
CHAINFUZZ: Exploiting Upstream Vulnerabilities in Open-Source Supply Chains

Peng Deng, Lei Zhang, Yuchuan Meng, Zhemin Yang, Yuan Zhang, and Min Yang
Fudan University, China

{pdeng21, ycmeng22}@m.fudan.edu.cn, {zxl, yangzhemin, yuanxzhang, m_yang}@fudan.edu.cn

Abstract
Software supply chain attacks pose an increasingly severe
threat to the security of downstream software worldwide. A
common method to mitigate these risks is Software Composi-
tion Analysis (SCA), which helps developers identify vulner-
able dependencies. However, studies show that popular SCA
approaches often suffer from high false positive rates. As a
result, developers spend significant time manually validating
these alerts, which delays the detection and remediation of
genuinely exploitable upstream vulnerabilities.

In this paper, we propose CHAINFUZZ, an automated ap-
proach for validating upstream vulnerabilities in downstream
software by generating Proof-of-Concepts (PoCs). To achieve
this, CHAINFUZZ addresses three key challenges. First, intra-
layer code and constraints. Downstream software introduces
custom code and sanity checks that significantly alter the trig-
gering paths and conditions of upstream vulnerabilities. Sec-
ond, inter-layer dependencies. Software supply chains often
involve cross-layer control-flow and data-flow dependencies
between conditional statements across different layers. Third,
long supply chains. Transitive dependencies in long chains
result in intricate exploitation paths, making it challenging
to explore large code spaces and handle deeply nested con-
straints effectively.

We comprehensively evaluate CHAINFUZZ using our
dataset, which comprises 66 unique vulnerability and sup-
ply chain combinations. Our results demonstrate its effec-
tiveness and practicality in generating PoCs for both direct
and transitive vulnerable dependencies. Additionally, we com-
pare CHAINFUZZ with representative fuzzing tools: AFLGo,
AFL++, and NESTFUZZ, highlighting its superior perfor-
mance in downstream PoC generation.

1 Introduction

Modern software development heavily relies on open-source
third-party libraries to enhance efficiency and security [9, 34,
44]. These libraries act as critical building blocks in soft-

ware supply chains, significantly impacting both the devel-
opment and security of downstream software. However, vul-
nerabilities in upstream libraries can propagate throughout
the supply chain, posing risks to downstream systems and
enabling supply chain attacks [3, 41]. For instance, the CVE-
2024-3094 [30] vulnerability (with a CVSS score of 10) in
the xz/liblzma library allows malicious attackers to gain
remote access to downstream systems that depend on it.

Several approaches have been proposed to identify vulner-
abilities inherited from open-source libraries in downstream
software [13, 17, 32, 36, 41]. Unfortunately, these methods of-
ten suffer from high false positive rates [13], rendering them
impractical and inefficient in real-world scenarios. For exam-
ple, OWASP DC [32], a well-known tool, employs Software
Composition Analysis (SCA) to identify and flag dependent
libraries with known vulnerabilities. However, since it does
not verify whether these vulnerabilities can actually be trig-
gered or exploited in downstream software, Ponta et al. [47]
reveal that 88.8% of the vulnerabilities reported by OWASP
DC are false positives. Other techniques [13, 17, 36] have at-
tempted to assess the reachability of upstream vulnerabilities,
such as analyzing call graphs to determine whether the vul-
nerable functions are invoked. Nevertheless, these methods
also produce false alerts because they fail to verify whether
necessary conditions for exploitation are satisfied.

High rates of false alerts for upstream vulnerabilities de-
lay the resolution of real, exploitable vulnerabilities, allow-
ing them to persist in software [9, 35]. A common strategy
to mitigate supply chain attacks is updating vulnerable up-
stream libraries. However, this process is often risky and
time-consuming [25, 27]. Adapting to new interfaces typi-
cally requires substantial code changes, and updates can intro-
duce new vulnerabilities that necessitate recertification and
additional modifications. Without clear evidence of an up-
stream vulnerability’s exploitability, developers must spend
considerable time on manual validation, making updates to
individual components costly and inefficient. Studies also
show that downstream developers frequently avoid upgrad-
ing third-party libraries to prevent breaking changes in their

projects [11, 18].
We present CHAINFUZZ, an automated approach for verify-

ing the exploitability of upstream vulnerabilities by generating
Proof-of-Concepts (PoCs) for downstream software. This ap-
proach enables downstream developers to assess the impact
of upstream vulnerabilities quickly and encourages them to
implement necessary mitigation measures, such as promptly
updating dependency versions. However, achieving this is far
from straightforward.

First, while vulnerability reports may include PoCs to re-
produce vulnerability-related failures [7], and various PoC
generation techniques have been proposed [2, 15, 16, 20, 48],
e.g., directed grey-box fuzzing [2,15,16], these PoCs are often
tailored for upstream software and cannot be directly applied
to downstream software. Our study (elaborated in §4) reveals
that only 3.25% of upstream PoCs can be directly used to
trigger the same vulnerabilities in downstream software.

Second, adapting upstream PoCs for downstream software
is challenging because it requires a deep understanding of pro-
gram dependencies and code implementations. Downstream
software often introduces customized code and additional
sanity checks, which significantly alter the triggering paths
and conditions of vulnerabilities, rendering the original PoCs
ineffective. Moreover, there are control-flow and data-flow
dependencies between the conditional statements across dif-
ferent layers. However, existing approaches [5, 6] mainly fo-
cus on dependencies within individual projects, making them
ineffective for handling complex cross-layer dependencies.

Third, while testing both upstream libraries and down-
stream software as a unified entity might seem feasible, it
presents significant challenges and is largely impractical. For
example, constructing a cross-software control-flow graph
is difficult and imprecise [2], making it challenging to man-
age the extensive dependencies present in modern software.
Modern software frequently incorporates numerous transitive
dependencies [21, 34], where vulnerabilities can propagate
through the supply chain and be exploited in downstream
software. In particular, if software S2 depends on S1, and S1
depends on S0, S2 has a direct dependency on S1 and a transi-
tive dependency on S0. These transitive dependencies extend
the length of software supply chains, creating increasingly
complex and concealed exploitation paths.

To address these challenges, CHAINFUZZ employs two
key techniques: cross-layer differential directed fuzzing and
bottom-up proof-of-concept generation. The core insight be-
hind CHAINFUZZ is that the original PoC for an upstream
vulnerability contains critical execution context and bug-
triggering conditions, which can be utilized to guide the gen-
eration of PoCs for downstream software. Specifically, the
original and downstream PoCs should produce similar execu-
tion traces within the upstream library.

Specifically, the guidance comes from two perspectives.
First, to generate PoCs for direct vulnerable dependencies,
CHAINFUZZ identifies waypoints between upstream and

downstream software and targets them for directed fuzzing.
CHAINFUZZ divides each input’s execution trace into the
downstream trace Td and the upstream trace Tu. During explo-
ration, it prioritizes the diversity of Td and the exploitability
of Tu. In the exploitation phase, it applies trace differential
guided mutation strategies to finely adjust Tu, making it as
similar as possible to the vulnerable execution trace Tv of
the original PoC. Second, to address the path explosion issue
common in traditional top-down approaches, CHAINFUZZ in-
troduces a bottom-up strategy to generate PoCs for transitive
vulnerable dependencies in long supply chains. For exam-
ple, if S0 contains a vulnerability, CHAINFUZZ first generates
PoCs for S1, and then uses these PoCs to guide the genera-
tion of PoCs for S2. To enhance this process, CHAINFUZZ
incorporates PoC prioritization and task revisiting strategies
to select the most promising PoC at each dependency layer
for guidance and to handle nested cross-layer dependencies
in the supply chain. Further details are provided in §3.

We implement a prototype of CHAINFUZZ and evaluate
its effectiveness in generating PoCs for upstream vulnera-
bilities. Our evaluation is based on a ground truth dataset
consisting of 21 real-world vulnerabilities and 66 unique
⟨vulnerability,supply-chain⟩ pairs. We compare CHAIN-
FUZZ with AFLGo-Up, AFLGo-Down, NESTFUZZ, and
AFL++, demonstrating that it outperforms these baselines
in both efficiency and effectiveness when generating down-
stream PoCs. Furthermore, CHAINFUZZ found eight zero-day
vulnerabilities in specific downstream software due to their
dependency on the vulnerable upstream components.

Compared to existing works, CHAINFUZZ stands out for its
ability to generate PoCs for downstream software, enabling
precise validation of the exploitability of upstream vulner-
abilities. Additionally, we discovered that simply updating
the vulnerable dependency to a patched version—a common
mitigation strategy—may not always be effective. For exam-
ple, using the PoC generated by CHAINFUZZ, downstream
software may trigger a different upstream vulnerability or
even a new vulnerability after the dependency is updated to a
patched version. We believe these findings provide valuable
insights for developers and security researchers.

In summary, we make the following contributions:
• We propose CHAINFUZZ, an effective approach that can

validate the exploitability of upstream vulnerabilities in
the software supply chain by generating PoCs.

• CHAINFUZZ conducts cross-layer differential directed
fuzzing to explore the code space in the downstream
software and handle cross-layer dependencies.

• CHAINFUZZ employs bottom-up PoC generation to gen-
erate PoCs for transitive dependencies in long supply
chains effectively.

• We conduct comprehensive experiments to assess the ef-
fectiveness and practicality of CHAINFUZZ, significantly
outperforming existing approaches.

libtiff OpenJPEGlibjpeg-turbo

./opj_compress -i PoC3.tif
-o temp.jp2

tiftoimage
TIFFReadEncodedStrip

JPEGDecode

TIFFjpeg_read_scanlines

jpeg_read_scanlines

process_data_simple_main

decompress_smooth_data

./djpeg PoC1.jpg ./tiffcp PoC2.tif temp.tif

cpDecodedStrips

buggy site

API

API

JPEG DATA TIFF DATAJPEG DATA TIFF DATAJPEG DATA

PoC1.jpg PoC2.tif PoC3.tif

Figure 1: The propagation of vulnerability CVE-2021-29390.

2 Motivation

In this section, we first present a real-world example to il-
lustrate the propagation of a vulnerability and highlight the
associated research challenges (§2.1). We then introduce our
proposed solutions (§2.2).

2.1 Motivating Example

Figure 1 illustrates the propagation of the vulnerability CVE-
2021-29390 [1]. This is a high-risk Out-of-Bounds Write
vulnerability in the widely used open-source library libjpeg-
turbo, exploitable through a malformed JPEG file, denoted as
PoC1.jpg in Figure 1. Furthermore, because libjpeg-turbo is
a dependency of libtiff, which is in turn transitively depended
upon by OpenJPEG, the vulnerability can potentially be trig-
gered in these two downstream libraries, as demonstrated by
PoC2.tif and PoC3.tif, respectively. In the following, we detail
why and how the vulnerability in libjpeg-turbo propagates to
libtiff and OpenJPEG.

Firstly, consider libjpeg-turbo→libtiff. libtiff is a popular
software for handling TIFF files and relies on libjpeg-turbo
to process embedded JPEG data within these files. During
the processing of the TIFF file PoC2.tif, libtiff initially em-
ploys custom code to handle the outer layer of TIFF data.
When encountering embedded JPEG data, libtiff transfers it to
libjpeg-turbo through the API function jpeg_read_scanlines().
This API function eventually calls the vulnerable function
decompress_smooth_data(), triggering the vulnerability.

Secondly, consider libjpeg-turbo→libtiff→OpenJPEG.
OpenJPEG depends on libtiff for handling TIFF files. Upon
receiving a TIFF file, such as PoC3.tif, it first identifies the file
format and preprocesses it using custom code. It then invokes
the API function TIFFReadEncodedStrip() from libtiff to pro-
cess the data, as shown in Figure 1. During the parsing of
embedded JPEG data, TIFFReadEncodedStrip() forwards the
data to libjpeg-turbo, ultimately triggering the vulnerability.

It is important to note that only the original PoC is pub-
licly available, while both downstream PoCs are generated by
CHAINFUZZ. However, generating these PoCs is not easy. We
identify three challenges that require careful consideration.

Challenge I: Rising Intra-layer Code and Constraints. As

(a) Rising Intra-layer Codes and Constraints

(b) Inter-layer Dependency

 ...8
7 return 0;

 if(jpeg->width != seg_width || jpeg->height != seg_height)6
5 uint32_t seg_height = tif->td_imglength - tif->tif_row;
4 uint32_t seg_width = tif->td_imgwidth;

 TIFFjpeg_read_header(sp, TRUE);3
2 JPEGState *jpeg = JState(tif); //JPEG file data
1 static int JPEGPreDecode(TIFF *tif, ...) {
/* Software: libtiff, File: libtiff/tif_jpeg.c */

The JPEG and TIFF data must satisfy specific constraints

}9

 JPEGState *jpeg = JState(tif);
8

26

int JPEGSetupDecode(TIFF *tif) {

 ...6
5 return NULL;
4 if(tiPhoto != RGB)

 TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &tiPhoto);3
2 uint16_t tiPhoto;
1 opj_image_t* tiftoimage(TIFF *tif, ...) {
/* Software: OpenJPEG, File: src/bin/jp2/converttif.c */

 return 0;
 if(jpeg->h_fac != jpeg->h_smp || jpeg->v_fac != jpeg->v_smp)
 JPEGState *jpeg = JState(tif);

17

9
 jpeg->photometric = tif->td_photometric; //==tiPhoto

int JPEGPreDecode(TIFF *tif, ...) {

16
15

}}

14

 break；

13

 jpeg->v_smp = 1;

12

 jpeg->h_smp = 1;

11

 default:

20

18
19

 switch(jpeg->photometric) {
10

/* Software: libtiff, File: libtiff/tif_jpeg.c */

 ...

21

 case YCBCR:
 jpeg->h_smp = tif->td_ycbcrsubsam[0]
 jpeg->h_smp = tif->td_ycbcrsubsam[1]
 break;

23
22

24

Conditional checks in OpenJPEG can
affect the checks in libtiff

}7

}
25

Figure 2: The sanity checks introduced by each layer.

shown in Figure 1, each dependency layer1 introduces signifi-
cant customized code and new branch constraints, resulting
in longer and more complex vulnerability exploitation paths.
For example, the code snippet in Figure 2 (a) shows an input
check introduced by libtiff. The condition at line 6 ensures that
the width and height of the JPEG data match the seg_width
and seg_height of the TIFF segment. If the condition is not
met, the input is deemed invalid, and the program exits.

Directed grey-box fuzzing (DGF) appears promising for
this challenge. DGF [2] aims to test specific target locations
without wasting resources on unrelated code and has proven
efficient, especially for bug reproduction. Theoretically, one
could identify the buggy site in the upstream software as the
target and apply DGF to generate a PoC for the downstream
software. However, existing DGF approaches [2, 3, 15, 23]
primarily focus on exploring paths to vulnerabilities within in-
dividual projects. For instance, AFLGo [2] and BEACON [15]
calculate distances to the target based on the control-flow
graph (CFG). However, constructing a unified CFG for up-
stream and downstream software, such as libjpeg-turbo and
libtiff, which are distinct programs, presents a challenge.

1In this paper, a layer refers to a level, i.e., an open-source library, in the
hierarchy of software dependencies.

Challenge II: Inter-layer Dependencies. Generating PoCs
for OpenJPEG involves navigating inter-layer dependencies
created by customized checks on TIFF files. For example,
OpenJPEG verifies whether the tiPhoto field is set to RGB
(line 4 in Figure 2(b)), which directly influences the execution
paths in libtiff. In libtiff, the photometric property of the JPEG
data is set to the td_photometric of the TIFF data (line 10),
which corresponds to tiPhoto. It then sets h_smp and v_smp
based on jpeg→photometric. At line 23, libtiff checks whether
jpeg→h_factor and jpeg→v_factor match jpeg→h_smp and
jpeg→v_smp, respectively. These operations create control
and data dependencies between the conditional statements at
lines 11 and 23 in libtiff and line 4 in OpenJPEG.

In the software supply chain, path constraints within in-
dividual layers can interact across layers, becoming increas-
ingly complex as the number of layers grows. Overlooking
inter-layer dependencies when generating PoCs can lead to
conflicts, where satisfying constraints in one layer introduces
issues in another. For example, mutating the input field for
line 11 may make it unreachable due to the condition check
at line 4 in Figure 2(b). However, existing approaches [5, 6]
typically focus on intra-project constraints and dependencies,
making them less effective in supply chain scenarios.

Challenge III: Adapting to Long Supply Chains. Consider
a supply chain with n+1 layers, where Si (0 ≤ i ≤ n) repre-
sents each layer of dependency. S0 is the upstream software
containing a known vulnerability, e.g., libjpeg-turbo, while
Sn is the downstream software requiring verification of the
vulnerability’s exploitability, e.g., OpenJPEG. One potential
approach is a top-down strategy that starts from Sn and uses
the vulnerability in S0 as the target for bug reproduction [2].
However, this strategy is computationally expensive and in-
efficient. If each layer introduces an average of M potential
exploitable intra-layer paths, the top-down strategy must con-
sider O(Mn) paths without knowing whether they ultimately
reach the vulnerability. This exponential growth in the path
space makes it challenging for existing methods, such as DGF,
to be applied effectively. Additionally, each layer can intro-
duce customized sanity checks, as shown in Figure 2, further
complicating the adaptation of the PoC to satisfy the nested
constraints of a long supply chain.

2.2 Our Solution

To tackle the above challenges, we introduce two techniques.

Technique I: Cross-layer Differential Directed Fuzzing.
As discussed in Challenge I, constructing a unified CFG for
both upstream and downstream software is impractical and
imprecise. However, without a CFG, calculating statement
distances to targets and performing directed fuzzing becomes
challenging. Our solution is to identify specific waypoints
between the upstream and downstream software, which act
as intermediate milestones for all paths that trigger vulner-

abilities from the downstream. For example, the function
jpeg_read_scanlines, as shown in Figure 1, serves as a
waypoint. We first target these waypoints for directed fuzzing
within the downstream software. Using these waypoints, we
segment the execution trace of each input into two parts: the
upstream trace (Tu) and the downstream trace (Td).

In the exploration stage, we prioritize inputs based on two
factors: (1) the similarity between Tu and the vulnerable ex-
ecution trace Tv of the upstream vulnerability PoC, and (2)
the diversity of Td . This input prioritization strategy balances
thorough exploration of downstream paths with the assess-
ment of exploitability. In the exploitation stage, we refine
inputs derived from the original PoC to generate PoCs for
downstream software. By analyzing differences in both data
flow and control flow between Tu and Tv, we apply targeted
input mutations to generate effective downstream PoCs.

Technique II: Bottom-up Proof-of-Concept Generation.
We propose an efficient bottom-up PoC generation approach
consisting of two key steps:

First, we divide the software supply chain, consisting of
n+1 layers, into n subchains with direct dependencies. Specif-
ically, adjacent layers Si and Si+1 (0 ≤ i < n) are considered
direct dependencies. Each subchain is handled as an indepen-
dently explorable subproblem. To thoroughly explore execu-
tion paths in each subchain, we identify waypoints between Si
and Si+1 as targets and apply the strategies from Technique I
to generate corresponding inputs.

Second, we apply a bottom-up PoC generation strategy,
progressing step-by-step from S0 to Sn. PoCs for Si+1 are
generated based on the PoCs of Si. At each step, we apply
mutation strategies to finely adjust the inputs from Si+1 to Si
based on the PoCs for Si, iteratively repeating this process un-
til we generate PoCs usable for Sn. This divide-and-conquer
approach enables CHAINFUZZ to efficiently tackle the com-
plexities of generating PoCs for long software supply chains.

However, during PoC generation for Si+1, branch con-
straints in Si+1 may conflict with constraints from an earlier
layer Sb (b < i+1), causing PoC generation to fail. To tackle
this issue, we introduce a task revisiting strategy, rolling back
to layer Sb to generate a more diverse set of PoCs, which are
then used to restart the bottom-up generation from Sb to Si+1.

3 Design and Methodology

In this section, we detail our approach to generating PoCs for
downstream software that depends on a vulnerable library.

3.1 Cross-layer Differential Directed Fuzzing

We propose cross-layer differential directed fuzzing, as il-
lustrated in Figure 4. Unlike existing DGF approaches, our
method first identifies the waypoints (§3.1.1) between the up-
stream and downstream software and targets them for directed

ExploitationExploration

Waypoints

Identification
Task Revisiting

Intra-layer

Directed Fuzzing

Input

Prioritization

Trace Splicing

Trace Differential

Guided Mutation

Exploitability

Validation

PoC

Prioritization

UpstreamDownstream

Td

Tu

i=1 to n

Candidate

Inputs

PoCs

!!
n-1 layers

PoCi

i = m

Sn S0

Y

N

Figure 3: Overall Architecture of CHAINFUZZ.

Downstream Software Upstream Software

Td

Tu

Tv

Waypoints PoCPoC'

b1 b2

m1 m2

Figure 4: Cross-layer Differential Directed Fuzzing.

fuzzing. These waypoints represent critical milestones for all
paths that propagate the upstream vulnerability to the down-
stream software. By targeting the waypoints, we only need to
construct the control flow graph for the downstream software,
significantly reducing complexity. Accordingly, we divide the
execution trace of each input into an upstream trace Tu, and a
downstream trace Td . In the exploration stage (§3.1.2), we pri-
oritize inputs to fully explore the diversity and exploitability
of Td and Tu. In the exploitation stage (§3.1.3), we perform
fine-grained mutations of the inputs to satisfy the data and
control dependencies between the upstream and downstream
software, ultimately triggering the vulnerability.

3.1.1 Waypoint Identification

Directly fuzzing the vulnerable zones of upstream vulnerabil-
ities in software supply chains is often inefficient. We observe
that exploitation paths from downstream software to an up-
stream vulnerability must pass specific program statements,
which we define as waypoints. By targeting these waypoints,
we can perform more efficient and focused directed fuzzing.

Firstly, we define waypoints as critical methods:
• Vulnerable methods like process_data_simple_main and

jpeg_read_scanlines in Figure 1, because the buggy site
in libjpeg-turbo can only be accessed through them.

• APIs provided by each layer, such as those of libjpeg-
turbo, because they are the only entry points to its code
space. For example, jpeg_read_scanlines is one such
API, making it a waypoint.

Secondly, we discuss how to identify these waypoints. First,
we reproduce the vulnerability using the original PoC to ob-
tain the vulnerable execution trace Tv and the vulnerable func-
tion. Then, we construct a call graph of the upstream software
using SVF [42] to identify all functions that reach the vul-
nerable function, forming the set A. Finally, we analyze the
downstream software to identify all upstream functions called
by it, forming the set B. The intersection of sets A and B yields
C, which includes all the waypoints.

However, it’s worth noting that set C may be imprecise.
First, since we only consider reachability within the call graph
and not the control flow, the set C may include functions that
cannot actually reach the vulnerable function, resulting in
redundancy. Second, due to the use of function pointers, the
upstream call graph may lack precision, potentially omitting
critical functions and causing incompleteness. We address
these flaws in the dynamic testing stage (detailed in §3.1.3).
Running Example. To better understand CHAINFUZZ, we
use the motivating example from Section 2.1 as a running ex-
ample to demonstrate how CHAINFUZZ operates. First, we in-
troduce the identified waypoints. Using SVF, we construct the
call graph of libjpeg-turbo and attempt to identify waypoints
as described. However, due to function pointers, the initial set
of identified waypoints is empty. To address this, we consider
all functions in libjpeg-turbo that are called by libtiff as po-
tential waypoints. Through this process, we identify 66 way-
points in libtiff. During the exploitation stage (detailed in Sec-
tion 3.1.3), we exclude 63 of these waypoints and ultimately
generate PoCs using only one waypoint: jpeg_read_scanlines.

3.1.2 Exploration Stage

In the exploration phase, our goal is to uncover as many poten-
tial paths as possible for exploiting upstream vulnerabilities
through downstream software. To begin, we target the identi-
fied waypoints for directed fuzzing in the downstream soft-
ware. However, not all paths to waypoints lead to upstream
vulnerabilities, resulting in the exploration of redundant paths
and reduced efficiency. To address this, we propose a novel
input prioritization strategy to focus on more promising paths.
Specifically, for inputs that successfully reach the target, we
segment their execution traces into two fragments:

• Tu, representing the execution trace fragment within the
upstream software.

• Td , representing the execution trace fragment within the
downstream software.

Our approach is based on the idea that to uncover more
potential exploitation paths and expose additional attack sur-
faces, it is essential to thoroughly explore Td . Simultaneously,
to increase the likelihood of triggering the vulnerability in up-
stream software, Tu should be similar to the execution trace Tv
(shown in Figure 4) of the original PoC. To balance these ob-
jectives, we prioritize inputs that exhibit a higher similarity to
Tv while maintaining rarer Td , enabling us to explore a diverse

range of execution paths in the downstream software and fo-
cus on inputs more likely to lead to upstream vulnerabilities.
To achieve this, we optimize the distance calculation used in
traditional DGF-based approaches, such as AFLGo [2].

We consider three parts to evaluate the score of each seed,
as shown in Formula 1: (1) the distance to the targets, (2) the
diversity of Td , and (3) the similarity between Tu and Tv.

Score(i) = d(i)−1 + r(i)+ s(i) (1)

The Distance Computation: Typically, the waypoints are spe-
cific API functions. CHAINFUZZ first employs static analysis
to identify Call instructions within the downstream software
where the callee corresponds to a waypoint. The basic blocks
containing these instructions are designated as targets, de-
noted as ψ(b). Next, we construct a CFG for the downstream
software and compute the distance from each basic block to
these targets. During the dynamic testing phase, we conduct
directed fuzzing by prioritizing inputs based on their distance
to the targets. For each input i ∈ Q, where Q contains all
saved inputs, we define the set ξ(Td), which contains all basic
blocks traversed by it. The distance calculation follows the
approach proposed in AFLGo [2]. This method ensures that
inputs closer to the targets are assigned higher priority.

d(i,ψ(b)) =
∑m∈ξ(Td) d(m,ψ(b))

|ξ(Td)|
(2)

The Diversity Computation: In the preprocessing phase, we
calculate the distances for all basic blocks that can reach the
targets ψ(b) based on the CFG and annotate them accordingly.
Let D = {m|R(m,ψ(b)) ̸= /0} represent the set of all basic
blocks with distance annotations, indicating the possibility of
reaching the targets. Here, R(m,ψ(b)) denotes the set of all
targets reachable from basic block m in the CFG. For each
m ∈ D, we collect the set I(m,Q), which includes all inputs
that reach it. The diversity of m is then determined as:

r(m) =
1

|I(m,Q)|
(3)

Therefore, the diversity of input i is determined by:

r(i) = ∑
m∈ξ(Td)∩D

r(m) (4)

The Similarity Computation: To enhance the efficiency of
fuzzing, we perform a coarse-grained function-level path sim-
ilarity evaluation during the exploration stage. Specifically,
we begin by reproducing the vulnerability in the upstream
software using the original PoC and recording the sequence of
functions it executes, which we denote as the target sequence
S(Tv). During fuzzing, for each input that reaches the targets,
we collect its function execution sequence in the upstream
software, referred to as the reference execution sequence
S(Tu). Following the approach proposed in VULSCOPE [7],
we measure the similarity between two execution sequences

by computing their Longest Common Subsequence (LCS).
A longer LCS indicates a higher similarity between the se-
quences, which in turn reflects a greater exploitability of the
input. The exploitability of an input is then calculated as:

s(i) =
LCS(S(Tu),S(Tv))

|S(Tv)|
(5)

3.1.3 Exploitation Stage

During the exploitation phase, our objective shifts to refin-
ing inputs that can reach upstream libraries and uncovering
execution paths capable of triggering upstream vulnerabili-
ties. The core insight behind our approach is that the original
PoC of the upstream vulnerability encapsulates the essential
vulnerable execution context and bug-triggering conditions,
which can be leveraged to generate PoCs for the downstream
software. In other words, the downstream and upstream PoCs
should exhibit similar execution traces, i.e., Tu and Tv, in the
upstream software. Thus, we utilize the similarity of Tu and
Tv to guide the seed mutation effectively.

We evaluate the similarity between Tu and Tv at a fine-
grained level, considering both control flow and data flow.
Figure 4 illustrates the core process of our approach. For each
input, we compare its execution trace Tu with Tv, identifying
intersection points, e.g., m1 and m2, and bifurcation points,
e.g., b1 and b2, between the two traces. During each round of
mutation, we select a bifurcation point and apply one of our
mutators. Our approach consists of two main components:

Byte-level Dynamic Taint Analysis. We use taint analysis
to record execution traces and map input fields to their corre-
sponding constraints for the convenience of input mutation.

First, for each input, we track its basic block execution
trace within the upstream software, recording the sequence of
executed basic blocks. Additionally, we employ byte-level dy-
namic taint analysis, treating the PoC as the taint source and
tracing its propagation within the upstream program. Each
tainted variable is assigned a ⟨start,end⟩ label, indicating the
offset of the corresponding field within the input. For every in-
struction with tainted operands, we log the associated tainted
information. Since a program statement may execute multiple
times, introducing new tainted data, the tainted information
for a variable is stored as a list of labels.

Second, we conduct function-level taint aggregation to iden-
tify the input fields processed by each function. Using byte-
level dynamic taint analysis, we determine the tainted infor-
mation associated with each statement. We then aggregate
this tainted information upward to the function level, where
each function is assigned the composite input processed by
its constituent statements.

Figure 5 illustrates an example of our taint aggregation
strategy. In the code snippet, the file pointer p in function
foo() serves as the taint source. The function foo() invokes
read2bytes() and read4bytes() to read two and four bytes from

int read2bytes(FILE *p) {

7
6
5
4
3 if (width * height > MagicNum) { return; }}

 int height = read4bytes(p);2
1 int width = read2bytes(p);
0 void foo(FILE *p) {

 unsigned char temp[2]

8

 fread(temp, sizeof(unsigned char), 2, p);

9

 return temp[0] << 8 | temp[1];

10

}

11

int read4bytes(FILE *p) {

12

 unsigned char temp[4]

13

 fread(temp, sizeof(unsigned char), 4, p);
 return temp[0] << 24 | temp[1] << 16 | temp[2] << 8 | temp[3];
}

foo
<0,6>

read4bytes
<2,6>

read2bytes
<0,2>

Load
<0,2>

Load
<2,6>

Load
<2,3>

Load
<0,1>

Load
<1,2>

Load
<5,6>

Load
<3,4>

Load
<4,5>

Figure 5: Function level taint aggregation.

the file, respectively. The tree structure demonstrates the taint
aggregation process. The leaf nodes represent the program
statements whose operands have taint labels. For instance, at
line 7, the code snippet loads variables temp[0] and temp[1],
which have taint labels ⟨0,1⟩ and ⟨1,2⟩, respectively. Con-
sequently, we aggregate the taint labels of these two Load
statements to the function read2bytes() as the input region
processed within it. Similarly, the input region processed in
the function foo() is identified as ⟨0,6⟩.
Trace Differential Guided Mutation. Using collected exe-
cution traces and taint analysis results, we propose a muta-
tion strategy guided by trace differentials. This approach effi-
ciently refines inputs generated during the exploration phase,
enabling them to trigger upstream vulnerabilities. Below, we
introduce the customized mutators of CHAINFUZZ.

Mutator# I: Coarse-grained Input Splicing. In §2.1, we ob-
served that downstream software often relies on upstream li-
braries to process specific portions of data. For instance, libtiff
depends on libjpeg to handle JPEG data embedded within
TIFF files. Given this characteristic, one intuitive approach
is to divide each input into two parts: the portion processed
by the downstream software and the portion processed by
the upstream software. By mapping the upstream-processed
portion to the content in the original PoC, we can efficiently
mutate the input. Expanding on this input mapping idea, we
propose two mutation strategies for input splicing: coarse-
grained input splicing and fine-grained field replacement.

First, we introduce coarse-grained input splicing. Using
the taint aggregation strategy, we identify the data regions
processed within each function along the execution trace for
each input. For input i, we select a function f executed in the
upstream software, where the taint label for f is ⟨starti,endi⟩.
If the corresponding taint label for f when processing the orig-
inal PoC is ⟨startp,endp⟩, we replace the region ⟨starti,endi⟩
in input i with the region ⟨startp,endp⟩ from the PoC.

Mutator# II: Fine-grained Field Replacement. We only con-
sider input fields processed in conditional statements. Specif-
ically, our fine-grained field replacement strategy operates
as follows: For each input i, we collect all the conditional

statements it executes in the downstream and upstream soft-
ware, along with their taint labels. For each upstream condi-
tional statement s with taint label ⟨starti,endi⟩, we collect its
taint label ⟨startp,endp⟩ when processing the original PoC. If
⟨starti,endi⟩ is not processed by any downstream conditional
statements, we replace the region ⟨starti,endi⟩ in input i with
the region ⟨startp,endp⟩ in the PoC. It is worth noting that
starti and startp, as well as endi and endp, are usually different
since they correspond to distinct inputs.

Mutator# III: Intra-layer Mutation. By employing Muta-
tor# I and Mutator# II, we can significantly increase the
likelihood of inputs reaching the buggy site. However, suc-
cessfully triggering the vulnerability often requires additional
fine-grained adjustments to align their execution traces with
the original PoC.

Specifically, we compare the execution traces Tu and Tv
to locate the first matching basic block, e.g., m1 in Figure 4.
Starting from m1, we iteratively compare Tu and Tv to identify
the first unmatched basic block, e.g., b1. Then, we analyze
the intra-procedure control flow graph to locate the imme-
diate predecessor of the unmatched basic block. Within this
immediate predecessor, we extract the condition variables
associated with the branch decision, such as variables used
in CMP or SWITCH. These condition variables, controlling the
branch outcome, are crucial for subsequent adjustments to
ensure synchronization between the execution traces. Based
on our taint analysis, we can locate the critical input bytes
in the input that affect the runtime values of the condition
variables. We then focus on mutating these critical bytes to
increase the similarity between Tu and Tv. In this process, we
continuously search for the next unmatched basic block and
apply the above procedure, gradually aligning Tu with Tv.

Mutator# IV: Cross-layer Mutation. As discussed in §2.1,
control and data dependencies exist between conditional state-
ments of different layers. When mutating identified critical
bytes, the upstream conditional statement may become un-
reachable because the downstream branch is not satisfied. To
solve this, we propose a cross-layer mutation strategy.

For a selected input i, we collect its execution trace Td and
Tu. Suppose we need to mutate the input field ⟨starti,endi⟩ to
satisfy the constraint of an upstream conditional statement.
After each mutation, we generate a new input and collect the
corresponding trace T ′

d and T ′
u , aiming for T ′

d to be the same
as Td and T ′

u to be more similar to Tv than Tu. However, if the
mutated field is also checked in a downstream branch, the new
field value may not satisfy the branch constraint, resulting in
T ′

d being different from Td and the input being unable to enter
the upstream software. To address this, we compare traces T ′

d
and Td to locate the first different basic block and its imme-
diate predecessor, following the approach outlined in Muta-
tor# III. From there, we extract the input field ⟨start′i,end′i⟩
for the condition variables in the predecessor. If ⟨start′i,end′i⟩
is the same as ⟨starti,endi⟩, we continue attempting to mutate

(a) The CFG of Figure 2(b) (b) Mutate inputi according to the execution trace of PoC2.tif

(2) inputi

L4

L6

L11

L17

L20

L23 L24

L18

L19

…

L4

L6

L11

L17

L20

L23

L25

L18

L19

…

L13

L11

L20

L23

L25

L14

L15

(3) PoC3.tif(1) PoC2.tif

<0xAC,0xAD>

<0xE2,0xE4>

<0xB0,0xB1>

<0xE2,0xE4> <0xE2,0xE4>

<0xE2,0xE4>

<0xB0,0xB1>

Mutator#III

Mutator#IV

Mutator#II

Mutator#III

L4 L5

L6

L13

L11

L17

L20

L23

L25

L24

L14 L18

L15 L19

YCBCR default

…

OpenJPEG

libtiff

<0xEE,0xF0>

Figure 6: Trace Differential Guided Mutation Strategy.

the field, as its current value fails to satisfy both upstream and
downstream branch constraints. However, if ⟨start′i,end′i⟩ is
different from ⟨starti,endi⟩, we focus on mutating the input
bytes within the range of their difference.

Waypoint Optimization. As discussed in §3.1.1, the identi-
fied waypoints have issues with redundancy and incomplete-
ness. To address these issues, we propose two mitigation
strategies. First, to eliminate redundant waypoints, we iden-
tify inputs whose execution trace Tu cannot be fitted to the
vulnerable trace Tv during the exploitation stage. We then an-
alyze which waypoints these inputs reached and identify the
most frequent ones as redundant. Second, to discover missed
waypoints, we identify inputs that enter the upstream software
but do not pass through any known waypoints during the ex-
ploration stage. We then add the entry point functions of these
inputs to our waypoint set. During on-the-fly identification,
we defer verifying if new waypoints can reach vulnerable
functions, as this would require a precise call graph. Instead,
we evaluate their effectiveness and remove redundant way-
points during dynamic fuzzing, as described above.

Running Example. Figure 6 shows how CHAINFUZZ’s muta-
tors generate the PoC for OpenJPEG (PoC3.tif) based on the
execution trace of the PoC for libtiff (PoC2.tif). Figure 6(a)
shows a simplified cross-layer control flow graph of the code
snippet from Figure 2(b). Figure 6(b) displays the execution
traces of three inputs: (1) the trace of PoC2.tif; (2) the trace of
inputi generated while testing OpenJPEG with CHAINFUZZ;
(3) the trace of PoC3.tif, generated by mutating inputi based
on the differences in its trace compared to PoC2.tif.

CHAINFUZZ starts by identifying intersections and bifurca-
tion points between the traces of PoC2.tif and inputi. The first
intersection, L11, corresponds to the SWITCH instruction at
line 11 of Figure 2(b). After L11, PoC2.tif and inputi diverge
into different cases. To align the traces, CHAINFUZZ uses
taint analysis to determine the taint label of the variable at
line 11. For PoC2.tif, the taint label is ⟨0xEE,0xF0⟩, while for
inputi, it is ⟨0xE2,0xE4⟩. Using Mutator# III, CHAINFUZZ
randomly mutates the input range ⟨0xE2,0xE4⟩ in inputi to
match the case executed by PoC2.tif. However, because this

region is also checked at line 4 in OpenJPEG, altering its
value causes the generated inputs to execute line 5, prevent-
ing them from entering libtiff. Next, CHAINFUZZ applies
Mutator# IV , enumerating possible values for ⟨0xE2,0xE4⟩
in inputi. Only one value successfully allows the inputs to
enter libtiff. Despite this, the traces diverge after line 11, so
CHAINFUZZ searches for the next intersection at L20. After
L20, the traces diverge again after L23. At this point, CHAIN-
FUZZ uses Mutator# II, replacing the range ⟨0xB0,0xB1⟩
in inputi with the corresponding range ⟨0xAC,0xAD⟩ from
PoC2.tif. However, the generated input still fails to execute
L25. Finally, CHAINFUZZ applies Mutator# III, randomly
mutating the range ⟨0xB0,0xB1⟩ in inputi. This process ulti-
mately generates PoC3.tif.

3.2 Bottom-up Proof-of-Concept Generation
CHAINFUZZ can generate PoCs for direct vulnerable depen-
dencies using cross-layer differential directed fuzzing. In this
section, we introduce its bottom-up PoC generation approach.

3.2.1 Bottom-up PoC Generation

In bottom-up PoC generation, the objective is to generate the
final PoCn for Sn, where PoCi+1 for layer Si+1 is generated
based on PoCi for layer Si. We have two optional strategies for
this process. The first strategy generates PoCi+1 immediately
after obtaining a usable PoCi for layer Si, while the second
waits until a sufficient number of PoCis have been generated
for layer Si before proceeding to Si+1. Each strategy has its
own advantages and drawbacks. The first strategy prioritizes
efficiency, enabling faster generation of the final PoCn. How-
ever, it may encounter limitations if the PoCi cannot satisfy
specific branch constraints in certain layers. In contrast, the
second strategy ensures a diverse set of usable PoCis, improv-
ing the likelihood of generating a usable PoCn. However, this
approach requires more time for a comprehensive exploration
of each layer, leading to lower efficiency.

To combine the strengths of both strategies, we propose a
goal-oriented bottom-up approach. First, we introduce a PoC
prioritization strategy. After generating PoCs for layer Si, we
evaluate their scores and prioritize those with higher scores to
guide the generation of PoCs for Si+1. Second, we propose a
task revisiting strategy. If we consistently encounter situations
where a particular branch constraint in layer Sb (0 ≤ b < i+1)
cannot be satisfied during the generation of PoCi+1, we revisit
the task. Specifically, we roll back to layer Sb, regenerate
additional PoCbs, and attempt to generate subsequent PoCs
based on the newly generated ones.

PoC prioritization. After generating PoCs for layer Si, we
prioritize them to select the most promising PoCi to guide
the generation of PoCs for layer Si+1. We evaluate PoCi from
two perspectives. In the downstream direction, we assess the
degree of similarity between PoCi and the inputs generated

1100 0003 02 1120 22 0308 02 010411 0101
00C2FFFFFFFFFFFFFFFFFFFFFFFFDBFF

06 FF00FF00 FFFF 20 0004 FFFF 02 00FF FF
FFFF FFFFFF FFFFFF

000011B4002A4949

(a) PoC1.jpg

(b) PoC2.tif

(c) PoC3.tif

JPEG DATA

02 FF00FF00 FFFF 20 0004 FFFF 02 00FF FF
FFFF FFFFFF FFFFFF11

000011B4002A4949
JPEG DATA

width height fac

length width rowphotometric

photometric row

fac

length width

Figure 7: The PoCs for our motivating example in Figure 1.

from Si+1 to Si, i.e., inputs in Qi+1. The more inputs with
execution paths similar to PoCi, the higher its score. In the
upstream direction, suppose PoCi is generated under the guid-
ance of PoCi−1 of layer Si−1. We evaluate the product of two
factors: the similarity between the execution paths of PoCi
and PoCi−1 and the score of PoCi−1. A higher product indi-
cates a higher score for PoCi. Specifically, the score of PoCi
can be calculated using the following formula:

Score(PoCi) =
∑i∈Q(i+1)s(i)
|Q(i+1)|

+Score(PoCi−1) · s(PoCi) (6)

Task revisiting. We perform task revisiting when attempts
to generate PoCs for the layer Si+1 consistently fail. Firstly,
we identify the bottleneck for the current layer Si+1 where
generating the corresponding PoCi+1 encounters significant
difficulty. As discussed, inter-layer dependencies can cause
branch constraints in layer Si+1 to conflict with constraints in
intermediate dependent layers. Such conflicts make it chal-
lenging to generate usable PoCs for Si+1. To address this
issue, we collect the temporary inputs generated during at-
tempts to generate PoCs for Si+1 and analyze the lowest layer
of dependent software reachable by these inputs. This layer
is identified as the bottleneck layer Sb. Simultaneously, we
determine the branch constraint conditions in Sb that these
inputs consistently fail to satisfy. Secondly, we roll back to
the layer Sb and attempt to generate new PoCbs for Sb that
trigger upstream vulnerabilities without passing through the
identified conflicting branch constraints. Thirdly, after suc-
cessfully generating new PoCbs, we proceed to generate new
PoCs for layers Sb+1 through Si+1 based them.
Running Example. Figure 7 highlights partial critical data
in the PoC files for our motivating example. Compared to
PoC1.jpg, which is in JPEG format, PoC2.tif is a TIFF file that
embeds the JPEG data and must satisfy specific constraints.
For example, the width field in TIFF data must match the
width field in the embedded JPEG data, as checked at line
6 in Figure 2(a). In contrast, PoC3.tif introduces additional
constraints. The photometric field in PoC3.tif must be set to
0x02 to satisfy the branch constraint in OpenJPEG (line 4,
Figure 2(b)), and the fac field in the embedded JPEG data
must be 0x11 to satisfy the branch constraint in libtiff (line
23, Figure 2(b)). These highlighted data fields are crucial to

ensuring that all three levels of PoCs successfully trigger the
same upstream vulnerability.

4 Evaluation

In this section, we evaluate the effectiveness of CHAINFUZZ
in generating PoCs to exploit upstream vulnerabilities.

Prototype Implementation. We implemented CHAINFUZZ
for C/C++ software with 2.3k lines of C/C++ code, 1.2k lines
of Python code, and 1.6k lines of Rust code. Dynamic taint
analysis was implemented based on the LLVM Dataflow San-
itizer [24]. To collect runtime taint information and the cor-
responding field offset of inputs, we instrumented specific
instructions, e.g., Load, Call, Cmp, using an LLVM Pass. We
implemented the fuzzing component based on AFLGo [2].

Dataset Collection. As discussed earlier, CHAINFUZZ is
a directed, fuzzing-based approach that takes an original
PoC and a software supply chain as input to generate PoCs
applicable to downstream software. While existing bench-
marks [10, 14, 26] evaluate the effectiveness of direct fuzzing
approaches, they typically include only vulnerable upstream
software. However, these benchmarks often lack PoCs for the
vulnerabilities and omit information about downstream soft-
ware that depends on the upstream. To address this limitation,
we constructed a custom dataset to evaluate CHAINFUZZ.
Firstly, we selected nine popular upstream software, as shown
in Figure 8, based on the following criteria:
1. The software has been widely tested by existing fuzzing

approaches [2, 8].
2. Published vulnerability reports were available.
3. Downstream software depending on the upstream software

could be identified. To determine these dependencies, we
used two methods. (1) Reviewing the documentation of
the upstream software to confirm its usage in the down-
stream software. (2) Examining the configuration files
of the downstream software to extract references to the
upstream software.
Secondly, for each upstream software, we collected vul-

nerability reports from the National Vulnerability Database
(NVD) [31] and public security issues from their Git reposito-
ries. We filtered these reports based on the following criteria:

1. Availability of Proof-of-Concept input. We selected vulner-
abilities with publicly available PoC inputs.

2. Reproducibility. Although some vulnerabilities have pub-
lic PoCs, reproduction can be challenging due to incom-
plete vulnerability reports [28]. Common issues include
unspecified vulnerable versions, missing configuration de-
tails, or undefined operating system requirements. We at-
tempted to reproduce all vulnerabilities and excluded those
we could not reproduce from our dataset.

Thirdly, for each vulnerable upstream software, we selected
the downstream software that depends on it, as shown in Fig-

libpng OpenJPEG libjpeg-turboLibRaw

libheif

JasPer ImageMagick

libde265

libwebp OpenJPEG

libgdOpenImageIO libtiff

libxml2 freetype

podofo MuPDF

podofo

Figure 8: The supply chains in our dataset.

ure 8. To comprehensively evaluate the capability of CHAIN-
FUZZ, we mainly tested it with two different software supply
chain lengths. (1) Length of 2: For example, ImageMagick
directly depends on libheif. In this case, we used CHAINFUZZ
to generate PoCs for ImageMagick that can trigger the vul-
nerabilities in libheif. (2) Length of 3: For example, libtiff
depends on libjpeg-turbo, and OpenJPEG depends on libtiff.
In this case, we used CHAINFUZZ to generate PoCs for libtiff
and OpenJPEG that could trigger the vulnerabilities in libjpeg-
turbo. This setup allowed us to assess CHAINFUZZ’s ability
to validate the exploitability of vulnerabilities in transitive
dependencies across long software supply chains. For each
downstream software, we used its latest version.

In summary, our dataset contains 189 real-world vulnera-
bilities, 20 supply chains (shown in Figure 8), and 554 unique
pairs of ⟨vulnerability,supply-chain⟩, covering 16 widely
used software. These software programs can process more
than 12 different file formats.

Baselines. To the best of our knowledge, no existing ap-
proaches focus on generating PoCs for C/C++ downstream
software. The work most similar to CHAINFUZZ is direct
greybox fuzzing. For our evaluation, we selected AFLGo [2],
a state-of-the-art and widely recognized directed fuzzing ap-
proach. While researchers have proposed many DGF ap-
proaches, such as BEACON [15] and Titan [16], we find
these methods unsuitable for generating PoCs for upstream
vulnerabilities. This is because their instrumentation and
static analysis modules are designed for runnable binary pro-
grams, e.g., djpeg, rather than entire upstream software li-
braries, e.g., libjpeg, which are typically depended on by the
downstream. We excluded FuzzGuard [50], Hawkeye [4],
MC2 [40], CAFL [22], DSFUZZ [23], and PDGF [49] from
our baselines because these tools were not publicly available
at the time of writing. AFLGo calculates and instruments
the distance of each basic block to specified targets based
on the program’s CFG. To thoroughly assess AFLGo’s abil-
ity to trigger upstream vulnerabilities, we used two different
configurations: AFLGo-Up and AFLGo-Down. For AFLGo-
Up, we manually reproduced the upstream vulnerability and
identified the buggy site as the target. For AFLGo-Down, we
identified waypoints between the downstream and upstream
based on CHAINFUZZ and used these as targets. In addi-
tion to AFLGo, we included AFL++ [12], a general fuzzing
approach that integrates various fuzzing research and ranks
highly among fuzzing tools according to Fuzzbench [26].
Since most software in our dataset processes structured inputs,
we also included NESTFUZZ [8], an input structure-aware

fuzzing approach, as one of our baselines.

Test Bed and Configuration. All experiments were con-
ducted on a Ubuntu 20.04 server with AMD EPYC 7513
CUPs (128 cores) and 1024 GB RAM. Each testing task was
executed on an individual virtual machine with 16GB of mem-
ory and 2 CPU cores. We enabled Address Sanitizer [39] for
each fuzzing campaign to detect vulnerabilities. When a vul-
nerability was discovered, we manually confirmed whether
the original upstream vulnerability had been triggered. To en-
sure fairness across all fuzzing tools, we used the same seeds
for fuzzing the downstream software, including the original
PoC and one valid input specific to the downstream software.

4.1 Effectiveness of CHAINFUZZ

4.1.1 Exploitability of the vulnerabilities in our dataset

We first investigated whether the upstream vulnerabilities in
our dataset could be exploited downstream. Three experts,
each with six years of experience in software security, partici-
pated in the analysis. Two experts independently evaluated the
exploitability of the vulnerabilities by manually crafting the
original PoCs for the corresponding supply chains. A third ex-
pert reviewed their findings, achieving a Cohen’s Kappa [45]
coefficient of 0.962, indicating a strong level of agreement. Fi-
nally, we categorized the ⟨vulnerability,supply-chain⟩ pairs
in our dataset into three categories:

• Case#1 (3.25%): the PoC triggered the same upstream
vulnerability via the downstream software.

• Case#2 (11.91%): the PoC, after mutation, triggered the
same upstream vulnerability via the downstream.

• Case#3 (84.83%): the upstream vulnerability could not
be triggered.

Based on our results, Case#3 accounted for the highest
percentage. There are two primary reasons: (1) the vulnera-
ble function in the upstream software is unreachable in the
downstream, and (2) the conditions necessary to trigger the
upstream vulnerability cannot be satisfied in the downstream,
often due to customized configurations like environment or
global variables in the upstream software. Table 5 summarizes
the details of the exploitable vulnerabilities in our dataset.

4.1.2 Evaluation of CHAINFUZZ’s effectiveness

Experiment I: Generating PoCs for Exploitable Vulner-
abilities. In this experiment, we evaluated the effectiveness
of CHAINFUZZ in generating PoCs for downstream software
to trigger exploitable upstream vulnerabilities. Using the re-
sults from § 4.1.1, we established a ground truth of 66 unique
⟨vulnerability,supply-chain⟩ pairs categorized as Case#2.

For each vulnerability, we employed CHAINFUZZ and our
baselines to generate PoCs for downstream software that di-
rectly or transitively depend on the corresponding upstream

Table 1: The effectiveness of CHAINFUZZ, AFLGo-Up, AFLGo-Down, NESTFUZZ, and AFL++ in generating PoCs for upstream
vulnerabilities in the downstream.

CVE ID Downstream#1 µTTE(h) Downstream#2 µTTE(h)
CHAINFUZZ AFLGo-Up AFLGo-Down NESTFUZZ AFL++ CHAINFUZZ AFLGo-Up AFLGo-Down NESTFUZZ AFL++

JasPer 2m/40s ✗ ✗ ✗ ✗CVE-2016-10506 libheif 2m/45s ✗ ✗ ✗ ✗ ImageMagick 2m/34s ✗ ✗ ✗ ✗
JasPer 3m/1s ✗ ✗ ✗ ✗CVE-2019-6988 libheif 4m/13s ✗ ✗ ✗ ✗ ImageMagick 3m/5s ✗ ✗ ✗ ✗
JasPer 5m/32s ✗ ✗ ✗ ✗CVE-2023-39328 libheif 3m/05s ✗ ✗ ✗ ✗ ImageMagick 5m/11s ✗ ✗ ✗ ✗
JasPer 4m/43s ✗ ✗ ✗ ✗Issue#389 libheif 3m/12s ✗ ✗ ✗ ✗ ImageMagick 4m/50s ✗ ✗ ✗ ✗
JasPer 5m/25s ✗ ✗ ✗ ✗Issue#393 libheif 3m/07s ✗ ✗ ✗ ✗ ImageMagick 5m/40s ✗ ✗ ✗ ✗
JasPer 5m/09s ✗ ✗ ✗ ✗Issue#394 libheif 3m/01s ✗ ✗ ✗ ✗ ImageMagick 5m/04s ✗ ✗ ✗ ✗
JasPer 4m/52s ✗ ✗ ✗ ✗Issue#399 libheif 3m/18s ✗ ✗ ✗ ✗ ImageMagick 5m/02s ✗ ✗ ✗ ✗
JasPer 4m/23s ✗ ✗ ✗ ✗Issue#1501 libheif 4m/11s ✗ ✗ ✗ ✗ ImageMagick 4m/31s ✗ ✗ ✗ ✗
JasPer 5m/07s ✗ ✗ ✗ ✗Issue#1505 libheif 4m/20s ✗ ✗ ✗ ✗ ImageMagick 5m/07s ✗ ✗ ✗ ✗
JasPer 1h/16m/48s ✗ ✗ ✗ ✗CVE-2020-21600 libheif 1h/7m/47s ✗ ✗ ✗ ✗ ImageMagick 58m/11s ✗ ✗ ✗ ✗
Podofo 31m/27s ✗ ✗ ✗ ✗
libwebp 22m/14s ✗ ✗ ✗ 13h/10m/48s (3/5)

OpenJPEG 2h/19m/16s ✗ ✗ ✗ ✗
CVE-2021-29390 libtiff 24m/36s ✗ ✗ 8h/16m/49s (1/5) 7h/45m/36s (2/5)

ImageMagick 22m/46s ✗ ✗ ✗ 16h/14m/45s (2/5)
JasPer 7m/17s ✗ ✗ ✗ ✗CVE-2022-43239 libheif 2m/24s ✗ ✗ ✗ ✗ ImageMagick 10m/13s ✗ ✗ ✗ ✗
JasPer 4m/15s ✗ ✗ ✗ ✗CVE-2022-43252 libheif 2m/35s ✗ ✗ ✗ ✗ ImageMagick 6m/5s ✗ ✗ ✗ ✗
JasPer 6m/13s ✗ ✗ ✗ ✗CVE-2023-24752 libheif 6m/36s ✗ ✗ ✗ ✗ ImageMagick 6m/15s ✗ ✗ ✗ ✗
JasPer 10m/15s ✗ ✗ ✗ ✗CVE-2023-24751 libheif 4m/49s ✗ ✗ ✗ ✗ ImageMagick 7m/45s ✗ ✗ ✗ ✗
JasPer 2m/25s 55m/16s 55m/13s ✗ 2m/24sCVE-2023-49468 libheif 1m/47s 55m/11s 55m/09s ✗ 2m/24s ImageMagick 4m/16s 1h/52m/43s 1h/52m/45s ✗ 1m/45s
JasPer 7m/49s ✗ ✗ ✗ ✗CVE-2023-25221 libheif 4m/33s ✗ ✗ ✗ ✗ ImageMagick 7m/30s ✗ ✗ ✗ ✗

CVE-2024-31619 ImageMagick 1m/11s 4m/13s 2m/27s 1m/14s 0m/35s
CVE-2016-10506 MuPDF 1m/45s ✗ ✗ ✗ 2h/3m/2s
CVE-2019-6988 MuPDF 1m/45s ✗ ✗ ✗ 2h/3m/2s
CVE-2023-39328 MuPDF 1m/23s ✗ ✗ ✗ ✗
Issue#389 MuPDF 0m/42s ✗ 13h/30m/47s (4/5) 6h/25m/56s (1/5) 5h/8m/9s
Issue#393 MuPDF 0m/37s 5h/21m/12s (2/5) 9h/56m/33s (2/5) ✗ 42m/42s
Issue#394 MuPDF 0m/35s 21m/1s 22m/46s 8h/12m/56s 6m/9s
Issue#399 MuPDF 1m/54s ✗ ✗ ✗ 4h/5m/17s
Issue#1501 MuPDF 1m/18s ✗ ✗ ✗ ✗
Issue#1505 MuPDF 1m/20s ✗ ✗ ✗ ✗
CVE-2022-0561 Podofo 2m/52s ✗ ✗ ✗ ✗
CVE-2022-0562 Podofo 4m/29s ✗ ✗ ✗ ✗
CVE-2022-0908 Podofo 3m/13s ✗ ✗ ✗ ✗

1 ✗ means that the PoC is not generated within the 24-hour limit.

software. Each experiment was repeated five times with a 24-
hour timeout. We recorded the first time each tool generated
a downstream PoC that successfully triggered the upstream
vulnerability (TTE) and calculated the average of these times
(µTTE). If no PoCs were generated within 24 hours across all
five attempts, the time is marked as ✗. If a tool did not consis-
tently generate PoCs in all five attempts, this is also indicated.
As shown in Table 1, CHAINFUZZ was the only approach
capable of generating PoCs for all vulnerabilities, accomplish-
ing this task in significantly less time. In contrast, the baseline
tools were effective only for certain vulnerabilities, and they
were less reliable and required considerably more time. Inter-
estingly, CHAINFUZZ occasionally generated PoCs for Down-
stream#2 faster than for Downstream#1. For example, it took
1h/7m/47s for libheif while only 58m/11s for ImageMagick
for the vulnerability CVE-2020-21600. This discrepancy oc-
curs because PoCs generated for Downstream#1 could some-
times be directly used in Downstream#2 to trigger the up-
stream vulnerability. In some cases, baselines outperformed
CHAINFUZZ. For example, AFL++ generated downstream
PoCs faster than CHAINFUZZ for CVE-2024-31619 in lib-
heif. Manual analysis revealed that while the original PoC

was unsuitable for ImageMagick, a critical bit mutation made
it usable. AFL++ could rapidly generate downstream PoCs
using mutation strategies such as bit flipping.

Experiment II: Analyzing Case#3 Pairs. A key strength
of CHAINFUZZ is its ability to detect subtle vulnerabili-
ties that may escape manual code review, facilitating the
validation of hard-to-detect upstream vulnerabilities. In
this experiment, we focused on the remaining 84.83% of
⟨vulnerability,supply-chain⟩ pairs labeled unexploitable by
experts to evaluate labeling accuracy and uncover potential
overlooked vulnerabilities. Specifically, we randomly selected
45 pairs from this category, ensuring they covered all upstream
libraries listed in Figure 8. Using CHAINFUZZ, we attempted
to generate PoCs for the corresponding downstream software
and classified the results into the following three categories:

• Unreachable (22/45): upstream vulnerable function inac-
cessible downstream, e.g., CVE-2023-2804.

• Reachable (22/45): function accessible but vulnerability
cannot trigger, e.g., CVE-2023-2731.

• Exploitable (1/45): vulnerability verified exploitable
with the help of CHAINFUZZ, e.g., CVE-2023-1729.

Table 2: The performance of CHAINFUZZ compared to SCA
and reachability analysis approaches.

Tools CHAINFUZZ CCScanner Reachability

TP 66 40 7
FN 1 27 60
TN 44 14 38
FP 0 30 6

The detailed results are summarized in Table 6. Notably,
CHAINFUZZ helped identify CVE-2023-1729 as exploitable
downstream. This is a vulnerability in libraw, a dependency
of OpenImageIO. While CHAINFUZZ generated inputs that
reached the vulnerable code, they failed to satisfy the exploit
conditions. Further manual analysis of the fuzzing results re-
vealed that exploiting this vulnerability required enabling a
specific option in OpenImageIO’s configuration file during
fuzzing. This highlights the limitations of manual analysis
and the value of CHAINFUZZ in vulnerability assessment.

Experiment III: False Positive and False Negative. In this
experiment, we evaluated the false positives and negatives
of CHAINFUZZ compared to SCA and reachability analysis
approaches. We established the ground truth using the vul-
nerabilities listed in Table 1 and Table 6. The ground truth
consists of 67 exploitable ⟨vulnerability,supply-chain⟩ pairs
and 44 unexploitable pairs. For comparison, we selected CC-
Scanner [44], a dependency detection tool for C/C++ libraries.
For each pair in the ground truth, we used CCScanner to de-
tect the dependency of the downstream library. If CCScanner
established the supply chain, we considered it as marking
the corresponding vulnerability as exploitable. Additionally,
we implemented a reachability analysis approach following
existing approaches [47]. Specifically, we first constructed the
function call graphs for the vulnerable version of the upstream
software and the downstream software. Second, we merged
the call graphs based on shared function nodes, i.e., the up-
stream functions called by the downstream software. Third,
we searched the merged call graph to determine whether a
function-level reachable path exists from the downstream pro-
gram to the upstream vulnerable function. If a reachable path
was found, we considered it as marking the corresponding
vulnerability as exploitable. Table 2 summarizes the results.

CCScanner generated high false positives and negatives
because it flagged all upstream vulnerabilities as exploitable
while failing to identify dependencies for certain downstream
software, such as MuPDF. Similarly, the reachability analysis
approach exhibited high false positives and negatives, as it
could not verify whether upstream exploit conditions were sat-
isfied and struggled to construct precise call graphs due to the
presence of function pointers. In contrast, CHAINFUZZ gen-
erates concrete PoCs for exploitable upstream vulnerabilities,
achieving significantly lower false positives and negatives.

Experiment IV: Adapting Long Supply Chains. In this
experiment, we evaluated the ability of CHAINFUZZ to

Table 3: Zero-day vulnerabilities found by CHAINFUZZ when
testing the n-day upstream vulnerabilities.

Known CVE Upstream Downstream Zero-day Status

JasPer Out of Memory Reported
ImageMagick Heap overflow Reported

libheif Segmentation Fault ReportedCVE-2019-6988 OpenJPEG

libheif Out of Memory Reported
CVE-2022-43252 libde265 JasPer NULL Pointer Confirmed

ImageMagick Heap Overflow Confirmed
ImageMagick Memory Leak ConfirmedCVE-2023-0802 libtiff
ImageMagick Heap Overflow Assigned

generate PoCs for long supply chains. First, we studied
the average size of supply chains in real-world contexts.
We analyzed 6,584 supply chains across 1,386 libraries in
Ubuntu-20.04, collected using apt-rdepends. The results indi-
cated that most downstream libraries (66.84%) had chain
lengths under four levels, with three-level chains being
the most common (38.59%). Additionally, 87.03% of li-
braries had chain lengths under five levels. Based on the
results, we selected four-level supply chains as representa-
tive examples of long supply chains to evaluate CHAIN-
FUZZ’s effectiveness. We then identified the supply chain:
libde265→libheif→JasPer→FreeImage. Using the vulner-
abilities listed in Table 5, we constructed seven unique
⟨vulnerability,supply-chain⟩ pairs. CHAINFUZZ successfully
generated PoCs for all supply chains in under 30 minutes. No-
tably, the downstream PoCs for libheif, JasPer, and FreeImage
were distinct for each vulnerability, demonstrating the effec-
tiveness of CHAINFUZZ in handling long supply chains.

4.1.3 Find Zero-day Vulnerabilities

While CHAINFUZZ’s primary goal is to generate PoCs for
downstream software that trigger upstream vulnerabilities, it
unexpectedly uncovered eight zero-day vulnerabilities dur-
ing our experiments (Table 3). Unlike vulnerabilities found
by existing fuzzing tools, these zero-day vulnerabilities in-
volve interactions across multiple software components. For
instance, CVE-2022-43252, a vulnerability in libde265, af-
fects libheif, which subsequently affects JasPer. While using
CHAINFUZZ to trigger this vulnerability in JasPer, we found
a NULL pointer dereference in JasPer due to insufficient re-
turn value checks when calling libheif ’s API. We reported this
issue to the JasPer developers and assisted in its resolution.

These zero-day vulnerabilities in Table 3 can be categorized
into two types based on their buggy sites. First, the buggy
sites are located in similar code logic within the upstream
software as published n-day vulnerabilities. This occurs pri-
marily because the downstream software invokes different
upstream functions than those in the original vulnerable exe-
cution trace. Second, the buggy sites are in the downstream
software, often due to improper use of upstream API func-
tions. CHAINFUZZ effectively identifies these two types of
vulnerabilities through its trace differential guided mutation

Table 4: The number of inputs that can reach the waypoints
or vulnerable function (VF) generated by different tools.

Tools CHAINFUZZ AFLGo-Up AFLGo-Down NESTFUZZ AFL++

Waypoints 11416(49.81%) 799(67.77%) 811(72.21%) 2183(11.93%) 2090(22.49%)
VF 9776(42.65%) 8(0.84%) 8(0.71%) 262(1.43%) 219(2.35%)

and waypoint-guided cross-layer fuzzing techniques.

4.2 Component-wise Analysis

In this experiment, we assessed the effectiveness of our de-
sign choices. CHAINFUZZ benefits from waypoint-directed
fuzzing to thoroughly explore intra-layer paths and trace dif-
ferential guided mutation to generate downstream PoCs. To
evaluate the contribution of each component, we developed
two variants. CHAINFUZZ exp disables waypoint identifica-
tion and directly targets the buggy site of the upstream vulner-
ability to evaluate the exploration stage. CHAINFUZZ expl
disables the customized mutators from Section 3.1.3 and
uses only the mutation strategies implemented by AFLGo
to evaluate the exploitation stage. We then compared the
effectiveness of CHAINFUZZ exp and CHAINFUZZ expl in
generating PoCs for the upstream vulnerabilities listed in Ta-
ble 5. Compared with CHAINFUZZ, CHAINFUZZ expl could
only generate PoCs for vulnerabilities CVE-2023-49468 and
CVE-2024-31619. Conversely, CHAINFUZZ exp could gen-
erate PoCs for all the vulnerabilities but required 30% more
time on average compared to CHAINFUZZ.

Initial seeds significantly impact the effectiveness of
fuzzing approaches [19, 33, 37, 38]. In Section 4.1, we eval-
uated CHAINFUZZ using the upstream PoC and one valid
downstream input as initial seeds, successfully generating
downstream PoCs in all cases. To assess the impact of initial
seeds, we conducted an experiment where CHAINFUZZ was
initialized with only the upstream PoC and tasked with gen-
erating PoCs for Downstream#2 for each vulnerability listed
in Table 1. We replaced each fuzzing procedure five times
to ensure consistency. The results show that CHAINFUZZ
successfully generated PoCs for four vulnerabilities, while for
six vulnerabilities, it reached the vulnerable code without trig-
gering the vulnerability. The primary challenge is the format
incompatibility between upstream and downstream software.
For instance, when fuzzing MuPDF to generate PoCs for the
vulnerability CVE-2023-39328 in OpenJPEG, CHAINFUZZ
struggled to generate a valid PDF file embedding the JPEG-
2000 PoC. Using proper downstream inputs as seeds, which
developers can easily collect, addresses this limitation.

4.2.1 Effectivenes of waypoints

In this experiment, we investigated whether the waypoint-
guided cross-layer fuzzing strategy in CHAINFUZZ helps
generate more inputs that can reach waypoints and buggy

Eoglibde265 gdk-pixbuflibheif

HEICCVE-2023-49468

HIGH-risk!

Figure 9: The propagation of CVE-2023-49468.

locations. As an example, we considered CVE-2021-29390,
an upstream vulnerability in libjpeg-turbo exploitable through
libtiff. We analyzed the execution traces of inputs generated by
different tools within a 24-hour period while testing libtiff for
CVE-2021-29390. By examining the execution trace of each
input, we determined whether it could reach the identified
waypoints or the vulnerable function (VF). The waypoints
were identified by CHAINFUZZ. The results, presented in
Table 4, show that CHAINFUZZ generated the highest num-
ber of inputs capable of reaching both the waypoints and the
vulnerable function. This result demonstrates the effective-
ness of its cross-layer directed fuzzing and trace-differential-
guided mutation strategies. In contrast, other tools such as
AFLGo-Down could generate inputs that reached the vul-
nerable function but failed to trigger the vulnerability. This
limitation arises because these tools cannot satisfy the specific
conditions required to exploit the vulnerability.

4.3 Case Studies
Case Study I: Adapting Long Supply Chain. libde265 is
a popular open-source implementation of the H.265 video
codec and is integrated into many applications. Eye Of
GNOME (Eog) is an image viewer that supports various im-
age formats. It relies on libde265 to parse H.265 data, as
shown in Figure 9. Specifically, Eog directly depends on gdk-
pixbuf, which in turn depends on libheif, which ultimately
relies on libde265. CVE-2023-49468 [29] is a high-risk Out-
of-bounds Write vulnerability in libde265. However, the orig-
inal PoC for this vulnerability cannot be correctly handled
by Eog and therefore fails to trigger the vulnerability. Using
this PoC as a reference, CHAINFUZZ successfully generates
a PoC that is usable in Eog to trigger the vulnerability.

Through manual analysis of the vulnerability-triggering
path from Eog to libde265, we identify significant deviations
from the original execution path, resulting in a highly complex
and challenging scenario for existing tools to detect. Further-
more, since Eog is desktop software, it only needs to open the
PoC generated by CHAINFUZZ to trigger the upstream vulner-
ability. This not only simplifies the exploitation process but
also broadens the potential impact scope of the vulnerability.
Case Study II: Discovering a New Upstream Vulnerability.
CVE-2023-49464 is a high-risk vulnerability in libheif, which
is relied upon by OpenImageIO. Using CHAINFUZZ, we suc-
cessfully generate a downstream PoC for OpenImageIO that
triggers a different but similar upstream vulnerability, as il-
lustrated in Figure 10. The original vulnerability occurs at
line 534 in Figure 10(a) and is caused by a heap buffer over-

 for (Box_uncC::Component comp : uncc_box->get_components()){532

520 int get_luma_bits_pre_pixel(HeifFile& file, heif_item_id imageID) {

/* Software: libheif, File: libheif/uncompressed_image.cc */

 uint16_t comp_index = comp.comp_index;533

 auto comp_type = cmpd_box->get_components()[comp_index].comp_type;534

 ...

 }548

 }396

 ...

366 auto comp_type = cmpd_box->get_components()[comp_index].comp_type;

 uint16_t comp_index = comp.comp_index;365

364 for (Box_uncC::Component comp : uncc_box->get_components()){

363 Error uncompressed_image_type_is_support(Box_uncC& uncC, Box_cmpd& cmpd) {

/* Software: libheif, File: libheif/uncompressed_image.cc */

}560

}456

Heap buffer overflow

Heap buffer overflow

(a) Buggy site of CVE-2023-49464

(b) Buggy site triggered by OpenImageIO

 ...

Figure 10: The downstream triggers a different upstream
vulnerability.

flow due to an out-of-bounds array index. Using the original
PoC, CHAINFUZZ generates a new PoC for OpenImageIO
that triggers a different vulnerability in libheif at line 366 in
Figure 10(b). Although these vulnerabilities occur in different
locations, they originate from similar code logic.

This happens because OpenImageIO does not invoke the
original vulnerable function in libheif. Instead, it triggers a
vulnerability in another function that contains similar flawed
code. As a result, relying solely on analyzing the reachability
of upstream vulnerable functions in downstream software may
fail to detect such vulnerabilities, leading to false negatives.
CHAINFUZZ mitigates this issue by generating PoCs capable
of uncovering such hidden vulnerabilities.

Case Study III: Ineffective Updating of Vulnerable Depen-
dencies. CVE-2023-0802 is a vulnerability in libtiff, which
is used by ImageMagick to handle TIFF files. During testing,
we discovered that the PoC for CVE-2023-0802 could trigger
a new vulnerability within ImageMagick. Even after updating
libtiff to the latest version, the vulnerability persisted. We
reported this issue to the ImageMagick developers, who pro-
vided an initial fix. However, this fix was incomplete, as we
identified new vulnerabilities by adjusting runtime parameters.
After further reports, the developers implemented additional
fixes to address the issue. This case underscores the complex-
ity of managing software dependencies and the limitations
of relying solely on updating vulnerable libraries to mitigate
upstream threats. Addressing vulnerabilities that span mul-
tiple software components introduces additional challenges
and requires more comprehensive solutions.

5 Discussion and Limitations

Reliance on Upstream PoCs. CHAINFUZZ leverages the
original upstream PoC to guide input mutation for down-
stream PoC generation. On the one hand, the original PoC
can often be obtained from publicly available vulnerability
reports. On the other hand, many approaches have been pro-

...

1 ImageDecoder CreateByMimeType(String mime_type, SegmentReader data, ...){
2 ImageDecoder decoder;
3 mime_type = mime_type.LowerASCII();
4 if (mime_type == "image/jpeg" || mime_type == "image/pjpeg" ||
5 mime_type == "image/jpg") {
6 ...
7 decoder = JPEGImageDecoder(...); //Decoder for JPEG Image
8 } else if (mime_type == "image/png" || mime_type == "image/x-png" ||
9 mime_type == "image/apng") {
10 ...
11 decoder = PNGImageDecoder(...); //Decoder for PNG Image
12 } else if (mime_type == "image/avif") {
13 ...
14 decoder = AVIFImageDecoder(...); //Decoder for AVIF Image
15 }
16 if (decoder) {
17 decoder->SetData(data, ...); //P
18 }
19 return decoder;
20 }

1 DeferredImgDecoder DeferredImgDecoder::Create(SharedBuffer data, ...) {
2 String type = SnifMimeInternal(data);
3 ImageDecoder meta_decoder = CreateByMimeType(type, data);
4 DeferredImgDecoder decoder(new DeferredImgDecoder(meta_decoder, ...));
5 decoder->SetDataInternal(data, ...); //Pass file data to the decoder
6 return decoder;
7 }

1 bool AVIFImageDecoder::UpdateDemuxer() {
2 ...
3 auto ret = avifDecoderParse(decoder_.get());//Decode AVIF image
4 } //through libavif

(b)

(a)

(c)

Figure 11: The input decoding process of Chromium.

posed to reproduce vulnerabilities and generate PoCs for in-
dividual projects. We claim that these approaches are orthog-
onal to CHAINFUZZ. CHAINFUZZ’s unique contribution lies
in its ability to generate downstream PoCs that exploit up-
stream vulnerabilities, as the original upstream PoC is often
insufficient for this purpose. Users can employ existing ap-
proaches to reproduce the upstream vulnerability and then
employ CHAINFUZZ to generate downstream PoCs. There-
fore, CHAINFUZZ can be integrated with other tools, such as
AFLGo [2]. We consider this as our future work.

Generalization of Input Division. In this paper, we focus
on generating file-based PoCs for upstream vulnerabilities.
Kwon et al. [20] found that 70% of PoCs for Common Vul-
nerabilities and Exposures (CVE) were malicious file types.
Our mutation strategy is based on the idea that inputs to
downstream software can be categorized by whether they are
processed upstream, downstream, or by both. This structure
is a common pattern in software supply chains, where down-
stream software relies on upstream components for specific
tasks, such as file decoding. This improves development effi-
ciency, as downstream developers can focus on understanding
and invoking the APIs of upstream libraries to reuse code.

Figure 11 illustrates this concept with a simplified code
snippet from Chromium’s image decoding module, which
supports three file formats. For an AVIF file, the decoder is
initialized at line 14 in Figure 11(b), image data is passed to
the decoder at line 5 in Figure 11(a), and the data is processed
by libavif via its API at line 3 in Figure 11(c). Malformed
data passed to libavif can trigger vulnerabilities, such as CVE-
2023-6704. Similar processes are observed in other feature-
rich software, like ImageMagick and GNOME.

6 Related Work

Reachability Analysis of Upstream Vulnerabilities. Sev-
eral methods have been proposed to detect vulnerabilities
in reused open-source software (OSS) components. OC-
TOPOCS [20] introduces an approach to validate the ex-
ploitability of propagated vulnerabilities with a reformed PoC,
combining taint analysis and directed symbolic execution. Its
primary focus is on pairs where the propagated software T
directly clones the vulnerable software S. However, in the
context of the software supply chain, downstream software
typically links dynamically to upstream libraries and involves
numerous transitive dependencies. V1SCAN [46] focuses on
discovering propagated 1-day vulnerabilities in reused C/C++
OSS components. SIEGE [17] proposes a search-based auto-
matic exploit generation technique to reach vulnerable code
within dependencies for Java clients. TRANSFER [18] can
also generate test cases for Java projects to demonstrate the
exploitability of library vulnerabilities without domain knowl-
edge. 1dFuzz [48] focuses on reproducing 1-day vulnerabili-
ties by studying security patch characteristics and proposing
a directed differential testing technique. Compared to these
approaches, CHAINFUZZ is uniquely effective in generating
PoCs to validate the exploitability of upstream vulnerabilities,
even in complex and long software supply chains.

Directed Greybox Fuzzing. DGF was first introduced by
Böhme et al. in 2017 [2], and subsequent research has con-
tinuously refined and expanded it from various perspectives.
DSFuzz [23] aims to reach deep program states, while Ti-
tan [16] improves DGF to efficiently reach multiple tar-
gets. PDGF [49] presents a predecessor-aware directed DGF
method to improve its efficiency. In addition, DGF has been
adapted to specific scenarios. For example, SYZDIRECT [43]
proposes a DGF framework for the Linux kernel. However,
most existing approaches focus primarily on reaching targets
within individual projects and are not well suited to assessing
the exploitability of upstream vulnerabilities in software sup-
ply chain scenarios. CHAINFUZZ addresses this limitation by
identifying waypoints as intermediate targets and using seed
prioritization and mutation strategies to effectively validate
upstream vulnerabilities.

7 Conclusion

In this paper, we proposed CHAINFUZZ, a novel approach
to validate the exploitability of upstream vulnerabilities by
generating PoCs for downstream software. We thoroughly
evaluated CHAINFUZZ on a comprehensive dataset, demon-
strating its effectiveness in generating PoCs for vulnerabilities
in both direct and transitive dependencies. Our results show
that CHAINFUZZ outperforms state-of-the-art approaches, ad-
dressing the limitations of existing methods and providing a
robust solution for software supply chain security.

Acknowledgments

We would like to thank anonymous shepherd and reviewers
for their helpful comments and feedback. This work was
supported in part by the National Natural Science Foundation
of China (62102093, U2436207, 62172104, 62172105,
62202106, 62302101, 62102091, 62472096, 62402114,
62402116). Min Yang is the corresponding author and a
faculty of Shanghai Institute of Intelligent Electronics &
Systems, and Engineering Research Center of Cyber Security
Auditing and Monitoring, Ministry of Education, China. Yuan
Zhang was supported in part by the Shanghai Pilot Program
for Basic Research - FuDan University 21TQ1400100
(21TQ012).

Ethics considerations

We have disclosed all identified zero-day vulnerabilities to
the respective manufacturers and assisted in remediation.

Open science

We have made CHAINFUZZ and our datasets publicly avail-
able at https://zenodo.org/records/14732712.

References

[1] CVE-2021-29390. https://nvd.nist.gov/vuln/
detail/CVE-2021-29390.

[2] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen,
and Abhik Roychoudhury. Directed greybox fuzzing.
In Proceedings of the 2017 ACM SIGSAC conference
on computer and communications security, pages 2329–
2344, 2017.

[3] Nicholas Boucher and Ross Anderson. Trojan source:
Invisible vulnerabilities. In 32nd USENIX Security Sym-
posium (USENIX Security 23), pages 6507–6524, 2023.

[4] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen,
Xiaofei Xie, Xiuheng Wu, and Yang Liu. Hawkeye:
Towards a desired directed grey-box fuzzer. In Proceed-
ings of the 2018 ACM SIGSAC conference on computer
and communications security, pages 2095–2108, 2018.

[5] Peng Chen and Hao Chen. Angora: Efficient fuzzing by
principled search. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 711–725. IEEE, 2018.

[6] Peng Chen, Jianzhong Liu, and Hao Chen. Matryoshka:
fuzzing deeply nested branches. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 499–513, 2019.

https://zenodo.org/records/14732712
https://nvd.nist.gov/vuln/detail/CVE-2021-29390
https://nvd.nist.gov/vuln/detail/CVE-2021-29390

[7] Jiarun Dai, Yuan Zhang, Hailong Xu, Haiming Lyu,
Zicheng Wu, Xinyu Xing, and Min Yang. Facilitat-
ing vulnerability assessment through poc migration. In
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, pages 3300–
3317, 2021.

[8] Peng Deng, Zhemin Yang, Lei Zhang, Guangliang Yang,
Wenzheng Hong, Yuan Zhang, and Min Yang. Nestfuzz:
Enhancing fuzzing with comprehensive understanding
of input processing logic. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1272–1286, 2023.

[9] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and
Michael Backes. Keep me updated: An empirical study
of third-party library updatability on android. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 2187–2200,
2017.

[10] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim
Leek, Andrea Mambretti, Wil Robertson, Frederick Ul-
rich, and Ryan Whelan. Lava: Large-scale automated
vulnerability addition. In 2016 IEEE symposium on
security and privacy (SP), pages 110–121. IEEE, 2016.

[11] William Enck and Laurie Williams. Top five challenges
in software supply chain security: Observations from 30
industry and government organizations. IEEE Security
& Privacy, 20(2):96–100, 2022.

[12] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. {AFL++}: Combining incremental steps
of fuzzing research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20), 2020.

[13] Darius Foo, Jason Yeo, Hao Xiao, and Asankhaya
Sharma. The dynamics of software composition analy-
sis. arXiv preprint arXiv:1909.00973, 2019.

[14] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer.
Magma: A ground-truth fuzzing benchmark. Proceed-
ings of the ACM on Measurement and Analysis of Com-
puting Systems, 4(3):1–29, 2020.

[15] Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao,
Rongxin Wu, and Charles Zhang. Beacon: Directed
grey-box fuzzing with provable path pruning. In 2022
IEEE Symposium on Security and Privacy (SP), pages
36–50. IEEE, 2022.

[16] Heqing Huang, Peisen Yao, Hung-Chun Chiu, Yiyuan
Guo, and Charles Zhang. Titan: Efficient multi-target
directed greybox fuzzing. In 2024 IEEE Symposium on
Security and Privacy (SP), pages 59–59. IEEE Computer
Society, 2023.

[17] Emanuele Iannone, Dario Di Nucci, Antonino Sabetta,
and Andrea De Lucia. Toward automated exploit gener-
ation for known vulnerabilities in open-source libraries.
In 2021 IEEE/ACM 29th International Conference on
Program Comprehension (ICPC), pages 396–400. IEEE,
2021.

[18] Hong Jin Kang, Truong Giang Nguyen, Bach Le, Co-
rina S Păsăreanu, and David Lo. Test mimicry to assess
the exploitability of library vulnerabilities. In Proceed-
ings of the 31st ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, pages 276–288,
2022.

[19] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,
and Michael Hicks. Evaluating fuzz testing. In Proceed-
ings of the 2018 ACM SIGSAC conference on computer
and communications security, pages 2123–2138, 2018.

[20] Seongkyeong Kwon, Seunghoon Woo, Gangmo Seong,
and Heejo Lee. Octopocs: automatic verification of prop-
agated vulnerable code using reformed proofs of con-
cept. In 2021 51st Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN),
pages 174–185. IEEE, 2021.

[21] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad,
William Robertson, Christo Wilson, and Engin Kirda.
Thou shalt not depend on me: Analysing the use of
outdated javascript libraries on the web. arXiv preprint
arXiv:1811.00918, 2018.

[22] Gwangmu Lee, Woochul Shim, and Byoungyoung Lee.
Constraint-guided directed greybox fuzzing. In 30th
USENIX Security Symposium (USENIX Security 21),
pages 3559–3576, 2021.

[23] Yinxi Liu and Wei Meng. Dsfuzz: Detecting deep state
bugs with dependent state exploration. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, pages 1242–1256, 2023.

[24] LLVM. DataFlowSanitizer. https://clang.llvm.
org/docs/DataFlowSanitizer.html, 2014.

[25] Shane McIntosh, Bram Adams, Thanh HD Nguyen, Ya-
sutaka Kamei, and Ahmed E Hassan. An empirical
study of build maintenance effort. In Proceedings of the
33rd international conference on software engineering,
pages 141–150, 2011.

[26] Jonathan Metzman, László Szekeres, Laurent Simon,
Read Sprabery, and Abhishek Arya. Fuzzbench: an
open fuzzer benchmarking platform and service. In
Proceedings of the 29th ACM joint meeting on European
software engineering conference and symposium on the
foundations of software engineering, pages 1393–1403,
2021.

https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html

[27] Samim Mirhosseini and Chris Parnin. Can automated
pull requests encourage software developers to upgrade
out-of-date dependencies? In 2017 32nd IEEE/ACM
international conference on automated software engi-
neering (ASE), pages 84–94. IEEE, 2017.

[28] Dongliang Mu, Alejandro Cuevas, Limin Yang, Hang
Hu, Xinyu Xing, Bing Mao, and Gang Wang. Under-
standing the reproducibility of crowd-reported security
vulnerabilities. In 27th USENIX Security Symposium
(USENIX Security 18), pages 919–936, 2018.

[29] NVD. CVE-2023-49468. https://nvd.nist.gov/
vuln/detail/CVE-2023-49468, 2023.

[30] NVD. CVE-2024-3094. https://nvd.nist.gov/
vuln/detail/CVE-2024-3094, 2024.

[31] NVD. Vulnerabilities. https://nvd.nist.gov/vuln,
2024.

[32] OWASP. Dependency-Check. https://owasp.org/
www-project-dependency-check/, 2024.

[33] Shankara Pailoor, Andrew Aday, and Suman Jana.
{MoonShine}: Optimizing {OS} fuzzer seed selection
with trace distillation. In 27th USENIX Security Sympo-
sium (USENIX Security 18), pages 729–743, 2018.

[34] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, An-
tonino Sabetta, and Fabio Massacci. Vulnerable open
source dependencies: Counting those that matter. In
Proceedings of the 12th ACM/IEEE international sym-
posium on empirical software engineering and measure-
ment, pages 1–10, 2018.

[35] Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. A
qualitative study of dependency management and its
security implications. In Proceedings of the 2020 ACM
SIGSAC conference on computer and communications
security, pages 1513–1531, 2020.

[36] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta.
Beyond metadata: Code-centric and usage-based analy-
sis of known vulnerabilities in open-source software. In
2018 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pages 449–460. IEEE,
2018.

[37] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos,
Jonathan Foote, David Warren, Gustavo Grieco, and
David Brumley. Optimizing seed selection for fuzzing.
In 23rd USENIX Security Symposium (USENIX Security
14), pages 861–875, 2014.

[38] Moritz Schloegel, Nils Bars, Nico Schiller, Lukas
Bernhard, Tobias Scharnowski, Addison Crump, Arash
Ale-Ebrahim, Nicolai Bissantz, Marius Muench, and

Thorsten Holz. Sok: Prudent evaluation practices for
fuzzing. In 2024 IEEE Symposium on Security and
Privacy (SP), pages 1974–1993. IEEE, 2024.

[39] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. {AddressSanitizer}:
A fast address sanity checker. In 2012 USENIX annual
technical conference (USENIX ATC 12), pages 309–318,
2012.

[40] Abhishek Shah, Dongdong She, Samanway Sadhu, Kr-
ish Singal, Peter Coffman, and Suman Jana. Mc2: Rigor-
ous and efficient directed greybox fuzzing. In Proceed-
ings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 2595–2609, 2022.

[41] snyk. Snyk. https://snyk.io/, 2024.

[42] Yulei Sui and Jingling Xue. Svf: interprocedural static
value-flow analysis in llvm. In Proceedings of the
25th international conference on compiler construction,
pages 265–266. ACM, 2016.

[43] Xin Tan, Yuan Zhang, Jiadong Lu, Xin Xiong, Zhuang
Liu, and Min Yang. Syzdirect: Directed greybox fuzzing
for linux kernel. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications
Security, pages 1630–1644, 2023.

[44] Wei Tang, Zhengzi Xu, Chengwei Liu, Jiahui Wu,
Shouguo Yang, Yi Li, Ping Luo, and Yang Liu. To-
wards understanding third-party library dependency in
c/c++ ecosystem. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engi-
neering, pages 1–12, 2022.

[45] wikipedia. Cohen’s kappa wikipedia. https://en.
wikipedia.org/wiki/Cohen%27s_kappa.

[46] Seunghoon Woo, Eunjin Choi, Heejo Lee, and Hakjoo
Oh. {V1SCAN}: Discovering 1-day vulnerabilities
in reused {C/C++} open-source software components
using code classification techniques. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 6541–
6556, 2023.

[47] Yulun Wu, Zeliang Yu, Ming Wen, Qiang Li, Deqing
Zou, and Hai Jin. Understanding the threats of up-
stream vulnerabilities to downstream projects in the
maven ecosystem. in 2023 ieee/acm 45th international
conference on software engineering (icse), 2023.

[48] Songtao Yang, Yubo He, Kaixiang Chen, Zheyu Ma,
Xiapu Luo, Yong Xie, Jianjun Chen, and Chao Zhang.
1dfuzz: Reproduce 1-day vulnerabilities with directed
differential fuzzing. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing
and Analysis, pages 867–879, 2023.

https://nvd.nist.gov/vuln/detail/CVE-2023-49468
https://nvd.nist.gov/vuln/detail/CVE-2023-49468
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://nvd.nist.gov/vuln/detail/CVE-2024-3094
https://nvd.nist.gov/vuln
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://snyk.io/
https://en.wikipedia.org/wiki/Cohen%27s_kappa
https://en.wikipedia.org/wiki/Cohen%27s_kappa

[49] Yujian Zhang, Yaokun Liu, Jinyu Xu, and Yanhao Wang.
Predecessor-aware directed greybox fuzzing. In 2024
IEEE Symposium on Security and Privacy (SP), pages
40–40. IEEE Computer Society, 2023.

[50] Peiyuan Zong, Tao Lv, Dawei Wang, Zizhuang Deng,
Ruigang Liang, and Kai Chen. {FuzzGuard}: Filter-
ing out unreachable inputs in directed grey-box fuzzing
through deep learning. In 29th USENIX security sympo-
sium (USENIX security 20), pages 2255–2269, 2020.

Appendices

Table 5: Details of the exploitable vulnerabilities in our dataset. “Exploitability” refers to whether the vulnerability can be
exploited in the downstream software. The vulnerabilities of Case#2 are further evaluated in Table 1.

ID Software Version Vulnerability Vulnerability Type Cmd Exploitability

1 libheif 1.17.5 CVE-2023-49460 Segment Fault ./heif-convert poc test.png
2 libheif 1.17.5 CVE-2023-49462 Segment Fault ./heif-convert poc test.png
3 libheif 1.17.5 CVE-2023-49463 Segment Fault ./heif-convert poc test.png
4 libheif 1.17.5 CVE-2023-49464 Use After Free ./heif-convert poc test.png
5 libheif 1.17.6 CVE-2024-31619 Segment Fault ./heif-info poc
6 libtiff 4.3.0 CVE-2022-0561 NULL Pointer Dereference ./tiffinfo -f lsb2msb -Dcdjrsz poc
7 libtiff 4.3.0 CVE-2022-0562 NULL Pointer Dereference ./tiffinfo -f lsb2msb -Dcdjrsz poc
8 libtiff 4.3.0 CVE-2022-0908 Null Pointer Dereference ./tiff2pdf poc

Case1

9 libde265 1.0.4 CVE-2020-21600 heap buffer overflow ./dec265 poc
10 libde265 1.0.8 CVE-2022-43239 heap buffer overflow ./dec265 poc
11 libde265 1.0.8 CVE-2022-43252 heap buffer overflow ./dec265 poc
12 libde265 1.0.10 CVE-2023-24751 NULL Pointer Dereference ./dec265 poc
13 libde265 1.0.10 CVE-2023-24752 NULL Pointer Dereference ./dec265 poc
14 libde265 1.0.10 CVE-2023-25221 heap buffer overflow ./dec265 poc
15 libde265 1.0.14 CVE-2023-49468 global buffer overflow ./dec265 poc
16 libheif 1.17.6 CVE-2024-31619 Segment Fault ./heif-info poc
17 libjpeg-turbo 2.0.90 CVE-2021-29390 heap buffer overflow ./djpeg poc.jpg
18 OpenJPEG 2.3.0 CVE-2019-6988 excessive memory allocation ./opj_decompress -i poc -o out.png
19 OpenJPEG 2.1.1 CVE-2016-10506 Divide By Zero ./opj_decompress -i poc -o out.pgm
20 OpenJPEG 2.5.0 CVE-2023-39328 Uncontrolled Resource Consumption ./opj_decompress -i poc -o te.raw
21 OpenJPEG 2.1.1 Issue#399 heap buffer overflow ./opj_decompress -i poc -o out.pgm
22 OpenJPEG 2.1.1 Issue#394 heap buffer overflow ./opj_decompress -i poc -o out.pgm
23 OpenJPEG 2.1.1 Issue#389 heap buffer overflow ./opj_decompress -i poc -o out.pgm
24 OpenJPEG 2.1.1 Issue#393 heap double free ./opj_decompress -i poc -o out.pgm
25 OpenJPEG 2.5.0 Issue#1501 SIGILL ./opj_decompress -i poc -o out.pgm
26 OpenJPEG 2.5.0 Issue#1505 NULL Pointer Dereference ./opj_decompress -i poc -r 5 -o out.ppm
271 libtiff 4.3.0 CVE-2022-0561 NULL Pointer Dereference ./tiffinfo -f lsb2msb -Dcdjrsz poc
281 libtiff 4.3.0 CVE-2022-0562 NULL Pointer Dereference ./tiffinfo -f lsb2msb -Dcdjrsz poc
291 libtiff 4.3.0 CVE-2022-0908 Null Pointer Dereference ./tiff2pdf poc

Case2

1 The PoCs for these vulnerabilities can directly trigger the same issue through ImageMagick, libwebp, and OpenJPEG. However, when used with PoDoFo,
mutations are required for successful exploitation.

Table 6: Details of the unexploitable vulnerabilities in our dataset.

Upstream Version Vulnerability Vulnerability Type Cmd Downstream Exploitability

libxml2 2.9.10 CVE-2020-24977 global buffer over-read ./xmllint --htmlout poc Podofo unreachable
libxml2 2.9.11 CVE-2021-3516 use after free ./xmllint --nocompact --html --push poc Podofo unreachable
libxml2 2.9.11 CVE-2021-3517 out-of-bounds write ./xmllint --recover --postvalid poc Podofo unreachable
libxml2 2.9.11 CVE-2021-3518 use after free ./xmllint --recover --dropdtd --nofixup-base-uris poc Podofo unreachable
libxml2 2.9.11 CVE-2021-3537 Null Pointer Dereference ./xmllint --recover --postvalid poc Podofo unreachable

LibRaw 0.21.1 CVE-2023-1729 heap buffer overflow ./dcraw_half poc OpenImageIO exploitable
LibRaw 0.21.3 Issue#400 stack buffer overflow ./libraw_cr2_fuzzer poc OpenImageIO reachable

libpng 1.6.34 CVE-2018-13785 Divide By Zero ./pngimage poc libgd unreachable
libpng 1.6.34 CVE-2018-14048 heap buffer overflow ./blackwhite poc libgd unreachable
libpng 1.6.37 CVE-2019-7317 use after free crafted driver libgd reachable
libpng 1.6 CVE-2021-4214 buffer overflow ./pngimage poc libgd unreachable
libpng 1.6.37 CVE-2019-14373 heap buffer overflow crafted driver libgd unreachable

freetype 53dfdcd8 CVE-2022-27405 heap buffer overflow crafted driver MuPDF reachable
freetype 22a0cccb CVE-2022-27406 heap buffer overflow crafted driver MuPDF reachable
freetype 2.12.1 CVE-2022-31782 heap buffer overflow ./ftbench -c 1 poc MuPDF unreachable

OpenJPEG 2.3.0 CVE-2018-18088 Null Pointer Dereference ./opj_decompress -i poc -o out.ppm MuPDF/libheif unreachable
OpenJPEG 2.3.1 CVE-2020-6851 heap buffer overflow ./opj_decompress -i poc -o out.pgm MuPDF/libheif reachable
OpenJPEG 2.4.0 CVE-2020-27814 heap buffer overflow ./opj_compress -i poc -o out.j2k -M 3 MuPDF/libheif unreachable
OpenJPEG 2.4.0 CVE-2021-3575 heap buffer overflow ./opj_decompress -i poc -o out.png MuPDF/libheif unreachable
OpenJPEG 2.4.0 CVE-2022-1122 heap buffer overflow ./opj_decompress -ImgDir poc -OutFor BMP MuPDF/libheif unreachable

libde265 1.0.10 CVE-2023-24756 Null Pointer Dereference ./dec265 poc libheif reachable
libde265 1.0.10 CVE-2023-24757 Null Pointer Dereference ./dec265 poc libheif reachable
libde265 1.0.10 CVE-2023-24758 Null Pointer Dereference ./dec265 poc libheif reachable
libde265 1.0.10 CVE-2023-25221 heap buffer overflow ./dec265 poc libheif reachable
libde265 1.0.11 CVE-2023-27102 heap buffer overflow ./dec265 poc libheif reachable

libjpeg 2.0.3 CVE-2020-17541 stack buffer overflow ./jpegtran-static -transverse poc libtiff unreachable
libjpeg 2.0.5 CVE-2020-35538 Null Pointer Dereference ./djpeg -fast -skip 1,20 -outfile out poc libtiff reachable
libjpeg 2.0.91 CVE-2021-20205 Divide By Zero ./cjpeg poc libtiff unreachable
libjpeg 84d6306f CVE-2021-37972 out-of-bounds read ./jpegtran -outfile x poc libtiff unreachable
libjpeg 2.1.92 CVE-2023-2804 heap buffer overflow ./djpeg -nosmooth poc libtiff unreachable

libtiff b51bb157 CVE-2022-1622 out-of-bounds read ./tiffcp -i poc /tmp/foo OpenJPEG/ImageMagick reachable
libtiff b51bb157 CVE-2022-1623 out-of-bounds read ./tiffcp -i poc /tmp/foo OpenJPEG/ImageMagick reachable
libtiff 4.5.0 CVE-2023-2731 Null Pointer Dereference ./tiffcp -i poc /dev/null OpenJPEG/ImageMagick reachable
libtiff 4.6.0 CVE-2023-52355 out-of-bounds write crafted driver OpenJPEG/ImageMagick unreachable
libtiff 4.6.0 CVE-2023-52356 heap buffer overflow crafted driver OpenJPEG/ImageMagick unreachable

	Introduction
	Motivation
	Motivating Example
	Our Solution

	Design and Methodology
	Cross-layer Differential Directed Fuzzing
	Waypoint Identification
	Exploration Stage
	Exploitation Stage

	Bottom-up Proof-of-Concept Generation
	Bottom-up PoC Generation

	Evaluation
	Effectiveness of ChainFuzz
	Exploitability of the vulnerabilities in our dataset
	Evaluation of ChainFuzz's effectiveness
	Find Zero-day Vulnerabilities

	Component-wise Analysis
	Effectivenes of waypoints

	Case Studies

	Discussion and Limitations
	Related Work
	Conclusion

