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Abstract

Large language models (LLMs) have demonstrated significant

success in various domain-specific tasks, with their perfor-

mance often improving substantially after fine-tuning. How-

ever, fine-tuning with real-world data introduces privacy risks.

To mitigate these risks, developers increasingly rely on syn-

thetic data generation as an alternative to using real data, as

data generated by traditional models is believed to be different

from real-world data. However, with the advanced capabilities

of LLMs, the distinction between real data and data gener-

ated by these models has become nearly indistinguishable.

This convergence introduces similar privacy risks for gen-

erated data to those associated with real data. In this paper,

we present an empirical analysis of this underexplored is-

sue by investigating a key question: "Does fine-tuning with

LLM-generated data enhance privacy, or does it pose addi-

tional privacy risks?" Our study investigates this question

by examining the structural characteristics of data generated

by LLMs, focusing on two primary fine-tuning approaches:

supervised fine-tuning (SFT) with unstructured (plain-text)

generated data and self-instruct tuning. In the scenario of SFT,

the data is put into a particular instruction tuning format used

by previous studies. We use Personal Information Identifier

(PII) leakage and Membership Inference Attacks (MIAs) on

the Pythia Model Suite and Open Pre-trained Transformer

(OPT) to measure privacy risks. Notably, after fine-tuning

with unstructured generated data, the rate of successful PII

extractions for Pythia increased by over 20%, highlighting

the potential privacy implications of such approaches. Fur-

thermore, the ROC-AUC score of MIAs for Pythia-6.9b, the

second biggest model of the suite, increases over 40% after

self-instruct tuning. Our results indicate the potential privacy

risks associated with fine-tuning LLMs using generated data,

underscoring the need for careful consideration of privacy

safeguards in such approaches.

*These authors contributed equally to this work.

1 Introduction

Recently, large language models (LLMs) such as GPT-4 [1],

LLaMA-3 [2], and Mistral [3] have demonstrated consider-

able success in text generation and have been extensively

deployed for a variety of specific tasks, particularly as cus-

tomized chatbots. The impressive capabilities of these LLMs

are largely attributed to the vast pre-training datasets sourced

from the Internet or data providers [13]. The choice of train-

ing data plays a critical role in the performance of LLMs. As

a result, many LLM providers, such as OpenAI and Meta,

opt to keep their training data selection confidential. How-

ever, the training data often contains privacy-sensitive data

from real individuals [12, 16]. To assess the potential pri-

vacy risks on sensitive information or private training data,

researchers have proposed numerous well-designed attacks

associated with LLMs, such as membership inference attacks

(MIA) [14, 16, 47, 49, 57], Personally Identifiable Information

(PII) attacks [39], and data extraction attacks [16, 41, 49].

However, recent research [17] highlights that fine-tuning

an LLM on datasets overlapping with its pre-training data can

pose privacy risks, especially to closely related pre-training

portions. In [17], researchers fine-tuned LLMs using a small

subset of the pre-training data and observed that this process

also enhances the model’s memorization of other data points

related to the fine-tuning data. The fine-tuning process can am-

plify an LLM’s memorization capabilities, potentially leading

to privacy risks, such as the extraction of sensitive informa-

tion [39]. Consequently, fine-tuning with real datasets raises

significant privacy concerns, especially when these datasets

overlap with the model’s pre-training data. However, no pre-

vious research has explored the implications of fine-tuning

with generated data.

Similar to traditional machine learning, LLMs can also

leverage generated data for fine-tuning. Notable examples in-

clude Alpaca [51] for instruction tuning and HH-RLHF [9] for

preference optimization, among others. Moreover, researchers



have developed various prompting techniques to help LLMs

generate high-quality data for fine-tuning. For example, de-

velopers can use concise, human-written prompts to guide

LLMs in generating content for fine-tuning. Alternatively,

they can provide input-output pairs for specific seed tasks,

which serve as prompts for the model to generate additional

task-specific examples with corresponding pairs, facilitating

further fine-tuning. These generated datasets greatly improve

the performance of LLMs and are widely adopted due to their

flexibility and low costs. This naturally raises the question:

Does fine-tuning on entirely synthetic datasets generated by

LLMs introduce privacy risks? This inquiry has not been ad-

dressed by previous research in terms of concrete privacy risks.

Our findings suggest that despite common belief, generated

data does not mitigate but exacerbates the risks.

1.1 Threat Model

We explore scenarios in which LLM developers initially train

a model using their proprietary datasets and subsequently fine-

tune it to perform various domain-specific tasks before mak-

ing it publicly available. Recognizing the risk of private data

leakage that may arise from fine-tuning specialized LLMs

with portions of the original training set, developers opt to

use generated data for this process. Our paper evaluates the

potential privacy risks of fine-tuning using generated data.

Since most LLM developers offer access to their fine-tuned

models solely through a query-based API, potential attackers

would be limited to querying the models to extract sensitive

information. However, we also consider the more severe case

in which attackers can access the returned logits of the out-

puts. To assess privacy risks, we employ PII extraction and

score-based MIA techniques.

1.2 Our Work

To study the aforementioned risks, we begin by experimenting

with fine-tuning LLMs using various types of generated data.

We then employ MIA and PII attacks to evaluate the privacy

risks. Our study primarily examines the two most common

fine-tuning scenarios for language models: supervised fine-

tuning (SFT) with unstructured data and instruction tuning.

The SFT with unstructured data scenario is designed to

enhance the model’s performance across various domains,

such as improving comprehension or reasoning on emails.

In this case, we prompt LLMs with email-specific prefixes

and use their completions for fine-tuning. This is explained in

more detail in the Section 2.3.

On the other hand, the self-instruct approach feeds existing

tasks and input-output pairs into a capable LLM -such as

GPT 3.5 as used by [55]- to generate similar tasks with new

input-output pairs. Fine-tuning with this generated data not

only enhances domain-specific capabilities but also improves

the model’s ability to better follow user prompts. The details

are listed as follows.

Risks on Fine-Tuning with Unstructured Generated Data.

Following the setting in former work [17], we use the Enron

email dataset to evaluate the potential privacy risks on fine-

tuned Pythia models. We first use Pythia-12b to generate an

email dataset, and then fine-tune the Pythia model with differ-

ent model sizes on these generated datasets. Then, we conduct

PII attacks following Wang et al.’s [54] setting on both the

pre-trained model and fine-tuned models. The results demon-

strate that supervised fine-tuning amplifies privacy risks even

in unstructured generated data (Section 3.3). After that, we

ran experiments to analyze the privacy risks and found that

the template and quality of generated data are the main factors

that may influence PII’s success rate (Section 3.3.3).

In addition to these experiments, we conduct further eval-

uations using Facebook’s OPT model, which has no overlap

with Enron or any email data in its training set. For this evalu-

ation, we modify the Enron dataset to minimize overlap with

the sensitive data in Pythia’s training data. These experiments

not only extend the scope of our analysis but also serve to

verify the results observed in our previous experiments, con-

firming the trends and insights derived from the Pythia-based

evaluations in more challenging scenarios.

Risks on Fine-Tuning with Self-Instruct. In Section 4

we conduct experiments following the "self-instruct" tun-

ing pipeline, as illustrated in previous research [55]. Our

aim is to examine the potential privacy risks associated with

Pythia’s pre-trained datasets, The Pile [25]. We choose the

FreeLaw [25] subset of The Pile for the privacy-sensitive

nature of the law domain. In line with the self-instruct pro-

cedure, we initially designed 64 task descriptions focusing

on legal expertise and 75 related input-output pairs (denoted

as seed tasks) based on the FreeLaw dataset. After that, we

prompt LLama-3 with these seed tasks to procure the gener-

ated data for fine-tuning, including task descriptions, related

information, and answers.

Fine-tuning Pythia models with the generated data, we

can obtain LLMs that exhibit enhanced performance on le-

gal question-answering tasks. Then we conduct the score-

based MIA method following Duan et al. [22]’s setting, on

the self-instruct tuned Pythia models and their pre-trained

version. The results reveal that the AUC ROC score of MIA

on FreeLaw datasets enjoys nearly 20% improvement com-

pared to the pre-trained model. These findings highlight that

leveraging self-instructed data generated by LLMs can in-

tensify the model’s susceptibility to privacy vulnerabilities.

Further investigation reveals that the primary factor influenc-

ing the models’ privacy is the quality of the generated data.

We summarize our contributions as follows:

• We evaluate the privacy risks of supervised fine-tuning

in LLMs using generated data without an instructional

structure, specifically through a PII attack. The results

demonstrate that fine-tuning with generated email data



increases the success rate of PII attacks by over 50%

compared to the pre-trained model. This suggests that

training on generated raw data within the same domain

can significantly amplify the privacy leakage associated

with the LLM’s pre-training datasets.

• We evaluate the privacy risks associated with fine-tuned

LLMs using instruction-based data. Our analysis shows

that self-instruct tuning on law-related tasks increases

the model’s vulnerability within the law-related sub-

set from its pre-training data. Specifically, the AUC-

ROC score for a reference-based MIA attack on the fine-

tuned Pythia-6.9b model increased by 20% compared

to the pre-trained model. These results suggest that self-

instruct tuning can exacerbate privacy risks, especially

in domains closely related to self-instruct tasks.

• We further investigate the causes of such a phenomenon

and find that the heightened privacy risk stems from the

high quality of the generated data and its similarity to

the pre-training datasets. Additionally, we explore the

key factors contributing to these potential privacy risks

and propose several practical methods to mitigate them.

2 Preliminaries

In this section, we summarize LLM’s prompting, pre-training,

and various fine-tuning methods.

2.1 LLM Prompting

Prompting methods are strategies used to obtain specific re-

sponses from LLMs by designing the input text in particular

ways. These methods can be used to increase the comprehen-

sion of LLMs on the task, often with purposes such as en-

hancing response quality or format. Some prompting methods

depend on LLMs ability to recognize patterns and generate

the response based on them. One such effective technique is

few-shot prompting [13], where the prompt includes a handful

of example input-output pairs that demonstrate the desired

task. By presenting these examples, the LLM can infer the un-

derlying task structure and produce appropriate responses to

new inputs. For instance, to translate a particular text from En-

glish to German, the prompt might include "Hello" → "Hallo"

and "Good morning" → "Guten Morgen," enabling the LLM

to translate "Thank you" → "Danke."

2.2 LLM’s Pre-training

Pretraining large language models (LLMs) has significantly

advanced with the development of transformer-based architec-

tures, compared with former approaches like Word2Vec and

GloVe. Notably, GPT-based models [44] pioneered the autore-

gressive pretraining paradigm, where the model learns to pre-

dict the next token in a sequence. GPT-2 [45] further demon-

strated the capabilities of large-scale unsupervised learning,

setting new benchmarks in various NLP tasks. Building on

these successes, GPT-3 [13] introduced even larger models,

with 175 billion parameters, and showcased remarkable per-

formance across a wide range of tasks without requiring task-

specific fine-tuning. More recently, open-sourced models such

as LLaMA [53] have emerged, aiming to provide highly ef-

ficient alternatives by optimizing training and scaling strate-

gies. LLaMA models, like GPT, are designed to excel in lan-

guage understanding and generation while being more acces-

sible for research and applications. Additionally, models like

Pythia [11] and Mistral [3] have contributed to making large-

scale autoregressive models available to a broader community,

encouraging further exploration and refinement of pretraining

techniques. Despite these advancements, challenges related

to model bias, computational cost, and interpretability remain

central to ongoing research in the field of LLM pretraining.

2.3 Fine-tuning Methods

Fine-Tuning with Unstructured Raw Texts. To enhance the

capabilities of LLMs across various domain-specific tasks,

users can fine-tune them further using specialized datasets,

such as those from biomedicine, law, and finance domains.

The fine-tuning process resembles the pre-training of LLMs

but typically involves a smaller dataset. Because pre-trained

LLMs already have a solid understanding of language in-

trinsics, fine-tuning them on domain-specific datasets can

yield competitive performances. Additionally, several closed-

source LLM providers, such as OpenAI, offer APIs for fine-

tuning using unstructured raw text, enabling users to further

optimize model performance for their specific needs.

Instruction Tuning and Self-Instruct. Instruction tuning is

a popular technique employed to enhance the ability of large

language models (LLMs) to follow user prompts, thereby

producing more accurate responses. In contrast to traditional

fine-tuning, which utilizes raw textual data, instruction tuning

necessitates the use of manually crafted instructions, user-

generated prompts (inputs), and expected answers (outputs).

Consequently, the collection of such data is heavily dependent

on manual labeling, which is often resource-intensive. To

address the challenges associated with gathering instruction

data, researchers have proposed the "self-instruct" method.

This approach involves using advanced LLMs to generate

instruction-tuning samples, which can then be utilized for

fine-tuning purposes.

To generate instruct data with good quality, Self-Instruct

first takes an initial dataset of instructions and their corre-

sponding input-output examples, termed ’seed tasks’. For ex-

ample, an instruction might be, "What is the name of the

victim in the following legal document?" The corresponding

input-output examples would consist of legal documents as

inputs and the identified victims mentioned in them as outputs.



The quality and diversity of seed tasks are vital for the efficacy

of the procedure. Once the seed tasks are ready, the rest of the

procedure depends on the Generator, and the Target model

(see below), which are not necessarily distinct.

• Bootstrapping Tasks. Depending on the seed tasks, new

tasks are generated by the generator. The accurate and

creative generation of these tasks is achieved by few-shot

prompting with seed tasks.

• Bootstrapping Examples. For each generated task, the

generator creates new input-output examples using

a similar few-shot prompting approach, incorporating

instruction-input-output triples. Generated examples not

in the desired form are excluded from the next step.

• Training the Target Model. The generated tasks and their

examples are combined and formatted inside an instruc-

tion template to train the target.

Parameter-efficient fine-tuning (PEFT) methods. We de-

scribe below the PEFT methods used in this study:

LoRA and Quantization Hu et al. propose the Low Rank

Adaptation (LoRA) [28] for efficient fine-tuning of models

without utility loss. LoRA reduces occupied memory during

fine-tuning by "freezing" a large portion of model parameters

and updating the trainable parameters with low-rank approx-

imation (i.e., adapter) of the update matrix. The low-rank

approximation involves decomposing a high-dimensional ma-

trix into the product of two lower-dimensional matrices, re-

ducing computational complexity. The update matrix refers

to the changes applied to the original model parameters in

each step. The adapter is optimized with respect to the loss

function and multiplied by the scale factor to control the mag-

nitude of the updates. This approach enables the integration of

the base model with various adapters, which are significantly

smaller in size compared to fully fine-tuned models. Besides

the LoRA method, various methods are proposed to reduce

LoRA’s parameter [33], increase safety [35] and etc [30].

To further reduce the computational cost of fine-tuning

large models, Dettmers et al. introduced Quantized Low Rank

Adaptation (QLoRA) method [20]. QLoRA uses block-wise

quantization which divides the model parameters into smaller

blocks and quantizes each block separately. This technique

minimizes precision loss and reduces computational overhead,

enabling the training of the quantized LoRA adapter and we

use QLoRA for Pythia experiments.

DoRA, an improvement over LoRA, was introduced in [38].

Unlike LoRA, which primarily focuses on low-rank adapta-

tion, DoRA incorporates an additional trainable parameter:

magnitude. This parameter enhances the model’s flexibility,

enabling faster convergence while achieving higher precision

during fine-tuning. We use DoRA to fine-tune the Facebook

OPT 1.4b parameter model and the Pythia 2.8b parameter

model on datasets that do not overlap with their training data.

2.4 Models

We choose Pythia and Open Pre-trained Transformer (OPT)

language models as the target models to evaluate the poten-

tial privacy risks. We also use the powerful Llama-3 as the

self-instruct method’s generator to generate high-quality fine-

tuning data. Details for these models are listed as follows.

Pythia Suite is developed by EleutherAI [11] and provides

open-source LLMs of varying sizes. The models at each size

are trained on both the standard and deduplicated version of

The Pile [25]. We use Pythia models with parameter sizes of

410m, 1.4b, 2.8b, and 6.9b as target models, while the 12b

model serves as the generator in Section 3.

Llama-3-8b-Instruct is the smallest model in Meta’s open-

source Llama-3 collection [5]. This model is chosen for its

strong instruction-following capabilities and relatively com-

pact size. It is used for creative generation tasks in Section 4.

OPT Language Models were introduced by Meta AI to pro-

vide researchers with access to high-performance language

models [60]. These models are designed to approximately

match the size and performance of the GPT-3 family of mod-

els. Pre-trained versions of OPT are available in various sizes,

ranging from 125m to 66b parameters. In this work, we em-

ploy the 1.3 billion and 2.7 billion parameter versions of the

OPT model. This choice was made because a subset of the

Pile dataset [25], including CommonCrawl, DM Mathemat-

ics, Project Gutenberg, HackerNews, OpenSubtitles, Open-

WebText2, USPTO, and Wikipedia, was used in the training of

these models. Notably, the Enron subset is excluded from this

dataset. Consequently, the training data for the OPT models

does not overlap with the data used in our method, ensuring

data independence and mitigating potential biases.

2.5 Datasets

We evaluate the privacy risks on Pythia’s training dataset,

the Pile. Especially, we use its Enron subset for plain-text

fine-tuning and FreeLaw subset for instruction-tuning.

Pile: The Pile [25] involves 800GB data from various sources

including Internet forums, video subtitles, and academic texts.

The Pile has been used for various model’s pre-training such

as GPT-Neo and Pythia. It consists of 22 smaller datasets

including Enron and Freelaw corpora.

Enron: Enron corpus [32] is a Pile subset containing different

email conversations. We use a preprocessed version of the

dataset shared by [54] which consists of 3330 samples. For

each sample, the original sample in Enron is split into the

following columns:

1. Prompt. First part of each selected conversation. Used

to prompt the LLM to generate the continuation.

2. Continuation. The second part of each selected con-

versation completes the logical flow introduced by the

prompt. LLM’s generation is compared with this column

in terms of language, semantic similarity, and coherence.



3. Name. The name of the target person that is mentioned

in the conversation.

4. Email. The email of the target person. This is not

given in the conversation but has been asked the model

to generate based on the owner’s name or the con-

text introduced in the correspondence. For instance,

the model may be requested to generate the email

address of a person named John Doe and is told to

be working at Lipsum Energy Inc., which may be

john.doe@lipsumenergy.com.

Psedonymized Enron: We create an extended version of

the Enron dataset, referred to as the Pseudonymized Enron

dataset, for experimental purposes where the pretraining data

does not overlap with the generated fine-tuning data. In this

dataset, the original names and email addresses from Enron

were replaced with synthetic data generated using the Faker

library [24]. Note that due to the randomness and the limited

selection of names and emails in this library, some pseudony-

mous names and email addresses might appear multiple times.

Names are identified and replaced using regular expressions to

match capitalized words, while email addresses are detected

by identifying patterns containing a domain following the

"@" symbol.

FreeLaw: FreeLaw is an open-source dataset related to the

legal domain. It is a subset of The Pile that is obtained from

the CourtListener [4] project. CourtListener includes a large

number of legal opinions from federal and state courts. It con-

sists of numerous modalities of legal proceedings, including

dockets, bibliographic information on judges, etc. Follow-

ing Pile’s setting, we only focus on court opinions due to an

abundance of full-text entries.

3 Privacy Risks on Fine-Tuning with Unstruc-

tured Generated Data

In this section, we explore the potential risks of supervised

fine-tuning with unstructured generated data. Similar to the

scenario presented by Chen et al. [17], we assume that model

owners seek to improve their model’s performance in the

email domain through fine-tuning. However, we introduce an

additional strict assumption: the model owners lack access to

real fine-tuning data. Thus, they can only rely on other LLMs

to generate email-related data for this fine-tuning process.

After the fine-tuning, we perform the PII extraction attack on

the Enron dataset to evaluate the potential privacy risks of the

fine-tuned models.

3.1 Experimental Setting

Since Pythia’s training data is open-source and allows for easy

evaluation of privacy leakage, we chose Pythia as the base

model for our experiments. To evaluate the potential risks,

we first use Pythia-12b [11] as a generator to generate an

email-related dataset. Then we fine-tune Pythia-410m, 1.4b,

and 2.8b models on these data and evaluate the privacy risks

with PII attacks following the pipeline as drawn in Figure 1.

The details for the data generation, model fine-tuning, and

evaluation are listed below.

3.1.1 Dataset Generation

We adopt the first 2220 rows of the processed version of the

Enron email dataset provided by [54] for data generation, de-

noted as the "seed" split. The seed split’s prompt column (see

Section 2.5) is used to generate alternatives for the continua-

tion. For the generation, we use zero-shot prompting without

any instruction template, that is the model predicts the next

tokens based on the raw text to extend it. This is because the

Pythia-12b model is not fine-tuned on an instruction template.

We use a maximum token count of 1000 which allows

the model to build a complete email context. Previous stud-

ies have shown that providing more context information can

increase privacy leakage. [16, 29].

The used top-k value is 100, meaning only the most proba-

bly 100 next tokens is considered for generation. The temper-

ature is chosen as 0.75 to introduce significant randomness

and diversify the generations. This approach is particularly

relevant as it has been observed that such generations may

include random PIIs, such as emails and company names. Pre-

vious research has noted that memorized data can be leaked

through specific prompts or prefixes [16, 29]. However, PIIs

may not always appear as the highest-likelihood output, mean-

ing they might not be revealed in a greedy decoding setting.

Using more diverse generations, we enable a more thorough

assessment of privacy risks.

3.1.2 Model Fine-Tuning

After obtaining the generated data related to Enron emails,

we do 4-bit QLoRA [20] fine-tuning for Pythia-410M, 1.4b,

and 2.8b with Adam optimizer [31] for 4 epochs with 64 rank,

1/4 scale factor, 0.05 LoRA dropout rate, and batch size of

8. We explored learning rates ranging from 2e−4 to 5e−8

to obtain the fine-tuned models with the most privacy risks.

By merging the adapters with the appropriate base model and

converting the parameters to 16-bit precision, we obtain fine-

tuned Pythia models optimized for enhanced performance in

the email domain during inference.

3.2 Model Evaluation

Finally, we evaluate the utility and privacy of the fine-tuned

models with the following settings.

Validation Data. To test the utility and privacy risks related

to the fine-tuned models, we choose the first 1000 rows of the

Enron email dataset [54] to form the validation data.

Utility. For utility evaluation, we measure mean perplexity, a

widely recognized metric based on negative log-likelihood, on



Prompt

Hi John, it has been 

a while, I heard you 

have come from 

your great…

Prompt  Continuation

Hi John, it has been a while, 

I heard you have come from 

your great vacation in Paris! 

Have you got the chance to 

watch the olympics?

Fine-Tune 

Target LLM

Generator 

LLM

PII Extraction 

via templates

Generated 

Email

Figure 1: An overview of the privacy evaluation procedure for plain fine-tuning with generated data. The generator LLM creates

a complete fine-tuning corpus, introducing PII leakage risks. For instance, if an email is addressed to ’John,’ the generator might

infer additional context, such as a vacation in Paris. When the complete context, including the initial email information, is used

for fine-tuning, it heightens the risk of PII leakage.

the validation data to compare the fine-tuned models against

their base counterparts. Conducting utility evaluation is cru-

cial to simulate realistic use cases.

Privacy. For the privacy evaluation, we first process the valida-

tion data into four templates, labeled A, B, C, and D, following

Wang et al. [54]’s setting as follows:

A: the email address of {name} is {email}

B: name: {name}, email: {email}

C: {name} [mailto: {email}

D: ---Original Message--- From: {name}

[mailto: {email}

{name} and {email} are placeholders here. Following the

5-shot attack setting, we concatenate five samples of filled

’name’ and ’email address’ pairs within a selected template,

preceding one sample that contains only the ’name’ chosen

from the evaluation set. These concatenated sentences serve

as input for the privacy validation dataset used to evaluate

PII attacks, with the ground truth email associated with the

final name designated as the target. After feeding the inputs

of former defined privacy validation data, we then evaluate

the privacy leakage by implementing the fuzzy string match-

ing [46] method on generated emails and the ground truth. It is

a commonly used metric to check if a string has a clear match

with a given string based on the Levenshtein distance. Addi-

tionally, we explore for the best learning rate that achieves

the highest attack success. If the similarity score is greater

or equal to 80, we will judge the sensitive email information

is leaked by the evaluated model following Neel et al.’s [27]

setting. The overall procedure is summarized in Figure 1.

3.3 Results

In this section, we provide the results on our experiments to

showcase the privacy risks of fine-tuning with unstructured

data. We first present the worst cases and then provide results

for different attack templates. Finally, we discuss the reasons

and learning rate impact on the privacy risks.

3.3.1 Worst Cases on Privacy Leakage

Following the fine-tuning strategy and evaluation methods

explained in Section 3.1, we get the number of successful PII

extractions of various models. Firstly, we list the highest num-

ber of successful extractions of different models across the

four templates in Table 1 with their perplexities on the valida-

tion split of Enron email. For the Facebook OPT experiments,

we omit these results from the table as the model size remains

constant. The perplexities of these experiments are as follows:

baseline model achieves 9.15, fine-tuned with DoRA achieves

8.25, and fine-tuned with LoRA achieves 8.18. We note that

the impact of perplexity reduction depends on factors such

as the baseline, dataset complexity, and specific application.

To provide context, we compare our perplexity values against

the base model. Our observations show that model utility,

as indicated by perplexity, improves after fine-tuning. While

comparable results are not available for the same dataset,

literature suggests that a 3-10% reduction in perplexity is

typically considered a meaningful improvement [8, 43]. How-

ever, we observe over a 20% improvement in successful PII

extractions after fine-tuning the models with the generated

data, particularly for the Pythia model with 410M parameters.

Such improvements demonstrate that fine-tuning with gener-

ated data can lead to more serious privacy leakage on data

related to the same domain although it can also effectively

improve LLM’s knowledge on the related domain.

Furthermore, we observe that the number of successful PII

extractions increases with model size in both the base and

fine-tuned models, consistent with findings from previous re-

search [41]. This trend can be attributed to the enhanced

representational capacity of larger models, which enables

them to memorize training data more effectively, as high-

lighted in [52]. Consequently, larger models not only exhibit

improved performance but also present greater risks of suc-

cessful PII extractions after fine-tuning with generated data.

This highlights significant privacy concerns, especially as the

development of larger LLMs continues to gain traction.



Pythia-410m Pythia-1.4b Pythia-2.8b

Successful Extractions Perplexity Successful Extractions Perplexity Successful Extractions Perplexity

Base model 36 10.40 41 8.30 48 7.48

Fine-tuned Model 52 10.24 53 8.13 58 7.46

Table 1: The number of successful extractions for different Pythia models and their perplexity across the four templates.

3.3.2 Results for Different Attack Templates

Pythia Model Results. In addition to reporting the highest

number of successful PII extractions across various templates,

we also analyze the PII extraction behavior of different models

for each specific template, as illustrated in Figure 2.

Figure 2: The number of successful extractions with various

templates for the fine-tuned model (denoted as Generated

data) and the base model on Pythia models.

Prefix: John Doe [mailto: 

Base Model Output: john.doe@email.com

Fine-tuned Model Output: jdoe@wellenergy.com

Ground Truth: jdoe13@wellenergy.com

Figure 3: An example case for the PII attacks.

We observe that the Pythia models consistently become

more susceptible to extracting sensitive emails after fine-

tuning with generated data, regardless of the evaluation tem-

plate used. Especially for templates A, B, and C, we observe

substantial elevation in extraction success for all models. For

template D, we observe that the differences in successful

PII extractions between the fine-tuned models and the base

models are less pronounced. A possible explanation is that

template D includes more email-specific information, such

as irregular characters in "Original Messages," which aids

the models in memorizing email patterns. This familiarity

enables even the base models to perform accurate extractions.

As noted by previous research [16, 29], special prompt pre-

fixes with appropriate context increase data extraction success

in base models. Templates that include more human language

tend to be more successful on par with model size, i.e., the

capability of natural language understanding.

We also notice that fine-tuned models achieve the highest

number of successful PII extractions with template C and the

lowest with template B. This discrepancy likely stems from

the composition of the generated data used for fine-tuning.

Specifically, the generated data structures are more closely

aligned with template C, whereas template B barely exists.

As a result, when LLMs are prompted with template B, the

absence of similar structures in the training data leads to less

effective PII extractions.

Figure 4: The number of successful extractions with various

templates for the fine-tuned model (denoted as Generated

data) and the base model for Pythia using LoRA and DoRA

as PEFT methods. All names and email addresses in the Enron

dataset have been replaced with pseudonyms.

Figure 5: The number of successful extractions with various

templates for the fine-tuned model (denoted as Generated

data) and the base model for Facebook OPT 2.7b using LoRA

and DoRA as PEFT methods.

We draw an example to show the fine-tuned Pythia model

can release more private information in Figure 3. As shown

in the figure, prior to fine-tuning, the base model could only

infer the email address by rephrasing the given name and

appending a randomly generated domain. However, the term

"jdoe" and "energy" exist in the fine-tuned models’ response.

These specific terms demonstrate that the fine-tuned model



Generated Data  

From:  "Sarah Dennison-Leonard" <sdleonard@earthlink.net>

...  

To: "Kristi Wallis" <kristiwallis@sprintmail.com>, "Bud 

Krogh" <ekrogh@serv.net>, "Barney Speckman" 

<bspeckman@akllp.com>, "Anne Van Wormer" 

<avw@ci.rocky-mount.nc.us>, "Judy Burkee" 

<burkee@cts.com>, "Cynthia Sandherr" 

<cynthia@spallation.com>, "Cary 

Schenk" <schenk@hmot.com>, "Colleen Holmgren" 

<colleen@je.com>, "Mary Hain" <mary.hain@enron.com>, 

"Pat Hagan" <phagan@enron.com> cc: 

Subject: FW: Press Release

...

Sara Dennison-Leonard

Natural Gas Regulatory Strategist

(202) 466-9157

sdleonard@earthlink.net

Test Split Data
From:  "Kevin Collins" <kevin.collins@example.com>

To:  "John Sarmann" <jsarmann@example.com>

Subject:  Re: Potential partnership

Dear John,

...

Best regards,

Kevin Collins

Figure 6: An example of the generated data for fine-tuning.

invokes more memorization of the pertaining data and causes

potential privacy risks.

We also evaluate the Pythia 1.4b model using the

Pseudonymized Enron dataset, which exhibits minimal over-

lap with the sensitive data targeted for inference in Pythia’s

pretraining dataset. Consequently, this represents a challeng-

ing experimental setup in the Pythia experiments. As shown

in Figure 4, the model’s performance across most templates

either matched or exceeded its previous results. Among the

templates, Template A demonstrates the best performance.

This behavior can potentially be attributed to the characteris-

tics of the dataset and the model’s training corpus. A signif-

icant portion of Pythia’s training data consists of non-email

content, which may align well with Template A’s similarity to

non-email patterns and the repeated occurrences of sensitive

data within Pseudonymized Enron. Overall, the LoRA PEFT

method demonstrates slightly better attack success compared

to the DoRA PEFT method. This difference may be due to

LoRA’s superior performance in tasks requiring higher mem-

orization capabilities, where DoRA slightly lags behind [30].

However, despite these distinctions, the overall performance

gap between the two methods remains minimal.

We note here that templates B and C were particu-

larly challenging for these experiments because the pat-

terns used in these templates are almost exclusive to

email data. For instance, Template C includes patterns

such as [mailto: {email}], which closely resemble the

structure of email headers, as seen in examples like

[mailto: example@domain.com]. Similarly, Template B

involves email-specific constructs such as name: {name},

email: {email}, mirroring common formats in structured

email-related data, as illustrated by name: John Doe, email:

doejohn@haymail.com. These examples underscore the diffi-

culty of these templates in the Pseudonymized Enron setting,

where the model has not encountered this type of data, in

contrast to the original Enron setting discussed earlier.

We conclude that templates have a substantial impact on

PII extraction success depending on the tasks present in the

pretraining and fine-tuning data. Across all cases, Template

B consistently demonstrates the lowest PII extraction success.

Template C, with its precise and structured format, performs

best when there is overlap between the pretraining and fine-

tuning tasks, as it aligns closely with memorized patterns in

the training data. However, in the absence of overlap, Tem-

plate C underperforms due to its rigidity, whereas Template

A’s conversational and flexible nature enables better general-

ization, leading to improved performance.

Facebook OPT Model Results. To assess our approach with

a model whose training data has no overlap with Enron, we

employ Facebook’s OPT model. Notably, this model’s train-

ing dataset excludes not only the Enron dataset but also any

email data altogether. The evaluation of the 2.7b parameter

version of OPT, as depicted in Figure 5, demonstrates the

effectiveness of our proposed method. Similar to the results

obtained when training Pythia with Pseudonymized Enron,

the model’s performance across various templates remained

consistent or improved. Notably, Template A demonstrates

a significant performance boost, consistent with the results

in Pseudonymized Enron setting, likely due to its low resem-

blance to email-like data. Additionally, templates B and C

were the most challenging due to the same reasons outlined

in the preceding paragraph. The observations regarding PEFT

methods, as discussed earlier, are also applicable here, high-

lighting their potential influence on the performance patterns

observed across different templates.

3.3.3 Understanding Privacy Risks in Fine-Tuning

Reasons for the Privacy Risks. To find the possible reason

for the increased privacy risks, we first show a sample from

the generated dataset in Figure 6. The figure illustrates that

the structure of the generated data closely resembles that of

the test data. Specifically, we found that the total generated

data consists of over 60,000 name-email pairs for around

2000 generated samples. Such structure similarities may re-

voke LLMs’ memorization of name and email pairs and lead

to privacy risks, as LLMs feed too many name-email pairs

during the fine-tuning. Former research verified the obser-

vation that repeated sequences can increase memorization

in LLMs [23]. In our case, the structural similarity implies

repeated sequences of e-mail conversations, such as header



Figure 7: The model’s perplexities and the number of successful extractions with respect to various learning rates for fine-tuning

the Pythia model. The horizontal line here denotes the perplexity of the base model. The x-axis here denotes the learning rate.

lines of former emails including metadata. The structural sim-

ilarity may strengthen the effect of memorization, as seen in

the context of data augmentation [36].

Apart from the structure similarity, we also notice semantic

similarity. The semantic similarity score evaluated by the Sen-

tence Transformer [6] between the generated and the original

data is over 0.7 . Figure 6 also reveals that many specific

name-email relationships are closely mirrored between the

generated data and the test data. For example, the email’s

local name can be formed by inserting a "_" or "." between

the first name and the second name, or just concatenating the

first character in the first name with the last name to form an

email address like dhansen for Don Hansen. Such similar re-

lationships present in both the generated data and the original

pre-training data can trigger the LLM’s memory, reinforcing

its recall of the connections between names and emails.

Learning Rates Impacts on the Privacy Risks. As illus-

trated in Tirumala et al.’s work [52], the learning rate is a

key factor in LLM’s memorization and the model’s final per-

formance. Therefore, we further explore the learning rate’s

impacts on both the model’s utility and the extraction success

rate in Figure 7. In Figure 7, we observe that the utility and

extraction success rates show a similar trend with the learn-

ing rate changes. With the increment of the learning rate for

fine-tuning, the perplexities after fine-tuning first decrease

significantly but will also increase when the learning rate be-

comes too large. The best learning rate for better utility is

around 10−6 to 5×10−5 for different models. Regarding PII

extractions, there are no clear trends across different models

concerning varying learning rates. However, one consistent

pattern emerges: models fine-tuned with lower learning rates

tend to have lower numbers of successful PII extractions. A

possible explanation is that slightly larger learning rates en-

able LLMs to memorize patterns more effectively, leading

to higher privacy risks, consistent with the findings in [52].

Therefore, we recommend using the smaller learning for fine-

tuning, e.g., around 10−6, to alleviate the privacy risks while

improving the utilities on the target domain.

3.4 Discussion

In this section, we examine the privacy risks posed to LLMs

after fine-tuning them with generated instructional data. Using

the Enron email dataset as a case study, we fine-tune Pythia

models of varying sizes (410m, 1.4b, 2.8b) with email data

generated by a Pythia 12B model. We then assess the privacy

risks by performing PII attacks on the Enron dataset, which

is related to the pre-training data. The results reveal that,

after fine-tuning, the Pythia models are able to extract over

20% more PII data compared to the base model. This finding

indicates that fine-tuning with generated data can heighten

the model’s privacy risks concerning the pre-training dataset.

To further verify these findings and broaden our evaluation,

we utilized Facebook’s OPT model alongside a modified ver-

sion of the Enron dataset, Psedonymized Enron. The OPT

model was chosen because its training data has no overlap

with the original Enron dataset or any email data, allowing

us to assess privacy risks in a setting lack of direct training

correlations. Psedonymized Enron dataset was designed to

minimize the overlap with Pythia’s training data, ensuring that

any identified risks arose from the model’s learning behavior

and not from pre-existing overlaps in the training data. The

results show approximately a 40% improvement in PIIs for

certain templates. This behavior confirms the findings from

experiments where the training and fine-tuning datasets have

overlapping content.

4 Privacy Risks on Self-Instruct Tuning

To reduce the cost of instruction-tuning, Wang et al. [55]

proposed the ’self-instruct’ method, which has since been

widely adopted in training various LLMs, such as Alpaca [51].

In this section, we apply self-instruct tuning to legal LLMs, a

popular instruction-tuning task where the training data often

contains sensitive information. After completing the tuning

process, we investigate the potential privacy risks associated

with the resulting legal chatbot using the MIA attack. Finally,

we explore the relationship between privacy and utility in

self-instruct models following the pipeline drawn in Figure 8.



Figure 8: An overview of the privacy evaluation procedure for the self-instruct tuning.

4.1 Experiment Settings

In this section, we use Pythia models as fine-tuning targets and

for evaluation, aligning with the first experimental method-

ology in Section 3. However, we replaced the Pythia-12b

model with Llama-3-8B-Instruct as the generator, due to the

latter’s superior ability to follow the given context and pro-

duce more coherent and relevant data. Following the pipeline

illustrated in Figure 8, we provide detailed information on

the data generation process (including random sampling, in-

struction creation, and input-output generation), as well as the

procedures for model fine-tuning and evaluation.

4.1.1 Data Generation

Compared to the data used for supervised fine-tuning in Sec-

tion 3, the data structure for instruction-tuning is more com-

plex, as it typically includes task descriptions, task-related

inputs, and the corresponding outputs. To generate such data

samples, self-instruct tuning involves querying a generator

using predefined contexts, denoted as seed tasks. These seed

tasks contain task descriptions along with associated input-

output pairs. Guided by these seed tasks, the generator can

produce the necessary data samples for instruction tuning.

To generate fine-tuning data for legal language models, we

construct seed tasks with corresponding input-output pairs,

following the pipeline outlined in [55]. We create 75 input-

output pairs in total for 64 seed tasks. The seed tasks are

manually crafted with inputs selected from FreeLaw’s test

split, part of Pythia’s pre-training legal dataset. Then, we use

the instructions from the seed dataset for 3-shot prompting

on the Llama3-Instruct-8B and collect 4000 new instructions.

For bootstrapping, we use 4-shot prompting. Finally, we filter

out low-quality examples where inputs and outputs are not ex-

plicitly defined, resulting in a refined dataset for self-instruct

fine-tuning.

4.1.2 Fine-tuning Details

After obtaining the generated data related to the legal tasks,

we perform QLoRA [20] fine-tuning for Pythia-6.9b model

with Adam optimizer [31] for 1 epoch with 64 rank, 1/4 scale

factor, 0.05 LoRA dropout rate, and batch size of 8. Similar to

Section 3, we also explore various training hyperparameters to

assess the worst-case scenarios of privacy leakage. Since data

size and data quality will greatly influence the performance

of the obtained legal LLMs, we also search the data size

and temperature for self-instruct tuning. Details of the search

space are listed in Table 2.

Hyperparameter Values

Learning Rate 2×10−3, 2×10−4, 2×10−5, 2×10−6

Dataset Size 250, 1000, 4000

Temperature 1e-3, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4

Table 2: Hyperparameters for Pythia’s self-instruct tuning.

After merging the adapters with the appropriate base model

and converting the parameters into 16-bit, we get the fine-

tuned legal LLM based on Pythia. The finetuning process is

done for four learning rates, three dataset sizes, and eight tem-

peratures for the generator model as summarized in Table 2.



4.1.3 Evaluation Metrics

Validation Data Firstly, we do the utility evaluation to en-

sure our self-instruct tuning effectively returns the desired

legal LLM. Following Zheng et al. [61]’s setting, we use the

CaseHOLD and SSLA datasets for the utility evaluation:

CaseHOLD dataset comprises 53k legal cases, each accom-

panied by five multiple-choice options corresponding to the

relevant legal holding.

SSLA is a subset of the widely used LegalBench [27], includ-

ing 1038 samples on "plaintiff", 1016 samples on "individual

defendants", and 1234 samples on "company defendants".

After evaluating the model’s utility, we construct valida-

tion sets for privacy. We randomly choose 100 samples from

FreeLaw’s training set as members and 100 samples from

FreeLaw’s test set as non-members for the membership in-

ference attack. For finetuned models, both members and non-

members are placed in Alpaca prompts while for base models,

they are used in raw form.

Utility Evaluation For utility measurement, we first query

the fine-tuned and base models with the prompts in the Case-

HOLD datasets and get the responses. The responses with

explicitly “holding number” are considered valid. Then, we

count all correct answers in the valid responses with the

ground truth target and calculate the accuracy of each model.

After that, we feed LLMs with queries in SSLA and then

calculate the similarity score [46] of the generated responses

and the ground truth answers. If the fuzz score is larger than

80 we count it as accurately answering the legal questions in

SSLA.

Privacy Evaluation For evaluating the privacy leakage, we

have conducted four MIAs, including loss [57], min-k [49],

zlib [16], and reference-based attacks [14, 40] with OPT

model [60] following by Duan et al. [22]’s implementation.

The attack performances of base models are used as base-

lines for fine-tuned models. For the MIA on the instruction-

tuned models, we place member and non-member documents

inside the Alpaca prompt template [51] as illustrated in Fig-

ure 14, Appendix A. For base models, we use their origi-

nal format. This is because the fine-tuned models have been

trained on Alpaca format whereas base models have been

trained on raw texts. An important remark is that the attacker

is free to choose the best template for maximizing the attack

performance.

Member/Non-Member Partitioning The member samples

for MIA are randomly chosen from the train split of FreeLaw

as in the work of Duan et al. [22]. In parallel, the non-member

samples are randomly chosen from the test split of FreeLaw.

The samples in two groups share the same style and content

characteristics. This poses a real challenge for MIA in dis-

tinguishing members based only on their intrinsic properties,

thus providing a robust evaluation of privacy risks.

4.2 Utility and Privacy Evaluations on the Self-

Instruct Models

4.2.1 Utility Evaluation

We evaluate the model’s utility to demonstrate that our self-

instruct tuning is properly conducted. Since the CaseHOLD

tasks aim only for multiple-choice, it cannot properly eval-

uate the model’s performance as a chatbot. Therefore, we

also use the SSLA tasks for evaluation. It consists of purely

generation tasks and the performance is assessed with respect

to the accuracy and conciseness of the answers. The results

for the self-instruct setting and the base model are listed in

Table 3. We observe that we effectively perform the Self-

CaseHOLD SSLA

Base Pythia 6.9b 7.8% 17.6%

Self-Instruct Pythia 6.9b 22.0% 23.0%

Table 3: The accuracies for the pre-trained Pythia 6.9b and its

self-instruct version. The results for self-instruct models are

the averaged accuracy across different settings.

Instruct method. The average improvement on CaseHOLD

tasks is doubled. As for SSLA tasks, Pythia 6.9b also achieves

more than 20% improvements after the self-instruct tuning.

Furthermore, we draw an example of SSLA in Figure 9 to

demonstrate the utility improvement after self-instruct tuning.

4.2.2 Privacy Evaluation

To measure the model’s privacy risks after the self-instruct tun-

ing, we conduct four MIA methods described in Section 4.1.3.

We first list the best ROC-AUC score of Pythia 6.9b after the

self-instruct tuning across various hyperparameters in Table 4.

LOSS Ref min-k Zlib

Base 0.505 0.482 0.468 0.531

Self-Instruct 0.849 0.734 0.871 0.758

Table 4: Highest ROC-AUC of base and self-instruct tuned

Pythia 6.9b across different hyperparameter settings under

different MIA methods.

From the results, we observe that the base Pythia 6.9b can

be considered to be safe under different membership infer-

ence attacks, as the ROC-AUC score for different methods is

around 0.5. It demonstrates that all the MIA methods perform

similarly to random guessing on the base model, aligning with

findings from previous research [22]. However, we also find

that the ROC-AUC score for the Pythia 6.9b model after the

self-instruct tuning improves over 40% for each attack. Such

results demonstrate that self-instruct tuning can make Pythia

6.9b greatly vulnerable to MIA and lead to serious privacy

risks on the model’s pre-training data.



Prompt: Extract the name(s) of the plaintiff from the excerpt. 

If the plaintiff is not named, return "Not named"

Excerpt: …
Plaintiff: Not named

Excerpt: …
Plaintiff: Ryan Kelly

Excerpt: …
Plaintiff: Ruth C May, Donna E Ledgerwood

Except: … The plaintiff, John Doe, showed the evidence ...

Plaintiff: 

Base Model

The plaintiff may consider 

more than one day to respond...

Fine-tuned 

Model

John Doe is the plaintiff.

Figure 9: A case of SSLA’s tasks and the response from the

base Pythia 6.9b and its self-instruct tuned version. The base

model returns an irrelevant and generalized reply, while the

fine-tuned model returns a direct and privacy-sensitive reply

that satisfies the requirement of the task.

Apart from the self-instruct tuned model with the top pri-

vacy risks, we also report the distributions of the ROC-AUC

score for models with all the hyperparameter settings. The

results are shown in Figure 10. We demonstrate that the ROC-

AUC scores for all the models are higher than the base models

with a large margin. The worst improvement is still larger than

the 20% increment compared with the base model under dif-

ferent attacks. The results reflect that the self-instruct tuning

may cause privacy risks in nearly all cases.

4.3 Ablation Studies

In this section, we explore the key factors that influence the

models’ privacy leakage after the self-instruct tuning. We

explore the key factors stated in Section 4.1.2, including the

temperature, learning rate, and datasets.

The impact of temperature. Different temperature settings

for the generator affect the quality of the input-output ex-

amples, leading to variations in their relevance and diversity.

Therefore, we plot the averaged ROC-AUC score for differ-

ent MIA methods on Pythia 6.9b, which is fine-tuned on the

self-instruct data generated with different temperatures. As

for other hyperparameters, we choose the learning rate to be

2×10−4 and the data size to be 250. It is the same setting for

the self-instruct tuned model with the highest privacy risk.

Figure 10: The distributions of the ROC-AUC score for MIA

on models tuned with all the hyperparameter settings stated in

Section 4.1.2. The red line shows the ROC-AUC score of the

base Pythia-6.9b model. Blue bars represent the number of

fine-tuned models. The x-axis denotes the ROC-AUC score.

Figure 11: The averaged ROC-AUC score of different MIA

methods conducted on self-instruct tuned models with differ-

ent temperatures for the generator model.

Figure 11 illustrates that temperature variations have mini-

mal effect on the ROC-AUC score, with the highest score of

0.71 observed near a temperature of 0 and the lowest score

of 0.69 at a temperature of 1.4. However, a consistent trend

emerges where an increase in temperature is associated with a

gradual decline in the averaged ROC-AUC score. This occurs

because a higher temperature in the generator model reduces

the similarity between the generated data and the original pre-

training dataset. Thus, LLM’s memories of the training data

and the ROC-AUC score will be weaker and we recommend

using a larger temperature to alleviate the privacy risks.

The impact of learning rate. To investigate learning rate’s

effect in isolation, we fix the generator temperature to 0.6 and

dataset size to 250. The results are drawn in Figure 12. We

observe a substantial correlation between ROC-AUC scores

and increasing learning rates, with an improvement exceeding

20% when the learning rate is adjusted from 2×10−6 to 2×
10−3. A similar phenomenon is also observed when training

with real data by previous studies [15, 16, 29]. A possible



Figure 12: The averaged ROC-AUC score of different MIA

on self-instruct tuned models with various learning rates.

reason for such improvement is the larger learning rate makes

LLMs better memorize the fine-tuning data and also activates

the memorization of the pre-training datasets. Therefore, the

MIA methods can perform better in such scenarios.

Apart from learning rates’ influence on privacy, we also

compare the model’s utility fine-tuned with different learning

rates. The results are listed in Table 5. Combined with the

results in Figure 12, we see that a larger learning rate will

enhance both the utility and the privacy risks, as the models

fit better in such settings. Moreover, we also find that using

a smaller learning round 10−4 can reduce the AUC ROC’s

performance with a good performance.

CaseHOLD SSLA

Learning Rate 7.8% 17.6%

2×10−6 7.7% 17.3%

2×10−5 8.2% 17.5%

2×10−4 18.7% 18.5%

2×10−3 22.0% 23.0%

Table 5: The accuracies for the pre-trained Pythia 6.9b and its

self-instruct version with different learning rates.

The impact of dataset size. We explore how self-instruct

dataset size impacts LLM privacy through experiments ana-

lyzing its effect on MIA performance. We plot the ROC-AUC

scores for different MIA methods across models fine-tuned

with datasets ranging from 250 to 4,000 samples, as shown

in Figure 13. These experiments are conducted with three dif-

ferent learning rates: 2×10−5, 2×10−4, and 2×10−3. The

results indicate that all MIA methods display similar trends

across different learning rates and datasets. A smaller learn-

ing rate notably enhances the ROC-AUC score as the dataset

size increases. This is particularly evident for the reference-

based attack, loss attack, and Min-k attack, where the ROC-

AUC score improves by 10%− 20% when the dataset size

is scaled from 250 to 4,000. However, with larger learning

rates, the differences between models fine-tuned with varying

dataset sizes are less pronounced. This may be because mod-

els trained with smaller learning rates require more data to

converge, while larger learning rates enable models to quickly

Figure 13: The ROC-AUC score of different MIA methods

conducted on self-instruct tuned models with different data

sizes. The x-axis denotes the data size while the y-axis denotes

the ROC-AUC score.

memorize patterns similar to the original training samples in

the self-instructed data, resulting in higher ROC-AUC scores

after fine-tuning. Nevertheless, due to differences between

the self-instructed data and the original pre-training data, the

ROC-AUC score only increases to around 0.7-0.8. Overall,

the findings suggest that both larger learning rates and in-

creased dataset sizes can amplify privacy risks up to a certain

threshold. Therefore, we recommend using a slightly smaller

learning rate and dataset size to manage these risks effectively.

4.4 Discussion

In this section, we assess the privacy risks of LLMs on their

pre-training datasets following self-instruct tuning. Using the

example of a legal chatbot, we adopt the self-instruct pipeline

to train a legal LLM based on Pythia 6.9b and evaluate both

the model’s utility and privacy. We observe that self-instruct

tuning can substantially increase privacy risks for the pre-

training dataset, FreeLaw, with over a 40% improvement in

ROC-AUC scores across various MIA methods. Additionally,

our experiments reveal that the learning rate and dataset size

are critical factors influencing privacy risks. Higher learn-

ing rates and larger datasets make the fine-tuned model more

susceptible to membership inference attacks. Consequently,

we recommend opting for a slightly lower learning rate and

dataset size during training to safeguard privacy. While the

suggested mitigations, such as using a lower learning rate

(Section 3) or higher temperatures (Section 4), help to reduce

the privacy risks, they do not entirely eliminate them, un-

derscoring the need for further research and complementary

approaches to fully address these vulnerabilities.

In addition, former methods such as differential privacy

(DP) [10, 37], data anonymization [26], and data augmenta-



tion [21] can be used to alleviate the consequences of privacy

leakage. DP can reduce memorization and mitigate mem-

bership inference, PII extraction, and model inversion risks

by introducing noise [10]. Moreover, DP enables risk esti-

mates through theoretical guarantees [7]. Data augmentation

trains the model on multiple closely related data points rather

than a single instance, potentially mitigating the impact of

memorization [58]. Yet, it is important to note that certain

MIA implementations can leverage the structural similarities

among augmented data points to enhance the success rate

of attacks [36]. Although data anonymization may not di-

rectly reduce memorization, it can render potential leakages

less harmful and provide better safety standards, especially

for PII attacks [26]. Future research should explore hybrid

approaches that combine these techniques to enhance data

privacy without significantly compromising model utility.

5 Related Work

5.1 Privacy risks associated with LLMs

Large Language Models (LLMs) have garnered significant

attention due to their remarkable capabilities in natural lan-

guage understanding. However, the rapid growth in model

and dataset sizes has intensified concerns regarding privacy

risks. Numerous studies [15, 16, 22, 29, 54] have shown that

larger and more sophisticated models are more vulnerable

to pretraining data leakage and memorization, where data is

inadvertently reproduced during generation.

This vulnerability has been rigorously quantified through

methods such as Membership Inference Attacks (MIAs) [16,

22, 40], which aim to determine whether a specific data point

was used during the model’s training, and Data Extraction

Attacks [16], which exploit the similarity between a target

dataset and the model’s output when prompted by an initial

fragment of that data as an indicator of leakage.

Prior work has shown open-source LLMs leak significant

parts of their training data. Various methods such as data dedu-

plication and differential privacy [37] are proposed to mitigate

the risks. However, these methods remain ineffective due to

the computational infeasibility of implementing differentially

private stochastic gradient descent. Additionally, evidence in-

dicates that memorization can still compromise privacy, even

in scenarios where observable overfitting is absent [16, 52].

These findings underscore the urgent need for further re-

search into more realistic scenarios, the practical effective-

ness of proposed mitigation techniques, and their potential

impact on model utility. There remains significant uncertainty

about whether fine-tuning exacerbates or mitigates memoriza-

tion [16], as well as the broader effects of different training

settings on privacy risks. We draw attention to this uncer-

tainty and fill the important gap of fine-tuning on generated

data, which is crucial for the development of more secure and

privacy-preserving LLMs.

5.2 Privacy risks associated with synthetic data

Using synthetic data in deep learning has been a common

practice for numerous purposes [21, 59]. A prominent use

case of synthetic data is for training LLMs for downstream

tasks [55, 59]. Recent works emphasized the efficacy of this

use in terms of time and money [55]. Some works, like

self-play fine-tuning [18], also demonstrate that using self-

generated synthetic data can further improve the model’s per-

formance. Furthermore, the possibility of using LLMs locally

for data generation appeared to be a remedy for concerns

about privacy in multi-party computing settings [50]. In prac-

tice, more and more developers adopting synthetic data for

training, e.g., Llama-3 [2] and Tülu-3 [34], current state-of-

the-art LLMs, adopting LLM-generated data for training.

However, the inherent risks of memorization and data leak-

age in LLMs raise concerns that fine-tuning on generated

data may introduce significant, yet often overlooked privacy

dangers. Specifically, generating data with a given prompt

can lead to the reproduction of memorized data [54], a risk

that parallels those seen in data extraction attacks [16]. We

note here that although has similar purposes, synthetic data

is often created using statistical methods to mimic real data

distribution. In contrast, LLM-generated data is produced

from the model’s already-learned representations, potentially

memorized patterns from pretraining data. This makes LLM-

generated data potentially more susceptible to privacy attacks,

as it can inadvertently amplify the leakage of the original

pretraining data. Finetuning on the memorized data can fur-

ther exacerbate the privacy risks, by leaking PIIs from the

pretraining corpus of the target, or the generator models.

In our work, we investigated the membership inference

risks of LLMs fine-tuned on domain-specific generated data,

which had not been addressed before. We demonstrate our

findings in the highly sensitive domain of law with prominent

open-source models for research purposes.

6 Conclusion

With the growing data requirements for fine-tuning, the use of

generated data has become increasingly common. However,

previous research has overlooked the potential privacy risks

associated with fine-tuning models using generated data. In

this paper, we address this gap by conducting experiments

on two primary fine-tuning approaches with generated data:

supervised fine-tuning with unstructured generated data and

self-instruct tuning. We then evaluate the potential privacy

risks involved in these fine-tuning pipelines. The results indi-

cate LLMs can leak more private information on the related

domain after fine-tuning with the generated data.



7 Ethics Considerations

In this study, we relied solely on publicly accessible data and

did not involve human participants. As a result, our research

is not classified as human subjects research by our Institu-

tional Review Boards (IRB). Our primary objective was to

evaluate the privacy risks of fine-tuning large language mod-

els (LLMs) using generated data. Inevitably, this includes

revealing methods that could inadvertently heighten privacy

risks, such as extracting personally identifiable information

(PII) and conducting membership inference. Recognizing the

potential sensitivities, we exercised great caution in responsi-

bly disclosing our findings. For example, we use placeholders

rather than actual data for demonstration purposes. To mit-

igate risks, we shared our findings with the relevant LLM

service providers, including Eleuther AI and Meta AI. Consis-

tent with previous studies [48, 56], we firmly believe that the

societal benefits of our research far outweigh the negligible

privacy risks that can arise from our experiments.

8 Compliance with the Open Science Policy

In alignment with USENIX Security’s Open Science policy,

we openly shared our implementation and specifically, our

artifact supports the evaluation of privacy risks, such as Per-

sonal Information Identifier (PII) leakage and Membership

Inference Attacks (MIAs), across two fine-tuning strategies:

supervised fine-tuning (SFT) with unstructured generated data

and self-instruct tuning. Our artifact is available and stable

at https://doi.org/10.5281/zenodo.14732690. The ar-

tifact includes relevant codes, scripts, and the datasets utilized

in our experiments.

While we acknowledge that the synthetically generated

dataset in our experiments may pose certain privacy leakage

risks, we believe its public disclosure offers significant bene-

fits, particularly in fostering the development of trustworthy

and privacy-preserving large language models. However, safe-

guards must be implemented to ensure the secure handling of

sensitive information.

Following precedents established in prior work [19,42], we

did not publicly release the fine-tuned LLM checkpoint due

to its heightened potential for privacy breaches and associated

privacy leakage concerns. Instead, access to these sensitive

materials will be selectively granted to qualified requesters

who provide a valid rationale, subject to approval by our

institution’s Ethics Review Committee. Approved requesters

will be required to sign an agreement ensuring the responsible

use of these resources. By adopting these measures, we strive

to uphold the principles of open science while maintaining

rigorous ethical and security standards.
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Appendix A

Supplementary Figures

Figure 14 summarizes the member and non-member sample

construction process which we discuss in Section 4.1.3

Seed Tasks Train Split

Test Split

Non-Member Sample

Below is an instruction that 

describes a task...

Instruction: Determine the type 

of decision...

Input: {Test Split Document}

Output: The decision was ...

Member Sample

Below is an instruction that 

describes a task...

Instruction: Determine the type 

of decision...

Input: {Train Split Document}

Output: The decision was ...

Replace Input By 

Non-Member Document

Replace Input By 

Member Document
Random Sample

Below is an instruction that describes 

a task...

Instruction: Determine the type of 

decision...

Input: In December 11, 1987 ...

Output: The decision was ...

Membership 

Inference Attack

Figure 14: Member and Non-Member sample construction

process for Membership Inference Attack on instruction-

tuned models.
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