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Abstract
Cloud-based model training presents significant privacy chal-
lenges, as users must upload personal data for training high-
performance models. Once uploaded, this data goes beyond
the user’s control and could be misused for other purposes.
Users need tools to control the usage scope of the uploaded
training data, preventing unauthorized training without com-
promising authorized training. Unfortunately, existing solu-
tions overlook this issue.

In this paper, we propose and achieve a unique privacy-
utility goal tailored for cloud-based model training, consider-
ing both user demand and legal requirements. Our approach
provides task-level control of training data usage, simultane-
ously ensuring each protected data exhibits noticeable visual
changes to address fundamental privacy concerns. We intro-
duce carefully designed noise to each training data for privacy
protection. These noises are designed to provide visual pro-
tection while minimizing the shifts in the feature domain
through adversarial optimization. By adjusting the correlation
between noise and class labels, we guide the model to learn
the correct features for the target task while preventing unau-
thorized privacy task training. Additionally, we introduce the
overflow matrix for compatibility with existing encoding and
transmission frameworks. Real-world experiments demon-
strate that it can simultaneously protect visual privacy (SSIM
is 0.028) and prevent unauthorized model training (protection
success rate achieved 100%), while the accuracy of the target
task model is slightly reduced by about 1.8%.

1 Introduction

Cloud-based model training provides a scalable and efficient
approach for training machine learning models. It allows users
to utilize the computational resources of the cloud for training
task models by uploading their training data [1–3]. In such
a scenario, the cloud collects users’ personal data and then
trains a task model based on user requirements, subsequently
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Figure 1: Unique privacy-utility goal tailored for cloud-based
model training. Users hope that their training data uploaded
to the cloud will be protected (fundamental visual privacy
and misused for training unauthorized tasks) without compro-
mising the training of the target task models. We generate
protected versions of training data with noticeable visual vari-
ations (Visual Protect) while providing users with task-level
control of the training data usage scope (High performance
for target task-Untrainable for privacy task).

sending well-trained models to users. It is crucial to empha-
size that the data used for model training is not a public dataset
but the user’s private data. However, once the private data is
uploaded to the cloud, it surpasses the user’s control and can
give rise to significant privacy issues and concerns [4–6].

Privacy protection is more challenging in cloud-based
model training scenarios due to its complex privacy-utility
requirements. As illustrated in Figure 1, users desire to utilize
the cloud for training a high-performance target task model
while ensuring fundamental visual privacy protection (User
Demands). Simultaneously, they have the right to control
their data usage scope, allowing certain tasks to be trainable
while others are not (Legal Requirements). Based on this, we
propose a unique privacy-usability goal specifically for cloud-
based model training, which safeguards visual privacy and
provides task-level control over data usage.

Existing privacy protection for cloud-based model infer-
ence [7–10] primarily focus on key features crucial for
decision-making in pre-trained models only, would overlook



diverse and complex data patterns essential for robust model
training [11]. Privacy-preserving model training (federated
learning [12–14], differential privacy [15, 16], and secure
multi-party computation [17, 18]) and augmentation [19]
mainly focus on generating ML models (without the leakage
of raw training data) rather than creating protected datasets.
These methods couple privacy protection with model train-
ing, requiring users to bear the burden of training on their
devices. Even though some local differential privacy meth-
ods can generate protected datasets for sharing, most of them
cannot satisfy strict differential privacy guarantees and have
severe utility issues [20, 21]. Unlearnable Examples [22–25]
aim to prevent attackers from training commercial models,
without compromising the visual quality. However, they do
not guarantee usability for authorized target tasks and fail to
address visual privacy concerns. Dataset distillation [26–29]
focuses on extreme compression ratio, inevitably leading to
significant accuracy decreases. Besides, finding a balance be-
tween privacy and model accuracy is challenging for dataset
distillation. Alternatively, we propose a privacy protection
mechanism that generates a protected version of the training
dataset (with discernible changes to protect visual privacy).
This protected dataset can be used to train target tasks while
preventing unauthorized training for private attributes (pri-
vacy tasks). The target task model trained using the protected
data exhibits excellent performance in the deployment envi-
ronment with clean data. Ultimately, by generating protected
versions of the training datasets, we can decouple model train-
ing from privacy protection. It allows users to offload the
intensive and repetitive training process (model architecture
selection and hyperparameter tuning) entirely to the cloud
without changing existing training pipelines. A detailed com-
parison with existing works is shown in Table 1.

Challenge. There are four challenges we should address:
C1 Distribution Mismatch. Privacy protection on the train-
ing data may cause a discrepancy between the distribution
of the training set and the clean test set, resulting in models
that perform well on the training set but underperform when
deployed in real-world scenarios. C2 Task-Oriented Data
Usability Control. The protected data itself should exhibit dif-
ferent training usability for different tasks, rather than through
modifications to the training process. It should be trainable
for the target task but untrainable for privacy tasks. C3 Model
Adaptability and Transferability. The model structure uti-
lized in training can change, and the model parameters during
training are variable. The protected data should exhibit strong
cross-model transferability. C4 Encoding Compatibility. Af-
ter protection, the pixel values may exceed the standard 0-255
range (for image data), rendering them incompatible with
existing image encoding and transmission frameworks.

We achieve privacy protection by introducing carefully
crafted pixel-level noise to each training data. Firstly, we
generate noises that provide visual protection while mini-
mizing the shifts in the feature domain through adversarial

optimization (C1). Specifically, we primarily focus on the
low-level features of the CNN feature extractor for better
transferability (C3). Meanwhile, we guide the model training
by adjusting the correlation between noise and class labels
for task-oriented training usability. Based on this, we also de-
signed a plug-and-play module to enhance protection against
unauthorized model training by embedding an incredibly tiny
amount of class-wise noise (C2). Finally, we propose the
Overflow Matrix Mo to address the overflow issue during
real-world image transmission and storage (C4).

Contributions. We make the following contributions:

• We propose a novel privacy-usability goal tailored for
cloud-based model training, considering both user de-
mand and legal requirements. Then, we designed a train-
ing data protection mechanism that enables task-level
control of data training scope while achieving efficient
visual privacy protection.

• Our approach introduces an adversarial optimization-
based noise generation mechanism and two plug-and-
play privacy-enhanced modules to generate protected
data for each training data, decoupling model training
from privacy protection. With only one-time protection
(for given tasks), we can enable computationally inten-
sive and repetitive training processes to be performed
entirely on the cloud.

• Real-world implementation demonstrates the practicality
and effectiveness of our approach. The target task’s train-
ing usability is only affected by approximately 1.7% with
strong visual privacy protection (SSIM<0.028). Mean-
while, the protected dataset can achieve a protection
success rate of over 100% for privacy task training.

2 Related Work

2.1 Privacy for Cloud-based Model Inference

This type of work shares a similar background with our study,
as users aim to utilize cloud resources while ensuring protec-
tion against potential misuse by untrusted cloud.

Explainable AI-based Methods. These works such as [9]
leverage the interpretability of the model, introducing noise
or confusion to the unimportant features. This can protect
privacy while minimizing the impact on the model’s accuracy.

Adversarial-based Methods. In such work [30, 31], the
attacker and task are typically given. Subsequently, an adver-
sarial network is utilized to simulate both the task and the
attacker, generating images that meet the task requirements
and demonstrate resilience against the specific attack. More-
over, [7] protects the detailed information of the video based
on the Generative Adversarial Networks, ensuring visual pri-
vacy without compromising large-scale detection tasks.

Frequency Domain-based Methods. Some works ex-
plored the trade-off between visual privacy and model in-



Table 1: Privacy-Utility Comparison with Existing Works.

Method Protect Target∗ Train Usability Visual Privacy Control of Data Usage Scope†

Privacy for Cloud-based Model Inference DS #  #
Privacy-preserving Model Training M   #

Augmentation M  # #
Unlearnable Examples DS # # G#

Dataset Distillation DS G# G# #
Ours DS    

1.  : Yes; #: No; G#: Partial, which means a significant gap exists between the current state and the desired goal.
2. ∗: Generate ML model without leaking training data (M). Generate protected dataset (DS). DS incurs lower overhead for users by decoupling
model training from privacy protection, enabling computationally intensive and repetitive training processes to be performed entirely on the cloud.
3. †: The protected data can exhibit different training usability based on user demands. We can achieve task-level control, which is suitable for
black-box cloud-based model training compared to model-level control.

ference by leveraging the differences between human per-
ception and model feature extraction. [32] investigated this
difference first, highlighting that human eyes tend to focus
more on low-frequency segmentation information, while mod-
els can extract higher-frequency information to accomplish
classification tasks. [10, 33] leveraged this characteristic by
introducing confusion to the low-frequency information of
images, thereby achieving visual privacy protection without
compromising the model’s ability to recognize faces.

However, They primarily concentrate on privacy protection
for inference tasks. Although the protected data can preserve
the inference accuracy for specific tasks, it would overlook
diverse and complex data patterns essential for robust model
training. [33] shares a similar objective to our research: to
train task models with privacy-protected data. The difference
is that their approach requires applying the same privacy pro-
tection measures to the test data. However, it is essential to
highlight that the testing environment is under user control,
thereby eliminating the necessity for additional privacy pro-
tection.

2.2 Privacy-Preserving Model Training
Privacy-preserving model training aims to safeguard raw train-
ing data while generating well-trained ML models. Federated
learning [12–14] enables distributed training by performing
local training on individual devices and aggregating models
on the cloud. Secure multi-party computation [17, 18] allows
participants to update model parameters without sharing raw
data. These mechanisms indeed offer effective protection for
the privacy of raw training data. However, they focus on pri-
vacy protection during model training, ultimately producing
ML models rather than protecting datasets. This demands
participants’ capability to fully train models (Horizontal Fed-
erated Learning [34]) or partially train models (Vertical Feder-
ated Learning [35]). When the model architecture or training
parameters change, privacy-preserving training must be re-
peated, incurring significant overhead. Thus, they have limited
applicability in cloud-based model training.

2.3 Unlearnable Examples

Unlearnable samples aim to protect data privacy by rendering
them unsuitable for training specific models. [22] utilized a
min-min optimization process, opposite to adversarial learn-
ing, to generate unlearnable samples. This process ensures
that deep learning models cannot use those samples for train-
ing. [23] employed a carefully designed cloak to obfuscate
the image distribution at the feature level, thereby prevent-
ing unauthorized model training. [24] added imperceptible
class-wise noise to images based on causal inference theory.
These methods primarily concentrate on image sharing in so-
cial networks, aiming to achieve unlearnable without causing
significant visual alterations. However, users in cloud-based
model training scenarios are concerned principally about vi-
sual privacy, which implies that the protected images should
exhibit noticeable visual alterations. The aforementioned un-
learnable samples do not meet our requirements.

2.4 Dataset Distillation

Data distillation aims to generate a small synthetic dataset
(which can be viewed as the protected dataset). It ensures that
the model trained on the synthetic dataset performs similarly
to the model trained on the original dataset by matching a
series of metrics (such as distribution matching [27], training
trajectory matching [28], gradient matching [29], etc). [36]
uses dataset distillation to protect training datasets, thereby
achieving privacy-preserving remote training. [37] introduce
differential privacy in the distillation process to enhance pri-
vacy protection. However, finding a balance between privacy
protection and model accuracy in data distillation is challeng-
ing. At high compression rates, the model accuracy signifi-
cantly decreases. Conversely, low compression rates lead to
the distilled (protected) data being very similar to the original
data yet facing accuracy bottlenecks. Similarly, the aforemen-
tioned privacy protection methods based on data distillation
also struggle with significant accuracy issues.



3 Overview

3.1 Threat Model

Our system primarily involves two participants: User and
Cloud.

User. Users commonly have limited computational re-
sources, such as personal computers. They own personal train-
ing data and aim to train target task models using this dataset.
However, the limited computational resources prevent them
from completing model training independently on their lo-
cal device. Consequently, they upload their data to the cloud
and rely on it to train the model, thereby obtaining a well-
trained model from the cloud. The testing environment for
the model is users’ local devices, which are considered se-
cure and trusted. Users prefer not to allocate their limited
resources to privacy protection for local testing data. Gener-
ally, users (or laws) have specific privacy requirements that
must be protected. We customize privacy tasks based on these
requirements. This blacklist strategy is practical because it is
unrealistic to know all the potential attacks.

Cloud. Cloud, considered semi-honest, is responsible for
training authorized task (Target Task) models using data pro-
vided by users. However, in addition to fulfilling the autho-
rized tasks, there is a potential risk of the cloud misusing the
uploaded data, thereby raising significant privacy concerns.
Traditional encryption-based access control methods are not
suitable for a semi-honest cloud, as the cloud is an autho-
rized legitimate identity. We primarily focus on two types of
potential privacy breaches in the cloud:

Visual Privacy Leakage. Visual privacy leakage from hu-
man observation is the most intuitive form of privacy breach
and represents a fundamental privacy concern for users.

Unauthorized model training. Besides training the target
task model, the cloud can potentially train other unauthorized
commercial models using the training data without the user’s
knowledge. We assume that the cloud attacker possesses suf-
ficient attack capabilities to access all attribute labels of the
training dataset (By assuming a higher level capability of at-
tackers, we can provide more robust protection against privacy
breaches). Our methods can still achieve adequate protection
even under this strong attack assumption.

3.2 Privacy & Usability Goals

Our privacy-utility goals are tailored specifically for non-
collaborative cloud-based model training (users upload
datasets to obtain well-trained models), considering both user
demands and legal requirements (shown in Figure 1):

Usability. Users require a task model with negligible utility
degradation when deploying in user ends (User Demands) –
Models trained by the protected dataset can retain high accu-
racy with the clean testing dataset for authorized target tasks
(Eq. (2)).

(a) Class-agnostic for Target Task (b) Class-wise for Privacy Task

Figure 2: Visualization of noise through UMAP [38] dimen-
sionality reduction. Different colors correspond to different
class labels. Class-wise noise exhibits good clustering effects
for the same label.

Figure 3: Casual graph of model training and testing. Causal
relationships refer to the direct influence of one variable on
another. Their consistency is crucial for an ML model’s gen-
eralizability across different data distributions [39, 40].

Privacy. 1) Users need abilities to control their data usage
scope (Legal Requirements) – The protected dataset should
allow certain tasks to be trainable (Target Task) while others
are not (Privacy Task). 2) If the protected images show lit-
tle visible differences, convincing users that their privacy is
protected is challenging (User Demands) – The noise applied
for protection should be significant enough to achieve visual
privacy protection for human observation (Eq. (3)).

Therefore, we propose the unique privacy-utility goal for
cloud-based model training, which both safeguards visual
privacy and controls the usage of training data by setting dif-
ferent tasks. We believe this task-oriented protection is more
user-friendly and practical. Users can test different model
architectures while training models in the cloud without re-
peatedly regenerating the protected dataset.

3.3 Problem Formalization
Task Definition. Generally speaking, a machine learning
task typically involves two phases: 1) Model Training,
where a model f is trained using training data and labels
( fDtr→Y = T (Dtr,Y ), Y ∈ Y) and 2) Model Inference/Test,
where the model’s accuracy is evaluated on a test dataset
(E( fDtr→Y ,Dte,Y ), Y ∈ Y). Dtr and Dte denote the data used
for training and testing, respectively. Similarly, T (·) and E(·)



Figure 4: System overview. Our system consists of a Basic Pipeline and two plug-and-play privacy enhancement modules:
Channel Selection (CS) and Untrainable Information Embedding (UIE). The Basic Pipeline built upon two carefully
designed losses for adversarial optimization, aiming to generate noise that satisfies visual privacy protection without affecting
the training of the target task model. The CS reduces potential privacy leakage risks in intermediate features through channel
importance screening. The UIE guides the privacy task model to learn noise by embedding class-wise noise, further preventing
unauthorized model training.

denote the training and testing methods, respectively. Y repre-
sents the label space with multiple dimensions, as each data
can have various annotations across different dimensions. For
example, for a facial image, Y might include dimensions such
as emotion, race, age, gender, and more. Therefore, we de-
fine the task as a triplet (D,Y, fDtr→Ytr), where D = Dtr ∪Dte
represents the data domain, and fDtr→Y represents the learned
task model mapping. Given the dataset D, we categorize tasks
based on label dimensions, achieving different training usabil-
ity for the same dataset (trainable on target label dimensions
Yt (e.g., emotions), while untrainable on private label dimen-
sions Yp (e.g., race). Specifically, the definitions of the target
task and privacy task are as follows:

Target Task (D,Y, fDtr→Y ), Y ∈ Yt. Tasks explicitly de-
clared by users to be completed by the cloud.

Privacy Task (D,Y, fDtr→Y ), Y ∈ Yp. Tasks that involve
the privacy attribute labels declared by the user (or laws).

Our task-driven training data privacy protection is defined
as generating the significantly changed protected version D′

tr
of Dtr (Eq. (1)), which needs to fulfill the requirements of
both usability (D′

tr can be used to train target task, Eq. (2)) and
privacy (training the privacy task by D′

tr would fail, Eq. (3)).
fDtr→Y and fD′

tr→Y utilize the same training process T (·),
which includes the same model structures, hyperparameters,
etc. The only difference lies in the training data.

||Di −D′
i||2 > δ, Di ∈ Dtr,D′

i ∈ D′
tr. (1)

E( fD′
tr→Y ,Dte,Y )∼ E( fDtr→Y ,Dte,Y ), Y ∈ Yt. (2)

E( fD′
tr→Y ,Dte,Y )<< E( fDtr→Y ,Dte,Y ), Y ∈ Yp. (3)

3.4 Fundamental Idea
We apply carefully designed noise to each training data to
generate a new protected dataset, decoupling model training

from privacy protection. Furthermore, we utilize the correla-
tion between noise and task labels to guide the model training,
aiming to achieve different training usability across differ-
ent tasks. Specifically, building upon the work presented in
[24, 25], we introduce two types of noise: 1) class-wise noise
(Figure 2(b)): Noise is added separately for each class, i.e.,
data from different classes have distinct noise applied; 2)
class-agnostic noise (Figure 2(a)): Noise is independent of
class, i.e., the noise added to each class is random. Figure 3
employs causal graphs [41, 42] to illustrate the effects of dif-
ferent noise types on model training and testing. In Figure 3
(Clean data), without applying privacy protection to the train-
ing set, the model maintains consistent causal relationships
(D → Y ) during both training and testing, resulting in better
inference performance on the test set. In Figure 3 (Class-wise
noise), when employing class-wise noise for privacy protec-
tion, the trained model makes predictions by considering both
the noise N and the original data D (N → Y,D → Y ). How-
ever, during the testing phase, the model can only rely on
the original data D for inference (D → Y ). This inconsistent
causal relationship between training and testing leads to poor
performance for the test set (High performance for training
data while poor performance for test data). Surprisingly,
we found that even small amounts of class-wise noise can
significantly impact model training. On the other hand, in
Figure 3 (Class-agnostic noise), when utilizing class-agnostic
noise, the established causal relationship during training is
solely D → Y due to the noise being unrelated to the label.
Consequently, the causal relationships between the training
and testing phases remain consistent, thereby exerting mini-
mal impact on the model’s training (High performance for
both training and test data). Thus, to achieve task-level
training usability control, we should make sure that the noise



Figure 5: Example of privacy tree where we assume
that there are three privacy tasks (2-class task: Y p1 =

{Y p1
1 ,Y p1

2 }, 2-class task: Y p2 = {Y p2
1 ,Y p2

2 }, 3-class task:
Y p3 = {Y p3

1 ,Y p3
2 ,Y p3

3 }). The edges of the tree represent dif-
ferent class labels.

is class-agnostic for the target task while class-wise for the
privacy task.

Furthermore, it is crucial to strike a balance between the
magnitude of the noise and preserving the intrinsic features
of the data: 1) The noise added should be significant enough
to protect visual privacy. 2) It is equally important to prevent
the noise from interfering with the intrinsic features of the
data (ML models should be capable of extracting the features
of D from the protected data D+N, enabling it to learn the
causal relationship D → Y ). This balance can be summarized
as Eq.(4).

min
Ni

Dist(Fk(Ni),Fk(Di +Ni)), Di ∈ Dtr,

sub ject to ||Ni||2 > δ, (4)

Ni represents the noise applied for privacy protection on the
original data Di. Dist(·) denotes the distance calculation for
features, while Fk(·) represents the features extracted by the
k-th layer of a feature extractor. It can directly use publicly
available pre-trained models. Given the unknown model struc-
ture and uncontrollable parameter variations during training,
we compute the distances using the lower-level features of
the feature extractor (k <= 4), as lower-level CNN features
tend to exhibit better transferability [43, 44] (Figure 12).

4 System Design

4.1 Basic Pipeline

This section proposes an adversarial optimization-based noise
generation mechanism to generate noise that satisfies Eq.(4).
It is built upon two carefully designed loss functions, gen-
erating noise that meets the requirements of visual privacy
protection without interfering with the training of the target
task model. The part highlighted in the red box in Figure 4
outlines our basic pipeline, primarily consisting of two com-
ponents: Noise Initialization and Noise Optimization.

Noise Initialization. Noise Initialization aims to generate
initialized noise for each Di ({Di,Ni }) that is class-agnostic

for the target task and class-wise for the privacy task (Fig-
ure 2). The storage overhead of {Di,Ni} becomes signifi-
cant when the dataset is large. To address this issue, we in-
troduce a privacy tree structure (T ) to generate and query
the initialized noise (shown in Figure 5). Each leaf node
in the privacy tree corresponds to a distinct random noise
(NC,H,W

j ∼ α ·Uni f orm(−1,1)), and all the data sharing the
same privacy label path as N j utilize this noise as their ini-
tialization noise. This ensures that data with the same privacy
labels has the same initialization noise (class-wise), while
the noise remains random in the target task dimension (class-
agnostic).

The privacy tree needs to be constructed only once during
the initialization phase. Moreover, we only need to store the
privacy tree structure T without storing the data pairs {Di,Ni
}. Subsequently, for each data point Di(Yt,Yp), we can use
its privacy label Yp (Y p1,Y p2,Y p3) to query the privacy tree
and retrieve its corresponding initialization noise Ni.

Noise Optimization. Noise optimization employs an ad-
versarial approach to refine the initialized noise, ensuring its
compliance with Eq.(4). We have developed two meticulously
designed loss functions (Loss f eature and Lossvisual), leverag-
ing the adversarial approach to extract the differences between
human vision and machine learning. Building upon this, we
generate noises that fulfill the requirements of visual privacy
protection while minimizing significant shifts in the feature
domain.

Loss f eature = MSE(Fk(Di),Fk(Di +Ni)). (5)

Loss f eature is employed to ensure that a CNN can still extract
useful features from protected data. It is defined as the mean
squared error between the output features of the feature extrac-
tor before and after adding the noise. Minimizing Loss f eature
ensures no significant shifts in the feature domain before and
after adding noise.

Lossvisual = ||Ni||2. (6)

Lossvisual is employed to ensure the level of visual privacy
protection. To achieve better visual privacy protection, we aim
to create a discernible difference between the protected and
clean images. Therefore, we quantify this difference using
Lossvisual . It is necessary to ensure that Lossvisual exceeds
the threshold δ to fulfill the requirements of visual privacy
protection.

The initialized noise is optimized using the gradient descent
method as Eq.(7).

min
Ni

(Loss f eature + γ ·Relu(δ−Lossvisual)). (7)

Following the two steps mentioned above, the generated
noise Ni fulfills the three requirements we previously pro-
posed: 1) The noise is class-agnostic for the target task and
class-wise for the privacy task. 2) After adding noise, it does



not exhibit significant changes in the feature space of the tar-
get task. 3) The magnitude of the noise is substantial enough
to meet the demands of visual privacy protection.

4.2 Privacy-enhanced Plugin
To enhance privacy protection, we have designed two plug-
and-play modules: Channel Selection (CS) and Untrainable
Information Embedding (UIE). These modules strengthen
the protection of intermediate features and unauthorized task
training. Additionally, UIE module enhances the scalability
of our method, allowing users to adjust privacy requirements
to some extent without re-optimizing the entire dataset (as
described in Section 5.6).

Channel Selection (CS). The CS mechanism aims to miti-
gate potential privacy leakage risks in intermediate features
through channel importance screening. It is well-known that
not all feature channels contribute to a specific task [44, 45],
but they still pose the risk of privacy leakage. Hence, we have
developed the CS mechanism to identify the crucial chan-
nels relevant to the task. Consequently, we concentrate solely
on ensuring the consistency of features from the channels
deemed necessary for the task while disregarding the irrel-
evant channels (Eq.(8)). Thus, the features extracted from
those irrelevant channels are considered random, preventing
potential privacy leakage of intermediate features. To achieve
this, we introduce a channel selection mask, denoted as ω in
Eq.(8).

Loss f eature = Dist(Fk(Di)⊗ω,Fk(Di +Ni)⊗ω), (8)

ω is a binary mask with the same size as the number of feature
channels, where 0 indicates an irrelevant channel for the task,
and 1 represents a relevant channel for the task. We propose
CS Mask Initialization to generate ω based on the configured
target task and privacy task. Firstly, The selected features need
to satisfy the following two requirements:

Minimize the disclosure of private information. 1) The
selected features should contain minimal information
(Eq.(9)). 2) The selected features should exhibit poor
clustering performance in the privacy task label di-
mension. Therefore, accurately classifying the privacy-
related labels of the data is not sufficient (Eq.(10),
CH(X ,Y ) is Calinski-Harabasz Index [46]. A larger
value of CH index means the better the clustering ef-
fect, implying that it is easier to infer privacy attributes).

Fulfill the objectives of the target task. The selected fea-
tures should exhibit good clustering performance in the
target task label dimension, enabling successful classifi-
cation of the target task (Eq.(11)).

Loss f = ∑(||Fk(Di)||2 ⊗Relu(ω− ε)). (9)

Lossp =CH(Fk(Ni)⊗Relu(ω− ε),Y p). (10)

Losst =CH(Fk(Ni)⊗Relu(ω− ε),Y t). (11)

Finally, we get the channel selection mask ω by solving the
following joint optimization problem Eq.(12). To ensure that
the channel selection mask is in binary form (0 or 1), we
apply the ReLU function to threshold the values. By set-
ting threshold ε close to 1 (e.g., 0.93 in our experiment), the
ReLU(ω− ε) operation effectively approximates the binary
selection form, where the values are either close to 1 or 0. To
ensure that ω remains within the range of [0, 1], we introduce
ω = 1

1+exp(−ω′) and perform gradient descent on ω′ during
optimization. Based on the given task configuration, the CS
module only needs to be initialized once.

min
ω

α ·Loss f +Lossp −Losst . (12)

Untrainable Information Embedding (UIE). The noise
optimization will change the correlation between noise and
classes, reducing the suppressive effect on the training of the
privacy task model. To mitigate this issue, we propose the
UIE module. It guides the privacy task model to learn noise
information by embedding additional class-wise noise, further
preventing unauthorized model training.

This module is built upon a crucial discovery: Even em-
bedding a small proportion of class-specific noise will signifi-
cantly reduce the training performance of the model (details
can be found in Appendix A) while not causing significant
alterations in the feature domain. Eq.(13) illustrates the core
steps of the UIE module.

NUIE
i = N′

i +Ni ⊗m, (13)

N′
i is the output of noise optimization, and Ni is the initializa-

tion noise queried from the privacy tree. NUIE
i is the noise

enhanced by the UIE module. By intentionally adding class-
wise noise for the privacy task, the model learns more about
the relationship between the noise and the labels during train-
ing, resulting in an unusable privacy task model for attackers.
m, defined by Eq.(14) denotes the UIE mask.

mH,W ∼ ρ ·Bernoulli(r), (14)

ρ and r represent the magnitude and ratio of UIE embed-
ding. They control the trade-off between usability and privacy
(higher values leading to a higher level of privacy protection),
which is initialized once the task is determined.

As stated in section 3.7, a stronger correlation between
the noise embedded by UIE (Ni ⊗m) and the privacy task
labels results in more effective privacy protection. However,
we have observed that increasing the depth of the privacy tree
(resulting in a higher number of initial noises (n) within each
privacy class label) leads to significant fluctuations in the
correlation between the noise and privacy labels after random
sampling using Eq.(14). These fluctuations can have adverse
effects on privacy protection.



(a) Overflow and Underflow (b) Mo

Figure 6: Examples of Overflow and Overflow Matrix Mo

Figure 7: The Pipeline of Overflow Matrix Mo for Image
Transmission & Storage.

To address this issue, we propose the UIE Mask Initial-
ization. Specifically, we advocate for performing multiple
random samplings and calculating the CH index of Ni ⊗m
to mitigate the negative impact of these fluctuations on pri-
vacy protection. An increase in the CH index corresponds to
improving the clustering performance, signifying a stronger
correlation between the noise and the label. By selecting m
with the highest CH index, we can mitigate the adverse ef-
fects of sampling fluctuations on privacy protection. This
approach can improve the stability and consistency of privacy
protection (As shown in Figure 16(b)).

4.3 Overflow Matrix for Real-world Image
Transmission & Storage

This section ensures that the protected image data can be
compatible with current image encoding and transmission
frameworks. In real-world applications, image data is typi-
cally transmitted and stored using the 8-bit unsigned integer
(uint8) data type, where pixel values range from 0 to 255 [47].
However, our approach generates a high magnitude of noise to
enhance privacy protection, leading to protected image pixel
values exceeding the 0-255 range. When converting these
values to the uint8 data type, overflow occurs, significantly
compromising the usability of the protected data.

Overflow Details. Figure 6(a) illustrates the overflow de-
tails when storing pixel values using uint8 data type. Overflow
occurs when the pixel value exceeds 255, while underflow
arises when the pixel value falls below 0. Once an overflow oc-
curs, the actual stored pixel value becomes P′(P′ = P%256).
Knowledge of ⌊(P/256)⌋ is required to recover the original
pixel value.

Therefore, we propose overflow matrix Mo, which serves
two purposes: 1) It records the overflow status of each pixel
during image transmission/storage, and 2) It assists in recov-
ering the protected tensor data before training. Figure 6(b)
shows an example of Mo.

Figure 7 shows the pipeline using Mo. The protected tensor
data P is converted to overflow matrix Mo and encoded uint8
image P′ during transmission or storage. When performing
model training in the cloud, the data used for training (P)
is recovered through Mo and P′. During image transmission
or storage, Mo tracks how pixels have exceeded the uint8
range. This information is transmitted or stored alongside
the encoded image P′, enabling us to identify and handle the
overflowed pixels during subsequent processing (Eq.(15)).
Before training, Mo is employed to restore the protected train-
ing data P. By utilizing Mo, we can recover the pixel values
affected by the overflow, guaranteeing usability for training
purposes(Eq.(16)).

record → Mo =

{
⌊P/256⌋, P > 0,
⌊P/256⌋−1, P < 0.

(15)

recovery → P = P′+256∗Mo. (16)

To integrate Mo into image encoding and reduce transmis-
sion costs, we also utilize the uint8 data type to represent Mo.
However, unlike the previous approach, in this case, the lower
four bits are assigned to represent positive values, while the
upper four bits represent negative values (−128 < Mo < 128).
Consequently, when Mo is less than 0, the actual stored value
is Mo +128. This encoding scheme ensures the accurate rep-
resentation of the negative part of Mo.

5 Evaluation

Our objective is to train models using protected data on the
cloud without modifications to the existing framework, which
would provide significant convenience for cloud model train-
ers. Therefore, in our experiments, we trained the task model
using the same hyperparameters (learning rate, optimizer, etc.)
on both unprotected (clean) and protected training data. Sub-
sequently, we evaluated the model’s performance using clean
test data.

5.1 Experiment Setup
Dataset. To validate the effectiveness of our method across
multiple tasks, we selected a diverse array of datasets and
tasks encompassing varying scales, ranging from attribute-
level to object-level, behavior-level, and scene-level. Table 2
presents the specific configurations of the datasets and tasks.

• RAF-DB (Real-world Affective Faces) [48] is a large-
scale facial expression database with 29672 great-diverse
facial images. Each image has 7 classes of basic emotion
attributes, 3 classes of race attributes, and 3 classes of
gender attributes.

• CelebA (Large-scale CelebFaces Attributes) [49] is a
celebrity face dataset comprising 202,599 facial images
belonging to 10,177 celebrity identities. Each image in
the dataset is annotated with 40 binary attributes.



Table 2: Dataset statistics and task configure.

Dataset Scale #of Images Target Task Privacy Task

RAF-DB Attribute 29672 7-class Emotion
5-class Age
3-class Race

3-class Gender

CelebA Object 202599
10177-class Identity 2-class Young

2-class Smile

2-class Smile 10177-class Identity

PubFig Object 5879 53-class Identity -*

SFDDD Behavior 102152 10-class Behavior -*

MIT Indoor Scene 6699 64-class Scene -*

*: The dataset contains only one annotation type and cannot be used
to train privacy tasks.

• PubFig (Public Figures Face) [50] is a collection of fa-
cial images of public figures, consisting of 58,797 face
images from 200 individuals. However, we discovered a
significant amount of noisy data after downloading the
dataset. Therefore, we manually selected and cleaned
the data for 53 individuals, ensuring its quality and relia-
bility.

• SFDDD (State Farm Distracted Driver Detection) [51]
is a dataset for in-vehicle driver behavior detection, com-
prising 10 different driving behaviors.

• MIT indoor (MIT Indoor Scene Recognition) [52] is a
dataset commonly used for scene classification, which
is a large-scale task. It consists of images of 64 indoor
scenes.

Evaluation metrics.

• PSNR (Peak Signal-to-Noise Ratio [0,100]) and SSIM
(Structural Similarity [0,1]), used for measuring the ef-
fectiveness of visual privacy protection, where a smaller
value indicates a stronger privacy effect. SSIM<0.5
PSNR<20 are generally considered effective for strong
visual protection

• LPIPS (Learned Perceptual Image Patch Similarity [53]),
aims to capture the perceptual similarity between images,
aligning more closely with human perception. A lower
LPIPS value indicates a higher similarity between the
two images. LPIPS>0.2 means better visual privacy pro-
tection.

• Accuracy, is the ratio of correctly classified samples to
the total samples in the clean test set. It is used to mea-
sure usability, where a smaller difference between the
accuracy before and after privacy protection indicates
better usability (Target Task Models).

• PSR (Protection Success Rate %), defined by Eq.(17).
Accuracyc and Accuracyp represent the model training
accuracy before and after privacy protection. n_class
means the class number of tasks. Thus, when accuracy
is less than or equal to 1/n_class, it signifies a random
model, and its corresponding PSR is 100%.

(a) Target Task (Emotion) (b) Privacy Task (Age)

Figure 8: Training and Validation Curve. Due to the random-
ness of UIE, we performed 10 random UIE embeddings. Thus,
the Protected Train/Val Acc. consists of 10 curves.

Figure 9: Visualization of Class Activation Maps [54] (CAMs)
for Target Task and Privacy Task Models. The first line uses
the model trained on clean data ( fDtr→Y ), and the second
uses the model trained on protected data ( fD′

tr→Y ). For the
target task, fDtr→Y and fD′

tr→Y focus on (orange-red areas) the
same regions. In contrast, for the privacy task, they focus on
significantly different regions.

PSR = 100∗
(Accuracyc −Accuracyp)

Accuracyc −1/n_class
. (17)

Hyperparameter. Hyperparameters have a significant im-
pact on convergence, performance, and generalization. γ and δ

control the trade-off between usability and visual privacy, with
values γ= 0.005 and δ> 10000. k determines the transferabil-
ity (cross-model training performance, a smaller k means a
better transferability) and k= 4 in our experiment. α (α= 0.3)
controls the magnitude of the initial noise and determines the
convergence speed. Additionally, ρ = 1.0 and r = 0.0008 for
UIE module.

Baseline. As we have emphasized, we propose a unique
privacy-utility goal, especially for cloud-based model train-
ing. We did not find any related work completely consistent
with our goal. Therefore, we compared with works with simi-
lar or partially aligned objectives. Specifically, this includes
Cloud-based Model Inference (PPFR-FD [33]), Unlearn-
able Examples (Fawkes [23]), Augmentation (Mixup [19]),
Dataset Distillation (DataDAM [27]) and Differential Privacy
(DataDAM+DP-SGD [15]). Detailed experimental setup and
discussion can be found in Appendix B.

Unless otherwise specified, the model architecture used for
training in our experiments (both target task and privacy task)
is ResNet34, and the feature extractor is ResNet18 (k = 4). All
models are initialized using pre-trained parameters provided
by torchvision. The dataset we use is RAF-DB, with the target
task being emotion classification and the privacy task being



Table 3: Comparison of training usability for different tasks. For the target task, we aim to ensure similar performance between
the models trained on protected data and those trained on clean data. For the privacy task, we desire a higher PSR for better
privacy protection.

Dataset Target Task Privacy Task
Task Name Accuracyclean Accuracyprotected Task Name Accuracyclean Accuracyprotected1 PSR2

RAF-DB 7-class Emotion 82.32% 81.42%
5-class Age 78.75% 17.57% 100%
3-class Race 84.57% 18.73 % 100%

3-class Gender 85.62% 11.35% 100%

CelebA
10177-class Identity 62.02% 57.26% 2-class Age 99.14% 31.5% 100%

2-class Smile 99.28% 35.6% 100%

2-class Smile 99.28% 99.14% 10177-class Identity 62.02% 0.00% 100%

PubFig 53-class Identity 80.60% 78.45% - - - -

SFDDD 10-class Behavior 96.54% 95.81% - - - -

MIT indoor 64-class Scene 70.53% 68.13% - - - -

1. Due to the challenges in achieving convergence and the noticeable fluctuations in testing accuracy when training a privacy task model using protected data,
we view the average accuracy value obtained from the last few epochs as Accuracyprotected.
2. The maximum value for the PSR is 100%. Thus, if the result calculated by Eq.(17) exceeds 100%, we still consider it as achieving a 100% protection effect.

Table 4: Quantification of visual privacy protection.

Scale Protected tensor (P) Encoded Image (P′)
MSE
↑

PSNR
[0-100] ↓

SSIM
[0-1]↓

LPIPS
↑

MSE
↑

PSNR
[0-100] ↓

SSIM
[0-1]↓

LPIPS
↑

Atrribute Level 9026 19.16 0.043 0.657 6542 8.67 0.018 1.16
Object Level 18254 23.22 0.046 0.611 8344 7.85 0.012 0.82

Behavior Level 12547 18.5 0.095 0.69 11507 8.75 0.048 0.87
Scene Level 10374 21.15 0.12 0.53 15244 9.09 0.037 0.78

age classification.

5.2 Training Usability for Different Tasks

Table 3 presents the evaluation of training usability of privacy-
protected data on different tasks using various scenario
datasets. For the target tasks, privacy protection has minimal
impact on their training usability, with the accuracy difference
between models trained on clean and protected data being
within 2%. Conversely, the protected data is unsuitable for
training privacy task models, with the PSR exceeding 100%
In addition to facial datasets, we also utilized larger-scale
datasets (A driver behaviors classification dataset: SFDDD
dataset, and an indoor scene classification dataset: MIT in-
door dataset) to validate the effectiveness of our method. The
experimental results indicated that privacy protection had a
minimal impact on training the target task for these datasets,
with an accuracy degradation of less than 1.5%.

Figure 8 illustrates the training and validation accuracy
curve for both the target and privacy tasks. When training pri-
vacy task models with protected data, the strong correlation be-
tween class labels and noise (class-wise noise) causes models
to overfit noise in the training data (training accuracy quickly
reaches 100%, but testing accuracy is inferior). However, this
issue doesn’t appear when training target task models, as the
model cannot learn N →Y from class-agnostic noise. Further-

Figure 10: Visualization of Visual privacy protection. The
first line is clean data Di, the second line is noise Ni applied
for privacy protection, and the third line is the protected data
Di +Ni.

more, we visualize regions that the trained model focuses on
by CAMs (Figure 9). For the target task, the CAMs between
fDtr→Y and fD′

tr→Y are largely consistent, indicating similar
model performance. In contrast, it shows significant shifts
in the privacy task, suggesting that the model has learned
incorrect information.

5.3 Visual Privacy Protect

Figure 10 shows the visual effects of privacy protection. The
noise applied for privacy protection is significant enough to
conceal the visual features of the original image, achieving
effective visual privacy protection. Table 4 quantifies the vi-
sual protection effectiveness from the perspectives of image
quality and perceived similarity. The results demonstrate after
protection (the protected tensor P), the SSIM is 0.076, the
PSNR is 20.5, and the LPIPS is 0.622. When P is encoded
to image P′ for T&S, better visual privacy protection can be
achieved: The SSIM decreased to 0.028, PSNR decreased to
8.59, and LPIPS increased to 0.91.



(a) Task Accuracy for Target Task (b) PSR for Privacy Task

(c) Visaul Privacy. We randomly select one clean data (first line) and its
corresponding protected data (second line) for each method. Since the
protected data from methods ❺, ❻, and ❼ do not explicitly correspond with
the clean data, we select the most similar protected data sample from the
protected dataset.

Figure 11: Experimental Comparison with Exiting Works.
❶: Clean, ❷:Ours, ❸: PPFR-FD, ❹: Fawkes, ❺: Mixup, ❻:
DataDAM, ❼: DataDAM+DP.

5.4 Comparison With Existing Works

We use the RAF-DB dataset, setting emotion classification
as the target task and age classification as the privacy task.
Implementation details of each method can be found in the
Appendix B. As shown in Figure 11, our method achieves
the optimal privacy-utility trade-off, with about a 1% drop
in target task accuracy and 100% PSR for the privacy task.
PPFR-FD has very poor training usability with clean test data
(drops by 50%) for the target task and is not suitable for model
training scenarios. Similarly, Mixup also suffers from a signif-
icant drop in target task accuracy (drops by 13+%) if we mix
enough images to achieve privacy protection. Fawkes achieves
minimal impact (except for ours) on the training of the target
task (drops by about 5%). This is because the protected data
it generates is very similar to the original data, significantly
compromising the user’s visual privacy (As shown in Fig-
ure.11(c)). Additionally, the PSR for the privacy task is very
low in our setting. This might be due to the limited number of
classes in the privacy task, resulting in insufficient confusion
in the feature spaces. Consequently, Fawkes is only limited
to tasks with more classes. Even though Data Distillation
(DataDAM) can achieve some level of training usability for
the target task, there remains a significant gap in model accu-
racy compared to training with the original dataset (drops by
9.8%). Moreover, it does not effectively protect privacy: 1) It
treats all training tasks equally, which fails to prevent unau-
thorized privacy task training (PSR < 14% ); 2) As the size of
the synthetic dataset increases, the synthetic images become

Figure 12: Feature visualization for different feature ex-
tractors by [55]. Each dashed-line-separated block contains
three different feature extractors: ResNet18, VGG13, and
DenseNet121.

Table 5: Transferability across different feature extractors and
target models.

Feature
Extractor

Target Task Model

ResNet18 ResNet34 VGG13 VGG19 DenseNet121

None∗ 82.91% 82.32% 82.04% 82.46% 81.31%
ResNet18[0:4] 83.08% 83.38% 79.68% 80.70% 82.40%
VGG13[0:5] 82.59% 81.93% 82.27% 83.31% 79.34%

DenseNet121[0:4] 80.64% 81.29% 79.92% 80.96% 80.57%

1. ∗: Training target task model with clean dataset.

very similar to the original images (As shown in Figure.11(c)).
Traditional differential privacy for ML model training aims to
train models that satisfy differential privacy, ensuring that the
privacy of individual training samples is not compromised.
This approach does not align with our goal (generating an
offline privacy-preserving dataset). Instead, we combine DP-
SGD with data distillation to generate a protected dataset that
satisfies differential privacy [20]. Clearly, the model training
performance for the target task is constrained by data distilla-
tion (drops by 12%+ ). [21] also demonstrates that a simple
combination of data distillation and differential privacy does
not necessarily guarantee differential privacy. Importantly, our
privacy-preserving objective is not to ensure differential pri-
vacy but to achieve a more practical privacy goal, especially
for cloud model training.

5.5 Cross-Model Performance
We aim to generate a protected dataset that is task-specific
rather than model-specific. Therefore, the features utilized
during the protection phase must exhibit strong transferability
to adapt to different model structures. Figure 12 illustrates the
visualization of features from different layers across various
models. Despite the differences in model architectures, the
features in the lower layers exhibit a high similarity, which
means better transferability. Figure 13 further investigates the
impact of different layers (k) for feature extractor Fk(·) on
the training of the target task model. The results indicate that
training high-accuracy models is achievable by setting k to 4
or 5, regardless of the structure of the target task model (pri-
vacy protection has minimal impact on the training process
for the target task). However, a significant decline in model
accuracy is observed when k is set to 6 or 7. Therefore, select-
ing a smaller value for k in the feature extractor is advised to
enhance transferability and training usability.

Table 5 summarizes the training usability across different



(a) ResNet18 model (b) ResNet34 model (c) DenseNet121 model (d) VGG19 model

Figure 13: Target model performance with different k values for feature extractor (ResNet18).Lower k value (k = 4 or 5) can
achieve training a high performance ML model.

(a) Target Task Accuracy (b) PSR of Privacy Attribute

Figure 14: Effectiveness of the CS Mechanism. We evaluate
it from two aspects: usability (target task accuracy 14(a)) and
privacy (PSR of privacy attribute inference 17(c)).

Figure 15: Example of the scalability for dynamic privacy
requirements. In phase s1, the privacy task is age classification.
In phase s2, gender classification is added, and in phase s3,
race classification is further added. We only need to modify
the UIE module to meet the dynamically changing privacy
requirements.

feature extractors and target models. The protected dataset
can still achieve excellent training usability (average accu-
racy drop of about 0.73%) despite the varying architectures
between the feature extractor and the task model. Even in
certain cases (e.g., ResNet18[0:4]–ResNet34), models trained
with protected data achieve higher accuracy than those trained
with clean data.

5.6 Effectiveness of CS Module
Figure 14 illustrates the impact of the CS mechanism on
the usability of the target task and the inference of privacy
attributes. It can be observed that the CS mechanism can

effectively prevent the inference of privacy attributes (with an
average PSR improvement of 41.9%) without compromising
the training accuracy of the target task (within 0.9%).

5.7 Effectiveness of UIE Module

Example of high scalability for dynamic privacy. We pro-
vided a simple example to illustrate the high scalability ad-
vantage of our plug-and-play UIE module. When the user’s
privacy requirements (Yp) change, we can modify the UIE
module only. Based on the privacy tree corresponding to the
new privacy requirements, we can generate UIE noise that
satisfies the privacy demands and directly embeds it into the
optimized noise (N′

i ) generated previously. There is no need
to re-optimize and generate new noise. As shown in Figure
15, in the first phase, our privacy task only involves age classi-
fication. We optimize and generate noise N′

i based on the task
configuration and then apply UIE to generate NUIE

i−s1. In the
second and third phases, we introduce additional privacy task
requirements for gender and race classification. We directly
use the N′

i generated in the first phase and efficiently imple-
ment privacy protection for the new privacy task by simply
modifying the embedding noise (Ni−s2⊗m,Ni−s3⊗m ) of the
UIE module.

Figure 16(a) illustrates the impact of UIE embedding ratios
(r) on both the target and privacy tasks. When r exceeds 0.1%,
the PSR for the training of the privacy task can be significantly
increased by up to 100% without affecting the training of
the target task. When r ranges from 0.1% to 2%, a good
trade-off between privacy protection and task usability can
be achieved. The influence on the target task model training
accuracy remains within 1% while achieving a 100% PSR.

As the depth of the privacy tree increases, the number of
different initial noises within each privacy label will increase.
Consequently, the correlation between noise and privacy la-
bels may weaken, potentially leading to adverse effects on
privacy protection. To investigate this, we studied the impact
of the number of different initial noises (represented as n)
within each privacy label on the effectiveness of protection.
As shown in Figure 16(b), employing the CH index for se-
lecting the UIE mask during initialization can significantly
enhance the protection effectiveness compared to random se-



(a) Impact of UIE embedding ratios (r) on the training usability. (b) PSR decreases when the amount of noise increases.

Figure 16: Effectiveness of the UIE Mechanism.

Table 6: Time overhead and memory usage.

Image Size GPU CPU-only
Time Overhead(s) GPU Memory Usage(MB) Time Overhead(s)

100×100×3 0.11 1312 0.21
224×224×3 0.15 1332 0.99

lection. However, it is worth noting that as n increases, the
PSR tends to decrease and exhibit significant fluctuations,
which can have negative implications for privacy protection.
Therefore, we recommend setting a limit of no more than 20
different initial noises within each privacy label to mitigate
these issues and ensure a satisfactory level of protection.

5.8 Efficiency

We implemented our mechanism in two different computing
environments: GPU(RTX 3060 12GB) and CPU-only(11th i5-
11500 @ 2.70GHz), which we consider representative of the
devices available on the user’s end. We primarily evaluated the
efficiency from the perspectives of time overhead (per data)
and GPU memory usage. The results in Table 6 indicate that
our method can perform well on resource-constrained user
devices (The primary restriction for training ML models on
user devices is GPU memory, which leads to out-of-memory
errors for complex models. However, our method can be com-
pleted with a fixed and relatively small GPU usage). Below
is the analysis of the time and space overhead compared to
completely training a model:

The time overhead and space overhead of training a neu-
ral network model can be approximately represented as
O(C ·T ·N) and O(C) respectively, where C is the complexity
of the model to be trained, N is the scale of the training data,
and T is the number of training epochs. Similarly, the time
and space complexity of our method can be approximately
represented as O(c · t ·N) and O(c) where c is the complexity
of the feature extractor, t is the number of iterations. Firstly,
for complex models, C >> c. Moreover, T will significantly
increase with the growth of C and N, whereas t remains a fixed
value (generally T > t). Therefore, the time and space over-

head of our method are much lower than those of complete
model training, and this advantage becomes more pronounced
as the complexity of the target model increases. More impor-
tantly, by decoupling training and privacy protection, we only
need to perform privacy protection once on user devices (for
given tasks). Many repeated operations, such as parameter
tuning or model architecture selection, can be implemented on
the cloud based on this protected dataset. Even if the privacy
task changes, we can modify only the UIE module without
needing to re-optimize the entire dataset (Figure 15).

6 Real World Performance

6.1 Model training on cloud server

We utilize rented public cloud servers for model training, a
commonly used cloud-based model training paradigm. In this
setup, users provide the dataset and training code/model and
leverage only the computational power of the cloud to train
the model. The data accessible in the cloud consists of T&S
images (P′) and its overflow matrix (Mo). During model train-
ing, the protected data P is recovered based on the overflow
mechanism for training. We evaluated the effectiveness of
such scenarios from three aspects:

Train usability and PSR. The results in Figure 17(a) in-
dicate that image encoding for transmission/storage has min-
imal impact on the training for the target task (The accu-
racy difference between cloud-based and on-premises model
training is within 0.3%) with overflow matrix mechanism.
Compared to training models without the overflow matrix
mechanism, the accuracy improvement is 57%+. For privacy
tasks, it can also achieve a 100% PSR after image encoding,
transmission to cloud.

T&S Cost. Figure 17(b) illustrates the costs of data trans-
mission or storage. The results show that, compared to directly
transmitting tensor data (P) without Mo, the spatial overhead
per image is reduced by over 100kb (data size is 3*100*100)
when using the overflow matrix mechanism.

Visual Privacy. Figure 17(c) presents the comparison of
the visual privacy protection effects before (P) and after (P′)



(a) Train usability and PSR (b) T & S Cost (c) Visual Privacy Protection

Figure 17: Effectiveness of the Overflow Matrix (Mo) Mechanism. We evaluate it from three aspects: train usability and PSR
(17(a)), transmission and storage costs (17(b)), and visual privacy protection (17(c)).

Table 7: Target task model trained and tested by EasyDL.

Top-1 Accuracy Top-2 Accuracy Accuracy

Clean Data∗ 90.7% 95.4% 77.0%
Protected Data† 89.2% 94.7% 74.3%

Precision Recall F1-Score

Clean Data∗ 71.2% 63.4% 65.8%
Protected Data† 69.4% 62.5% 64.1%

1. *: The model are trained and tested by clean data.
2. †: The model are trained by protected data and tested by clean data

transmission or storage (As shown in Figure 7, P represents
the tensor data that is directly optimized for protection. P′

refers to the image encoded used for transmission or storage).
The experimental results demonstrate that P′ has stronger
visual privacy protection effects than P.

6.2 Cloud-based model training by Baidu
EasyDL API

The Baidu EasyDL API [2] is another more convenient cloud-
based model training paradigm. Users only need to upload
their training data, and the cloud platform automatically se-
lects the model and hyperparameters for training. Ultimately,
the API provides the user with a deployable task model.

We use EasyDL to train the emotion classification task
with the protected RAF-DB dataset. We summarize the per-
formance results of the target task model provided by EasyDL
in Table 7. The model trained on the protected data demon-
strated comparable performance to the model trained on the
clean data, with a negligible accuracy difference of approxi-
mately 2.7% and an F1-score difference of around 1.7%. This
outcome highlights the effective retention of training usability
for the target task while leveraging the protected data.

7 Discussion and Limitation

Ethics Statement. This work uses only public datasets and
focuses on privacy protection in machine learning.

Noise magnitude constraint. Some black-box cloud-based
model training frameworks, like EasyDL, do not support cus-

tom data processing, thus preventing the use of overflow ma-
trix. The protected pixel values must be limited to [0, 255] to
ensure that images can be transmitted using existing encoding
frameworks. We recommend embedding a clipping mech-
anism during the noise optimization, where after a certain
number of iterations. This approach will limit the magnitude
of noise Ni, which may compromise visual privacy protection.

Other Privacy Attacks. 1) Attribute inference. The train-
ing data includes attribute labels, so attribute inference attacks
are not our primary focus. Although the CS mechanism can
provide some degree of protection against attribute inference,
it cannot guarantee a 100% PSR. Further protection measures
are necessary if the privacy goal is to prevent attribute infer-
ence. One feasible solution is the adversarial perturbation
approach, disrupting the attribute inference attack model’s
accuracy by applying subtle perturbations to the protected
image. 2) Membership inference. Member inference attacks,
aiming to infer the training data privacy from well-trained
models, are orthogonal to our work [56]. Our method does
not involve the model training process to get well-trained
models. Interestingly, training models with protected data can
partially mitigate membership inference attacks (Appendix
D). This is because the model overfits the protected training
data, which differs from the original one. Besides, strategies
to mitigate membership inference during model training are
equally applicable.

8 Conclusion

In this paper, we introduce a unique privacy-utility goal for
cloud-based model training and propose a practical mech-
anism to achieve this goal. With only one-time protection
(for given tasks), we can enable computationally intensive
and repetitive training processes to be performed entirely
on the cloud without changing the existing training pipeline.
Extensive experiments conducted in real-world applications
demonstrate that the protected data not only fulfills the pri-
vacy requirements (including visual privacy and prevention
of unauthorized model training) but also allows for training
the target task with minimal performance degradation. In the
future, we will extend our method to other types of data, such
as audio, text, and more.
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A Class-wise Noise & Class-agnostic Noise

This section provides a more intuitive explanation of Class-
wise Noise and Class-agnostic Noise and their impact on
model training. Noise was applied to 0.4% of all the pixels.
The dataset used is RAF-DB, the model trained is ResNet34,
and the task is 7-class Emotion Classification.

• Class-wise Noise: Each class label is assigned a unique
noise, with 7 classes corresponding to 7 different noises.

• Class-agnostic Noise: Each sample is randomly assigned
one of 7 different noises, with each class containing all
7 different noises.
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Figure 18: Training and Testing Accuracy Curves with Different Class-wise and Class-agnostic Noise. The X-axis represents
Epochs; the Y-axis represents Accuracy. Class-wise Noise (CW); Class-agnostic Noise (CA). Embedding refers to adding noise
by randomly masking, as described in our paper; Patching refers to adding noise by randomly selecting a continuous region.

As shown in Figure 18, the CA training/testing accuracy
curves are almost identical to the Clean training/testing ac-
curacy curves. In fact, the test accuracy of the model trained
with class-agnostic noise is even higher than that of the model
trained with clean data. On the other hand, for class-wise
noise (CW), the model’s training accuracy quickly reaches
100%, while the test accuracy is very poor, even worse than
random classification. This indicates that when the noise is
related to the class, the model tends to fit the simpler patterns
of noise and class relationships, leading to overfitting to the
noise.

B Details of Baseline Experiments

PPFR-FD. The block size is 8 for the DCT transform, and
we only remove the DC component.

Fawkes. We reproduced Fawkes under our task setup using
a ResNet-18 feature extractor (Φ(·) in Eq.(18)). We set ε =
0.0001, λ = 20, and the number of iterations to 1500 per
image for a better trade-off between privacy and usability.

min
δ

ε ·Dist(Φ(xT ),Φ(x⊕δ))+λ ·DSSIM(x,x⊕δ). (18)

Mixup. Mixup ensures model accuracy by increasing the
amount of training data. To maintain comparability, we se-
lect N training samples from the randomly augmented space,
where N is the number of samples in the original dataset.

DataDAM. DataDAM is the SOTA distribution-based dis-
tillation method. Specifically, we set the size of the synthetic
(protected) dataset to be 1/3 of the original dataset, using
ConvNet as the feature extractor, and perform 10,000 itera-
tions.

DataDAM+DPSGD. The parameter settings for data dis-
tillation are consistent with DataDAM. As outlined in [20],
we add gaussian noise to the gradients to satisfy differential
privacy constraints. Specifically, the clipping norm C is set to
1.0, and the noise multiplier is set to 0.02.

C Denoising Attacks

To validate the robustness against existing denoising tech-
niques, we evaluated four commonly used denoising methods:
the CNN-based method (DnCNN [57], CBDNet [58]) and the

Figure 19: Recovered results. ❶: Clean, ❷: Protected, ❸:
Recovered by DnCNN, ❹: Recovered by CBDNet, ❺: Recov-
ered by BM3D, ❻: Recovered by Mean Filtering.

Figure 20: Prediction uncertainty (PU) and prediction ac-
curacy (PA) for the members (clean training data) vs. non-
members. The target model in the first row is trained on pro-
tected data, while the second row is trained on clean data.

Filter-based method (Mean Filter [59], BM3D [60]). Figure
19 shows that our privacy protection method exhibits good
resistance against denoising attacks. Even though ❹ and ❺
may recover some contour information, this is insufficient
to constitute a privacy breach, as most of the privacy-related
detailed information remains protected.

D Membership Inference Attacks

Figure 20 uses PU and PA to evaluate the difficulty of member-
ship inference attacks. The more similar the distributions of
members and non-members are, the lower the success rate of
the attack [56]. More intuitively, we use the Jensen-Shannon
divergence to evaluate this similarity. PU and PA are 0.094 vs.
0.176 and 0.2 vs. 0.271, respectively (trained on protected data
vs. trained on clean data). For the model trained on protected
data, the distributions of members and non-members are more
similar, making membership inference more difficult.
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