
From Alarms to Real Bugs: Multi-target Multi-step Directed Greybox Fuzzing for
Static Analysis Result Verification

Andrew Bao1, Wenjia Zhao2, Yanhao Wang3, Yueqiang Cheng4, Stephen McCamant1, and Pen-Chung Yew1

1University of Minnesota, Twin Cities 2Xi’an Jiaotong University 3Independent Researcher 4MediaTek

Abstract
Effective verification of the true positives from false pos-

itives is crucial for improving the usability of static analy-
sis tools and bolstering software security. Directed greybox
fuzzing (DGF), based on dynamic execution, can confirm real
vulnerabilities and provide proof-of-concept exploits, offer-
ing a promising solution. However, existing DGF tools are
ineffective in verifying static analysis results because they are
unaware of the semantic information about individual alarms
and the correlations among multiple alarms.

In this paper, we fill this gap and present Lyso, the first
multi-target, multi-step guided fuzzer that leverages semantic
information (i.e., program flows) and correlations (i.e., shared
root causes) derived from static analysis. By concurrently
handling multiple alarms and prioritizing seeds that cover
these root causes, Lyso efficiently explores multiple alarms.
For each alarm, Lyso breaks down the goal of reaching an
alarm into a sequence of manageable steps. By progressively
following these steps, Lyso refines its search to reach the final
step, significantly improving its ability to trigger challenging
alarms.

We compared Lyso to eight state-of-the-art (directed)
fuzzers. Our evaluation demonstrates that Lyso outperforms
existing approaches, achieving an average 12.17x speedup
while finding the highest absolute number of bugs. Addi-
tionally, we applied Lyso to verify static analysis results for
real-world programs, and it successfully discovered eighteen
new vulnerabilities.

1 Introduction

The rapid growth of software complexity has led to an in-
creased demand for effective methods to identify and mitigate
security bugs. Static analysis tools (e.g., Coverity [1]) are
widely used for automated software bug detection but often
produce a high number of false positives [2–4], leading to a
significant burden of manually verifying each reported issue.
Distinguishing true positives from false positives can be chal-
lenging and time-consuming. While previous research has

explored alarm clustering [5, 6] and ranking [7, 8] to address
this issue, these methods cannot definitively identify true pos-
itive alarms, as they do not involve actual program execution
for verification.

Directed greybox fuzzing (DGF) has emerged as a promis-
ing method to address this limitation by guiding the execu-
tion to the locations of static analysis alarms, crashes, and
patches [9]. While DGF has been proven effective in vari-
ous scenarios such as patch testing [9, 10] and crash repro-
duction [11–13], its effectiveness in verifying static analysis
results is limited. Unlike a Git commit in patch testing or a
stack backtrace in crash reproduction, static analysis results
often present a complex “landscape”. Our analysis of several
widely used static analysis tools [1, 14–16] revealed several
key characteristics. (1) Large Number of Alarms: These tools
generate many alarms of various types. (2) Multi-Alarm Cor-
relations: Alarms produced by program reasoning tools are
often correlated, with multiple true alarms sharing a common
root cause [8, 17]. (3) Promising Paths: Static analysis tools
not only flag potential bug locations but also highlight the
promising paths leading to them.

Although applying DGF to verify static analysis results
often poses greater challenges than in patch testing or crash
reproduction, the above unique characteristics of static anal-
ysis results can, in turn, be leveraged to guide DGF toward
more effective verification. Based on this insight, we propose
Lyso, a novel multi-target, multi-step guided fuzzer with two
key aspects of directness:

• Inter-target directness. Lyso addresses the challenge of
handling multiple targets1 concurrently by leveraging cor-
relations among targets with the same root cause, It catego-
rizes targets into two types: independent or interdependent.
Independent targets have minimal overlap in root causes
and require individual verification. In contrast, interdepen-
dent targets are correlated, sharing common root causes
and allowing for grouped verification. This ensures that

1In this paper, the terms "alarm" and "target" are used interchangeably.



progress on one target accelerates progress on others, effec-
tively killing multiple birds with one stone.

• Intra-target directness. Lyso enhances the fuzzing by pro-
viding more precise, incremental guidance toward a specific
target. Unlike traditional DGF tools that explore all feasi-
ble paths to the target, Lyso prioritizes vulnerable paths
identified through static analysis. By breaking down the
target into multiple steps and following them sequentially,
Lyso significantly reduces the Time-to-Exposure (TTE) for
challenging targets, enabling more effective directness.

Lyso identifies critical steps for each target, categorizing
them as independent or interdependent. To achieve inter-
target directness when handling multiple targets, Lyso per-
forms inter-target exploration, concurrently tracking step cov-
erage across multiple targets and prioritizing seeds that cover
interdependent ones (i.e., overlap metric). For intra-target
directness, Lyso performs intra-target exploration, tracking
executions relative to the sub-steps and prioritizing seeds
that maximize step coverage (i.e., depth metric) toward the
target. Additionally, Lyso employs step-by-step guidance, pro-
gressively refining the search process by directing executions
closer to the next unexplored step (i.e., distance metric).

Leveraging these three key characteristics observed in static
analysis results, Lyso optimizes seed selection through multi-
target, multi-step metrics, including overlap, depth, and dis-
tance. To improve step coverage of rarely-hit targets, Lyso
introduces seed density power scheduling, dynamically allo-
cating more mutations to seeds associated with these targets.

We evaluated Lyso on the state-of-the-art fuzzing bench-
mark Magma [18]. We compared Lyso with three code cover-
age fuzzers [19–21], and five directed fuzzers [9, 22–25]. Our
extensive experiments demonstrate that Lyso outperforms ex-
isting solutions, achieving an average 12.17x speedup in bug
verification. Furthermore, we applied Lyso to automatically
verify static analysis results for four well-tested programs,
where it successfully discovered eighteen new vulnerabilities.
Of these, sixteen were confirmed by the developers, and seven
have been assigned CVE IDs.

In summary, we make the following contributions:

• We propose a novel multi-target, multi-step guided fuzzer,
Lyso, to enhance existing methods by leveraging program
flows and alarm correlations to verify static analysis results.

• We design a fast, precise, and space-efficient step track-
ing system to provide step-by-step guidance for handling
multiple targets, each with multiple steps.

• We introduce multi-target, multi-step metrics that include
overlap, depth, and distance to enhance seed selection. We
also propose a seed density power scheduling to enhance
the exploration of rarely-hit alarms.

• We open-source Lyso2 and provide comprehensive exper-
iments to demonstrate its superiority over existing tech-
niques in verifying bugs.

2 Background

This section provides an overview of the background on
alarms generated by static analysis and the various approaches
to Directed Greybox Fuzzing (DGF).

2.1 Alarms from Static Analysis
In static analysis, the generation of alarms is closely tied to
understanding the flow of a program, which is crucial for iden-
tifying potential issues. These flows are typically represented
using graph-based structures such as the Control Flow Graph
(CFG) [26], Data Flow Graph (DFG) [27], or more advanced
variants like the Program Dependency Graph (PDG) [28].
These representations capture the structural or logical rela-
tionships between program statements and their execution
paths. To formalize this concept, let G = (N,E) represent an
abstract graph model of the program, where N denotes the set
of program elements (i.e., statements), and E represents the
edges that capture transitions between these elements, either
through control or data flow. Within this model, a program
flow is formally defined as a directed path π in G, originating
from a source node n1 and terminating at a target node nm, as
shown in the following expression.

π = (n1→ ··· → nm) where (nk,nk+1) ∈ E ∀k ∈ [1,m−1]

• n1 ∈ N is the starting node, representing the entry point,
source, or the beginning of the flow.

• nm ∈ N is the target node, representing the exit, sink, or
endpoint of the flow.

• n2, · · · ,nm−1 ∈ N are intermediate nodes along the path.

Building on the definition of program flow, an alarm in
static analysis is a program flow π that satisfies specific con-
ditions indicative of a potential vulnerability or issue. Specifi-
cally:

• An alarm corresponds to a subpath πa ⊆ π, where:

πa = (sa→ ··· → ni→ ··· → ta)

with sa being the entry point of the alarm (e.g., the source
of the data) and ta being the exit point (e.g., the sink, where
a potential issue occurs).

• Each node ni ∈ πa represents a program statement, con-
tributing to the propagation of control or data within the
alarm’s context.
2https://doi.org/10.5281/zenodo.14714504



Single-target with single-step
(STSS-DGF)

Single-target with multi-step 
 (STMS-DGF)

Multi-target, each with single-step
(MTSS-DGF)

Multi-target, each with multi-step   
   (MTMS-DGF)

More steps

More
targets

FIGURE 1: Varied scopes of DGF.

• The sequence of nodes {sa, · · · ,ni, · · · , ta} is referred to as
the steps of the alarm. These steps highlight the flow of
execution or data relevant to the detected issue.

For instance, TIF009 (featured in the Magma [18] bench-
mark) in Figure 12, a null pointer dereference alarm detected
by CodeQL [16], involves multiple steps. For simplicity and
clarity, we have modified the original results excluding certain
steps, and we present the following:

<L3, allocation (source)>
<L8, function call>
<L16, branch condition>
<L19, Setting the variable to null>
<L11, function call>
<L24, function call>
<L29, function call>
<L36, function call>
<L41, branch condition>
<L42, null pointer dereference (sink)>

2.2 Directed Greybox Fuzzing
We categorize existing research on Directed Greybox Fuzzing
(DGF) into three domains based on whether their optimiza-
tions are designed for multi-target or multi-step scenarios.
Figure 1 provides a visual representation of these categories.

Single-Target, Single-Step Directed Greybox Fuzzing
(STSS-DGF). This category is primarily used for bug repro-
duction, where a specific buggy location has been identified,
often through a git commit or manual inspection.

• AFLGO [9]: Introduces the concept of DGF by propos-
ing a distance metric and a simulated-annealing-based
power scheduling approach to guide execution toward a
predefined target.

• WindRanger [29]: Enhances AFLGo’s distance metric
by considering deviated blocks.

Single-Target, Multi-Step Directed Greybox Fuzzing
(STMS-DGF). This category is designed for crash reproduc-
tion, where reproducing a crash requires meeting specific
preconditions (steps) in sequence. For instance, reproducing
use-after-free (UAF) bugs typically involves triggering both
the free and use operations in the correct order.

• UAFUZZ [13] and CAFL [12]: Refine the distance met-
ric by recognizing that certain preconditions must be
satisfied before a crash can occur.

• Hawkeye [11]: Improves the distance metric by address-
ing challenges related to indirect calls and incorporating
call trace similarity for more accurate targeting.

Multi-Target, Single-Step Directed Greybox Fuzzing
(MTSS-DGF). These techniques are designed to handle mul-
tiple targets and are commonly used to find bugs in sanitizer-
instrumented code [23, 25], or verify static analysis results
[24].

• Parmesan [25] and FishFuzz [23]: Propose a dynamic
distance measurement that remains consistent across
multiple targets.

• Titan [24]: Establishes a correlation synergy among mul-
tiple targets as feedback to handle multiple targets.

3 Motivation

This section introduces the limitations of current research and
presents our proposed solutions. We then illustrate Lyso’s
functionality through concrete examples and provide an
overview of its main workflow.

3.1 Prior Methods
Our study on widely used static analysis tools [1, 14–16]
highlights three key characteristics of static analysis tools.

Large Number of Alarms. Static analysis tools tend to
generate a high volume of alarms across various bug types.
For example, when analyzing the gpac project using Cover-
ity [1], the tool reported 896 alarms, flagging potential issues
such as buffer overflows, integer overflows, and use-after-free
(UAF) vulnerabilities. While these tools can identify true
positives, they often generate many false positives. Existing
DGF tools struggle to verify all alarms within a single fuzzing
instance. For instance, AFLGo (STSS-DGF) [9] and CAFL
(STMS-DGF) [12] use uniform distance metrics across all
targets, diverting fuzzing efforts toward easily reachable, shal-
low targets while hindering progress toward deeper, more
complex ones.

Interdependent Alarms. Alarms generated by static anal-
ysis tools are often not isolated, as multiple true alarms can
share a common root cause. Our analysis of the Magma [18]
benchmark reveals that 31% of true alarms are interdependent.
This significant proportion underscores the need to account
for their relationships to enhance verification effectiveness.
However, existing MTSS-DGF tools [23, 25] do not account
for these interdependencies. As a result, they fail to prioritize
seeds that could potentially reach multiple interdependent
alarms. While other MTSS-DGF tools like Titan [24] analyze



main

L8 L11

_TIFFVSetField

TIFFFlush

L24 TIFFReDir L29

TIFFWDirSecL34

PixarLogClose

LogLuvClose

L47, TIF005 L52, TIF006

L36 TIFFWDTT

L42, TIF009

L19

function to line number 
direct call
indirect call

FIGURE 2: A motivating example based on the code presented in
Figure 12. Nodes marked in blue represent the CFG node, the green
node indicates the DFG node and the red node highlights the target.

multiple alarms that may share overlapping preconditions and
prioritize seeds accordingly, Titan’s static analysis struggles to
scale with complex programs, and its taint analysis introduces
significant overhead during fuzzing.

Promising Paths. For individual alarms, static analysis
tools not only flag the bug locations (i.e., sinks) but also high-
light the most promising paths leading to them. Both STSS-
DGF and MTSS-DGF tools focus exclusively on reaching the
sink while disregarding other steps. This approach introduces
two key limitations. First, these tools attempt to explore all
possible paths leading to the sink, even when static analysis
highlights specific promising paths. By considering the steps
along the promising paths, tools can avoid wasting effort on
unpromising ones. Second, By prioritizing the shortest path
to the sink [11], existing tools may miss longer yet more
exploitable paths. Since static analysis does not always iden-
tify the shortest paths, incorporating these steps can improve
the effectiveness of DGF by enabling deeper exploration of
vulnerable execution paths

3.2 Motivating Example
Based on the three key characteristics of static analysis re-
sults we discussed in §3.1, it necessitates a new design for
DGF to effectively verify these alarms. Previous methods
have focused on enhancing DGF either for multi-target or
multi-step scenarios, which limits their overall effectiveness
in verifying static analysis results. To address this, we intro-
duce Lyso, a multi-target, multi-step directed greybox fuzzing
(MTMS-DGF) tool, which advances the state of the art in
verifying static analysis results. To demonstrate Lyso’s en-
hanced directness, we examine TIF005, TIF006, and TIF009,
vulnerabilities marked in the Magma benchmark [18] (see
Figure 2).

Lyso extracts critical steps for each alarm, categorizing
them as Control Flow Graph (CFG) and Data Flow Graph
(DFG) steps. To improve inter-target directness, Lyso identi-
fies TIF005, TIF006, and TIF009 as interdependent targets,
sharing a common function at the sink (see (§4.1). During
inter-target exploration, Lyso prioritizes and mutates seeds
that traverse these interdependent targets. As a result, Lyso

Instrumented
Binary

Step
Identification

Graph
Construction

Source
Code

Instrumentation

Reachability
Analysis

Step Tracking

Distance
Table

Alarm
Selection

Seed Selection
Power scheduling 

Interesting?

Rerun?

Static Analysis 
Alarms

Preprocessing

Static Analyzer Interface
5

1

2
6

Seeds

Multi Queues

Step Coverage
Table

7

3

Fuzzing

ICFG

4

FIGURE 3: Workflow of Lyso.

directs significantly more execution effort toward TIF006 and
TIF009, with an average of 132.40x than other DGF tools,
which include Titan [24], FishFuzz [23], AFLGo [9], and Se-
lectFuzz [22]. Notably, Lyso is the only tool that reaches and
triggers TIF005.

To enhance intra-target diretness, as exemplified by
TIF009, Lyso guides the execution through its critical steps.
During intra-target exploration, after L8 is covered, Lyso pri-
oritizes seeds that covered L8 and are closer to the next un-
explored steps L19. This process repeats until all steps are
covered. The step-by-step guidance accelerates Lyso towards
reaching TIF009, with speedups of 14.40x, 11.16x, 19.20x,
and 1.83x compared to the aforementioned DGF tools. Upon
reaching the final step (sink) at L42, DFG step L19 facilitates
efficient alarm exploitation (Note: while passing through L19

is not a prerequisite to reaching L42, it is a necessary step
to trigger L42). As a result, Lyso outperforms the other DGF
tools by 227.43x, 83.62x, 97.50x, and 16.57x in execution,
leading to the successful triggering of TIF009.

3.3 Overview
Lyso’s workflow, depicted in Figure 3, is divided into two
main phases: preprocessing and fuzzing.

Preprocessing Phase. 1 Program under test (PUT) is an-
alyzed to construct an Inter-procedural Control Flow Graph
(ICFG), which is used to compute a distance table supporting
the distance metric during fuzzing. 2 The PUT is passed
through the static analyzer interface. In this work, Lyso uses
CodeQL [16] to detect potential alarms. The static analysis
results are then used to extract critical steps. 3 To enable
lightweight step tracking, reachability analysis is conducted
to identify the basic blocks that can reach the critical steps.
These identified blocks are then instrumented to facilitate step
tracking during exeuction.

Fuzzing Phase. 4 Lyso monitors the instrumented binary,
tracking newly covered steps. Additionally, 5 alarm selection
prioritizes less-explored alarms with fewer associated seeds.
6 Seed selection is refined based on multi-target multi-step
metrics. For each selected seed, power scheduling adaptively
allocates mutations based on the number of associated seeds
to maximize effectiveness.



4 Preprocessing

In this section, we first describe how Lyso identifies the criti-
cal steps associated with each alarm and examines the inter-
dependencies among multiple alarms based on critical steps
(§4.1). Next, we outline the instrumentation strategies (§4.2)
employed by Lyso to enable lightweight step tracking, facili-
tating step coverage feedback during fuzzing (§5.3.1). Finally,
we detail the precomputation of a distance table for all basic
block pairs (§4.3), enabling efficient dynamic calculation of
distances between seeds and alarms during fuzzing (§5.1).

4.1 Critical Step Identification

Not all steps in an alarm contribute equally to guiding fuzzing
toward the sink. To address this, we define critical steps as
those that play a pivotal role in either data propagation or
control flow. These critical steps are categorized into two
types: data steps (i.e., DFG steps) and control steps (i.e.,
CFG steps).

DFG Step Identification. DFG steps capture the critical
stages in the lifecycle of data associated with an alarm and
are key to understanding how vulnerabilities propagate. Each
alarm typically involves three steps: the source, the vulnerable
operation, and the sink. The source is where the variable is
initially defined, marking the beginning of its lifecycle. The
vulnerable operation represents an intermediate point where
the variable’s state is either modified or accessed in a way that
introduces the potential for unsafe behavior. Finally, the sink
is where the variable is ultimately used, triggering the alarm.

The nature of the vulnerable operation can vary depending
on the type of alarm. To systematically identify these opera-
tions, we leverage the rules defined in CodeQL [16], which
provide a structured framework for detecting vulnerable pat-
terns. By classifying the vulnerable operations for each alarm
type (as detailed in Table 6 and summarized in Table 1), we
ensure that DFG step identification aligns with the unique
characteristics of different alarms. For example, in the case
of TIF009, a null pointer dereference alarm described in §2.1,
the steps at L3, L19, and L42 correspond to the source, the
vulnerable operation, and the sink, respectively. Additionally,
for alarm types not listed in Table 1, Lyso applies generalized
rules, identifying only source and sink locations.

CFG Step Identification. A step is classified as a CFG step
if it corresponds to a function call site that directly influences
the execution flow leading to the sink. Function call sites are
prioritized over branch conditions (e.g., steps at L16 and L41

in §2.1 are excluded for CFG steps). This prioritization is
based on the observation that function calls have a greater
influence on overall control flow, whereas branch conditions
may limit exploration to paths within individual functions. To
maintain effectiveness, we empirically limit the number of
function call sites to a maximum of five per alarm, selecting
the five closest to the sink for analysis (the rationale for this

TABLE 1: Critical steps identified based on the alarm type. Type
delineates the various categories of alarms. ‘...’ indicates the omitted
call sites.

Type Critical Steps Pattern
IO · · · → Alloc→ ··· → Integer Assignment (arithmetic)→ ··· →Memory Access
OOB · · · → Alloc→ ··· → Variable Assignment (index)→ ·· · →Memory Access
UAF · · · → Alloc→ ··· → Free→ ··· → Use
NPD · · · → Alloc→ ··· → NULL Pointer Assignment→ ··· → Dereference
UBI · · · → Alloc→ ··· → Conditional Initialization→ ·· · → Use
DBZ · · · → Alloc→ ··· → Zero Assignment→ ·· · → Divide

threshold is discussed in §7.4). For example, steps at L36, L29,
L24, L11, and L8 are selected for TIF009. In cases with fewer
than five function call sites, all available are selected.

Alarm Interdependence Identification. To calculate the
overlap metric between different alarms during fuzzing, it is
crucial to first define how to measure the correlation between
them. Fine-grained comparisons (e.g., comparing every step
within the paths of two alarms) may fail to capture correla-
tions due to minor variations. Instead, we focus on the DFG
steps—source, vulnerable operation, and sink—which repre-
sent critical data propagation points along the triggering paths
for various types of vulnerabilities. These steps efficiently
capture the essential characteristics of program flow while
leveraging the coarse-grained runtime context they provide.
To further simplify the comparison, we associate the DFG
steps with their respective functions since they naturally en-
capsulate richer runtime contexts for these steps. Two alarms
are then considered interdependent if they share at least one
function associated with any of their DFG steps. Based on
this criterion, the overlap metric is quantified by counting
the number of shared functions across the DFG steps of two
alarms.

4.2 Step Instrumentation

To achieve lightweight step coverage tracking and feedback,
Lyso selectively instruments only those basic blocks associ-
ated with critical steps (i.e., basic blocks that reach the critical
steps), rather than instrumenting every block in the program.
To determine which basic blocks are reachable for the critical
steps, Lyso performs a control flow reachability analysis.

Algorithm 1 first constructs an interprocedural control flow
graph (ICFG) for the given program P. Then, starting from
the final critical step sk of an alarm, Lyso performs a back-
ward search using reverse_dfs. This process continues until
the initial critical step s1 is reached, ensuring that all relevant
basic blocks are identified. Here, each critical step is uniquely
identified with its corresponding basic block. Once all reach-
able basic blocks are identified, Lyso assigns a unique integer
identifier to each block. These identifiers are statically instru-
mented into the program binary during the compilation. At
runtime, this instrumentation enables Lyso to dynamically
track the execution of these basic blocks and generate step
coverage feedback, as described in §5.3.1.



Algorithm 1 Static Reachability Inference

1: Input: Program P; alarms (alarm1, . . . ,alarmm)
2: Output: Reachable basic blocks res
3: function REACHABLE_BB_INFERENCE(P)
4: G← build_icfg(P) ▷ build ICFG
5: res←{}
6: for i = 1 to m do ▷ m: total alarms
7: [s1, . . . ,sk]← critical_steps_identify(P,alarmi)
8: S← reverse_dfs(G, [s1, . . . ,sk])
9: res← res∪S

10: end for
11: return res
12: end function

4.3 Distance Table Precomputation
To enable efficient dynamic calculation of distances between
seeds and alarms during fuzzing, a distance table for all basic
block pairs is precomputed before the fuzzing phase. The
distance measurement involves two main stages. First, similar
to step instrumentation, an ICFG is constructed. This graph
incorporates indirect calls through type-based analysis. Sec-
ond, a precomputed distance table is generated, recording the
shortest distances between all pairs of basic blocks in the
ICFG. Additional details about these two stages are provided
in §A.2. To further improve efficiency, the distance table is
optimized with a hash map, allowing constant-time (O(1))
lookups and minimizing query overhead. During fuzzing, the
optimized table is used to calculate the distance metric (§5.1).

5 Fuzzing

This section provides a comprehensive overview of the
fuzzing methodology. We begin by defining the multi-target
and multi-step metrics (§5.1). Next, we introduce their role
in seed selection during the fuzzing stage (§5.2.1). We then
describe the power scheduling mechanism (§5.2.2). Finally,
we elaborate on how Lyso implements these metrics through
its step tracking system (§5.3).

5.1 Multi-target Multi-step Metrics
We formally define the key metrics used in Lyso: overlap,
depth, and distance, which are essential for seed selection
to achieve effective guidance for multiple alarms, each with
multiple steps.

Definition 1. (Overlap) The overlap of a seed refers to the
number of interdependent alarms covered for at least one step
by the execution of the seed during fuzzing.

Definition 2. (Depth) The depth of a seed is the maximum
number of consecutive steps covered for any alarm by the
execution of the seed during fuzzing.

Before defining the distance metric, we introduce the fol-
lowing key concepts: (1) Last Matched Point: When com-
paring a seed’s execution trace with the sequence of steps
associated with an alarm, the last matched point is the basic
block in the execution trace that corresponds to the most re-
cently matched step in the sequence. (2) Suffix Trace: The
execution trace is divided into two segments based on the last
matched point: the prefix trace and the suffix trace. The prefix
trace includes the portion of the trace before the last matched
point, while the suffix trace starts after the last matched point
to the end. (3) Next Unexplored Step: The first step in the
alarm step sequence that has not yet been matched with any
part of the execution trace.

Definition 3. (Distance) The distance of a seed denoted as
D(ST (ξ(s),k),bbt), is defined as the shortest distance D from
the suffix trace ST (ξ(s),k) to the next unexplored step bbt
(basic block). ξ(s) represents the sequence of basic blocks
traversed during the execution of seed s, and k is the last
matched point.

The distance D(ST (ξ(s),k), bbt) is calculated as follows:

D(ST (ξ(s),k), bbt) = min
bbs∈ST (ξ(s),k)

d(bbs, bbt) (1)

Here, d(bbs,bbt) are inter-procedural basic block distance
defined in Equation 7, which is stored in the precomputed
distance table (§4.3).

5.2 Fuzzing Loop
Lyso’s fuzzing logic is built upon AFL’s [19] fuzzing loop,
incorporating seed selection (§5.2.1) and power scheduling
(§5.2.2) strategies to enable multi-target and multi-step guid-
ance. Algorithm 2 presents Lyso’s fuzzing loop, which oper-
ates in two distinct phases: inter-target exploration and intra-
target exploration.

• Inter-target exploration: In this phase, Lyso focuses on ex-
ploring multiple alarms. Seeds are selected based on their
ability to uncover new steps or maximize coverage of inter-
dependent targets (i.e., overlap).

• Intra-target exploration: In this phase, Lyso narrows its
focus to a specific alarm. Seeds are prioritized based on
greater step coverage (i.e., depth) for the alarm or closer to
the next unexplored step (i.e., distance).

The transitions between these phases are dynamically man-
aged based on two key mechanisms: (1) Timeout-based switch-
ing: The timeout variable defines a fixed time window for
each phase. Both inter-target and intra-target exploration
phases are executed within the same window, ensuring bal-
anced execution time. The current window size is set to 10
minutes. (2) Favored seed-based switching: The is_favored

function determines phase switching based on code coverage.
When no seed is favored in terms of code coverage, Lyso
shifts from inter-target to intra-target exploration.



Algorithm 2 Lyso’s Fuzzing Loop Algorithm

1: while True do
2: while ¬ timeout ∨ is_ f avored(queue) do ▷

Inter-target exploration
3: seed ← cull_queue(queue,code_top,step_top)
4: energy← power_schedule(seed)
5: for i = 0 to energy do
6: child ← mutate(seed)
7: run(P,child)
8: if save_if_interesting(child) then
9: queue← queue∪{child}

10: end if
11: end for
12: end while
13: alarm← choose_alarm(heat_table)
14: while ¬timeout do ▷ Intra-target exploration
15: p_queue← rank_queue(queue, alarm)
16: seed← next_seed(p_queue)
17: energy← density_power_schedule(seed)
18: for i = 0 to energy do
19: child← mutate(seed)
20: run(P,child)
21: if save_if_interesting(child) then
22: queue← queue∪{child}
23: end if
24: end for
25: end while
26: end while

5.2.1 Seed Selection

Lyso’s seed selection strategy is tailored to each exploration
phase. In the inter-target exploration phase, the seed selec-
tion process is handled by the cull_queue function, which
evaluates two types of feedback: (1) Code Coverage Feed-
back (code_top): identifies seeds that increase code coverage.
(2) Step Coverage Feedback (step_top): identifies seeds that
either discover new steps or cover multiple interdependent
alarms. Seeds contributing to either feedback are prioritized
to maximize overall code coverage and step coverage across
multiple alarms.

In the Intra-target exploration phase, Lyso focuses on a spe-
cific alarm. The process involves two key stages: (1) Alarm
Selection: The choose_alarm function selects an alarm based
on the heat_table, which tracks the number of seeds associ-
ated with each alarm (i.e., execution of the seed cover at least
one step for the alarm). Alarms with fewer associated seeds
are prioritized to balance exploration and avoid neglecting
less-explored alarms. (2) Seed Prioritization: For the selected
alarm, seeds are ranked using the rank_queue function. Seeds
are sorted into a priority queue (p_queue) based on the follow-
ing criteria: (i) Depth: Seeds that provide deeper coverage for
the selected alarm are ranked higher. (ii) Distance: For seeds

with the same depth, those with a shorter distance to the next
unexplored step are prioritized (§5.3.2).

In both phases, Lyso leverages the save_if_interesting

function (described in §5.3.1) to identify and retain interesting
seeds. Seeds are evaluated based on code, or step coverage
with their overlap and depth values serving as key metrics.

5.2.2 Power Scheduling

Before introducing our power scheduling strategies, we define
the concept of Density.

Definition 4. (Density) For a given alarm A, the density of
a seed s is defined as the ratio of the total number of seeds
whose execution paths cover at least one step associated
with A (denoted asMA) to the total number of seeds whose
execution paths cover at least one step associated with any
alarm (denoted asMN ).

ρs =
MA

MN
(2)

In the inter-target exploration phase, the power_schedule

function utilizes AFL’s default metrics to determine the num-
ber of mutations allocated to each seed. During intra-target
exploitation, Lyso introduces a seed density-based power
scheduling strategy to allocate mutation efforts. This is im-
plemented through the density_power_schedule function, de-
fined as:

p̂(s) = ρs ·N (3)

where N represents the total number of alarms.
The use of seed density ensures a balanced distribution of

mutation efforts across alarms. Alarms with a higher density
(ρs), the mutation budget should be distributed more evenly
for its associated seed. This prevents excessive focus on in-
dividual seeds, promoting broader exploration. Conversely,
alarms with lower density have fewer associated seeds. These
seeds should receive more mutations to enable deeper ex-
ploitation, increasing the chances of uncovering bugs in these
less-explored alarms.

5.3 Step Tracking
Building on the preprocessing phase in §4, Lyso monitors the
execution against each critical step of alarms. It gathers step
coverage feedback, measuring the overlap and depth value of
each seed (§5.3.1). Lyso then guides the execution toward the
next unexplored step, leveraging the distance metric (Equa-
tion 1).

5.3.1 Step Coverage Feedback

Lyso determines whether an input achieves new step coverage
by comparing its execution trace with the sequence of steps



Algorithm 3 Interesting Seeds Determination

1: Input: Seed s
2: Output: True or False
3: function SAVE_IF_INTERESTING(s)
4: hnb← has_new_bits() ▷ code coverage feedback
5: hnsc← has_new_step_cov(cur_step, vir_step) ▷

step coverage feedback
6: if hnb || hnsc then
7: s.overlap← calculate_overlap(cur_step)
8: s.depth← calculate_depth(cur_step)
9: end if

10: return hnb || hnsc
11: end function

associated with each alarm in the Step Table. It identifies
previously uncovered steps by maintaining the Step Table and
updating the Step Coverage Table. When the execution trace
matches the steps in the Step Table, Lyso updates the Step
Coverage Table to reflect the newly covered steps.

• Step Table is a two-dimensional array where each row cor-
responds to a specific alarm, and each column within a row
represents the index of a step associated with that alarm.
Each element in the table is an integer value corresponding
to the basic block assigned to the step during instrumenta-
tion (as detailed in §4.2). This design ensures a consistent
and precise mapping between the steps in the instrumented
binary program and their representation in the alarm.

• Step Coverage Table is structurally identical to the Step
Table, but each element is a binary value indicating whether
the corresponding step in the Step Table has been covered.

Lyso extends AFL’s save_if_interesting function, which
evaluates code coverage feedback, by incorporating step cov-
erage feedback to identify inputs that reveal new step cov-
erage. As shown in Algorithm 3, the Step Coverage Table
cur_step and vir_step track step coverage for the current
execution and accumulated executions from previous seeds,
respectively. The has_new_step_cov function detects inputs
introducing new step coverage by comparing these tables.
For each seed, Lyso records overlap and depth values, which
are later used for seed selection (§5.2.1). Specifically, the
calculate_overlap function evaluates the overlap among
multiple alarms for the current step coverage cur_step. Simi-
larly, the calculate_depth function computes the depth for
each alarm.

5.3.2 Step-by-Step Guidance

To further steer Lyso toward the next unexplored step, we in-
troduce a step-by-step guidance approach, implemented in the
rank_queue function during the intra-target exploration phase.
This approach comprises two key stages: (1) Prefix-Trace

Trace: 9, 14, 11, 20, 12, 20, 15, 20, 19, 8

Step Table: 9, 20, 39, 3

(A) Prefix-Trace Matching

...
168 9 10 11 12 13 14 15 19 20

...11 11
17 18

1

Instrumented
Binary

Distance
Calculation Step Tracking

1

2
3

(B) Execution Replay
FIGURE 4: Figure 4a shows the prefix-trace matching. Lyso identi-
fies the first occurrence of basic block 20 as the last matched point.
Through the execution replay as shown in Figure 4b, Lyso collects
only the suffix trace consisting of a set of blocks {8, 12, 15, 19, 20}
encoded in the bitmap.

Matching: Identify the last matched point in the execution
trace to pinpoint the suffix trace and the next unexplored step.
(2) Suffix-Trace Guiding: Collect suffix trace and use the
distance metric defined in Equation 1.

Prefix-Trace Matching. Lyso employs a runtime mecha-
nism called in-execution tracking to efficiently identify the
last matched point in an execution trace. This mechanism
dynamically compares each executing basic block with the
sequence of steps associated with the alarm in the step table.
When a basic block matches the current unexplored step, Lyso
marks the step as covered and shifts the comparison to the
next step for subsequent basic blocks. If no match is found,
the comparison continues with the same step until a match
occurs. For example, consider a step table containing one
alarm with four steps, as illustrated in Figure 4a. Lyso begins
with basic block 9, matches it to step 9, and proceeds to step
20. It then encounters non-matching blocks 14 and 11, which
are skipped. Upon reaching block 20, it matches step 20 and
advances to step 39. This process continues until the trace
ends, identifying the first occurrence of block 20 in the trace
as the last matched point. The portion of the trace after this
point is designated as the suffix trace, with step 39 marked as
the next unexplored step.

Suffix-Trace Guiding. Lyso leverages the suffix trace to
evaluate the seed’s distance to the next unexplored step. To
collect the suffix trace while minimizing memory overhead,
Lyso uses a bitmap—a fixed-size array—to record the current
execution trace. The index of the array corresponds to the
value (i.e., an integer) of instrumented basic blocks, with
its value indicating whether the block has been executed.
While the bitmap efficiently captures the trace coverage by
indicating whether each basic block was executed, it does
not preserve the order of the execution trace. As a result,
without the sequential execution trace, in-execution tracking
in a single run cannot collect the suffix trace from the entire
trace in the bitmap using only the last matched point.

To overcome this limitation, Lyso performs an execution re-
play. During the replay, the prefix trace is explicitly excluded
from the bitmap to ensure that only the suffix trace is recorded.
Using the example from Figure 4b: First, the step tracking
system signals the instrumented binary to delay recording the
trace into the bitmap until the last matched point is reached
(e.g., block 20). Second, During execution replay, the binary



records the suffix trace starting after block 20 and stores it in
the bitmap. Third, Lyso then calculates the shortest distance
from the recorded suffix trace to the next unexplored step.

6 Implementation

We implemented Lyso on top of AFL v2.57b, adding approx-
imately 5,000 lines of code. This includes 1,644 lines of
C/C++ for constructing an ICFG that facilitates indirect-call
and static reachability analysis based on LLVM 11.0.0 [30].
Additionally, we added 414 lines of C/C++ for code coverage
instrumentation and 159 lines of C code for step instrumen-
tation and trace tracking. Furthermore, approximately 1,500
lines of C were added to afl-fuzz.c to support seed selection
and power scheduling. Our development also includes 694
lines of Python, 137 lines of C++ for distance calculation,
and 530 lines of Python to convert static analysis reports into
sequences of steps.

7 Evaluation

In this section, we evaluated Lyso to answer the following
research questions:
RQ1: How does Lyso verify bugs across multiple targets
compared to other fuzzers? (§7.2)
RQ2: How effective is the multi-target, multi-step guidance
in both multi-target and single-target scenarios? (§7.3)
RQ3: How do configurations (steps identification) and com-
ponents (seed selection and power scheduling) affect Lyso’s
performance? (§7.4)
RQ4: What is Lyso’s runtime overhead? (§A.4)
RQ5: Can Lyso detect new vulnerabilities in real-world pro-
grams? (§7.5)

7.1 Evaluation Setup
We followed the revised best practices for fuzzing evaluation
[31, 32] and presented our evaluation setup.

Benchmarks and Fuzzers. We used the state-of-the-art
Magma [18] benchmark and its provided initial seeds. This
benchmark provides real-world projects containing multiple
bugs, allowing us to assess a fuzzer’s ability to verify diverse
bug types. This setup closely mirrors the scenario in static
analysis reports verification, where multiple true alarms need
to be verified by fuzzer. We also compared Lyso against eight
state-of-the-art fuzzers, as listed in Table 7, and detailed con-
figuration information can be found in §A.3.

Evaluation metrics. We evaluated fuzzer performance us-
ing several key metrics. First, Time-to-Exposure (TTE) mea-
sures the time from the start of fuzzing to the first detection
of a given bug. Second, Time-to-Reach (TTR) captures the
time from the start of fuzzing to when executions first touch
the bug location (i.e. the sink) without necessarily triggering

0 10000 20000 30000 40000 50000 60000 70000 80000
Time (seconds)

0

10

20

30

40

50

Nu
m

be
r o

f b
ug

s t
rig

ge
re

d

Lyso
Titan
FishFuzz
AFLGo

SelectFuzz
AFL
MOPT
AFL++

FIGURE 5: Number of unique bugs triggered over time in Table 2.

it. Third, Success Rate (SR) evaluates consistency, defined
as the ratio of successful bug reaches or triggers to the total
number of fuzzing attempts. Finally, we recorded the total
number of unique bugs reached or triggered by the fuzzer at
least once across all runs.

Bug selection. We set buggy locations marked by the
MAGMA_LOG macro as targets for other DGF tools. For Lyso,
which supports multiple steps, we employed CodeQL [16]
dataflow analysis to identify the source-sink trace related to
the marco. To ensure a fair comparison, we excluded bugs that
were triggered within 100 seconds or not triggered within 24
hours by all fuzzers, as such cases may not accurately reflect a
fuzzer’s ability to verify bugs. Thus, these bugs are not listed
in Table 2 and Table 5.

Environment. All experiments were run on the two com-
puters, each equipped with Intel(R) Core(TM) i7-12700K
with 20 cores and 96 GB of RAM, running under Ubuntu
22.04.3 LTS.

7.2 Enhancing Bug Verification across Multi-
ple Targets

We compared Lyso against state-of-the-art fuzzers, as sum-
marized in Table 7. Each fuzzer was executed 10 times for
24 hours (i.e., 86,400 seconds) per run, and the average TTE
and SR were calculated. The complete evaluation results are
summarized in Table 2, with its corresponding p-values from
the Mann-Whitney U test listed in Table 10.

Time-to-Exposure. Based on the p-values presented in
Table 10, our analysis indicates that Lyso significantly re-
duces Time-to-Exppsure (TTE) across the majority of tar-
get programs. Overall, Lyso outperforms state-of-the-art
non-directed fuzzers (AFL, MOPT, AFL++) by an average
of 8.89x. Compared to the STSS-DGF tool AFLGo, Lyso
achieves a 13.89x speedup. Additionally, Lyso demonstrates
an average improvement of 21.09x over MTSS-DGF tools
Titan and FishFuzz. Both Lyso and SelectFuzz leverage CFG
and DFG for directed fuzzing. In our evaluation, Lyso out-
performs SelectFuzz, achieving a speedup of 2.43x. Figure 5
visually illustrates the TTE for unique bugs triggered at least
once across 10 runs. Compared to other fuzzers, Lyso consis-
tently triggers more bugs over time.



TABLE 2: We evaluated TTE and SR for targets in Magma. Time represents the average TTE in ten runs. SR represents success rate. T.O
denotes the fuzzer fails to trigger the target within 24 hours. Ratio measures the improvement ratio achieved by Lyso compared to other fuzzers.
∅ indicates deployment was not feasible. The two best TTE results for a case are highlighted in light green and dark green.

Lyso Titan FishFuzz AFLGo SelectFuzz AFL MOPT AFL++Program & Bug ID
Time SR Ratio SR Ratio SR Ratio SR Ratio SR Ratio SR Ratio SR Ratio SR

libpng_fuzzer
PNG001 T.O. 0/10 ∼1.00x 0/10 ∼1.00x 0/10 ∼0.81x 3/10 ∼1.00x 0/10 ∼0.92x 1/10 ∼0.92x 1/10 ∼1.00x 0/10
PNG006 >78257 1/10 ∼1.10x 0/10 ∼1.10x 0/10 ∼1.10x 0/10 ∼1.10x 0/10 ∼1.10x 0/10 ∼1.10x 0/10 <0.0007x 10/10
PNG007 2644 10/10 4.44x 10/10 2.39x 10/10 1.91x 10/10 0.19x 10/10 1.83x 10/10 >13.09x 9/10 >10.94x 9/10

sndfile_fuzzer

SND001 36 10/10 9.03x 10/10 55.91x 10/10 3.39x 10/10 2.28x 10/10 2.94x 10/10 4.58x 10/10 11.19x 10/10
SND006 309 10/10 11.71x 10/10 7.01x 10/10 0.85x 10/10 2.30x 10/10 0.91x 10/10 0.65x 10/10 11.52x 10/10
SND007 38 10/10 9.79x 10/10 61.53x 10/10 3.82x 10/10 2.84x 10/10 3.45x 10/10 5.42x 10/10 21.30x 10/10
SND017 26 10/10 17.62x 10/10 35.92x 10/10 32.54x 10/10 29.23x 10/10 13.35x 10/10 1.00x 10/10 14.42x 10/10
SND020 46 10/10 53.76x 10/10 25.28x 10/10 24.98x 10/10 25.74x 10/10 19.41x 10/10 7.22x 10/10 22.61x 10/10
SND024 39 10/10 9.46x 10/10 59.44x 10/10 3.64x 10/10 2.73x 10/10 3.33x 10/10 5.10x 10/10 19.46x 10/10

tiff_fuzzer

TIF002 28035 10/10 >2.80x 1/10 >1.66x 9/10 >1.72x 7/10 1.21x 10/10 >0.71x 9/10 >1.30x 9/10 >1.74x 6/10
TIF008 >47993 6/10 ∼1.63x 1/10 ∼1.32x 6/10 ∼0.91x 7/10 ∼1.80x 0/10 ∼0.59x 8/10 ∼1.40x 3/10 ∼1.77x 2/10
TIF012 164 10/10 11.54x 10/10 8.70x 10/10 1.18x 10/10 0.81x 10/10 0.66x 10/10 2.19x 10/10 5.49x 10/10
TIF014 429 10/10 2.90x 10/10 4.90x 10/10 6.23x 10/10 11.06x 10/10 0.62x 10/10 0.47x 10/10 4.72x 10/10

tiffcp

TIF002 >52237 9/10 ∼1.65x 0/10 ∼1.65x 0/10 ∼1.20x 6/10 ∼0.85x 7/10 ∼1.27x 4/10 ∼1.65x 0/10 ∼1.37x 2/10
TIF005 >80902 2/10 ∼1.07x 0/10 ∼1.07x 0/10 ∼1.07x 0/10 ∼1.07x 0/10 ∼1.07x 0/10 ∼1.07x 0/10 <0.02x 10/10
TIF006 37145 10/10 >1.38x 6/10 >1.45x 8/10 >0.84x 9/10 0.51x 10/10 0.66x 10/10 0.90x 9/10 0.07x 10/10
TIF008 >84667 1/10 ∼1.02x 0/10 ∼1.02x 0/10 ∼1.02x 0/10 ∼1.02x 0/10 ∼0.81x 3/10 ∼1.02x 0/10 ∼0.87x 2/10
TIF009 1900 10/10 >14.48x 7/10 11.28x 10/10 >19.30x 9/10 1.90x 10/10 7.89x 10/10 >13.82x 9/10 >14.28x 9/10
TIF012 512 10/10 4.17x 10/10 5.56x 10/10 1.07x 10/10 1.25x 10/10 1.79x 10/10 1.65x 10/10 1.75x 10/10
TIF014 3928 10/10 0.45x 10/10 0.74x 10/10 0.38x 10/10 0.73x 10/10 0.31x 10/10 0.26x 10/10 0.49x 10/10

lua LUA004 5816 10/10 >11.67x 3/10 1.79x 10/10 2.78x 10/10 1.75x 10/10 1.15x 10/10 2.24x 10/10 3.91x 10/10

libxml2_fuzzer

XML001 >56243 5/10 ∼1.54x 0/10 ∼1.39x 1/10 ∼1.48x 2/10 ∼1.41x 1/10 ∼1.47x 1/10 ∼1.03x 6/10 <0.10x 10/10
XML002 >75190 2/10 ∼1.15x 0/10 ∼0.80x 5/10 ∼1.15x 0/10 ∼1.15x 0/10 ∼1.06x 2/10 ∼1.15x 0/10 ∼1.15x 0/10
XML003 17662 10/10 >3.10x 4/10 1.08x 10/10 0.61x 10/10 0.71x 10/10 0.91x 10/10 >2.50x 8/10 0.22x 10/10
XML009 1682 10/10 3.00x 10/10 2.74x 10/10 2.11x 10/10 0.95x 10/10 0.19x 10/10 0.73x 10/10 0.62x 10/10
XML012 >78619 2/10 ∼1.10x 0/10 ∼1.10x 0/10 ∼0.92x 4/10 ∼1.03x 2/10 ∼0.75x 7/10 ∼0.73x 4/10 ∼1.03x 2/10

xmllint
XML001 >48474 8/10 ∼1.78x 0/10 ∼1.36x 3/10 ∼1.22x 7/10 ∼0.92x 8/10 <0.47x 10/10 <0.72x 10/10 ∼1.25x 7/10
XML002 >78131 1/10 ∼1.11x 0/10 ∼0.96x 2/10 ∼1.11x 0/10 ∼1.11x 0/10 ∼1.11x 0/10 ∼1.05x 1/10 ∼1.06x 1/10
XML009 8879 10/10 1.19x 10/10 0.74x 10/10 0.45x 10/10 0.38x 10/10 0.05x 10/10 0.09x 10/10 0.19x 10/10

pdf_fuzzer

PDF002 >68736 2/10 ∼1.26x 0/10 ∼1.26x 0/10 ∼1.26x 0/10 ∼1.26x 0/10 ∼1.26x 0/10 ∼1.26x 0/10 ∼1.26x 0/10
PDF004 >77117 2/10 ∼1.12x 0/10 ∼1.12x 0/10 ∼1.12x 0/10 ∼1.12x 0/10 ∼1.08x 1/10 ∼1.12x 0/10 ∼1.12x 0/10
PDF010 758 10/10 1.02x 10/10 0.64x 10/10 0.32x 10/10 1.91x 10/10 2.38x 10/10 3.32x 10/10 3.61x 10/10
PDF011 >81491 2/10 ∼0.90x 2/10 ∼1.06x 0/10 ∼1.06x 0/10 ∼0.94x 2/10 ∼1.06x 0/10 ∼0.95x 3/10 ∼0.95x 1/10
PDF018 334 10/10 >258.68x 0/10 >258.68x 0/10 >233.66x 1/10 4.07x 10/10 4.66x 10/10 8.16x 10/10 72.78x 10/10
PDF019 >77123 2/10 ∼1.12x 0/10 ∼1.12x 0/10 ∼1.07x 1/10 ∼1.12x 0/10 ∼1.03x 2/10 ∼1.12x 0/10 ∼1.05x 2/10
PDF021 T.O. 0/10 ∼1.00x 0/10 ∼1.00x 0/10 ∼1.00x 0/10 ∼1.00x 0/10 ∼1.00x 0/10 ∼1.00x 0/10 ∼0.67x 5/10

pdftoppm

PDF002 >65791 5/10 ∼1.29x 1/10 ∼1.31x 0/10 ∼1.31x 0/10 ∼1.31x 0/10 ∼1.31x 0/10 ∼1.14x 2/10 ∼1.31x 0/10
PDF006 T.O. 0/10 ∼1.00x 0/10 ∼1.00x 0/10 ∼1.00x 0/10 ∼1.00x 0/10 ∼1.00x 0/10 ∼1.00x 0/10 ∼0.74x 3/10
PDF010 1076 10/10 0.09x 10/10 1.97x 10/10 2.04x 10/10 0.84x 10/10 0.19x 10/10 0.12x 10/10 1.82x 10/10
PDF011 >71624 4/10 ∼1.19x 1/10 ∼1.21x 0/10 ∼1.21x 0/10 ∼1.21x 0/10 ∼1.10x 1/10 ∼1.01x 3/10 ∼1.17x 1/10
PDF018 481 10/10 >179.63x 0/10 >179.63x 0/10 >144.83x 2/10 2.38x 10/10 2.86x 10/10 5.37x 10/10 49.28x 10/10
PDF019 >63523 6/10 ∼1.36x 0/10 ∼1.36x 0/10 ∼1.36x 0/10 ∼1.36x 0/10 ∼1.36x 0/10 ∼1.32x 1/10 ∼1.34x 1/10

pdfimages

PDF002 28663 10/10 >2.84x 3/10 >3.01x 0/10 >3.01x 0/10 >3.01x 0/10 >3.01x 0/10 >3.01x 0/10 >3.01x 0/10
PDF003 16102 10/10 1.71x 10/10 2.31x 10/10 0.94x 10/10 1.76x 10/10 0.68x 10/10 1.00x 10/10 1.31x 10/10
PDF008 >58979 6/10 ∼1.46x 0/10 ∼1.46x 0/10 ∼1.46x 0/10 ∼1.46x 0/10 ∼1.46x 0/10 ∼1.46x 0/10 ∼1.45x 1/10
PDF011 >73750 3/10 ∼0.97x 3/10 ∼1.17x 0/10 ∼1.17x 0/10 ∼1.06x 1/10 ∼1.17x 0/10 ∼0.75x 6/10 ∼1.06x 2/10
PDF018 335 10/10 >257.91x 0/10 >257.91x 0/10 >182.38x 7/10 1.33x 10/10 12.47x 10/10 1.08x 10/10 50.70x 10/10
PDF019 >64310 5/10 ∼1.34x 0/10 ∼1.34x 0/10 ∼1.24x 2/10 ∼1.34x 0/10 ∼1.34x 0/10 0.84x 6/10 ∼1.34x 0/10
PDF021 >79791 1/10 ∼1.08x 0/10 ∼1.08x 0/10 ∼1.01x 2/10 ∼1.05x 1/10 ∼1.07x 1/10 ∼1.08x 0/10 ∼0.75x 6/10

sqlite3_fuzz

SQL002 1383 10/10 ∅ ∅ 1.53x 10/10 2.24x 10/10 0.21x 10/10 0.58x 10/10 2.85x 10/10 1.45x 10/10
SQL003 >78493 1/10 ∅ ∅ ∼1.01x 1/10 ∼1.01x 1/10 ∼1.10x 0/10 ∼1.03x 1/10 ∼1.10x 0/10 ∼1.10x 0/10
SQL012 >79271 2/10 ∅ ∅ ∼0.77x 7/10 ∼0.80x 5/10 ∼0.94x 3/10 ∼0.56x 7/10 ∼1.09x 0/10 ∼0.97x 4/10
SQL013 T.O. 0/10 ∅ ∅ ∼0.74x 4/10 ∼0.75x 4/10 ∼0.90x 1/10 ∼0.58x 6/10 ∼1.00x 0/10 ∼0.93x 3/10
SQL014 4309 10/10 ∅ ∅ 6.66x 10/10 3.79x 10/10 3.50x 10/10 3.16x 10/10 >7.66x 8/10 4.16x 10/10
SQL015 T.O. 0/10 ∅ ∅ ∼0.85x 3/10 ∼0.99x 1/10 ∼0.93x 1/10 ∼0.78x 4/10 ∼1.00x 0/10 ∼1.00x 0/10
SQL018 2714 10/10 ∅ ∅ 1.28x 10/10 2.46x 10/10 0.55x 10/10 0.49x 10/10 6.48x 10/10 2.02x 10/10
SQL020 >54354 5/10 ∅ ∅ ∼0.88x 7/10 ∼1.09x 5/10 ∼1.21x 3/10 ∼0.59x 8/10 ∼1.59x 0/10 ∼1.16x 5/10

asn1 SSL001 >45461 6/10 ∅ ∅ ∼1.86x 1/10 ∼1.90x 0/10 ∅ ∅ >1.49x 6/10 >1.83x 1/10 <0.24x 10/10
x509 SSL009 817 10/10 ∅ ∅ >58.46x 9/10 >45.72x 9/10 ∅ ∅ 18.36x 10/10 >26.77x 9/10 >96.97x 1/10
server SSL020 863 10/10 ∅ ∅ >90.54x 4/10 >80.43x 3/10 ∅ ∅ 41.74x 10/10 18.16x 10/10 >89.57x 3/10

exif PHP004 152 10/10 ∅ ∅ 37.22x 10/10 1.30x 10/10 ∅ ∅ 2.51x 10/10 2.57x 10/10 >384.85x 6/10
PHP009 235 10/10 ∅ ∅ >249.63x 5/10 16.66x 10/10 ∅ ∅ 4.05x 10/10 >253.06x 5/10 >93.18x 9/10

0.66 ∼18.44x 0.39 ∼23.74x 0.49 ∼13.89x 0.53 ∼2.43x 0.53 ∼3.04x 0.62 ∼7.04x 0.55 ∼16.59x 0.60

Total bugs and success rate. Lyso outperforms both non-
directed fuzzers (AFL, MOPT, AFL++) and directed fuzzers
(Titan, FishFuzz, AFLGo, SelectFuzz) in terms of total bugs
found and success rate (SR). On average, Lyso triggers 7.33
more bugs and achieves an 11.9% improvement in SR com-
pared to non-directed fuzzers. When compared to directed
fuzzers, Lyso triggers an average of 18.75 more bugs and
shows a 36.1% improvement in SR. Additionally, we found
that several bugs, such as PDF002 and PDF019 are particu-
larly challenging for other fuzzers to trigger. These targets
are located far from the main function, requiring traversal of
over ten intermediate functions. Many alternative unpromis-

ing paths caused other fuzzers to deviate from the target. This
suggests that providing promising paths can offer valuable
guidance and help prevent deviation from the target.

Promising paths. We assessed whether the promising
paths (i.e., alarm steps) identified by CodeQL were followed
during runtime. Our analysis revealed that 48 out of 62 cases
were fully explored during testing. Among these, 44 cases
(corresponding to 48 bugs) successfully triggered crashes
via the identified paths. For these triggered cases, we manu-
ally compared the crash backtraces with the corresponding
promising paths, finding that all fully aligned with the ex-
pected execution paths. These results highlight that promising



0 5 10 15 20
Number of Bugs

libpng
libsndfile

libtiff
libxml2
poppler
sqlite3

openssl
php

Pr
oj

ec
t

Independent Interdependent

(A)

1 2 4 8 10 5 6 9 7 14 3 111213
Targets

1
2

4
8

105
6

9
7

143
11

12
13

Ta
rg
et
s

Independent Interdependent

(B)
FIGURE 6: Figure 6a shows the number of interdependent and inde-
pendent targets in Magma projects. Figure 6b shows interdependent
groups in the tiffcp program.

paths derived from static analysis significantly enhance Lyso’s
ability to effectively trigger bugs.

7.3 Effectiveness of Multi-target, Multi-step
Guidance

To evaluate the effectiveness of multi-target, multi-step guid-
ance, we examined how it enhances Lyso’s ability to reach
both multiple and single targets. TTR was used as a supple-
mentary metric in this evaluation. To ensure a more rigorous
analysis, we refined our target set by excluding those that
could be reached easily by all fuzzers within 30 minutes.

How does the multi-target, multi-step guidance accel-
erate Lyso in reaching multiple targets? In our evalua-
tion, Lyso outperforms the non-directed fuzzers (AFL, MOPT,
AFL++), achieving an average improvement of 4.74x. Com-
pared to the STSS-DGF tool AFLGo, Lyso demonstrates an
average speedup of 18.88x. When tested against MTSS-DGF
tools like Titan and FishFuzz, Lyso shows an average im-
provement of 32.46x. Moreover, Lyso demonstrates its superi-
ority by reaching all 30 targets, outperforming its competitors:
AFL++ (27), AFL (26), FishFuzz (24), MOPT (23), AFLGo
(23), SelectFuzz (22), and Titan (10). Further details are pro-
vided in Table 5.

We analyzed each project to evaluate the impact of inter-
dependent targets on improving inter-target directness. As
shown in Figure 6a, Lyso identifies 31% of targets as inter-
dependent. The large proportion of interdependent targets
underscores the importance of accounting for these relation-
ships to improve inter-target directness. A focused case study
on the tiffcp program reveals that 10 out of 14 targets are
interdependent, forming three distinct groups, as shown in
Figure 6b. We conducted a detailed analysis of the reaching
executions within the group containing TIF005, TIF006, and
TIF009, which also served as the motivating example in Fig-
ure 2. The results, presented in Figure 7, demonstrate that
Lyso directs a significantly higher number of executions—by
two orders of magnitude—toward the group. Notably, Lyso is
the only fuzzer that reached TIF005.

How does the multi-step guidance accelerate Lyso to
reach single targets? To investigate the impact of the multi-

SelectFuzz AFLGo Titan FishFuzz Lyso
103
104
105
106

Ex
ec
ut
io
ns

TIF005 TIF006 TIF009

FIGURE 7: Comparison of reaching executions. The effect of inter-
dependent targets allows Lyso to achieve more reaching executions.

XML00
2

XML01
1

TIF
00

2
TIF

00
9

LU
A00

4

PD
F0

04

PD
F0

18

SQ
L01

4

1

5

60

TT
R 

Ra
tio

1.17 1.19 1.40

56.69

1.71
5.32

16.76

1.82

Lyso-stms
AFLGo

FIGURE 8: Comparison of Lyso-stms and AFLGo in reaching single
targets. The y-axis shows the TTR ratio, highlighting the improve-
ment achieved by Lyso-stms over AFLGo.

step guidance on enhancing intra-target directness in single-
target scenarios, we applied Lyso to single targets with mul-
tiple steps, denoted as Lyso-stms, and compared it against
AFLGo, which is specifically optimized for single-target di-
rected fuzzing. In this setup, Lyso-stms focuses solely on the
multi-step guidance, as the multi-target guidance is inherently
deactivated due to only a single target. We selected one target
from each program listed in Table 5 and conducted 10 runs
per target. The selection criteria were: (1) targets should be
reached by both Lyso and AFLGo within 24 hours, and (2)
if a program had only one available target, that target was
automatically chosen. The results are presented in Figure 8.

Overall, Lyso-stms achieves an average speedup of 10.76x
compared to AFLGo. To better understand the underlying
reasons for Lyso-stms’s significant speedup on certain tar-
gets, we conducted an analysis of execution progression over
time. Specifically, we performed a case study on PDF018,
as detailed in Table 3. Lyso-stms demonstrates a significant
increase in reaching executions, growing from hundreds of
thousands at 0.5 hours to over 30 million after 24 hours. In
contrast, AFLGo exhibites much smaller gains, with execu-
tions increasing slowly from around 500 at 0.5 hours to 2,000
after 24 hours. Notably, after 24 hours, Lyso-stms achieves
15,424x executions than AFLGo. This analysis demonstrates
that Lyso-stms’s seed selection effectively identifies the most
promising seeds (i.e., depth and distance) capable of reaching
the target, and its power scheduling allocates more mutations
to these selected seeds.

TABLE 3: Total number of reaching executions over time for
PDF018.

Bug ID Fuzzer 0.5h 4h 8h 16h 24h

PDF018 Lyso-stms 2.26×105 2.92×106 6.83×106 1.81×107 3.08×107

AFLGo 4.73×102 5.94×102 1.08×103 1.43×103 2.00×103



libp
ng

libs
nd

file libt
iff lua

libx
ml2

po
pp

ler
sql

ite
3

op
en

ssl ph
p

0
1
2
3

TT
E 

Ra
tio

Lyso Lyso-1 Lyso-15 Lyso-dfg-2 Lyso-cfg-2

(A) Configuration comparison

libp
ng

libs
nd

file libt
iff lua

libx
ml2

po
pp

ler
sql

ite
3

op
en

ssl ph
p

0
2
4
6
8

10
12
14

TT
E 

Ra
tio

Lyso
Lyso-ss
Lyso-ps

(B) Component comparison

FIGURE 9: Figure 9a shows the impact of step count and types,
while Figure 9b shows the effects of seed and power scheduling. The
ratio in Y-axis indicates Lyso’s performance improvement over other
configurations or components.

7.4 Ablation Analysis

In this section, we conducted an ablation analysis using the
same setup in §7.2 to assess how different configurations and
components in Lyso contribute to overall performance.

How do step count and types affect Lyso in verifying
bugs? Lyso’s default configuration uses a maximum of five
CFG steps and three default DFG steps. To evaluate the impact
of step count, we compared the default configuration of Lyso
against two variants: Lyso-1 (only the sink) and Lyso-15 (all
steps)3. The results, presented in Figure 9a, show that Lyso
outperforms both Lyso-1 and Lyso-15, achieving speedups
of 1.92x and 1.40x, respectively. This suggests that using
no intermediate steps offers limited guidance and provides
insufficient direction for the search to reach the sink, while
incorporating too many steps may increase the search effort
unnecessarily.

However, in OpenSSL, we observe that Lyso-1 slightly
outperforms both Lyso and Lyso-15. This can be attributed
to two key factors: (1) all bugs in OpenSSL are reachable
within a short timeframe (i.e., 100 seconds), meaning some
executions had already reached the sink, thereby reducing
the effectiveness of Lyso’s multi-target, multi-step guidance,
and (2) the average number of initial seeds in Magma for
OpenSSL is 1,889, providing a broad spectrum of test cases
that could potentially expose bugs. In this scenario, Lyso-1’s

3We set the maximum threshold to 15 based on the observation that the
most alarms have no more than 15 steps.

TABLE 4: Newly identified vulnerabilities. "Reported" refers to
alarms generated by CodeQL, while "Triggered" denotes true pos-
itives found by Lyso. "Status" indicates the current vulnerability
status: CVE assigned, confirmed ("C"), or pending ("P").

Program Reported Triggered Bug Type Status

Libsndfile 75 5

Heap Buffer Overflow CVE-2024-42882
Memory Leak CVE-2024-42883
Use Before Initialization CVE-2024-42884
Use Before Initialization CVE-2024-42884
Use Before Initialization CVE-2024-42884

GPAC 856 8

Stack Buffer Overflow issue-2935 (C)
Null Pointer Dereference issue-2934 (C)
Null Pointer Dereference issue-2933 (C)
Memory Leak issue-2931 (C)
Null Pointer Dereference issue-2929 (C)
Null Pointer Dereference issue-2926 (C)
Null Pointer Dereference issue-2925 (C)
Type Confusion issue-2924 (C)

Poppler 809 3
Stack Overflow issue-1508 (C)
Stack Overflow issue-1509 (P)
Out-of-Bounds Write issue-1511 (C)

Xpdf 298 2 Divide By Zero CVE-2024-7867
Stack Overflow CVE-2024-7866

seed scheduling effectively prioritizes promising seeds that
have reached the bug but not yet triggered it.

Additionally, to evaluate the impact of different step types,
we compared three Lyso variants: Lyso-1 (only the sink),
Lyso-dfg-2 (the sink and the vulnerable operation), and Lyso-
cfg-2 (the sink and a function call site, with the middle in the
sequence being selected). Overall, Lyso-dfg-2 demonstrates
improvements of 10.86% and 35.93% compared to Lyso-
cfg-2 and Lyso-1, respectively. These results suggest that
incorporating additional steps, whether a DFG or CFG step,
enhances the effectiveness of bug verification compared to
relying solely on the sink. Furthermore, a vulnerable operation
of a DFG step is more effective than a function call site of a
CFG step in verifying bugs.

How do the seed scheduling and the power scheduling
affect Lyso in verifying bugs? We assessed the influence of
seed scheduling and power scheduling on Lyso’s performance
by comparing it with two modified versions: Lyso-ss (power
scheduling disabled) and Lyso-ps (seed scheduling disabled).
Overall, Lyso outperforms Lyso-ss by a factor of 1.32x and
Lyso-ps by 4.34x. These results highlight the substantial ben-
efits of Lyso’s integrated scheduling strategies over the use of
either strategy alone. Moreover, the results indicate that seed
scheduling plays a more critical role than power scheduling
in enhancing bug verification.

7.5 Detecting New Vulnerabilities

We investigated the feasibility of using Lyso to automati-
cally verify static analysis results generated by CodeQL [16].
A summary of the results is presented in Table 4. In total,
static analysis identified 2,038 alarms related to security bugs,
and Lyso successfully discovered 18 new vulnerabilities. The
distribution of alarm types across the tested programs is illus-
trated in Figure 10.



UBI

58%

OOB
19%

IO

12%

ML

10%
Others

1%

Libsndfile

OOB
37%

IO
33%

UBI
10%

NPD

10%

ML

3%
Others

7%

GPAC

OOB

60%

IO
18%

NPD

11%

UBI

7%
Others

4%

Poppler

OOB

66%

IO
16%

NPD

16%Others
2%

Xpdf

FIGURE 10: Proportions of different types of alarms. OOB: Out of
Bound, IO: Integer Overflow, ML: Memory Leak, UBI: Use Before
Initialization, NPD: Null Pointer Dereference.

Each program was compiled with AddressSanitizer (Asan)
[33] and MemorySanitizer (Msan) [34]. Given the large num-
ber of alarms, Lyso was executed for 72 hours per program.
Overall, 35 out of 75 alarms in Libsndfile, 235 out of 856 in
GPAC, 150 out of 809 in Poppler, and 68 out of 298 in Xpdf
were fully followed after 72 hours. We then compared the
crashes reported by Asan and Msan to the promising paths
identified by static analysis. Our findings indicate that 15
out of the 18 bugs were triggered along the paths identified
by static analysis, which Lyso successfully verified. For in-
stance, CodeQL identified a memory leak bug in Libsndfile,
generating a path from the source function, psf_allocate
at sndfile.c:362, to the sink function, psf_open_file at
sndfile.c:436. A comparison of the backtrace confirmed
alignment with the path generated by CodeQL, validating
Lyso’s effectiveness.

Additionally, Lyso triggered three previously unreported
vulnerabilities: CVE-2024-7866, issue-1508, and issue-1509.
Although these vulnerabilities were not directly reported by
CodeQL, we observed that some reported alarms were located
within the same functions as these vulnerabilities. We hypoth-
esize that these alarms, which shared a common sink function
with the vulnerabilities, enabled Lyso’s overlap metric to pri-
oritize seeds targeting these functions. This prioritization
likely increased the likelihood of successfully triggering the
vulnerabilities.

8 Discussion

8.1 The Generality of Lyso
Lyso’s critical steps pattern, outlined in Table 1, is designed
for broad applicability. Extending Lyso to other bug categories
requires only the definition of new rules to identify vulner-
able operations. For example, in detecting missing security
check bugs [35], the vulnerable operation corresponds to the
step where a security check is bypassed. Additionally, Lyso

FIGURE 11: A Use-After-Free alarm detected in Jasper by Coverity.

can integrate with static analysis tools like Coverity [1] and
Infer [15]. To demonstrate this, we conducted case studies
where Lyso verified alarms generated by these tools.

Coverity. Lyso was applied to verify a Use-After-Free
(UAF) alarm in Jasper flagged by Coverity, as illustrated
in Figure 11. Coverity identifies the sink inside the
jas_tvparser_destroy function at mif_code.c:587, where a
previously freed pointer is accessed. Due to space constraints,
details of the variable tvp’s allocation and preceding steps
(prior to line 572) are omitted. Our analysis identifies three
function call sites: the allocation of tvp, the call sites at line
573, and the call site at line 587. These were used as CFG
steps. The vulnerable operation is identified as the free op-
eration within the jas_tvparser_destroy function. After 24
hours of fuzzing, we analyzed the root cause of the crash by
examining the backtrace. Lyso triggered the crash approxi-
mately four hours after fuzzing. The crash occurred due to
a free operation at mif_code.c:587 being executed after the
same pointer had already been freed at mif_code.c:573, con-
firming a double-free bug (a specific type of UAF bug). This
backtrace matched the path identified by Coverity.

Infer. Lyso was also applied to verify a null pointer deref-
erence alarm (Figure 13) in Jasper flagged by Infer. Infer
identified the sink at jas_image:777, where the image object
could potentially be null and is dereferenced at this loca-
tion. Our analysis collects four function call sites: call to
jas_image_copy function, and call sites at lines 213, 190, and
214. The vulnerable operation is identified at line 191 where
jas_image_create0 return NULL. No crashes related to the
sink were observed after 24 hours of testing. We manually



confirmed this as a true positive alarm, but triggering the bug
would require the fuzzer to craft an extremely large image
object, causing the system to run out of memory.

8.2 Threats to Validity

To prevent false positives from interfering with true positive
verification, we excluded false positives from our main eval-
uation. A potential question is whether false positive alarms
should also be included. Lyso, guided by promising paths
from static analysis, focuses on alarms likely to lead to real
vulnerabilities. False positive alarms, however, cause Lyso
to waste resources attempting to verify alarms that cannot
result in a definitive outcome (e.g., a crash). This limitation
also affects other DGF tools. Furthermore, as shown in real-
world testing scenarios (§7.5), Lyso successfully verifies true
positive alarms even when false positives are present.

CodeQL [16] is used to derive promising paths in our main
evaluation. A potential question is why other static analysis
tools were not used. The reason is that CodeQL’s ability to
define custom source-sink queries provides greater accuracy
and flexibility, especially when source and sink locations are
available. This is especially useful for the Magma benchmark,
where sink information and vulnerable variables are avail-
able. More importantly, our work does not aim to generate
promising paths but to demonstrate that, given such paths,
Lyso significantly improves the verification of true positive
alarms.

8.3 Limitations

In Lyso, five CFG steps and three DFG steps were empirically
chosen as the optimal balance between providing effective
guidance and minimizing overhead. As demonstrated in §7.4,
using fewer steps offers limited guidance, which may fail to
sufficiently direct the search toward the sink. Conversely, in-
corporating more steps increases search overhead, potentially
leading to diminishing returns. However, determining the opti-
mal number of steps remains an open research question, as the
ideal balance may vary depending on the program complexity,
the nature of the alarms, and the underlying static analysis
tool.

9 Related Work

In addition to prior work on DGF (§2.2), we review related
work that enhances DGF by employing pruning techniques
that are orthogonal to Lyso’s methodology. Beacon [36] uses
static analysis to identify unreachable code regions and inserts
assertion checks to terminate executions that fail to meet
the preconditions for reaching the targets. SieveFuzz [37]
proposes a dynamic technique to terminate the unreachable
paths at runtime. SelectFuzz [22] and DAFL [38] leverage

static analysis to selectively instrument only data- and control-
dependent code regions relevant to target sites.

Apart from DGF, several other dynamic methods have been
proposed to address and verify true positive alarms from
static analysis reports. Maria Christakis et al. [39] utilized
statements corresponding to the annotations generated by the
static analyzer to guide dynamic symbolic execution (DSE) in
verifying potential vulnerable paths and alarms. To mitigate
the substantial time and computational resources required by
DSE, FuzzSlice [40] focuses fuzzing efforts solely on the
function containing the warning, aiming to reduce possible
false positives. However, by replacing entire-program fuzzing
with function-level fuzzing, FuzzSlice faces the issue of false
positives due to the lack of runtime context for each vulnera-
ble function.

Various other methods have been developed to prune false
alarms and identify true bugs. Wang et al. [41] conducted a
systematic evaluation of features proposed in the literature and
identified “Golden Features” as the most critical for detecting
actionable static warnings. Yang et al. [42] also propose the
use of machine learning and deep learning techniques, such
as SVM, LLM, which have proven effective in detecting true
bugs. However, these methods, which rely on learning features
to identify these false positives, may miss or misclassify cases
involving intricate control flow and data flow dependencies. In
contrast, DGF uses dynamic execution to guide the analysis,
allowing it to delve deeper into complex paths and more
effectively uncover true bugs.

10 Conclusion

In conclusion, Lyso effectively addresses the critical chal-
lenge of verifying true positives from static analysis tools.
Its multi-target, multi-step guided fuzzing approach, which
utilizes promising paths and alarm correlation, significantly
improves existing techniques in static analysis results verifi-
cation. Our evaluation against the state-of-the-art (directed)
fuzzers demonstrates Lyso’s superior performance, achieving
an average speedup of 12.17x in verifying multiple alarms.
Additionally, Lyso has proven its practical usefulness by dis-
covering eighteen new vulnerabilities in real-world appli-
cations with the aid of a static analysis tool. This research
underscores Lyso’s potential to strengthen software security
and improve the usability of static analysis.

11 Acknowledgment

We would like to thank the anonymous reviewers for
their feedback and suggestions. Wenjia Zhao was sup-
ported by the National Natural Science Foundation of China
(62302388) and the China Postdoctoral Science Foundation
(2023M742793). All opinions expressed in this paper are
solely those of the authors.



References

[1] “Coverity.” [Online]. Available: https://scan.coverity.
com/

[2] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge,
“Why don’t software developers use static analysis tools
to find bugs?” in 2013 35th International Conference on
Software Engineering (ICSE). IEEE, 2013, pp. 672–
681.

[3] M. Alfadel, D. E. Costa, E. Shihab, and B. Adams, “On
the discoverability of npm vulnerabilities in node. js
projects,” ACM Transactions on Software Engineering
and Methodology, vol. 32, no. 4, pp. 1–27, 2023.

[4] M. Nadeem, B. J. Williams, and E. B. Allen, “High
false positive detection of security vulnerabilities: a case
study,” in Proceedings of the 50th Annual Southeast
Regional Conference, 2012, pp. 359–360.

[5] H. Kim, M. Raghothaman, and K. Heo, “Learning prob-
abilistic models for static analysis alarms,” in Proceed-
ings of the 44th International Conference on Software
Engineering, 2022, pp. 1282–1293.

[6] K. Julisch and M. Dacier, “Mining intrusion detection
alarms for actionable knowledge,” in Proceedings of
the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2002, pp. 366–
375.

[7] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler, “Cor-
relation exploitation in error ranking,” ACM SIGSOFT
Software Engineering Notes, vol. 29, no. 6, pp. 83–93,
2004.

[8] M. Raghothaman, S. Kulkarni, K. Heo, and M. Naik,
“User-guided program reasoning using bayesian infer-
ence,” in Proceedings of the 39th ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, 2018, pp. 722–735.

[9] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roy-
choudhury, “Directed greybox fuzzing,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2329–2344.

[10] M. Boehme, C. Cadar, and A. Roychoudhury, “Fuzzing:
Challenges and reflections.” IEEE Softw., vol. 38, no. 3,
pp. 79–86, 2021.

[11] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and
Y. Liu, “Hawkeye: Towards a desired directed grey-box
fuzzer,” in Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security,
2018, pp. 2095–2108.

[12] G. Lee, W. Shim, and B. Lee, “Constraint-guided di-
rected greybox fuzzing,” in 30th USENIX Security Sym-
posium (USENIX Security 21), 2021.

[13] M.-D. Nguyen, S. Bardin, R. Bonichon, R. Groz, and
M. Lemerre, “Binary-level directed fuzzing for use-after-
free vulnerabilities,” in 23rd International Symposium
on Research in Attacks, Intrusions and Defenses (RAID
2020), 2020, pp. 47–62.

[14] “Clang static analyzer,” https://clang-analyzer.llvm.org/.

[15] “Infer.” [Online]. Available: https://fbinfer.com/

[16] “Codeql.” [Online]. Available: https://codeql.github.
com/

[17] K. Heo, M. Raghothaman, X. Si, and M. Naik, “Con-
tinuously reasoning about programs using differential
bayesian inference,” in Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, 2019, pp. 561–575.

[18] A. Hazimeh, A. Herrera, and M. Payer, “Magma: A
ground-truth fuzzing benchmark,” Proceedings of the
ACM on Measurement and Analysis of Computing Sys-
tems, vol. 4, no. 3, pp. 1–29, 2020.

[19] “American fuzzy loop.” [Online]. Available: https:
//lcamtuf.coredump.cx/afl/

[20] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse,
“AFL++: Combining incremental steps of fuzzing re-
search,” in 14th USENIX Workshop on Offensive Tech-
nologies (WOOT 20), 2020.

[21] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and
R. Beyah, “MOPT: Optimized mutation scheduling for
fuzzers,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 1949–1966.

[22] C. Luo, W. Meng, and P. Li, “Selectfuzz: Efficient di-
rected fuzzing with selective path exploration,” in 2023
IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 2022, pp. 1050–1064.

[23] H. Zheng, J. Zhang, Y. Huang, Z. Ren, H. Wang, C. Cao,
Y. Zhang, F. Toffalini, and M. Payer, “FISHFUZZ: Catch
deeper bugs by throwing larger nets,” in 32nd USENIX
Security Symposium (USENIX Security 23), 2023, pp.
1343–1360.

[24] H. Huang, P. Yao, H.-C. Chiu, Y. Guo, and C. Zhang,
“Titan: Efficient multi-target directed greybox fuzzing,”
in 2024 IEEE Symposium on Security and Privacy (SP).
IEEE Computer Society, 2023, pp. 59–59.

https://scan.coverity.com/
https://scan.coverity.com/
https://fbinfer.com/
https://codeql.github.com/
https://codeql.github.com/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/


[25] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida,
“Parmesan: Sanitizer-guided greybox fuzzing,” in 29th
USENIX Security Symposium (USENIX Security 20),
2020, pp. 2289–2306.

[26] F. E. Allen, “Control flow analysis,” ACM Sigplan No-
tices, vol. 5, no. 7, pp. 1–19, 1970.

[27] A. L. Davis and R. M. Keller, “Data flow program
graphs,” Computer, vol. 15, no. 02, pp. 26–41, 1982.

[28] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The
program dependence graph and its use in optimization,”
ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[29] Z. Du, Y. Li, Y. Liu, and B. Mao, “Windranger: a directed
greybox fuzzer driven by deviation basic blocks,” in
Proceedings of the 44th International Conference on
Software Engineering, 2022, pp. 2440–2451.

[30] “llvm.” [Online]. Available: https://llvm.org/

[31] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks,
“Evaluating fuzz testing,” in Proceedings of the 2018
ACM SIGSAC conference on computer and communica-
tions security, 2018, pp. 2123–2138.

[32] M. Schloegel, N. Bars, N. Schiller, L. Bernhard,
T. Scharnowski, A. Crump, A. Ale-Ebrahim, N. Bissantz,
M. Muench, and T. Holz, “Sok: Prudent evaluation prac-
tices for fuzzing,” in 2024 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 2024, pp.
137–137.

[33] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov, “AddressSanitizer: A fast address sanity
checker,” in 2012 USENIX annual technical conference
(USENIX ATC 12), 2012, pp. 309–318.

[34] E. Stepanov and K. Serebryany, “Memorysanitizer: fast
detector of uninitialized memory use in c++,” in 2015
IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO). IEEE, 2015, pp. 46–55.

[35] K. Lu, A. Pakki, and Q. Wu, “Detecting Missing-Check
bugs via semantic-and Context-Aware criticalness and
constraints inferences,” in 28th USENIX Security Sym-
posium (USENIX Security 19), 2019, pp. 1769–1786.

[36] H. Huang, Y. Guo, Q. Shi, P. Yao, R. Wu, and C. Zhang,
“Beacon: Directed grey-box fuzzing with provable path
pruning,” in 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 2022, pp. 36–50.

[37] P. Srivastava, S. Nagy, M. Hicks, A. Bianchi, and
M. Payer, “One fuzz doesn’t fit all: Optimizing directed
fuzzing via target-tailored program state restriction,” in

Proceedings of the 38th Annual Computer Security Ap-
plications Conference, 2022, pp. 388–399.

[38] T. E. Kim, J. Choi, K. Heo, and S. K. Cha, “DAFL:
Directed grey-box fuzzing guided by data dependency,”
in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 4931–4948.

[39] M. Christakis, P. Müller, and V. Wüstholz, “Guiding
dynamic symbolic execution toward unverified program
executions,” in Proceedings of the 38th International
Conference on Software Engineering, 2016, pp. 144–
155.

[40] A. Murali, N. Mathews, M. Alfadel, M. Nagappan, and
M. Xu, “Fuzzslice: Pruning false positives in static anal-
ysis warnings through function-level fuzzing,” in Pro-
ceedings of the 46th IEEE/ACM International Confer-
ence on Software Engineering, 2024, pp. 1–13.

[41] J. Wang, S. Wang, and Q. Wang, “Is there a" golden" fea-
ture set for static warning identification? an experimen-
tal evaluation,” in Proceedings of the 12th ACM/IEEE
international symposium on empirical software engi-
neering and measurement, 2018, pp. 1–10.

[42] X. Yang, J. Chen, R. Yedida, Z. Yu, and T. Menzies,
“Learning to recognize actionable static code warnings
(is intrinsically easy),” Empirical Software Engineering,
vol. 26, pp. 1–24, 2021.

[43] K. Lu and H. Hu, “Where does it go? refining indirect-
call targets with multi-layer type analysis,” in Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, 2019, pp. 1867–1881.

[44] S. H. Kim, C. Sun, D. Zeng, and G. Tan, “Refining indi-
rect call targets at the binary level.” in NDSS, 2021.

[45] L. O. Andersen, “Program analysis and specialization
for the c programming language,” 1994.

[46] P. Chen and H. Chen, “Angora: Efficient fuzzing by
principled search,” in 2018 IEEE Symposium on Security
and Privacy (SP). IEEE, 2018, pp. 711–725.

https://llvm.org/


A Appendix

A.1 Motivating Example

To demonstrate how Lyso improves inter-target and intra-
target directness in real-world programs, we present a mo-
tivating example, as shown in Figure 12. The example is a
modified version of the tiffcp program from the Magma bench-
mark. For clarity and conciseness, we have omitted code that
is not directly relevant to the bugs.

1 typedef struct{
2 ...
3 uint16_t td_transferfunction[3];
4 ...
5 } TIFFDirectory
6

7 int main(){
8 _TIFFVSetField();
9 ...

10 if (/* Unsuccessful handle image*/)
11 TIFFFlush();
12 }
13

14 int _TIFFVSetField(){
15 ...
16 case TIFFTAG_TRANSFERFUNCTION:
17 v = (td_samplesperpixel - td_extrasamples) > 1 ? 3 :

1; // A DFG step to TIF009
18 for (i = 0; i < v; i++)
19 _TIFFsetShortArray(&td->td_transferfunction[i],

va_arg(ap, uint16_t*), 1U <<
td_bitspersample);

20 }
21

22 int TIFFFlush() {
23 ...
24 TIFFReDir(); // A CFG step to TIF005, 006, 009
25 }
26

27 int TIFFReDir(){
28 ...
29 TIFFWDirSec(); // A CFG step to TIF005, 006, 009
30 }
31

32 int TIFFWDirSec(){
33 ...
34 (*tif->tif_close)(); // A CFG step to TIF005, 006
35 ...
36 TIFFWDTT(); // A CFG step to TIF009
37 }
38

39 int TIFFWDTT() {
40 ...
41 if (td_samplesperpixel - td_extrasamples == 3)
42 assert(&td->td_transferfunction[2] == NULL); //

TIF009 sink
43 }
44

45 void LogLuvClose() {
46 ...
47 assert(sp->encoder_state == 0); // TIF005 sink
48 }
49

50 void PixarLogClose(){
51 ...
52 assert(sp->state & PLSTATE_INIT == 0); // TIF006 sink
53 }

FIGURE 12: A motivating example for Lyso’s improvements in inter-
target and intra-target directness.

A.2 Distance Measurement
Graph construction. To measure the distance from the ex-
ecution trace to a given target basic block, Lyso first builds
the Call Graph (CG) and CFG, which are then merged into an
ICFG. However, indirect calls present challenges in building
an accurate ICFG [43], [44], leading to incomplete CG edges
and imprecise distance calculation. To address this, Lyso em-
ploys a type-based analysis [43], which is more scalable than
points-to analysis [45] used in other DGF tools [11, 22, 38].
This scalability makes Lyso suitable for large applications,
such as OpenSSL and PHP.
Distance Table Precomputation. To calculate the short-
est distance for an execution to a target basic block during
fuzzing, Lyso pre-computes a table that records the shortest
distance between all pairs of basic blocks within the program.
To further optimize performance, this table is implemented
using a hash map, allowing constant time lookups and mini-
mizing query overhead. We use bb and bb′ to represent any
two basic blocks for which the distance needs to be calculated.
We assume that bb belongs to function f and bb′ belongs to
function f ′, namely ∀bb, bb′, bb ∈ f , bb′ ∈ f ′. To accurately
calculate the distance between two targets, an inter-procedural
analysis approach is adopted when constructing the control
flow graph. d(bb, bb′) represents the inter-procedural basic
block distance calculated between two basic blocks. The dis-
tance calculation process is divided into four distinct phases:

• Basic Block Distance in Function:

bbd(bbi,bb j) =


0 bbi = bb j,

min
bbs∈succ(bbi)

bbd(bbs,bb j)+1 bbi→ bb j,

∞ otherwise.

(4)

• Edge Weight for Function Distance:

weight( f , f ′) = min
bb f ′∈callsite( f , f ′)

bbd(entry( f ), bb f ′ ) (5)

• Function Distance:

f d( f , f ′) =


0 f = f ′,

min
fs∈succ( f )

f d( fs, f ′)+weight( f , fs) f → f ′,

∞ otherwise.

(6)

• Inter-procedural Basic Block Distance:

d(bb,bb′) =



bbd(bb,bb′) f = f ′,

f d( f , f ′)+bbd(bb,callsite( f , f ′))

+bbd(entry( f ′),bb′)
f → f ′,

∞ otherwise.

(7)

Here, in Equation 4 and Equation 6, the succ function re-
turns all intermediate successors. In addition, in Equation 5,



TABLE 5: We evaluated TTR and SR for targets in Magma. Time represents the average TTR in ten runs. SR represents success rate. T.O
denotes the fuzzer fails to reach the target within 24 hours. Ratio measures the improvement ratio achieved by Lyso compared to other fuzzers.
∅ indicates deployment was not feasible.

Lyso Titan FishFuzz AFLGo SelectFuzz AFL MOPT AFL++Program & Bug ID
Time SR Time Ratio SR Time Ratio SR Time Ratio SR Time Ratio SR Time Ratio SR Time Ratio SR Time Ratio SR

tiff_fuzzer

TIF001 21648 10/10 >78525 >3.63x 1/10 >40952 >1.89x 9/10 >49181 >2.27x 6/10 >47033 >2.17x 8/10 >24686 >1.14x 9/10 >52450 >2.42x 6/10 >77408 >3.57x 2/10
TIF002 23310 10/10 >64286 >2.76x 4/10 33787 1.45x 10/10 28220 1.21x 10/10 24214 1.04x 10/10 >18451 >0.79x 9/10 27766 1.19x 10/10 10786 0.46x 10/10
TIF008 >47959 6/10 >78104 ∼ 1.63x 1/10 >62476 ∼1.30x 6/10 >43044 ∼0.90x 7/10 T.O. ∼1.80x 0/10 >28273 ∼0.59x 8/10 >64803 ∼1.35x 3/10 >83161 ∼1.73x 2/10
TIF010 330 10/10 >21555 >65.32x 8/10 1780 5.39x 10/10 536 1.62x 10/10 374 1.13x 10/10 230 0.70x 10/10 450 1.36x 10/10 1991 6.03x 10/10

tiffcp

TIF001 26353 10/10 T.O. >3.28x 0/10 >77358 >2.94x 2/10 >78936 >3.00x 5/10 >64484 >2.45x 5/10 >60700 >2.30x 4/10 >65602 >2.49x 4/10 >73927 >2.81x 3/10
TIF002 40242 10/10 >54354 >1.35x 5/10 >85568 >2.13x 1/10 >53575 >1.33x 7/10 >43268 >1.08x 7/10 >63196 >1.57x 5/10 >73442 >1.83x 3/10 >36871 >0.92x 8/10
TIF005 >80902 2/10 T.O. ∼1.07x 0/10 T.O. ∼ 1.07x 0/10 T.O. ∼1.07x 0/10 T.O. ∼1.07x 0/10 T.O. ∼1.07x 0/10 T.O. ∼1.07x 0/10 1321 <0.016x 10/10
TIF006 37151 10/10 >51135 >1.38x 6/10 >54004 >1.45x 8/10 >31366 >0.84x 9/10 19039 0.51x 10/10 24526 0.66x 10/10 >32554 >0.88x 9/10 2622 0.07x 10/10
TIF008 >84667 1/10 T.O. ∼1.02x 0/10 >81514 ∼0.96x 1/10 T.O. ∼1.02x 0/10 T.O. ∼1.02x 0/10 >58705 ∼0.69x 3/10 >74964 ∼0.89x 2/10 >72169 ∼0.85x 3/10
TIF009 1910 10/10 >27513 >14.40x 7/10 21324 11.16x 10/10 >36669 >19.20x 9/10 3486 1.83x 10/10 14966 7.84x 10/10 >24536 >12.85x 9/10 >27123 >14.20x 9/10
TIF010 673 10/10 3646 5.42x 10/10 7998 11.88x 10/10 7302 10.85x 10/10 >9702 >14.42x 9/10 1031 1.53x 10/10 1155 1.72x 10/10 1987 2.95x 10/10

lua LUA002 7761 10/10 >76227 >9.82x 2/10 18079 2.33x 10/10 >38092 >4.91x 9/10 20531 2.65x 10/10 >19306 >2.49x 9/10 21175 2.73x 10/10 24841 3.20x 10/10
LUA004 5794 10/10 >67860 >11.71x 3/10 10297 1.78x 10/10 14644 2.53x 10/10 10117 1.75x 10/10 6689 1.15x 10/10 13052 2.25x 10/10 22753 3.93x 10/10

libxml2_fuzzer XML002 >75190 2/10 T.O. ∼1.15x 0/10 >59914 ∼0.80x 5/10 T.O. ∼1.15x 0/10 T.O. ∼1.15x 0/10 >79964 ∼1.06x 2/10 T.O. ∼1.15x 0/10 T.O. ∼1.15x 0/10

xmllint XML002 >78131 1/10 T.O. ∼1.11x 0/10 >74967 ∼0.96x 2/10 T.O. ∼1.11x 0/10 T.O. ∼1.11x 0/10 T.O. ∼1.11x 0/10 >81925 ∼1.05x 1/10 >83195 ∼1.06x 1/10
XML011 >73714 2/10 T.O. ∼1.17x 0/10 >78303 ∼1.06x 1/10 T.O. ∼1.17x 0/10 74512 ∼1.01x 3/10 >80134 ∼1.09x 1/10 >72765 ∼0.99x 3/10 T.O. ∼1.17x 0/10

pdf_fuzzer PDF004 29732 10/10 T.O. >2.91x 0/10 >78070 >2.63x 1/10 T.O. >2.91x 0/10 >77973 >2.62x 2/10 >76610 >2.58x 2/10 >83461 >2.81x 1/10 >67600 >2.27x 3/10
PDF018 332 10/10 T.O. >260.24x 0/10 T.O. >260.24x 0/10 >76927 >231.70x 2/10 1373 4.14x 10/10 1556 4.69x 10/10 2725 8.21x 10/10 25728 77.49x 10/10

pdftoppm PDF004 >69562 4/10 T.O. ∼1.24x 0/10 T.O. ∼1.24x 0/10 T.O. ∼1.24x 0/10 T.O. ∼1.24x 0/10 T.O. ∼1.24x 0/10 >75098 ∼1.08x 4/10 >70230 ∼1.01x 3/10
PDF018 480 10/10 T.O. >180.00x 0/10 T.O. >180.00x 0/10 >69664 >145.13x 2/10 1145 2.39x 10/10 1377 2.87x 10/10 2579 5.37x 10/10 23699 49.37x 10/10

pdfimages PDF004 335 10/10 T.O. >257.91x 0/10 T.O. >257.91x 0/10 >40565 >121.09x 9/10 446 1.33x 10/10 4176 12.47x 10/10 372 1.11x 10/10 16984 50.70x 10/10

sqlite3_fuzz

SQL003 >73470 2/10 ∅ ∅ ∅ >77541 ∼1.06x 2/10 >62330 ∼0.85x 5/10 T.O. ∼1.18x 0/10 >47363 ∼0.64x 7/10 T.O. ∼1.18x 0/10 >63589 ∼0.87x 7/10
SQL006 >46395 6/10 ∅ ∅ ∅ 17769 <0.38x 10/10 >41224 ∼0.89x 8/10 >63607 ∼1.37x 4/10 >19089 ∼0.41x 9/10 >79231 ∼1.71x 2/10 >58147 ∼1.25x 6/10
SQL009 728 10/10 ∅ ∅ ∅ 1556 2.14x 10/10 783 ∼1.08x 10/10 339 0.47x 10/10 387 0.53x 10/10 1990 2.73x 10/10 1563 2.15x 10/10
SQL011 >73188 2/10 ∅ ∅ ∅ T.O. ∼1.18x 0/10 >72694 ∼0.99x 2/10 T.O. ∼1.18x 0/10 T.O. ∼1.18x 0/10 T.O. ∼1.18x 0/10 T.O. ∼1.18x 0/10
SQL012 36481 10/10 ∅ ∅ ∅ >40891 >1.12x 8/10 25672 ∼0.70x 10/10 25866 0.71x 10/10 8947 0.25x 10/10 T.O. >2.37x 0/10 26532 0.73x 10/10
SQL013 >73586 2/10 ∅ ∅ ∅ >48183 ∼0.65x 7/10 >54165 ∼0.74x 6/10 >68125 ∼0.93x 3/10 >35258 ∼0.48x 8/10 T.O. ∼1.17x 0/10 >75530 ∼1.03x 4/10
SQL014 1678 10/10 ∅ ∅ ∅ 1994 1.19x 10/10 3017 1.80x 10/10 1029 0.61x 10/10 400 0.24x 10/10 15146 9.03x 10/10 3236 1.93x 10/10
SQL018 239 10/10 ∅ ∅ ∅ 1187 4.97x 10/10 513 2.15x 10/10 239 1.00x 10/10 266 1.11x 10/10 13015 54.46x 10/10 1460 6.11x 10/10
SQL020 >54351 6/10 ∅ ∅ ∅ >40687 ∼0.75x 8/10 >59314 ∼1.09x 5/10 >67273 ∼1.24x 3/10 >30756 ∼0.57x 8/10 T.O. ∼1.59x 0/10 >63171 ∼1.16x 5/10

0.72 ∼39.45x 0.22 ∼25.47x 0.54 ∼18.88x 0.57 ∼1.89x 0.58 ∼1.83x 0.68 ∼4.34x 0.52 ∼8.05x 0.65

TABLE 6: Empirical analysis of vulnerable operations derived from CodeQL rules. The "CodeQL Rules" column lists references corresponding
to specific CodeQL queries.

Bug Type CWE ID CodeQL Rules The Vulnerable Operation

Integer Overflow (IO) CWE-190, CWE-192 1, 2 integer arithmetic
Out of Bound (OOB) CWE-119, CWE-120 1 index assignment
Use after free (UAF) CWE-416 1 free operation
NULL Pointer Dereference (NPD) CWE-476 1 pointer assigned to null
Use Before Initialization (UBI) CWE-457 1 conditional initialization
Divide By Zero (DBZ) CWE-369 1 value assigned to zero

the callsite function returns all call sites in the caller func-
tion f that leads to the callee function f ′. The entry function
return the entry basic block of f . In Equation 7, the inter-
procedural basic block level distance considers two scenarios.
If both basic blocks bb and bb′ are within the same function,
namely f = f ′, the distance is simply the intra-procedural
basic block distance between these two blocks. However,
if bb and bb′ are in different functions, and f ′ is reachable
from f , the total distance is calculated as the sum of three
components: f d( f , f ′), which is the inter-procedural function
distance between the two functions; bbd(bb,callsite( f , f ′)),
which represents the intra-procedural basic block level dis-
tance from bb to the call site basic block within f that leads
to f ′; and bbd(entry( f ′),bb′), which is the intra-procedural
basic block level distance from the entry block of f ′ to bb′.

A.3 Configurations
Our fuzzer selection criteria are as follows: For STSS-DGF,
we included AFLGo [9]. For MTSS-DGF, we selected Parme-
san, FishFuzz, and Titan [23–25]. We excluded Parmesan
from Table 2 because it does not support non-deterministic
mode. However, its results are provided separately in §A.5.
To evaluate the effectiveness of Lyso’s multi-target, multi-
step guidance, we compared it with SelectFuzz [22], which

utilizes selective instrumentation, an orthogonal but consid-
ered effective approach. Although we would like to include
STMS-DGF tools like CAFL [12] and UAFUZZ [13] in our
comparisons, CAFL was unavailable, and UAFUZZ, which
is specifically designed for UAF bugs in binary analysis, was
incompatible with the Magma [18] benchmark. Additionally,
we included AFL++ [20] and MOPT [21], as they are the
top two coverage-guided fuzzers in the Magma benchmark.
AFL [19] was used as the baseline for all fuzzers.

To ensure a fair comparison, we ran all fuzzers in non-
deterministic mode, as AFL++, MOPT, and Titan use this
mode by default. For the other fuzzers, we enabled non-
deterministic mode using the -d flag. Additionally, for AFL++,
we activated the cmplog feature, which is critical for its
bug-finding performance. The detailed configuration of each
fuzzer used in our evaluation is summarized in Table 7.

In our evaluation, we used the state-of-the-art Magma
benchmark [18]. Since Magma does not natively support
AFLGo [9], FishFuzz [23], or SelectFuzz [22], we extended
the Magma scripts to integrate these tools. Additionally, we
made modifications to the source code to ensure compatibility
with Magma. Specifically, we made the following changes:

• SelectFuzz, based on LLVM 4.0.0, required modifica-
tions to the LLVM source code to ensure compatibility

https://github.com/github/codeql/blob/main/cpp/ql/src/Security/CWE/CWE-190/IntegerOverflowTainted.ql
https://github.com/github/codeql/blob/main/cpp/ql/src/Security/CWE/CWE-190/ArithmeticTainted.ql
https://github.com/github/codeql/blob/main/cpp/ql/src/Security/CWE/CWE-120/UnboundedWrite.ql
https://github.com/github/codeql/blob/main/cpp/ql/src/Critical/UseAfterFree.ql
https://github.com/github/codeql/blob/main/cpp/ql/src/Critical/MissingNullTest.ql
https://github.com/github/codeql/blob/main/cpp/ql/src/Security/CWE/CWE-457/ConditionallyUninitializedVariable.ql
https://github.com/github/codeql/blob/main/cpp/ql/src/experimental/Security/CWE/CWE-369/DivideByZeroUsingReturnValue.ql


(sigaltstack error) with Ubuntu 18.04.

• FishFuzz, originally designed for sanitizer-instrumented
targets, was adapted for use with Magma by modify-
ing the has_sanitizer_instrumentation function in the
afl-llvm-pass.so.cc file, following guidance from the
author of FishFuzz.

For certain programs where Titan and SelectFuzz were
incompatible, we encountered the following issues:

• SelectFuzz’s libDFUZZPASS.so caused a segmentation
fault when run on PHP and OpenSSL.

• Titan encountered several issues during testing. First, we
fixed a linking error when running Titan on SQLite3
and submitted a patch to the authors, but the instrumen-
tation still failed to provide coverage feedback. Sec-
ond, Titan could not run on OpenSSL because its static
analysis failed to generate the bug_conf_cluster file.
Third, when running on PHP, its static analysis used over
88.7GB of memory, exceeding the 96GB RAM limit of
our machine. We reported these issues to the Titan team,
but no resolution has been provided to date.

TABLE 7: Arguments and versions of each fuzzer in the evaluation

Fuzzer Arguments Version

Lyso -d -
AFL [19] -d v2.57b

AFLGo [9] -d fa125da
SelectFuzz [22] -d 6da35e0
FishFuzz [23] -d 862df0f

Titan [24] -d a625968
MOPT [21] -L a9a5dc5
AFL++ [20] -d -c cmplog 458eb08

Parmesan [25] - fac5801

A.4 Overhead
To assess the potential overhead introduced by Lyso, we com-
pared its performance with other state-of-the-art DGF tools by
analyzing the number of executions, as shown in Table 8. Lyso
demonstrates a performance advantage, executing 2.52x more
test cases than the MTSS-DGF tool Titan. This is because the
dynamic taint analysis used in Titan can significantly slow
down its performance.

Additionally, Lyso outperforms another MTSS-DGF tool,
FishFuzz, which employs function-level distance guidance.
Lyso achieves 19% more executions while providing finer-
grained basic block-level guidance. This performance gain is
primarily due to Lyso’s step instrumentation approach (§4.2).
Unlike full instrumentation, which includes all basic blocks,
Lyso selectively instruments only the reachable basic blocks

for critical steps. Our experiment demonstrates that step instru-
mentation achieves an average speed improvement of 2.86x
compared to full instrumentation.

However, we observed that SelectFuzz and the STSS-DGF
tool AFLGo achieved slightly better results compared to Lyso,
with 1.37x and 1.12x more executions, respectively. This is be-
cause they do not utilize the trace tracking mechanism imple-
mented in Lyso. While this reduces computational overhead,
it results in a trade-off by increasing the Time-to-Exposure
(TTE).
TABLE 8: Execution counts for different fuzzers across programs
(in scientific notation). ∅ indicates deployment was not feasible.

Program Lyso Titan FishFuzz AFLGo SelectFuzz

libpng_fuzzer 1.67×109 2.31×108 1.36×109 2.67×109 2.29×109

sndfile_fuzzer 1.60×108 1.27×108 9.88×107 1.16×108 9.88×107

tiff_fuzzer 5.92×108 1.00×108 5.00×108 2.55×108 6.72×108

tiffcp 1.63×108 1.28×108 1.33×108 1.34×108 1.65×108

lua 9.49×107 9.28×107 8.81×107 8.02×107 1.17×108

libxml2_fuzzer 1.69×108 5.69×107 4.29×108 3.05×108 3.68×108

xmllint 6.93×107 6.42×107 9.65×107 8.60×107 1.23×108

pdf_fuzzer 1.28×107 5.20×106 5.20×106 6.24×106 1.30×107

pdftoppm 1.38×107 1.32×107 6.18×106 6.82×106 1.42×107

pdfimages 2.14×107 9.25×106 9.25×106 1.17×107 2.25×107

sqlite3_fuzz 1.24×108 ∅ 1.67×108 1.96×108 5.08×108

asn1 2.17×107 ∅ 1.06×107 9.31×106 ∅
x509 6.17×108 ∅ 3.65×108 5.05×108 ∅
server 1.97×107 ∅ 8.56×106 6.10×106 ∅
exif 6.38×108 ∅ 3.96×108 5.05×108 ∅

Average 2.92×108 0.83×108 2.45×108 3.26×108 4.00×108

A.5 Lyso vs. Parmesan
We compared Lyso with Parmesan and evaluated their TTE
in Magma. We excluded SQLite3, Poppler, OpenSSL, and
PHP from the comparison because Parmesan cannot be com-
piled with those programs. For most targets, Lyso outper-
forms Parmesan, as detailed in Table 9. However, we also
noticed that for PNG006 and XML003, Parmesan achieved
an improvement of two orders of magnitude. This is because
Parmesan is based on Angora [46], which employs effective
dynamic taint analysis to mutate the corresponding inputs
related to path constraints that lead to the bug, rather than
relying on random mutation as in Lyso. A potential future
direction for Lyso is to incorporate dynamic taint analysis to
enhance its performance for cases where path constraints are
hard to solve by random mutations.



TABLE 9: TTE comparisons between Lyso and Parmesan.

Lyso ParmesanProgram & Bug ID
Time Time

libpng_fuzzer

PNG001 T.O. T.O.
PNG006 >78257 52
PNG007 2644 T.O.

sndfile_fuzzer

SND001 36 T.O.
SND006 309 T.O.
SND007 38 T.O.
SND017 26 T.O.
SND020 46 T.O.
SND024 39 T.O.

tiff_fuzzer

TIF002 28035 T.O.
TIF008 >47993 T.O.
TIF012 164 > 64148
TIF014 429 T.O.

tiffcp

TIF002 >52237 T.O.
TIF005 >80902 >26875
TIF006 37145 >18256
TIF008 >84667 T.O.
TIF009 1900 T.O.
TIF012 512 > 60470
TIF014 3928 >52391

lua LUA004 5816 T.O.

libxml2_fuzzer

XML001 >56243 >69775
XML002 >75190 T.O.
XML003 17662 60
XML009 1682 > 50869
XML012 >78619 T.O.

xmllint XML001 >48474 T.O.
XML002 >78131 T.O.
XML009 8879 >80064

TABLE 10: P-values of the Mann-Whitney U test for the experiments
presented in Table 2.

Program & Bug ID Titan FishFuzz AFLGo SelectFuzz AFL MOPT AFL++

libpng_fuzzer
PNG001 1.00 1.00 0.97 1.00 0.86 0.86 1.00
PNG006 0.18 0.18 0.18 0.18 0.18 0.18 0.99
PNG007 <0.05 0.39 0.21 0.98 0.56 <0.05 <0.05

sndfile_fuzzer

SND001 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
SND006 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
SND007 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
SND017 <0.05 <0.05 <0.05 <0.05 <0.05 0.78 <0.05
SND020 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
SND024 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

tiff_fuzzer

TIF002 <0.05 <0.05 0.01 0.14 0.92 0.08 0.14
TIF008 0.01 0.21 0.42 <0.05 0.87 0.08 0.01
TIF012 <0.05 <0.05 0.96 0.78 0.95 0.01 <0.05
TIF014 <0.05 <0.05 0.010 <0.05 0.81 0.73 <0.05

tiffcp

TIF002 <0.05 <0.05 0.26 0.75 0.13 <0.05 0.018
TIF005 0.08 0.08 0.08 0.08 0.08 0.08 0.99
TIF006 0.21 0.12 0.71 0.96 0.89 0.71 0.99
TIF008 0.18 0.18 0.18 0.18 0.90 0.18 0.79
TIF009 <0.05 <0.05 <0.05 0.06 <0.05 <0.05 <0.05
TIF012 <0.05 <0.05 0.07 0.06 0.06 <0.05 0.13
TIF014 0.95 0.74 0.96 0.66 0.97 0.98 0.95

lua LUA004 <0.05 0.66 <0.05 <0.05 0.60 0.21 <0.05

libxml2_fuzzer

XML001 <0.05 <0.05 <0.05 <0.05 <0.05 0.48 0.99
XML002 0.08 0.92 0.08 0.08 0.48 0.08 0.08
XML003 <0.05 0.29 0.52 0.80 0.31 <0.05 0.99
XML009 <0.05 <0.05 0.31 0.58 0.99 0.99 0.96
XML012 0.08 0.08 0.84 0.48 0.99 0.91 0.48

xmllint
XML001 <0.05 0.07 0.23 0.60 0.97 0.74 0.15
XML002 0.18 0.71 0.18 0.18 0.71 0.50 0.50
XML009 0.39 0.45 0.93 0.81 0.99 0.99 0.99

pdf_fuzzer

PDF002 0.08 0.08 0.08 0.08 0.08 0.08 0.08
PDF004 0.08 0.08 0.08 0.08 0.29 0.08 0.08
PDF010 0.59 0.36 0.36 0.14 0.07 <0.05 <0.05
PDF011 0.34 0.08 0.34 0.62 0.08 0.71 0.34
PDF018 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
PDF019 0.08 0.08 0.08 0.08 0.29 0.08 0.48
PDF021 1.00 1.00 1.00 1.00 1.00 1.00 0.99

pdftoppm

PDF002 <0.05 <0.05 <0.05 <0.05 <0.05 0.13 <0.05
PDF006 1.00 1.00 1.00 1.00 1.00 1.00 0.97
PDF010 0.99 0.27 0.24 0.59 0.59 0.88 <0.05
PDF011 0.06 <0.05 0.30 <0.05 0.08 0.38 0.07
PDF018 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
PDF019 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

pdfimages

PDF002 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
PDF003 0.07 <0.05 0.52 <0.05 0.77 0.63 0.40
PDF008 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
PDF011 0.54 <0.05 <0.05 <0.05 0.19 0.94 0.33
PDF018 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
PDF019 <0.05 <0.05 0.08 <0.05 <0.05 0.86 <0.05
PDF021 0.18 0.18 0.71 0.50 0.50 0.18 0.98

sqlite3_fuzz

SQL002 ∅ <0.05 0.34 0.99 0.93 <0.05 0.06
SQL003 ∅ 0.50 0.50 0.18 0.50 0.18 0.18
SQL012 ∅ 0.97 0.93 0.67 0.99 0.08 0.81
SQL013 ∅ 0.98 0.98 0.86 0.99 1.00 0.97
SQL014 ∅ <0.05 <0.05 0.29 <0.05 <0.05 <0.05
SQL015 ∅ 0.97 0.86 0.86 0.97 1.00 1.00
SQL018 ∅ 0.37 0.052 0.93 0.94 <0.05 0.24
SQL020 ∅ 0.73 0.29 0.25 0.94 <0.05 0.34

asn1 SSL001 ∅ <0.05 <0.05 ∅ 0.11 <0.05 0.99
x509 SSL009 ∅ <0.05 <0.05 ∅ <0.05 <0.05 <0.05
server SSL020 ∅ <0.05 <0.05 ∅ <0.05 <0.05 <0.05

exif PHP004 ∅ <0.05 0.32 ∅ <0.05 0.96 <0.05
PHP009 ∅ <0.05 <0.05 ∅ <0.05 <0.05 <0.05

FIGURE 13: A null pointer dereference alarm detected in Jasper by Infer



B Ethics Considerations and Compliance with Open Science Policy

B.1 Ethics Considerations
The primary ethical consideration in our work is ensuring that the vulnerabilities we identify and the associated proof-of-concept
exploits are responsibly disclosed. We have followed standard practices for responsible disclosure by notifying the affected
parties of any vulnerabilities discovered during our experiments before any public release of the findings. This ensures that the
software vendors have the opportunity to address the vulnerabilities before they are exposed to the public. Additionally, our work
does not involve any experiments on human subjects, use of personal data, or other activities that could raise significant ethical
concerns.

B.2 Open Science Policy Compliance
In compliance with USENIX Security’s new open science policy, we commit to making our research results publicly available.
The source code for our tool, Lyso, as well as the datasets generated during our experiments, will be released under an open-
source license. This will allow other researchers and practitioners to replicate our findings, build upon our work, and further
the advancement of software security. We believe that making these resources available will contribute to the transparency and
reproducibility of research in the field of cybersecurity.

However, we recognize that there may be limitations regarding the release of certain details, especially concerning vulnera-
bilities that have not yet been fully mitigated by the affected vendors. In such cases, we will provide redacted versions of our
datasets or delay the release of certain information until it is safe to do so. Any deviations from complete transparency will be
clearly justified in our documentation, in alignment with the open science policy.

Overall, our commitment to open science aims to balance the need for transparency and reproducibility with the ethical
responsibility to protect software systems and users from potential harm.


	Introduction
	Background
	Alarms from Static Analysis
	Directed Greybox Fuzzing

	Motivation
	Prior Methods
	Motivating Example
	Overview

	Preprocessing
	Critical Step Identification
	Step Instrumentation
	Distance Table Precomputation

	Fuzzing
	Multi-target Multi-step Metrics
	Fuzzing Loop
	Seed Selection
	Power Scheduling

	Step Tracking
	Step Coverage Feedback
	Step-by-Step Guidance


	Implementation
	Evaluation
	Evaluation Setup
	Enhancing Bug Verification across Multiple Targets
	Effectiveness of Multi-target, Multi-step Guidance
	Ablation Analysis
	Detecting New Vulnerabilities

	Discussion
	The Generality of Lyso
	Threats to Validity
	Limitations

	Related Work
	Conclusion
	Acknowledgment
	Appendix
	Motivating Example
	Distance Measurement
	Configurations
	Overhead
	Lyso vs. Parmesan

	Ethics Considerations and Compliance with Open Science Policy
	Ethics Considerations
	Open Science Policy Compliance


