIP [60] model, and then calculates the cosine similar-
ity between these embeddings to reveal their relevance. We
compute the CLIPScore between the input images and each
sentence in the ground truth responses of the LLaVA-Instruct-
150k [46] and ALLaVA-4V [7] datasets. Fig. 3 reveals that,
the ground truth responses exhibit a significant decrease in
image-text relevance after the first few sentences. It results
in two distinct segments in model-generated responses: (1)
first the detailed descriptions closely tied to the image, and (2)
content that is either loosely related to the image or beyond
the visual interpretability of MLLMs.

The innate problem of datasets contributes to the hallucina-
tion problems of released MLLMs. When fine-tuned on such
datasets, MLLMs tend to adopt the pattern of two-segment
responses, first describing the image and then generating asso-
ciative content. Moreover, when trained to fit the second part
of the responses, MLLMs are compelled to generate details
that they cannot visually comprehend [81], or abstract state-
ments unrelated to the instructions. We also observe that the
attention sink phenomenon emerges at the turning point of
image-text relevance, which generally leads the hallucination
responses with loose relation with images. We discover the
following properties of attention sink originating from the
instruction-tuning training:

(1) MLLMs inherit the two-segment response pattern from

instruction-tuning datasets. We prompt MLLMs to generate
detailed image captions for VG 100K [31] dataset, and eval-
uate the per-sentence CLIPScore between input images and
their responses, as shown in Fig. 4 (a)-(b). Similar to the trend
observed in instruction-tuning datasets, the MLLM responses
clearly show a significant decline in image-text relevance,
which applies to all three decoding strategies.

(2) Attention sink appears at the turning point of CLIP-
Score. By identifying the columnar patterns within the at-
tention maps, we trace the presence of sink tokens and eval-
uate the mean CLIPScore of model responses before and
after them, as shown in Fig. 4 (c). Our findings reveal that
the attention sink appears to segment the response, with a
marked decrease in image-text CLIPScore following the sink
token, which suggests less relevant content and the prone to
hallucinations. Notably, this issue is observed not only on
models that are instruct-tuned on datasets displaying these
tendencies (e.g., InstructBLIP and LLaVA-1.5 trained on
LLaVA-Instruct-150k), but is also prevalent on MLLMs like
MiniGPT-4, which are trained on closed-source datasets. This
observation highlights a widespread problem across existing
instruction-tuning paradigms.

3.2 Aggregated information in Attention Sink

To explain the emergence of attention sink at the turning
point of image-text relevance, we dig deeper into the atten-
tion mechanism during MLLM generation. We notice that,
besides the high attention scores and columnar patterns, sink
tokens are predominantly non-content tokens (e.g., punctua-
tion marks and article words) that convey minimal semantic
meaning. For instance, in the responses of LLaVA-1.5, up to
73.5% of the sink tokens are non-content, indicating a ten-
dency of allocating high attention to these semantically trivial
elements.

We related this observation with a unique behavior dis-
covered in Transformer-based models: the aggregation of
knowledge. The process occurs when global information of
inputs is aggregated into uninformative tokens, providing a
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Figure 3: Per-sentence CLIPScore between input images and ground truth responses in instruction-tuning datasets. We report
CLIPScore between input images and random response sentences as the baseline, denoted as random.
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shortcut for the subsequent generation or classification. The
phenomenon is observed in Transformer-based models like
Vision Transformers (ViTs) [18], LLMs, and MLLMs. For
example, in language models, information is aggregated into
functional label words (e.g., words like positive and negative
in the task of sentiment analysis) in shallow layers to sup-
port final predictions [69]. Similarly, in ViTs, where image
patches are treated as tokens, the models inject global infor-
mation into some background tokens to replace their local
information, which facilitates the training of linear models for
classification [17]. In the study of MLLM hallucination, [28]
also hypothesizes that certain tokens in MLLM responses ag-
gregate crucial knowledge from contexts, and over-reliance on
these tokens can lead to a neglect of the entire image content.

Leading by the common phenomenon of aggregating be-
haviors, we note that part of the global information in MLLM,
representing visual and textual inputs, is also aggregated into
sink tokens. Fig. 5 presents a distribution of cosine simi-
larity between the middle-layer embeddings of multi-modal
inputs and the generated tokens. It’s notable that sink tokens,
which appear at the turning points of CLIPScore, exhibit a
significantly higher resemblance to global input information
compared to other tokens. We relate this observation to the

hallucinated generation, and make the following analysis.
(1) Attention sinks aggregate information as global con-
text. The aggregating behavior of Transformer-based models
is formed naturally during training, with sink tokens receiving
high attention scores to aid in subsequent prediction or gener-
ation. In Fig. 5, the higher similarity to input embeddings indi-
cates that global multi-modal information is partly integrated
into the sink tokens. In the generation process of MLLMs,
multi-modal input tokens are positioned before the entire
response, serving as a global context. We hypothesize that,
inheriting the two-segment response pattern (Section 3.1),
attention sinks are chosen to distinguish between segments
with different focus, content, and style in MLLM generation.
This mechanism provides a more relevant global context for
the latter part of the model’s responses, minimizing the need
for long-distance attention and aligning with the observed
MLLM generation patterns.

(2) Misleading aggregation triggers hallucinated response.
While the aggregation process aligns with the generation pat-
tern of MLLMs, we note that only part of the global informa-
tion is fused into sink tokens, which deviates from the original
global information. We speculate that it is still due to deficien-
cies in the instruction tuning phase, where the second part of



(a) InstructBLIP

[ beam-sink 70- E
50- CZ2 beam-other E:
[ greedy-sink 60- :E
40- T2 greedy-other 50- ,:E
2z nucleus-sink 2 l} ':
@ 30. nucleus-other 040~ i
[} 9] i
[a] 030- e
20- | i
a /) 20- i
10 i, ; ‘,l 10- ; H
0 o iR il | =N
-0.200 02 04 06 08 1.0 1.2 80 01

Cosine Similarity

(b) LLaVA-1.5

Cosine Similarity

(c) MiniGPT-4

[ beam-sink
CZ2 beam-other

[ beam-sink
CZ2 beam-other

i
i
[ greedy-sink 80:’ [ greedy-sink
CZ2 greedy-other f 22 greedy-other
nucleus-sink 260! nucleus-sink
nucleus-other '@ ' nucleus-other
o]
040

P = N
0.1 0.2 0.3 0.4
Cosine Similarity

,
.
o
,
)
o
»T
N
[« =} o
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the similarity of sink tokens (with the postfix -sink) and all other tokens (with the postfix -other).

responses in training data often includes irrelevant descrip-
tions (Section 3.1), and will mislead the aggregating process
with partial, trivial, and even wrong global information. Fur-
thermore, the aggregation of global context into a single token
inevitably results in a significant loss of information, diminish-
ing the factual accuracy of the image content. Consequently,
MLLMs are trained to aggregate misleading information as
context for irrelevant generations. The high attention scores
assigned to these sink tokens exacerbate the hallucination
problem, introducing irrelevant objects, confused attributes,
and incorrect relationships.

4 Our Hallucination Attack

4.1 Motivation

Based on the overall analysis in Section 3, we highlight two
important properties of attention sink in MLLM hallucination.
First, the emergence of attention sink does not depend on
specific textual or visual inputs, as the reason behind hallu-
cination is deeply rooted in the attention mechanism during
generation. Second, it requires no prior knowledge or external
reference for detection, only the attention maps during the
generation process.

To promote the safe, reliable, and beneficial development
of MLLMs, we propose the first hallucination attack utilizing
only the attention sink phenomenon, to explore the current
state of MLLM hallucination severity and existing mitigation
strategies. By manipulating the attention mechanism and hid-
den states during generation, our method achieves dynamic,
effective, and highly transferrable attacks, all without the need
for additional human intervention. The attacking strategy re-
quires no pre-defined target responses, and applies to general
visual and textual inputs, overcoming a major limitation of
current adversarial attacks against MLLMs.

4.2 Security Settings

Attack Scenario. We define the goal of our hallucination at-
tack against MLLMs as increasing the amount of hallucinated

content in MLLM responses, which includes inconsistencies
in objects, attributes, and relationships according to the ac-
tual image content. The target models include open-sourced
MLLMs and commercial MLLM APIs (such as GPT-40 pro-
vided by OpenAl). The target MLLMs may have built-in
filtering mechanisms for multi-modal inputs or may be en-
hanced with additional mitigation strategies. The ultimate
malicious goal can manifest in various forms, which include
intensifying hallucination in subsequent conversations, deliv-
ering misleading information to users, and causing incorrect
decisions in downstream applications, particularly in critical
fields where even minor errors can have severe consequences.
In real-world scenarios, many MLLM applications (e.g., Al
assistants, customer service, physical therapy, and document
analysis [75]) allow user-defined uploads, which are vulnera-
ble to adversarial inputs. Additionally, MLLMs in black-box
systems (e.g., autonomous driving) are also susceptible to
threats like physical adversarial patches [27].

Threat Model. We conceive an attacker who exploits adver-
sarial visual inputs to perform hallucination attacks. With
white-box access to a surrogate MLLM, the attacker can com-
pute gradients and construct adversarial examples. The at-
tacker’s objective is to compromise the faithfulness of target
MLLMs, thereby maliciously influencing their downstream
applications. Driven by this goal, the attacker is highly mo-
tivated to deploy these adversarial inputs against black-box
MLLMs and proprietary commercial MLLM APIs. To evade
detection and filtering mechanisms employed by commercial
platforms, the attacker must ensure that the adversarial inputs
still produce high-quality and useful MLLM responses.

4.3 Method

4.3.1 Formulation of MLLM Generation

When processing multi-modal instructions during user in-
teraction, the MLLMs take both visual and textual prompts
as context. We denote the visual input tokens as x” =
{x0,x1,...,xn_1}, where N represents the length of visual in-
puts, and is typically predefined during training. The textual



input tokens are denoted as X’ = {xy,XN-t1, ..., XpM+N—1 }» With
an input length of M. The multi-modal inputs are concate-
nated into a single sequence x” = {x;}7{V~!, which is then
fed into the MLLMs for further alignment and generation.
The response of MLLMs is sampled in an auto-regressive
manner, with each token predicted based on previously gen-
erated ones. During the inference, the hidden states of each
token are extracted as embeddings. We represent the hidden
states of token i in the /-th layer as hgl), and the self-attention
1

scores of each token as a; ’, which is formulated as:

WO = {0 A, nl) Y e RT 1)
OV <UR
0] 0K
a;’ = Softmax | ———— 2)
< Vi ) ;
a®) = {a\ d\,.al) } eRT<T 3)

where T denotes the overall length of tokens including
model responses, d denotes the dimension of hidden states,
o = h(”Wg) € R7"% and k() = h(l)WIy) € RT*4 repre-
sents query and key vectors with a dimension of dy, after the
linear projection of hidden states. In the last layer of MLLMs,
a vocabulary head H projects the final hidden states h® into
probabilities, which supports the next-token prediction.

X<t = {x07x17~-~»x171} “4)

p(xe|xes) = Softmax(ﬂ-[(h@))x, (5)

where M +N <t < T, and x;, € X in which X means the
whole vocabulary set. With the probability of the next token
p(x/|x<;), different decoding strategies such as beam search,
greedy search, and nucleus sampling are adopted to output
the model responses. After predicting the ¢-th token, it will
be appended at the end of the token list for the next-round
generation. This process continues until the model predicts an
end-of-sentence (EOS) token, signaling the end of responses.

4.3.2 Identifying Potential Sink Tokens

According to our analysis in Section 3, the attention sink
appears at the turning point of image-text relevance, which
aggregates some misleading global information from multi-
modal inputs, and provokes hallucinated content.

When conducting the hallucination attack with adversarial
visual inputs, we aim to coax the target MLLMs into generat-
ing as many attention sinks during their responses, which has
been demonstrated to significantly increase the hallucinated
content. Given that the maximum length of model responses
and the decoding strategies cannot be fully covered in the
attacking process, the adversarial perturbations are demanded
to include the generalized patterns that trigger more sink to-
kens in MLLMs generation, rather than merely producing
sink tokens at fixed token positions.

To identify the potential tokens that are most likely to be-
come attention sinks, we perform a search in current model
responses, based on the amount of global information con-
tained in each token. We retrieve the hidden states of tokens
h¥) in the intermediate layer of MLLMs, and compute the
cosine similarity between the global input tokens x and each
generated token x; as follows:

s = sim(h A, 1<i<Li>M+N=1 ()

where Sim(+, -) represents the computation of cosine similar-

ity, hg) is defined as the mean vector of the /-th layer hidden

states of multi-modal inputs, i.e., Eg) = Mean({hf” MEN-T),

Based on the global information each token absorbs within
the middle-layer embeddings, we choose the token index with

the highest sl@ as the potential sink position in the subsequent

optimization of adversarial perturbation:

idx = Imax{syy, . syt oSy ) ()
where [[-] indicates the index of the token with the maximum
similarity score.

In each round of adversarial optimization, we will identify
the potential token according to current model responses. As
the sentence structure remains stable in consecutive attack
rounds, the selection of potential tokens tends to be focused
over a few iterations, leading to concentrated and targeted
optimization towards sink tokens.

4.3.3 Optimizing Adversarial Perturbations

After searching for the potential token to induce attention sink,
we design the adversarial target based on the ideal character-
istics of sink tokens, which covers both attention behavior
and knowledge aggregation. Introducing sink tokens with
high attention scores, we demand that the subsequent gen-
eration includes declined image-text relevance, and produce
hallucinated content from misleading information.
Attention Loss. When constructing the desired columnar at-
tention behavior, we acquire the middle-layer attention scores
within MLLM generation, which is al!) = {aEl)}iT:_Ol. The at-
tention score of each token al(l) S Ri,O < i< T contains its
allocated attention on the previous sequence. We construct
the attention map A() = [a(()l>,a(ll>, ...,a(Tlll] € RT*T with ob-
tained scores, where af? represents the attention scores of
token x; allocated to x;.

In the attention map AU), a columnar attention pattern on
certain tokens x; means that the subsequent tokens x;, j > i all
allocate high attention to the sink token, and make predictions
with its domination. To induce such a columnar attention
pattern on the chosen potential token xjqx, we focus on a

localized attention window A’(!) = [ai((l&,afél 1 ...,a(Tl)_l}, and



the attention loss is defined as:
Lan(x",x') = CE(A'") idx) (8)

where CE(+) denotes the cross entropy loss function. The at-
tention loss forces subsequent tokens to allocate high attention
to the potential sink token, thereby forming the attention sink
adversarially to introduce a decline of image-text relevance.

Embedding Loss. Besides the direct phenomenon of colum-
nar attention behaviors, our observation also suggests that sink
tokens bear a much higher resemblance to the multi-modal
inputs, which aggregate misleading global information origi-
nating from the instruction tuning. In the hallucination attack,
we aim to increase the cosine similarity of the embeddings
between potential sink tokens and global input information.
The hidden states of potential token in the /-th intermediate

layer hl(éz( is obtained, and is used to compute its similarity of

global information Sim(hi(éi , Eg) ).

Since the aggregation of global information encourages the
formation of an attention sink, we also introduce an embed-
ding loss to partially raise the global information embedded
in the potential tokens. We adopt the hinge loss to ensure the
embedding only contains incomplete and misleading informa-
tion:

Lomp(x", %) = max (0,6 — Sim(h%) 7)) 9)

where G is a hyper-parameter predefined with the observation
of sink tokens in different MLLMs. The embedding loss is
designed to promote the injection of more misleading global
information into the potential token, which helps MLLMs
spontaneously generate hallucinatory content in subsequent
outputs.

Adversarial Objective. With the hallucination attack target-
ing both attention behavior and hidden states, the overall ad-
versarial objective is defined as:

min Ly (X, X") + 0 Lemp (X7, X)

10
st & =x"+8, [|§]], <e 10

where 0 is the adversarial perturbation on the visual input x",
o, is the hyper-parameter to adjust the regularization, || - ||, is
the computation of p-norm, and € is the attack budget which
controls the magnitude of the adversarial perturbation.

The hallucination attack will be conducted in multiple
rounds, where the adversarial objective will direct the op-
timization of adversarial perturbation in each round. The at-
tacking algorithm of our method is illustrated in Alg. 1.

5 Experiments

5.1 Experimental Settings

Target Models. To conduct a comprehensive evaluation of
mainstream MLLM:s in the open-source community, we select

Algorithm 1 Hallucination Attack

Input: The visual input: X", the textual input: X', and the
target model: mllm
Output: The adversarial visual input: X¥
: §+0.
while S < Spax do
response < mllm(x" x").
Get hidden states h(") from the [-th layer.
Get attention scores al’) from the [-th layer.

—(I / 1 1
) Mean(h A" hl ).

A T e

S I
7: Compute the cosine similarity between h£,> and gen-

erated token embeddings as sgl) = Sim(hgw,ﬁén)

8: Get potential token idx = I[max{si(\fAN, ...,s;lll .
9: A « construct attention map with al),
10: Lattn < CE(A’U),idX). > See Equation 8

11:  Lemp < max (0,6 — Sim(hi(élﬁg))).b See Equation 9
12: Compute gradient g <— Vg Lyyn + A Lemb

13: Updating X < X§ —v-sign(g).

14: Clipping X «— Clip(X§, —€,€).

15: S+ S5+1

16: end while

7: return XV

—_

four of the most representative MLLMs including Instruct-
BLIP [16], MiniGPT-4 [86], LLaVA-1.5 [45], and Shikra [10]
as target models. The details about visual encoders and LLM
backbones are available in Tab. 1, which includes well-trained
vision models like EVA [19] and CLIP [60], and widely-used
LLMs like Vicuna [14] and LLaMA [66]. To evaluate the
adversarial effects on closed-source commercial APIs, we
also take the recently released GPT-40 mini [57] and Gemini
1.5 flash [56] into consideration. More implementation details
are available in Appendix A.

MLLM Tasks. To comprehensively evaluate the adversarial
impact of the hallucination attack, we focus on two types
of downstream tasks for MLLMs: image captioning and
question-answering (QA). These tasks represent different
aspects of MLLMs’ open-ended generation capabilities.
Metrics. We assume that the attacker’s goal is to intensify
hallucinations in MLLM responses without sacrificing their
quality and helpfulness. For the image captioning task, we
evaluate both the extent of hallucination and the quality of
the generated responses. For the QA task, we evaluate the
accuracy of model answers.

Evaluation of hallucination. In assessing the severity of ob-
ject hallucination, earlier research adopted the Caption Hal-
lucination Assessment with Image Relevance (CHAIR) met-
ric [61]. However, this metric fails to consider the hallucina-
tion of attributes and relationships, and only supports closed-
ended evaluation (i.e., covering only 80 object classes in MS-
COCO [41] datasets). To achieve more advanced evaluation



Table 1: Basic information of open-source MLLMs in our experiments.

MLLM InstructBLIP

MiniGPT-4

LLaVA-1.5 Shikra

Vicuna-7b-v1.1
EVA-ViT-g/14

Visual Encoder
LLM Backbone

Vicuna-7b-v0Q
EVA-ViT-g/14

Vicuna-7b
CLIP-ViT-L/14

LLaMA-7b
CLIP-ViT-L/14

for open-ended model responses, we follow the previous stud-
ies [28,44] and conduct GPT-4 assisted evaluation based on
HalluBench [83]. The benchmark is based on a subset of the
Visual Genome (VG) dataset [31], featuring images annotated
with bounding box coordinates and detailed descriptions of
objects, attributes, and relationships. The HalluBench also
provides human-annotated factual information to improve
evaluation accuracy. During the evaluation, the GPT-4 model
is prompted with all the references and judges the hallucina-
tion in MLLM responses sentence by sentence.

Evaluation of response quality. The overall quality of the
MLLM’s responses is critical in real-world attacking sce-
narios. If the adversarial visual inputs result in low-quality
responses characterized by poor fluency, distorted sentence
structure, or excessive grammatical errors, downstream users
of MLLMs can easily detect these patterns and implement
filtering mechanisms. In the evaluation, we also resort to the
GPT-4 model to assess the grammar, fluency, and naturalness
of generated responses. The model provides a score between
0-9 as the overall response quality.

Accuracy of QA. To evaluate the attacking effects on the QA
task, we use the OK-VQA [52] benchmark, which is based
on the MS-COCO image dataset and widely recognized for
assessing the general QA capabilities of MLLMs [3, 10]. We
select a subset of the OK-VQA benchmark, consisting of ques-
tions paired with 5 human-annotated answers each. For evalua-
tion, we employ the standard VQA accuracy metric [2], which
measures model responses by comparing them to ground truth
answers. A response is considered 100% accurate if at least
three human annotators provide the exact same answer. The
VQA accuracy metric is defined as:

accuracy = min ( # humans that pr%wded that answer’ 1) (11)

5.2 Adversarial Effects

Image Captioning Task. To investigate the impact of ad-
versarial visual inputs, we first concentrate on the level of
hallucination in white-box models. During the hallucination
attack, we construct adversarial visual inputs with the attack
budget € of 2/255,5/255, and 8 /255, to observe the adversar-
ial effects under different strengths of perturbations. During
evaluation, we follow the setting of HalluBench, and query all
MLLMs with a text prompt of Please describe this image in
detail., together with the constructed adversarial visual inputs.

The adversarial effects on white-box target MLLMSs with
beam search decoding are reported in Tab. 2. Remarkably, our

hallucination attack induces a substantial amount of halluci-
nated content in MLLM responses, achieving up to 75.74%
hallucinated words in single responses with only minor per-
turbations on visual inputs. With larger attack budgets, the
number of affected sentences and words has noticeably in-
creased. In the real-world applications of MLLMs, the severer
hallucination in model responses may mislead downstream
modules to focus on inaccurate descriptions of visual content
and crash on making planning or decisions. It is also worth
noting that, our hallucination attack does not work by increas-
ing the output length (with similar SPT and WPI in results).
This contrasts with the approach in [22] that delaying the
occurrence of (EOS) token may lead to an increase in CHAIR
metrics. However, their eight times longer model responses
are easy to be detected from normal uses, and inevitably affect
their fluency and helpfulness.

During the attack process, we observe that as the adver-

sarial noise was continuously optimized, changes in the sink
token and MLLM responses align with our analysis in Section
3. Fig. 6 visualizes the attack process and the affected model
response. During the optimization, the sink token changes
from tokens with concrete meaning (e.g., item in step 1) to
non-content ones (e.g., the comma, in step 18). The manipu-
lation of attention behaviors also leads to more hallucinated
objects (e.g., cup and woman) and wrong relationships (e.g.,
holding a bowl in his hand) during the attack process. With
adversarial visual inputs, the target model tends to make up
contents not aligned with images, with an obvious attention
sink phenomenon observed in the attention map.
QA Task. The white-box adversarial effects on the OK-VQA
benchmark is presented in Tab. 4. The results show a reduc-
tion in accuracy of up to 7.67%, emphasizing that adversarial
visual inputs significantly impair the general visual under-
standing capabilities of MLLMs. As a result, hallucinated
answers may be generated and presented to downstream users,
potentially leading to the propagation of misconceptions in
real-world applications.

To better understand the adversarial effect on model re-
sponses, we also engaged human experts to classify the hallu-
cinations induced by our attack, as presented in Fig. 9.

5.3 Black-box Transferability

In real-world attack scenarios, the target MLLMs usually
remain inaccessible to the attackers. To demonstrate the ef-
fectiveness of hallucination attack under such settings, we



Table 2: Results of GPT-4 assisted hallucination evaluation for the image captioning task on white-box models. All of the MLLM
responses are generated with beam search decoding. We report six aspects of evaluation, including the number of sentences per
image (SPI), the number of words per image (WPI), the number of hallucinated sentences per image (HSPI), the number of
hallucinated words per image (HWPI), the ratio of hallucinated sentences (HSR), and the ratio of hallucinated words (HWR). A
larger HSPI, HWPI, HSR, and HWR indicate a higher level of hallucination in MLLM responses. The best results are marked in

bold, and the number in brackets indicates the hallucination improvement compared to the clean image.

Target Model Input SPI WPI HSPI HWPI HSR(%) HWR(%)
clean image  4.54 75.64 2.83 48.05 62.91% 64.93%
£=2/255 4.60 80.19 2.97 (+0.14) 55.14 (+7.09) 64.92% (+2.01%) 68.23% (+3.30%)
InstructBLIP
€=5/255 4.47 80.48 3.04 (+0.21) 54.90 (+6.85) 68.41% (+5.50%) 70.84% (+5.91%)
€=8/255 4.41 79.71 2.89 (+0.06) 5291 (+4.86) 66.79% (+3.88%) 69.45% (+4.52%)
clean image  4.60 116.24 2.68 79.08 59.62% 71.68%
LLaVA-1.5 €=2/255 4.64 96.60 2.76 (+0.08) 62.97 (-16.11)  60.26% (+0.64%) 68.17% (-3.51%)
€=5/255 4.49 108.03 2.67 (-0.01) 74.85 (-4.23)  62.36% (+2.714%) 75.74% (+4.06%)
€=8/255 4.53 103.58 2.92 (+0.24) 75.45 (-3.63)  65.07% (+5.45%) 75.08% (+3.40%)
clean image  3.98 60.56 2.31 37.34 58.13% 62.77%
MiniGPT-4 €=2/255 4.10 59.20 2.49 (+0.18) 37.97 (+0.63) 61.42% (+3.29%) 65.01% (+2.24%)
€=5/255 3.97 66.27 2.41 (+0.10) 43.48 (+6.14)  61.02% (+2.89%) 67.09% (+4.32%)
€=8/255 4.00 64.51 2.55 (+0.24) 40.83 (+3.49) 64.59% (+6.46%) 67.97% (+5.20%)
clean image  3.11 46.13 1.56 23.39 52.95% 53.16%
Shikra €=2/255 3.13 45.99 1.69 (+0.13) 25.65 (+2.26)  56.04% (+3.09%) 57.93% (+4.77%)
€=5/255 3.26 46.82 1.83 (+0.27) 26.51 (+3.12) 57.88% (+4.93%) 58.25% (+5.09%)
€=8/255 3.12 45.19 1.69 (+0.13) 25.69 (+2.30)  56.31% (+3.36%) 59.11% (+5.95%)

Table 3: Results of GPT-4 assisted hallucination evaluation for the image captioning task on black-box models. All of the MLLM
responses are generated with beam search decoding. The six aspects of evaluation are the same as in Tab. 2. A larger HSPI,
HWPI, HSR, and HWR indicate a higher level of hallucination in MLLM responses. The best results are marked in bold, and the
number in brackets indicates the hallucination improvement compared to the clean image for each target model.

Surrogate Model Target Model SPI WPI HSPI HWPI HSR(%) HWR(%)
InstructBLIP  4.47 80.48 3.04 (+0.21) 54.90 (+6.85) 68.41% (+5.50%) 70.84% (+5.91%)
InstructBLIP LLaVA-1.5 4.46 99.77 2.64 (-0.04) 70.51 (-8.57)  59.42% (-0.20%) 71.48% (-0.20%)
u MiniGPT-4 3.84 63.00 2.31 40.54 (+3.200 61.81% (+3.68%) 68.21% (+5.44%)
Shikra 3.20 48.95 1.79 (+0.23) 27.77 (+4.38)  56.14% (+3.19%) 57.09% (+3.93%)
LLaVA-1.5 4.49 108.03 2.67 (-0.01) 74.85 (-4.23)  62.36% (+2.74%) 75.74% (+4.06%)
LLaVA-1.5 InstructBLIP  4.47 78.31 2.81 (-0.02) 51.85 (+3.80)  65.37% (+2.46%) 68.75% (+3.82%)
ava-l. MiniGPT-4  3.95 63.60 2.32 (+0.01) 42.25 +4.91)  60.79% (+2.66%) 68.14% (+5.37%)
Shikra 3.08 45.94 1.94 (+0.38) 29.96 (+6.57) 63.85% (+10.90%) 65.90% (+12.74%)
MiniGPT-4  4.00 64.51 2.55 (+0.24) 40.83 (+3.49) 64.59% (+6.46%) 67.97% (+5.20%)
MiniGPT-4 InstructBLIP  4.36 79.62 2.96 (+0.13) 54.82 (+6.77)  68.96% (+6.05%)  71.94% (+7.01%)
LLaVA-1.5 4.27 116.50 2.51 (-0.17) 75.86 (-3.22)  60.84% (+1.22%) 73.67% (+1.99%)
Shikra 3.33 49.67 1.92 (+0.36) 28.99 (+5.60) 58.86% (+5.91%) 59.61% (+6.45%)
Shikra 3.12 45.19 1.69 (+0.13) 25.69 (+2.30)  56.31% (+3.36%) 59.11% (+5.95%)
Shikra InstructBLIP  4.48 80.36 2.90 (+0.07) 54.39 (+6.34)  67.48% (+4.57%) 70.28% (+5.35%)
LLaVA-1.5 4.43 110.61 2.71 (+0.03) 75.34 (-3.74)  64.77% (+5.15%)  77.35% (+5.67%)
MiniGPT-4  3.97 72.35 2.35 (+0.04) 46.90 (+9.56) 60.86% (+2.73%) 70.07 % (+7.30%)




Table 4: Results of QA accuracy on the OK-VQA benchmark. All of the MLLM answers are generated with greedy decoding. A
lower accuracy indicates a higher level of hallucination in MLLM answers. The best results are marked in bold, and the number

in brackets indicates the hallucination improvement compared to the clean image.

Target Model Input Surrogate Model
InstructBLIP LLaVA-1.5 MiniGPT-4 Shikra

clean image 56.33
€=2/255 51.33 (-5.00) 55.99 (-0.39) 52.33 (-4.00) 56.66 (+0.33)
InstructBLIP £=5/255  48.99 (7.34) 53.99 (2.34) 50.33 (-6.00) 50.33 (-6.00)
€=8/255 49.66 (-6.67) 49.99 (-6.34) 47.33 (-9.00) 52.33 (-4.00)

clean image 60.00
LLaVA-1.5 €=2/255 56.66 (-3.34) 57.33 (-2.67) 57.66 (-2.34) 56.99 (-3.01)
€=5/255 55.99 (-4.01) 56.66 (-3.34) 56.33 (-3.67) 52.33 (-7.67)
€=8/255 54.66 (-5.34) 52.33 (-7.67) 54.99 (-5.01) 58.66 (-1.34)

clean image 40.66
.. €=2/255 42.33 (+1.67) 38.33 (-2.33) 39.33 (-1.33) 42.33 (+1.67)
MiniGPT-4 £=5/255 39.33 (-1.33) 43.66 (+3.00) 36.66 (-4.00) 40.33 (-0.33)
€=8/255 39.33 (-1.33) 43.33 (+2.67) 34.00 (-6.66) 39.99 (-0.67)

clean image 55.33
Shikra €=2/255 55.00 (-0.33) 54.66 (-0.67) 56.99 (+1.66) 56.66 (+1.33)
€=5/255 56.66 (+1.33) 54.00 (-1.33) 53.33 (-2.00) 51.33 (-4.00)
€=8/255 51.66 (-3.67) 52.99 (-2.39) 52.66 (-2.67) 53.33 (-2.00)

construct adversarial visual inputs on one surrogate MLLM,
and evaluate the transferability to both black-box MLLMs
and closed-source commercial APIs. The attack is more chal-
lenging since the model structure, parameters and training
paradigms of target MLLMs are unknown to the attackers.
Commercial API providers such as OpenAl may also im-
plement advanced defenses against multi-modal inputs [77],
which have successfully blocked semantics-based visual at-
tacks [48] and typographic attacks [24].

5.3.1 Attacking Black-box MLLMs.

Image Captioning Task. In our experimental setup, we select
one of the four target MLLMs in Section 5.1 as the surrogate
model, and evaluate the black-box transferability on the re-
maining ones. The results of hallucination evaluation for the
image captioning task are presented in Tab. 3. Our proposed
attack demonstrates high transferability across different struc-
tures of MLLMs, with the perturbed visual inputs achieving a
10.90% HSR and 12.74% HWR increase on black-box target
models, even surpassing the increase in white-box attacks.
We also find that the attack achieves better transferability on
MLLMs with the same visual encoder architecture, possibly
due to the similar distribution of hidden states.

QA Task. The black-box evaluation results for the QA task
are reported in Tab. 4, demonstrating strong transferability
across different architectures. The occasional increases in the
accuracy of adversarial visual inputs may be attributed to the
limitations of the manually labeled answers.

5.3.2 Attacking Closed-source Commercial APIs.

Image Captioning Task. As for attacking commercial APIs,
our goal is to examine whether the proposed attack could
evade potential defense and detection measures implemented
by IT giants. We choose the latest commercial MLLM APIs,
i.e., the GPT-40 mini [57] and Gemini 1.5 flash [56], as the
target APIs. The adversarial transferability result for image
captioning is displayed in Fig. 7. Though potential defenses
are applied, the proposed attack still achieves a 3.40% and
5.32% increase in hallucination words. As the captions of the
commercial MLLM APIs have been utilized in applications
like medical diagnosis [71], science education [32], and finan-
cial decisions [40], the inaccurate interpretation induced by
adversarial visual inputs deserves attention.

QA Task. In the QA task, the adversarial effects in Fig.
10 also reveal degraded visual comprehension and question-
answering capabilities. Since commercial MLLM APIs are
often regarded as powerful domain experts to guide the fine-
tuning process (e.g., in medical [43,64] and financial [20, 73]
domains), our attack may significantly undermine the reliabil-
ity of domain-specific MLLMs.

5.4 The Quality of Model Responses

When the attacker injects the adversarial visual input into
target MLLMs, the model responses should resemble those
in normal conversations, with no noticeable decline in qual-
ity. Otherwise, the stealth of the hallucination attack cannot



Hallucination Attack

Human: Please describe this image in detail.

Step:1, Sink token: items

visual input

Step:3, Sink token: is

Assistant: The image features a man sitting at a dining
table with a bowl of cereal in front of him. He is holding

Assistant: The image features a man sitting at a dining
table with a bowl of cereal in front of him. The table is fill
ed with various food items, including a cup of cereal...

Black-box Transfer

Human: Please describe this image in detail.

Assistant: The image features a man sitting at the dining
table, holding an open box of cereal. He is surrounded
by various items on and around him: there are two bowls
placed near his left hand... A cup can be seen close
behind or next to this person's right arm as well. The-
re appears also some bread located toward... In addition,
several chairs surround the scene, three seats positi-
oned along each wall... creating ample space for seating
during meals together...

a spoon, ready to enjoy his breakfast. The table is...

Step:10, Sink token: hand

Assistant. The image features a man sitting at a dining
table, holding a bowl in his hand. The table is set with 40
various items, including a cereal box, a carton of milk... 60

Step:18, Sink token: .

Assistant: The image features a woman sitting at a din
-ing table with a bowl of cereal in front of her. She is 120
holding a box of cereal, possibly a box of Cheer...

20
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Figure 6: Left: The visualization of sink tokens and model responses during the hallucination attack. We display an optimization
process of LLaVA-1.5 on the HalluBench dataset. Right: The black-box transfer effect of the constructed adversarial visual
input on InstructBLIP. A pronounced attention sink phenomenon is observed in the attention map. The attention sink in model
responses is denoted with blue tokens, and the hallucinated content is denoted with indigo ones.
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Figure 7: Results of GPT-4 assisted hallucination evaluation
for image captioning task on commercial APIs: (a) GPT-40
mini released by OpenAl and (b) Gemini 1.5 Flash launched
by Google. A larger HSR and HWR indicate more hallucina-
tions in MLLM responses.

be ensured. We report the results of response quality for the
image captioning task based on GPT-4 assisted evaluation in
Fig. 8, and the results based on the Perplexity metric (PPL)
in Fig. 11. Even if the model responses include more hallu-
cinated content, they still maintain a high level of semantic
accuracy, usefulness, and fluency, indicating the feasibility
and stealthiness of our attack in practical settings.

GPT-4 Assisted Response Quality Evaluation
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Figure 8: Results of GPT-4 assisted response quality evalua-
tion, covering both white-box and black-box attack scenarios.
A higher score reflects better MLLM response quality.

5.5 Attacking Mitigation Mechanisms

As discussed in Section 2.2, recent mitigation mechanisms
of MLLM hallucination fall into three categories: mitigation
with decoding, model retraining, and post-processing. To ver-
ify the effectiveness of our attack on existing defenses, we
select the representative methods as follows. All experiments
are performed with the official implementation and released



checkpoints in default parameters.

OPERA [28]. Targeting the attention sink phenomenon,
this method detects the columnar behavior in MLLM’s self-
attention matrices, and applies penalty terms to the model
logits during the beam search inference. As a decoding-based
mitigation approach, it directly blocks the attention behaviors
associated with hallucination attacks, establishing a strong
baseline for mitigation.

VCD [35]. Aiming to mitigate the inherent language prior, this
method manipulates the decoding strategies of MLLMs, and
adjusts the output logits with distorted visual inputs, which
reflects the model’s reliance on statistical bias.

Less is more [81]. Noticing the overly detailed descriptions
in MLLM instruction-tuning datasets, this method fine-tunes
released MLLMs with additional supervision on EOS de-
cisions, encouraging the models to stop generation timely
before hallucinated content.

LRV-Instruction [44]. Addressing the limitation of existing
instruction-tuning datasets that only contain samples of posi-
tive answers, this method constructs a comprehensive dataset
with negative samples to guide models in identifying incorrect
instructions. The dataset is used to fine-tune released MLLMs
to mitigate hallucination.

LURE [85]. With a post-hoc rectification strategy, this
method collects a hallucinatory dataset and fine-tunes an-
other MLLM as the hallucination revisor. During inference,
the trained revisor detects underlying object hallucinations
with output logits and rectifies them with new responses.
Attacking Mitigation Mechanisms. We assess the adversar-
ial effects on LLaVA-1.5 and MiniGPT-4 with the represen-
tative mitigation methods, and the results are detailed in Tab.
5 and Tab. 6 respectively. Experimental results demonstrate
that the proposed attack succeeded in breaking all mitigation
mechanisms in our evaluation, bringing the hallucination rate
back to the level when no defenses are in place (e.g., the
HWR achieves 75.54% in attacking LRV-Instruction defense,
outperforming the one on vanilla model). This indicates the
efficacy of our attack in bypassing existing mitigation meth-
ods, including adaptive strategies like OPERA. It also reveals
the shortcomings of current mitigation strategies in defending
deliberately crafted perturbations.

Attacking Adaptive Mitigation. Since the emergence of sink
tokens triggers hallucinated content, we consider an early-
stopping adaptive mitigation. With white-box access to the
target MLLMs, this mitigation detects the attention sink phe-
nomenon during generation and terminates output before sink
tokens appear. Tab. 9 reports the length, quality, and hallu-
cination metrics of MLLM responses under the mitigation
strategy. Despite the implementation of adaptive mitigation,
the adversarial visual inputs continue to provoke more severe
hallucinations in model outputs. While adaptive mitigation re-
duces hallucinated content, it significantly decreases the mean
length and quality of responses by 45.36% and 63.67% respec-
tively, resulting in incomplete and less detailed descriptions

Table 5: Results of GPT-4 assisted hallucination evaluation
against mitigation mechanisms on LLaVA-1.5. (*), (°), and
(°) denote methods through decoding, model retraining, and
post-processing respectively. Best results are marked in bold.

Mitigation Input HSR(%) HWR(%)
clean 50.27% 51.93%
OPERA* €=2/255 53.50% (+3.23%) 56.13% (+4.20%)
[28] €=5/255 52.33% (+2.06%) 54.37% (+2.44%)
€=8/255 55.86% (+5.59%) 58.18% (+6.25%)
clean 51.38% 53.58%
VCD* €=2/255 54.46% (+3.08%) 57.02% (+3.44%)
[35] €=5/255 57.69% (+6.31%) 60.12% (+6.54%)
€=8/255 62.42% (+11.04%) 64.95% (+11.37%)
clean 43.74% 45.78%
Less is €=2/255 46.22% (+2.48%) 48.23% (+2.45%)
More° [81] €=5/255 47.68% (+3.94%) 49.91% (+4.13%)
€=8/255 52.77% (+9.03%)  54.07% (+8.29%)

Table 6: Results of GPT-4 assisted hallucination evaluation
against mitigation mechanisms on MiniGPT-4. (*), (°), and
(°) denote methods through decoding, model retraining, and
post-processing respectively. Best results are marked in bold.

Mitigation Input HSR(%) HWR(%)
clean 43.71% 45.79%
OPERA* €=2/255 57.09% (+13.38%)  59.34% (+13.55%)
[28] €=5/255 60.78% (+17.07%) 63.75% (+17.96%)
€=8/255 59.03% (+15.32%) 61.82% (+16.03%)
LRYV. clean 67.19% 70.82%
Inst t'- o €=2/255 69.73% (+2.54%) 73.81% (+2.99%)
ns a‘:}"’“ €=5/255  70.75% (+3.56%)  75.03% (+4.21%)
€=8/255 71.43% (+4.24%)  75.54% (+4.72%)
clean 48.57% 53.54%
LURE® €=2/255 58.21% (+9.64%) 64.44% (+10.90%)
[85] €=5/255 59.42% (+10.85%) 67.41% (+13.87%)
€=8/255 59.97% (+11.40%) 67.85% (+14.31%)

of image content. In real-world applications, this strategy may
also incur substantial computational overhead and severely
degrade the user experience for commercial APIs.

5.6 Baseline Comparison

To demonstrate the superiority of our attack in constructing
adversarial perturbations that result in a severe level of hal-
lucination, we consider visual inputs with random Gaussian
noises as a baseline. The magnitude of random perturbation is
set as the same of hallucination attacks. The attack effects of
baseline methods with beam search decoding are displayed in
Tab. 7. It is obvious that trivial random perturbation, though
disrupting the feature extraction process of the visual en-
coder and enhancing the model’s reliance on language priors,



Table 7: Results of GPT-4 assisted hallucination evaluation of the baseline method with beam search decoding. & denotes of
budget of random noises injected into visual inputs. The line of artack denotes the best results in the white-box attack scenario.

InstructBLIP LLaVA-1.5 MiniGPT-4 Shikra
HSR(%) HWR(%) HSR(%) HWR(%) HSR(%) HWR(%) HSR(%) HWR(%)
clean 62.91% 64.93% 59.62% 71.68% 58.13% 62.77% 52.95% 53.16%
8=2/255 60.34% (-257%)  63.14% (-1.79%)  57.37% (-225%)  73.14% (+1.46%) 63.35% (+522%) 65.87% (+3.10%) 56.07% (+312%) 54.76% (+1.60%)
8=5/255 63.27% (+0.36%) 70.22% (+5.29%) 59.12% (-050%)  71.18% (-050%)  61.11% (+2.98%) 63.24% (+047%) 51.88% (-1.07%)  52.95% (-0.21%)
6=8/255 60.91% (2.00%)  66.79% (+1.86%) 57.39% (-223%)  69.03% (-2.65%)  58.70% +0.57%) 62.78% +0.01%)  51.75% (-120%)  52.81% (-035%)
attack  68.41% (+5.50%) 70.84% (+591%) 65.07% +5.45%) 75.74% (+4.06%) 64.59% (+6.46%) 67.97% (+5.20%) 57.88% (+4.93%) 59.11% (+5.95%)

shows no significant attack effect in hallucinated content. The
comparison highlights the importance of manipulating the
inherent behaviors of MLLMs to influence their generation
process.

6 Discussions

Alignment of GPT-4 Assisted Evaluation. To assess the
alignment and stability of GPT-4-based metrics, we engaged
human experts to manually label the hallucinated segments
of model responses, and examined the consistency of evalua-
tion results. Detailed analysis is available in Section I of the
appendix.

Exploring Mitigation Strategies. In Section 5.5, we observe
that the OPERA mitigation [28], though designed to coun-
teract the attention sink behaviors, fails to defend against
the adversarial visual inputs. One possible reason is that it
only focuses on naturally occurring sink tokens during nor-
mal generation processes, and reduces its efficacy in detect-
ing and mitigating the adversarial manipulation of attention.
Moreover, our attack achieves consistent success across all
tested mitigation methods, underscoring their vulnerabilities
in solving natural hallucinations but not considering adver-
sarial inputs adequately. We hope this work inspires future
research into more robust defensive strategies for MLLMs,
such as those based on adversarial purification with diffusion
models [30, 33], the defensive system prompt [70] against
hallucination, and new training paradigms to overcome the
challenges in instruction-tuning stages.

Adpversarial Textual Inputs. Our hallucination attack crafts
adversarial visual inputs to achieve high effectiveness and
transferability in MLLMs. Considering their multi-modal
nature, exploring the perturbation of textual inputs is also
valuable. Existing methods for optimizing adversarial texts
typically involve gradient-based searches on predefined target
responses and modifying discrete tokens to improve attack
success [87]. A recent study of jailbreaking attacks against
MLLMs suggests decoding adversarial visual inputs within
the discrete textual domain [54] to narrow the sampling space.
However, the adversarial texts created through these meth-
ods generally lack meaningful semantics and are easily de-
tectable. Our approach, on the other hand, optimizes adversar-

ial perturbations by manipulating hidden states and attention
mechanisms, which may overcome the current challenges of
malicious textual inputs.

Future Works. In our further research, we plan to extend the
adversarial efficacy of the proposed attack to a broader range
of multi-modal tasks, including visual reasoning, grounding,
and multi-turn visual dialogues. Given the rapid adoption
of MLLMs in commercial applications, we will also expand
our evaluation to more commercial APIs and downstream
modules, as evidence of their multi-modal capabilities. Addi-
tionally, investigating mitigation strategies through the lens of
attention mechanisms and developing defensive approaches
are promising directions for future work.

7 Conclusion

This work approaches the prevalent hallucination problem
in emerging MLLMs. Through a detailed analysis of the
instruction-tuning phase of training, we reveal a critical link
between the attention sink phenomenon and hallucinated re-
sponses, shedding light on the mechanisms behind erroneous
outputs. We propose a novel hallucination attack that induces
attention sink behaviors, overcoming the limitations of pre-
vious adversarial methods that rely on predefined patterns.
Our attack exhibits high transferability, effectively bypassing
extensive mitigation strategies and the latest closed-source
commercial APIs. We aim to contribute to the safe and reliable
development of MLLMs by highlighting current vulnerabili-
ties and inspiring future mitigation strategies.
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Ethics Considerations

Our work investigates the hallucination problems in current
MLLMs and highlights the potential limitations of existing
mitigation strategies. To enhance the faithfulness and helpful-
ness of MLLMs, we have shared our findings and examples
with the providers of commercial MLLM APIs analyzed in
this study (e.g., OpenAl, Google) via email.

In all the experiments, the model responses only include
hallucinated content that is inconsistent with visual inputs,
with no harmful or malicious responses generated. All tests
conducted with commercial APIs adhere to the platform’s
usage guidelines, without any dissemination of hallucinated
content or negative impacts on downstream applications.

To facilitate further research on MLLM hallucination, we
release our attack algorithms under a restrictive open-sourcing
format. The access will be granted only upon request and
exclusively for research purposes, mitigating misuse risks.
Additionally, the adversarial visual inputs generated during
this study will remain confidential to prevent potential harm.

Open Science

We are commiitted to the principles of open science and have
made our source code available upon request for research
purposes. The permanent link to the artifacts is https://
zenodo.org/records/14709768. Researchers are welcome
to contact us for access to the artifacts.
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A Details of Implementation

During the hallucination attack, we set the total steps Smax
of adversarial optimization as 30, with a learning rate 7y of
5 to update the adversarial perturbations. The attack budget
€ is varied across 2/255, 5/255, and 8/255 to modulate the
perturbation magnitude. Following an ablation study, we set
the hyper-parameter o = 1 to optimize attack effectiveness.
When retrieving hidden states from intermediate levels, we se-
lect the second-to-last layer for InstructBLIP and LLaVA-1.5,
and the third-to-last layer for MiniGPT-4 and Shikra. During
model response generation with beam search decoding, we
configured the beam width Npeam to 3.

B Results of Human-Evaluated Hallucination
Types

To further analyze the adversarial effects of our attack, we
engaged human experts to classify the types of hallucinations.
The evaluation focused on model responses from the image
captioning task across 6 MLLMs, with results detailed in
Fig. 9. Open-source MLLMs demonstrate a higher propensity
for generating fabricated content when exposed to adversar-
ial visual inputs, whereas commercial APIs more frequently
misidentify attributes or relationships between objects.

Human Evaluation of Hallucination Types
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Figure 9: Results of the human evaluation on hallucination
types. The five types of hallucinations are: identifying wrong
main objects, wrong number of objects, wrong attributes or
relationships to objects, generating detailed fabrication con-
tent, and producing only mentioned fabrication content.

C More Results of Black-box Transferability

The adversarial QA accuracy results on black-box commercial
APIs are illustrated in Fig. 10.

(a) QA Accuracy
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Figure 10: Results of QA Accuracy on commercial APIs:
(a) GPT-40 mini released by OpenAl and (b) Gemini 1.5
Flash launched by Google. A lower accuracy indicates more
hallucinations in MLLM responses.



Table 8: Comparison of human-evaluated and GPT-4 assisted hallucination metrics on 4 sets of model responses. (T) denotes
the evaluation results of human experts, while (°) denotes the evaluation results of GPT-4. The human-evaluated results are
averaged between two experts. The number in brackets indicates the hallucination improvement compared to the clean image,
with human-evaluated results in red color and GPT-4-evaluated results in indigo color. Adversarial results are marked in bold.

Input HSPI HWPI HSR(%) HWR(%)

clean image™  2.53 39.84 49.32% 51.21%

- clean image®  2.92 44.61 54.42% 56.02%
MiniGPT-4 €=8/255% 2.79 +0.26) 43.04 (+3200 52.10% (+2.78%) 54.00% (+2.79%)
€=8/255° 2.92 46.00 (+1.39) 57.38% (+2.96%) 59.42% (+3.40%)

clean image”  2.16 41.31 42.44% 45.76%

clean image®  2.27 42.77 45.17% 48.11%
LLaVA-1.5 €=8/255" 2.41 (+0.25) 46.62 (+531) 47.58% (+5.14%) 51.36% (+5.60%)
€=8/255° 2.67 (+0.40) 50.23 (+7.46) 53.04% (+7.87%) 55.78% (+7.67%)

D Results of Perplexity-based Model Response
Quality

In Section 5.4, we present the results of the GPT-4-assisted
evaluation of model response quality. The Perplexity-based
quality evaluation results are presented in Fig. 11, calculated
with the pre-trained GPT-2 model.

PPL-based Response Quality Evaluation

18 W clean image
WA =2/255
15- ’jz ava =5/255
- 3 €=8/255
12- N — 4
s % X
3 < Do

[ d AN | k ‘. <
InstructBLIP LLaVA-1.5 MiniGPT-4  Shikra

Figure 11: Results of Perplexity-based response quality evalu-

ation, covering both white-box and black-box attack scenarios.

A lower perplexity reflects better MLLM response quality.

E Results of Adaptive Mitigation

Considering the adaptive mitigation strategy of detecting and
early-stopping before sink tokens, we present the length, qual-
ity, and hallucination metrics of MLLMs responses under the
mitigation strategy in Tab. 9.

F Results of Alignment Study

To assess the alignment between GPT-4-assisted hallucina-
tion evaluation and human judgments, we engaged human
experts to manually label the hallucinated segments of model

responses. We compare the HSP/HWPI/HSR/HWR metrics
derived from GPT-4-based evaluations with those from hu-
man assessments. The detailed results are presented in Tab.
8. Notably, the human-evaluated hallucination metrics are
slightly lower than those obtained from GPT-4, likely due
to the limited scope of descriptions and the factual infor-
mation annotated in the HalluBench dataset. Additionally,
the results for adversarial visual inputs show comparable im-
provements, underscoring the reliability and effectiveness of
GPT-4-assisted evaluation in this study.

Table 9: Results of the length (WPI), hallucination (HWR),
and response quality under the early-stopping mitigation strat-
egy. clean* refers to the results of clean images on MLLM
without any mitigation strategy applied, while clean® indi-
cates the results on MLLM with adaptive mitigation. The best
adversarial results are marked in bold.

Target Model Input WPI HWR(%) Quality
clean* 102.89 77.27% 8.58
clean®  46.51 52.56% 5.55
InstructBLIP €=2/255 48.57 63.08% (+10.52%) 5.45
€=5/255 4531 65.24% (+12.68%) 5.57
€=8/255 46.31 69.99% (+17.43%) 5.28
clean®  79.70 56.02% 8.81
clean®  51.05 53.67% 6.39
MiniGPT-4  €=2/255 50.81 58.93% (+5.26%)  6.36
€=5/255 52.47 56.64% (+2.97%)  6.49
€=8/255 51.88 59.87% (+6.20%)  5.69
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