
AidFuzzer: Adaptive Interrupt-Driven Firmware Fuzzing
via Run-Time State Recognition

Jianqiang Wang*, Qinying Wang†, Tobias Scharnowski*, Li Shi§, Simon Woerner*, Thorsten Holz*

*CISPA Helmholtz Center for Information Security, †Zhejiang University, §ETH Zurich
Email:{jianqiang.wang, tobias.scharnowski, simon.woerner, holz}@cispa.de

wangqinying@zju.edu.cn, lishil@student.ethz.ch

Abstract
Fuzzing has proven to be an effective method for discovering
vulnerabilities in firmware images. However, several hard-to-
bypass obstacles still block the way for fuzzers to achieve
higher code coverage in the firmware fuzzing process. One
major issue is interrupt handling, which is fundamental to em-
ulate the firmware: If interrupts are triggered incorrectly, the
firmware may crash or get stuck, even at an early stage. Thus,
a proper mechanism for triggering and handling interrupts is
a crucial yet under-researched aspect of firmware fuzzing.

In this paper, we present AidFuzzer, an adaptive interrupt-
driven firmware fuzzing method, to tackle the interrupt trig-
gering problem. The key observation is that firmware images
commonly exhibit a consistent run-time state transition cycle.
In each state, the firmware may require specific interrupts to
continue running, or it may not need any interrupts to continue
processing data. Based on this observation, we model the type
and status of the interrupts to verify that they are exactly the
interrupts that the firmware needs at a specific point in time.
Moreover, we monitor the run-time state of the firmware and
trigger certain interrupts when the firmware expects them or
let the firmware run when it does not require interrupts. We
have implemented a prototype of AidFuzzer and evaluated it
on 10 open-source firmware projects, including well-known
real-time operating systems such as RT-Thread and Apache
Mynewt-OS. The experiment demonstrates that our frame-
work outperforms state-of-the-art works in terms of coverage
when dealing with complex interrupt handling. We also dis-
covered eight previously unknown vulnerabilities in the tested
firmware images.

1 Introduction

Over the past decade, embedded devices such as factory
robots, medical devices, satellites, and smart fitness bands
have become widespread. To streamline the development
of firmware for these devices, real-time operating systems
(RTOS) are commonly used. Despite advances in firmware

development, security threats and software faults still persist.
Developers often prefer memory-unsafe languages such as
C and C++for low-level hardware manipulation, but these
languages also introduce memory corruption vulnerabilities
due to their inherent direct memory access features.

Fuzz testing (fuzzing) has proven to be an effective and
efficient method for uncovering firmware vulnerabilities. Em-
bedded devices with low performance and slow speed are not
inherently designed for fuzzing. Therefore, running firmware
in an emulated environment and simulating its peripherals’
behaviors—a technique known as re-hosting—is a promis-
ing approach to improve testing. Tools like P2IM [1] and
µEmu [2] attempt to model peripheral behavior by extracting
information from the MCU documentation or using symbolic
execution. Unfortunately, these techniques are unstable and
imprecise. The Fuzzware framework [3] models the MMIO
(memory-mapped I/O, the way that the firmware communi-
cates with the peripherals) access into several categories, such
as bitextract, passthrough, and constant-value. This MMIO
modeling efficiently reduces the input overhead. For instance,
the constant-value model only accepts a single specific in-
put (i.e., the input overhead is 1), reducing fuzzer effort on
mutating that MMIO access. Hoedur [4], another advanced
firmware fuzzing framework, divides a single fuzzing input
into multiple streams based on the MMIO access context. This
so-called multi-stream fuzzing prevents the “avalanche effect”,
where a value meant for one MMIO access is mistakenly con-
sumed by another. Recently, SafireFuzz [5] proposed binary
rewriting of ARM Cortex-M firmware to make it compatible
with high-performance ARM Cortex-A processors, aiming to
accelerate fuzzing speed. While Fuzzware and Hoedur solely
focus on the MMIO input, SafireFuzz requires the presence
of a hardware abstraction layer (HAL) to inject the fuzz input
into both MMIO and DMA (Direct Memory Access).

Despite advances in firmware fuzzing, including state-of-
the-art frameworks, the challenge of accurately triggering
interrupts remains unresolved. P2IM models all peripheral
behaviors, including interrupts, by analyzing the documenta-
tion, but this approach lacks precision. Both Fuzzware and



Hoedur use a round-robin mechanism for interrupt triggering
by default, which involves activating an interrupt at regular,
fixed time intervals. This process starts with the first enabled
interrupt, triggers it, and then triggers the next enabled one.
Once all enabled interrupts have been triggered, the cycle
repeats with the first enabled one. Fuzzware and Hoedur also
support an advanced fuzz-mode interrupt triggering mech-
anism, which triggers interrupts depending on the fuzzing
input. SafireFuzz uses indirect call-level counters and manual
clock-update hooks. The design is similar to the round-robin
mechanism for timer interrupts from a high-level perspec-
tive. While these mechanisms are effective for firmware with
straightforward interrupt-triggering conditions, they fall short
in more complex scenarios.

Unfortunately, interrupt processing in real-world firmware
is often complicated in practice. For example, certain inter-
rupts may be enabled but not yet ready to be triggered because
the associated data, such as pointers, are not fully initialized.
The round-robin and fuzz-mode interrupt triggering mech-
anisms do not take the status of the interrupt into account.
Therefore, if the fuzzer triggers an interrupt before the data
is initialized, this can lead to an unexpected crash that brings
the fuzzing process to a halt. Even after all data is initialized,
triggering some interrupts can cause the firmware to reset or
get stuck in an infinite loop. These interrupts should never
be triggered, as they hinder the fuzzing progress. In addition,
the round-robin and fuzz-mode mechanism triggers interrupts
at regular intervals, but this approach has disadvantages: If
the interval is too small, the fuzzer will constantly interrupt
the execution of the firmware, while too large an interval will
cause the firmware to wait for the interrupt. To summarize,
we need to answer three questions when dealing with the
interrupt-triggering problem:

1. When should the interrupts be triggered?
2. How often should the interrupts be triggered?
3. Which interrupts should be triggered?
We have found that the key observation to answer the above

questions is the run-time state transition of the firmware. The
firmware goes through an initialization phase at boot time
and then transitions to a processing state where it processes
inputs. Once the processing of the inputs is complete, it enters
a waiting state in which it awaits certain asynchronous events
or new inputs, which are usually delivered via interrupts. The
cycle then repeats itself when it returns to the processing state.
The interrupts should only be triggered when the firmware is
in the waiting state, without intervening during the processing
state. By automatically analyzing the interrupt service routine
(ISR), we can pinpoint which interrupts are able to transition
the firmware from the waiting state to the processing state.
We refer to these as effective interrupts. When the firmware
is in a waiting state, we selectively trigger only the effective
interrupts that can cause a transition to the processing state.
We also make sure that each interrupt we want to trigger is
ready to be triggered, e.g., by checking the initialization of the

associated data. AIM [6] proposes a similar interrupt analysis
method for firmware testing. It is based on the same idea
that ISRs can influence the behavior of the firmware. How-
ever, AIM does not model the firmware run-time state and
cannot reveal the relationship between the run-time state and
the interrupt. Therefore, it cannot answer the three questions
accurately. In addition, the overall design and implementation
of AIM is based on symbolic execution, which significantly
affects the analysis speed.

In this paper, we introduce AidFuzzer, an Adaptive
Interrupt-Driven Fuzzing framework that provides a proper
interrupt triggering mechanism for firmware fuzzing. Aid-
Fuzzer identifies effective interrupts, triggers interrupts on de-
mand, and only triggers the interrupts that are required by the
firmware. To evaluate the performance of AidFuzzer, we com-
piled a collection of 10 open-source firmware projects based
on the ARM Cortex-M processor. This dataset includes open-
source Github projects and popular RTOS examples, such as
RT-Thread and Apache Mynewt-OS. Our experimental results
show that AidFuzzer performs better than the state-of-the-art
tools Fuzzware, Hoedur, and SafireFuzz in handling complex
interrupt scenarios. In addition, we found eight previously
unknown vulnerabilities in these open-source projects.
Contributions We make the following key contributions:

• We are the first to systematically discuss the interrupt
triggering problems in firmware fuzzing and propose
the use of an adaptive interrupt triggering mechanism to
overcome the complex interrupt situations encountered
in real-world firmware fuzzing.

• We identify the key insight to solve the interrupt trig-
gering problem: the run-time state transition cycle of a
running firmware and the relations between the interrupt
triggering and run-time state. Based on this insight, we
implement an adaptive interrupt-driven firmware fuzzing
prototype called AidFuzzer.

• We tested AidFuzzer on 10 open-source firmware
projects. AidFuzzer outperforms existing work in han-
dling complex interrupt scenarios, and we found eight
previously unknown vulnerabilities.

To foster future research on firmware fuzzing, we are mak-
ing the prototype of AidFuzzer available as open source at
https://github.com/wjqsec/aidfuzzer.

2 Technical Background

Since we evaluate AidFuzzer on ARM Cortex-M based
firmware targets, and we focus on the interrupt handling prob-
lem, we now provide a brief introduction to the ARM Cortex-
M nested vector interrupt control (NVIC).

2.1 IRQ and Interrupt Vector Table
An interrupt request (IRQ) is an asynchronous event typically
initiated by peripherals. Exception handling by the processor

https://github.com/wjqsec/aidfuzzer


follows a similar path to that of an interrupt, but exceptions are
internally generated by the processor, such as encountering
an illegal instruction or a division-by-zero fault. This paper
specifically focuses on asynchronous interrupts originating
from peripherals. We will use IRQ triggering and interrupt
triggering interchangeably in the paper, as they both refer to
the same concept: A device sends an asynchronous interrupt
request to the processor.

When an interrupt occurs, it alters the control flow from
the current processor execution context (referred to as thread
mode in ARM Cortex-M) to the interrupt handling context
(referred to as handler mode). Upon detecting the incoming
interrupt signal, the processor automatically preserves the
current register context by saving it to the stack. Subsequently,
it retrieves the IRQ number and the corresponding Interrupt
Service Routine (ISR) address from the interrupt vector table
and starts executing the ISR.

The interrupt vector table is an array of function pointers
in memory that use the IRQ number as an index to access
its elements. For instance, consider an interrupt vector table
located at address 0x20000000 and an IRQ with a number of
0x20, the processor finds the corresponding ISR at address
0x2000000080 (calculated as 0x20000000 + 4 * 0x20, as a
function pointer in the ARM Cortex-M is 4 bytes in size). The
processor then loads the memory content from 0x2000000080
into the Program Counter (PC). Upon completing the ISR,
the processor loads the EXC_RETURN [7] value, previously
saved in the link register during the context switch, into the
PC, indicating an interrupt exit. The processor automatically
restores the previous context and resumes execution from
thread mode.

Each interrupt has a corresponding priority, and when mul-
tiple interrupts occur simultaneously, the processor gives pri-
ority to the one with the highest priority. It is noteworthy that
this paper excludes the handling of nested interrupts and tail
interrupts, as interrupts are only triggered in thread mode, and
only one interrupt is triggered at a time in our implementation.

Note that the interrupt vector table is subject to dynamic
re-basing, and its elements can be overwritten during run-
time. For instance, the firmware might alter the table address
from 0x20000000 to 0x30000000 or overwrite the memory
content at address 0x2000000080. Consequently, different
ISRs can be employed in such scenarios to handle the same
IRQ. This flexibility in re-configuring the table allows for dy-
namic adjustments to the interrupt handling process, enabling
the system to adapt to changing requirements or respond to
specific run-time conditions.

2.2 NVIC Configuration

NVIC is mapped as a Memory-Mapped I/O (MMIO) region
and can be configured by writing to this designated mem-
ory space. As an example, the vector table base address can
be configured by the firmware. When the firmware requires

NVIC configuration, it simply writes to the pertinent field
within the NVIC data structure. In this paper, we focus on the
following NVIC configurations:

• Enable/Disable IRQ: An array of bits indicates the en-
able/disable status of an IRQ. NVIC supports up to 240
interrupts [7]. However, besides the reserved interrupts
that are enabled by default, only a number of the IRQs
are used and enabled by the firmware. The IRQ can only
be used by the peripherals and triggered if it is enabled.

• Interrupt Vector Table Base: Writing to this field changes
the table base address. The processor fetches the subse-
quent ISR address based on the updated value.

• IRQ Pending: An array of bits indicates pending IRQ
requests. Writing to this field pends a corresponding
IRQ, waiting to be handled by the processor. Note that
setting a pending bit to this array does not mean that
this IRQ will be served immediately, it also depends
on several other conditions: a) If interrupt handling is
enabled globally by the processor. b) If the specific IRQ
is enabled in the NVIC configuration.

One bit in the Current Program Status Register (CPSR)
for ARM processors indicates the global interrupt enable/dis-
able status. Setting/clearing this bit allows/prevents all the
interrupts from being served.

2.3 Types of NVIC Interrupts
IRQ numbers 1-15 are usually reserved for core ARM Cortex-
M processor functionalities such as reset, system-call, and
hard fault, which are not triggered by peripherals. One excep-
tion is the SysTick IRQ: Firmware may rely on it to accom-
plish its functionalities such as task scheduling. Peripherals
customize other IRQs mainly to handle the following situ-
ations: a) New data is available either from DMA buffers
or from device registers. b) Output data is consumed or pro-
cessed by the peripherals. c) A specific time interval has
passed. d) There is an internal status change in the peripher-
als. e) Other unexpected event happens. For example, a typical
8250 UART device [8] ISR either reads a character from the
Receiver Buffer register when a new input character arrives or
writes a cached character to the Transmitter Holding Buffer
register when the device is ready to consume more characters.

2.4 QEMU NVIC Implementation
QEMU maps the NVIC as an MMIO region and maintains
the NVIC status in its internal data structure (i.e., this internal
structure belongs to QEMU instead of the emulated fimware).
When the virtual machine accesses this memory region, a
corresponding QEMU function is called. For example, when
a virtual machine writes to the enable/disable IRQ bit array,
the function nvic_sysreg_write serves this operation. The IRQ
status will be updated in this function, and the status is per-
sisted in NVICState structure. QEMU provides a function



called armv7m_nvic_set_pending for the peripherals to trig-
ger an interrupt. In this function, QEMU checks if the IRQ
is allowed to be triggered, calculates the priorities among all
the pending IRQs, makes the highest priority IRQ active, and
notifies the execution thread about the new interrupt request.
The execution thread regularly checks if there are pending
interrupt requests. If any, it performs the context switch and
starts executing the ISR.

3 Motivation Examples

In this section, we use concrete examples to show why trig-
gering interrupts is crucial for firmware fuzzing. All examples
are adapted and simplified based on real firmware. In the first
example, an infinite loop dummy ISR serves an IRQ during
the initial stage to prevent the firmware from running into
an unintended state. The second example shows a watchdog
ISR that halts the system when an unexpected error happens.
These two IRQs should never be triggered since they immedi-
ately stop the firmware running, thus hindering the fuzzing
process. In the third example, a UART ISR extracts char-
acters from a ring buffer and outputs them to the terminal;
it should be triggered only when necessary. By using these
three examples, we illustrate what concrete problems should
be considered when triggering an interrupt.

3.1 Dummy ISR Example

Listing 1: A commonly used dummy ISR
void dummy_isr() {

while(1) { ; }
}

An infinite loop as shown in Listing 1 is commonly used
by the firmware to implement a dummy ISR during the ini-
tial stage. The firmware usually first enables the IRQ and
then initializes the actual ISR later. In practice, there is even
firmware that activates certain IRQs and allows them to be
served by dummy ISRs during the entire run-time. Moreover,
some developers use a function pointer in the ISR as a dummy
function and initialize the pointer afterwards. The firmware
directly de-references the pointers without NULL checking
since the IRQ will only be triggered after the data are properly
initialized in a real environment. However, if the interrupt is
triggered too early before it is fully initialized, the firmware
gets stuck or crashes, preventing the fuzzer from making any
progress in fuzzing. The firmware works well in the real envi-
ronment because no peripherals use this interrupt before they
are fully initialized. The round-robin and fuzz-mode interrupt
mechanisms will eventually trigger it and hinder the fuzzing
process.

3.2 Simplified Watchdog ISR Example

Listing 2: A simplified watchdog ISR
void watchdog_isr() {

trace_watchdog_isr_event();
if(wdt_handler)

wdt_handler();
system_hal();

}
int main() {

do_something1();
watchdog_tickle();
do_something2();
watchdog_tickle();

}

Even after initializing the ISR and the data, some IRQs
should never be triggered during fuzzing. Listing 2 shows
a watchdog ISR. The firmware needs to regularly tickle the
watchdog to prevent it from triggering a watchdog interrupt.
In the watchdog ISR, the watchdog interrupt event is logged,
the handler provided by the firmware is called to perform
the cleaning task, and finally the system is reset. The imple-
mentation of system_hal depends on the specific board. It
may simply go into an infinite loop or execute a breakpoint
instruction. The watchdog ISR is used to prevent the firmware
from corrupting the data when something unexpected hap-
pens. Normally, this interrupt is not expected to be triggered
during regular execution, as the watchdog is regularly tickled.
However, in a round-robin or fuzz-mode interrupt mechanism,
it will be triggered at some time, thus hindering the fuzzing
process.

3.3 Simplified UART ISR Example

Listing 3: A simplified UART ISR
struct ring_buffer output_buffer;
void uart_tx_isr() {
if(uart_ready() && !empty(&output_buffer)) {
char c = dequeue(&output_buffer);
uart_write(c); // write to uart register

}
}
void uart_tx_string(char *s) {
while (*s) {
while(full(&output_buffer)) {

; // stuck here
}
enqueue(&output_buffer,*s);
s++;

}
}
void main() {

uart_tx_string("before do something");
do_something();
uart_tx_string("hello world");

}



Unlike the watchdog interrupt, Listing 3 shows a simplified
UART ISR that the firmware relies on to accomplish its con-
sole output functionality which should be triggered when
necessary. Listing 3 defines a ring buffer output_buffer. The
functions full and empty check whether the buffer is full or
empty. When the UART interrupt gets triggered, it checks
if the device is ready to consume more characters and, if so,
it fetches a character from the ring buffer and writes it to
the console. The function uart_tx_string is used to output a
message string. It keeps looping until all the string characters
are inserted into the ring buffer. In the main function, the
firmware outputs several messages. However, to avoid get-
ting stuck in the uart_tx_string function, the UART interrupt
must be triggered to consume the characters from the ring
buffer. The round-robin or fuzz-mode mechanism can work in
this situation. However, a short trigger time interval interferes
with the execution of the function do_something, while a long
interval makes the firmware busy checking the ring buffer in
the function uart_tx_string.

3.4 Lessons Learned

Recall the three questions we aim to answer in this paper:
1. When should the interrupts be triggered?
2. How often should the interrupts be triggered?
3. Which interrupts should be triggered?
Learning from the above examples, we propose the follow-

ing heuristics:
1. Interrupts should be triggered only after the ISR and

the data are initialized. We call this IRQ status ready.
(When)

2. Interrupts should only be triggered when the firmware
needs them. We call this firmware run-time state waiting.
For example, when the firmware keeps checking the
status of the ring buffer in the simplified UART ISR
example, it is in a waiting state. (How often)

3. Only the interrupts whose ISR can change the firmware
run-time state from waiting to not waiting should be
triggered. We call this IRQ type effective. For example,
the ISRs in the first two examples make the firmware
get stuck and are thus not effective IRQs. However, the
UART ISR in the third example lets the firmware escape
from the waiting state and continue running, thus it is an
effective IRQ. (Which)

In summary, to solve the interrupt triggering problem, we
need to identify the IRQ status (ready or unready), IRQ types
(effective or ineffective), and the firmware run-time state
(waiting or not waiting).

4 Challenges and Insights

Solving the problem of interrupt-triggering is a challenge in
practice due to the complexity of the interrupt design. Identi-

fying the IRQ status, IRQ types, and firmware run-time state
is a non-trivial task.

4.1 Challenges

The complicated interrupt design in real-world firmware poses
two main challenges:

• When the processor serves an IRQ, it retrieves the in-
terrupt vector table base address and indexes the ISR
using the IRQ number. The vector table is subject to
dynamic re-basing, and its elements can be overwritten
at run-time. Thus, a single IRQ number can be served
by multiple ISRs. Besides, function pointers are widely
used in ISRs. A function pointer can point to different
functions at firmware run-time. An ineffective IRQ may
become an effective one after any of these conditions
gets changed. Therefore, the type and the status of the
IRQ cannot be statically determined. We summarize this
challenge as run-time data dependency.

• Manually analyzing the firmware to determine the run-
time state requires a non-trivial amount of work. The
firmware does not enter a waiting state at a fixed time
interval, but is highly dependent on the program logic.
The firmware requires different interrupts in different
waiting states. Statically analyzing the entire firmware
to determine when the firmware enters a waiting state
is a tedious task, as static analysis is not scalable. We
summarize this challenge as state recognition.

4.2 Insights

To solve the run-time data dependency challenge, we monitor
and intercept the changes of the interrupt vector table base,
vector table entries, and the function pointers used in the ISR
during the whole fuzzing campaign. If there is any change,
we extract the ISR address from the vector table, dump the
firmware registers and memory, analyze it, and save the anal-
ysis results in an IRQ model database. When an update is
detected, e.g., when a function pointer is overwritten with a
new value, we first try to find the model in our IRQ model
database. If we find the corresponding model for the update,
we apply it; otherwise, we perform a re-analysis. In this way,
we always keep using the latest IRQ model.

For the state recognition problem, we observe that most
firmware share a common run-time transition cycle. As shown
in Figure 1, the firmware boots itself and then goes into an
infinite processing-waiting loop. In the processing state, it
does not require any interrupts and is busy processing data. In
the waiting state, it requires interrupts to change its state back
to processing again. We have the following key observation:

The effective IRQs change the firmware run-time state
from waiting to processing by modifying global objects.
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Figure 1: Firmware run-time state transition cycle

For instance, in the simplified UART ISR from Listing 3,
the ISR uart_tx_isr makes the firmware continue running
by changing the global object output_buffer status from full
to not full. Besides, we observe that firmware widely uses
specific instructions or infinite loops to enter a waiting state as
well. Hence, we conclude that the firmware enters a waiting
state if one of the following conditions is satisfied:

1. The firmware explicitly enables the global interrupt by
setting the bit in CPSR in a frequent manner.

2. The firmware executes the Wait for Interrupt (WFI) or
Wait for Event (WFE) instruction. These instructions
allow the core to enter a low-power mode and stop exe-
cuting code.

3. The firmware enters an infinite loop.
4. The firmware constantly checks the global objects whose

value can be modified in an ISR.

With these assumptions in mind, we conclude that the
firmware only requires interrupts when it is in a waiting
state, and the ISRs will modify global objects to change the
firmware run-time state from waiting to processing. Hence,
we trigger interrupts in the following manner: When the
firmware enters a waiting state via the first three conditions,
we trigger all the effective interrupts one by one since we
have no hints indicating which interrupt it requires. When the
firmware enters a waiting state via the fourth condition, we
trigger the corresponding interrupt whose ISR can change the
global objects’ value.

Our findings closely align with our investigation of
firmware samples collected from various RTOS. More specif-
ically, we analyzed 110 firmware samples and found that
83% of them followed our run-time state transition cycle ob-
servation. For more information about the investigation we
conducted, please refer to Section 6.

5 Design and Implementation

We now discuss the threat model we use in this paper and
then present the design and implementation of our approach.

5.1 Threat Model
In this paper, we assume that the attacker has full control
over the MMIO data. The firmware accepts peripheral in-
puts (e.g., network packets, temperature, and console input
characters) either from the MMIO registers or from the DMA
buffer. We disregard the DMA input and focus on the data read
from MMIO. We do not assume that the interrupts are con-
trolled by the attacker, as they usually cannot be configured
by an attacker. We make no assumptions about the image
symbols, source code, and documentation of the firmware.
However, like other re-hosting systems, we assume that we
have full knowledge of the board’s memory layout on which
the firmware runs.

5.2 High-Level Overview
Figure 2 illustrates the design overview of AidFuzzer. It
mainly consists of three components: the emulator, the IRQ
modeling engine, and the fuzzing engine. The emulator main-
tains an emulated environment, including CPU registers and
virtual memory, for re-hosting the firmware. It translates the
ARM assembly code into native code and executes it. The
IRQ manager triggers interrupts when the firmware enters the
waiting state. The IRQ modeling engine extracts the firmware
context and analyzes the ISR at a specific point. Upon comple-
tion of the analysis, the modeling results are saved in the IRQ
model database, which is subsequently retrieved and used by
the IRQ manager. The fuzzing engine, like other firmware
fuzzers, supplies fuzzing input via MMIO and obtains cover-
age feedback from the emulator to guide the fuzzing process.
In the following sections, we discuss the detailed function-
alities of each part, in particular how the interrupt trigger
mechanism works in the system.

5.3 IRQ Modeling Engine
Recall that we designate an IRQ as effective if it changes the
firmware runtime state to processing (i.e., its ISR alters global
objects), and we trigger it after its status becomes ready. The
main goal of the IRQ modeling is to determine the type and

Emulator Re-hosted Firmware 

IRQ Model 
Database

IRQ Manager

Run-time 
Irq Model

Trigger Interrupt

Fuzzing Engine

Fuzz Input

Coverage 
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Figure 2: Design overview of AidFuzzer



status of an IRQ. The type and status can change during the
runtime, therefore, we need to update the IRQ model when
necessary. Specifically, we collect the following information
during the IRQ modeling process.

a) Does the ISR modify any global objects? If so, collect
the addresses to which the values are written.

b) Does the ISR use any function pointers? If so, collect
the addresses from which the pointers are loaded.

c) Does the ISR de-reference any null pointers without
checking? If so, collect the addresses from which the
pointers are loaded.

d) Does the firmware always get stuck in the ISR, e.g., in
an infinite loop?

We use the modified global objects information to identify
the types of the IRQ (effective or ineffective), the null pointer
de-reference and getting stuck information to identify the
status of the IRQ (ready or unready), and the function pointer
information to update the type and status of an IRQ. After
finishing the modeling, the results are saved in the IRQ model
database.

5.3.1 IRQ Modeling Workflow

The IRQ modeling engine takes firmware register values and
a memory dump in combination with the memory layout con-
figuration file as inputs (note that we assume that the memory
layout is available in our threat model). The modeling engine
symbolically executes the ISR by using angr [9]. During exe-
cution, the engine intercepts the memory access operations
to collect the aforementioned information. However, since all
data in the context dump is concrete, the global memory needs
to be symbolized to explore as many paths as possible. An
exception is the pointer, where further information is required
to fetch more data and explore indirect functions. Specifi-
cally, we perform the following operations in the symbolic
execution interception.

Interceptions. For memory read operations where the ad-
dresses from which the data is to be loaded are in the global
memory space, the engine symbolizes their value and creates
a mapping between the symbolic value and its concrete mem-
ory data. If the addresses are symbolic, it checks whether their
corresponding concrete data is 0, and it reports a null pointer
de-reference if the value is not constrained to a non-zero value.
If a function pointer is used in an indirect branch, it resolves
its symbolic value to concrete data so that the symbolic exe-
cution keeps running. If the function pointer is 0, it reports a
function pointer usage. For memory write operation, it checks
if the addresses are located in the global memory space, and
if so, it reports a global object modification. For each piece
of information, the engine collects the addresses at which the
data was loaded or saved. After the symbolic execution is
completed, it checks whether one of the paths can reach the
end of the ISR; if not, it reports that it is stuck.

Special control register handling. The processor automati-
cally loads the IRQ number into IPSR before entering the ISR.
In certain firmware, a unified ISR wrapper is implemented for
all IRQs, using the IPSR register value as an index to retrieve
the actual ISR function pointer from a function pointer array.
When conducting symbolic execution and encountering reads
from this register, we provide the concrete IRQ number. For
other control registers, we opt to symbolize their values to
facilitate the exploration of additional execution paths.

Path explosion handling. To mitigate path explosion, we
first explore the newly discovered basic blocks and set a time-
out for the loops when modeling the ISR. We set a two minute
timeout for the AidFuzzer prototype.

5.3.2 IRQ Modeling Example

We take the simplified UART ISR as a modeling example.
During the symbolic execution, the entire global memory
and MMIO data are symbolized. Therefore, the function
uart_ready can return both true and false, and the ring buffer
could also be empty and full. If one of the two conditions is
unsatisfied, the execution ends, making it possible to reach
the end of the ISR. If the two conditions are satisfied, the
execution enters the if branch. When it tries to write the
output_buffer object, the engine infers that it is a global ob-
ject, and therefore it collects the address of the field that is
being written to. Finally, we conclude that the UART ISR has
the following modeling results: It modifies a global object
output_buffer, it does not contain null pointer dereferencing,
and does not cause the firmware to get stuck. Thus, the UART
IRQ is effective and ready.

5.4 Emulator

We implement our emulator based on QEMU [10]. The emu-
lator functions as a dynamic runtime environment for the
firmware, with the original ARM assembly code dynami-
cally compiled into intermediate language code (TCG code
in QEMU). This intermediate code is further translated into
native code and executed. The physical addresses of the re-
hosted firmware are translated into native addresses through
the use of the softMMU, enabling interception of every mem-
ory access. To feed the fuzz input, we implement an ARM
Cortex-M-based board that supports full customization for the
memory regions. Originally, the emulated peripherals are re-
sponsible for triggering interrupts; however, the IRQ manager
takes over the interrupt triggering and can decide when and
what interrupts are to be triggered with the help of the IRQ
model database. After each fuzzing run, the emulator restores
the re-hosted firmware and IRQ manager state. The coordina-
tion between the IRQ manager and the re-hosted firmware is
explained in more detail next.



5.4.1 IRQ Manager

State monitor. Recall that we established four conditions,
and if any of them is satisfied, the firmware enters the waiting
state. Upon the satisfaction of any of these conditions, our
callback function is invoked. In this callback function, the IRQ
manager determines whether and what interrupts are to be
triggered. We explain how AidFuzzer checks the satisfaction
of the conditions and infers the firmware runtime state:

1. The firmware frequently enables the interrupt. We mon-
itor the global interrupt enable/disable state by inter-
cepting the execution of all CPSIE I instructions. This
instruction sets the CPSR bit so that the processor can
serve the interrupts. When writing to this register, our
callback function is invoked.

2. The firmware executes WFI or WFE instructions. We
intercept all the WFI and WFE instructions. Once the
firmware executes these two instructions, the firmware
stops execution and our callback function gets invoked.

3. The firmware enters an infinite loop. We search for all
infinite loops in the firmware before fuzzing. Beginning
with each branch instruction, we conduct symbolic ex-
ecution of the subsequent instructions. If we determine
that the execution can reach the same branch instruction
without encountering an opportunity to exit the loop, we
categorize it as an infinite loop. For each basic block
initiating an infinite loop, we register a callback function.
Consequently, should the firmware enter an infinite loop
during runtime, the IRQ manager receives a notification.

4. The firmware constantly checks the global objects whose
values can be modified in an ISR. We set memory read
breakpoints to all the global objects whose values can be
modified in the effective IRQs’ ISRs. Whenever any of
the global objects is read by the firmware, our callback
functions are invoked.

We set a counter for each condition. If any callback func-
tion gets invoked, we increase the corresponding counter by
one. Once a counter surpasses a predefined threshold, we trig-
ger the specific interrupts. For example, we set the counter
threshold for condition 1 to 10. If the firmware enables the in-
terrupt 10 times, we trigger all the effective IRQs one by one
and reset the counter to 0. Note that we trigger all the effective
IRQs one by one when the first three condition counters sur-
pass the threshold, while we only trigger the corresponding
IRQ in the fourth condition. In AidFuzzer, we set the enable
interrupt counter threshold to 32, the WFI/WFE instruction
counter threshold to 1, the infinite loop counter threshold to 7,
and the global object check counter threshold to 10 according
to our empirical analysis.

To avoid recursive interrupt triggering, we do not increase
the counter when the firmware is handling an exception, which
means when the firmware is executing an ISR, even if the
conditions are satisfied, no counter is increased.

IRQ triggering. Once the IRQ manager decides to
trigger an interrupt, we set a bit in the NVIC IRQ
pending field. Specifically, we call the QEMU function
armv7m_nvic_set_pending with the IRQ number as an ar-
gument. The emulator checks the pending request and does
the actual interrupt handling.

IRQ model switching. Maintaining the latest IRQ model is
crucial. We achieve this by registering several event hooks to
trigger model updating. Initially, we generate a model whose
status is not ready for all the IRQs. During the fuzzing process,
we analyze the ISR, save the results to the model database,
and fetch the model when the currently used model needs
to be updated. Specifically, we update the IRQ model in the
following situations: a) When an IRQ is enabled. IRQ man-
ager requests the IRQ modeling engine to analyze the newly
enabled IRQ and switch the IRQ model to the generated one.
b) When the vector table is re-based. We check all the enabled
IRQ vector table entries to see if it is a new value. If so, the
IRQ manager requests a re-analysis and switches to the new
model. c) When an enabled IRQ table entry is overwritten
with a new value. We re-analyze the ISR and switch to the new
model. d) When a function pointer is overwritten with a new
value. We re-analyze the ISR and switch to the new model.
We assign a unique ID to each generated model according
to its ISR address and the function pointer values. When an
existing model is available in the database, we switch to the
existing one instead of requesting a re-analysis.

5.4.2 Snapshot

We use snapshots to speed up the fuzzing process. When the
firmware executes the first MMIO read instruction, we take
a snapshot, as we rely on the assumption that the firmware’s
control flow will not change if it is not affected by the MMIO
input. This holds for almost all the firmware, and it works well
for all our test cases. Besides the memory and the registers,
we snapshot and restore the internal NVIC state as well.

5.5 Fuzzing Engine

Multi-stream fuzzing input. We adopt Hoedur’s [4] multi-
stream input and Fuzzware’s fine-grained input model [3].
Whenever the firmware tries to read from MMIO memory,
the emulator generates a corresponding ID by calculating the
instruction and MMIO address hash result. If it is the first
time it encounters the access ID, it invokes the Fuzzware inter-
face to generate an input model for the ID, then the emulator
notifies the fuzzer about the newly generated input stream.
For each newly generated stream, the fuzzing engine assigns
a random length of data for it. The firmware consumes the
stream data from the MMIO read when the stream is not ex-
hausted; otherwise, it reports an out-of-stream exit. For now,
we ignore the MMIO writes and redirect them to a dummy
function.



Coverage feedback. Edge coverage is widely adopted in
fuzzing [11] [12] [13]; however, the asynchronous interrupt
leads to noisy coverage. An edge that starts from the current
basic block to the beginning of the ISR does not exist. To
eliminate the noise, we choose to use basic block coverage.
We intercept every basic block execution. Before the basic
block gets executed, we increase the corresponding coverage
byte by one.

Crash detection. We do not have sanitizers integrated into
our emulator; therefore, we only detect invalid memory access
crashes. When an invalid memory access happens, such as a
null pointer de-reference when address 0 is not mapped, our
exception hook is notified and gets called with the exception
code as an argument. We check the exception code to see if it
is a real crash since, for example, a syscall is also regarded as
an exception in ARM Cortex-M. Moreover, the firmware may
write to an NVIC field to reset the system. Fuzzware regards
this as a crash; however, we filter out such cases since they
do not incur a security issue.

6 Evaluation

In this section, we comprehensively evaluate AidFuzzer,
demonstrating its effectiveness on firmware fuzzing. We aim
to answer the following research questions.

RQ1: Is AidFuzzer more effective compared to the previ-
ous works for fuzzing firmware in terms of coverage and bug
finding?

RQ2: How sound is the IRQ modeling?
RQ3: How computationally expensive is the implemented

IRQ modeling?
RQ4: Does the IRQ modeling perform better than existing

methods?

6.1 Experiment Setup
Experiment settings. We performed our experiments on a
104 core Intel Xeon Gold 5320 CPU @ 2.20GHz with a 252
GB RAM server running a Ubuntu 22.04.1 LTS OS. We eval-
uated our prototype against the two state-of-the-art firmware
fuzzers Fuzzware and Hoedur. For each target, we gave each
fuzzer one physical CPU core. Moreover, we evaluated against
SafireFuzz.

Target firmware selection. Our evaluation targets consist
of 10 firmware projects. We collected them from open-source
GitHub projects, well-known RTOS examples, and the targets
that have been used by previous evaluation experiments [2].
The details can be found in Table 1.

Evaluation metrics. We evaluate the effectiveness of Aid-
Fuzzer in two aspects: a) We count the number of unique
basic blocks discovered by fuzzers. We measure if AidFuzzer
can discover more unique basic blocks or can discover basic

1Microchip Advanced Software Framework

Table 1: Number of basic blocks, board, and the OS/frame-
work information of the firmware we collected.

Bbls Board OS/framework

Blehci [14] 5441 nrf52840 Apache Mynewt
AnnePro2-Shine [15] 1117 AnnePro2 keyboard ChibiOS
TauLabs [16] 4644 pipxtreme ChibiOS
3Dprinter [17] 8032 Marlin printers bare-metal
bcn_rfd_ncp [18] 3590 Atmel SAM ASF1

coord_ncp [18] 4247 Atmel SAM ASF
mac_no_beacon_sleep [18] 2940 Atmel SAM ASF
nobcn_ffd_ncp [18] 3510 Atmel SAM ASF
sam4l_qtouch [18] 1799 Atmel SAM ASF
nmea_parser [19] 8415 STM32F411RE RT-Thread

blocks faster. b) We count the number of discovered unique
crashes and the number of confirmed vulnerabilities. We mea-
sure if AidFuzzer can discover more vulnerabilities while
having fewer false positives.

6.2 Effectiveness of AidFuzzer (RQ1)

We compare AidFuzzer against the two state-of-the-art tools
Fuzzware and Hoedur with their advanced fuzz-mode inter-
rupt triggering mechanism integrated. Each is configured with
the default 1000 basic blocks interval. To eliminate the effects
originating from the fuzzer, we implemented a fuzz-mode in-
terrupt triggering for AidFuzzer as well for comparison. The
implemented AidFuzzer-fuzz-mode has the same interrupt
triggering settings, such as interval, as Fuzzware and Hoedur.
We fuzzed each target for 24 hours 10 times as recommended
by Klees et al. [20] and Schloegel et al. [21]. Figure 3 visual-
izes the median and confidence interval of discovered basic
blocks, and Table 2 presents the number of unique reported
crashes and the confirmed vulnerabilities.

6.2.1 Coverage Analysis

As shown in Figure 3, AidFuzzer achieved higher and
faster coverage than Fuzzware, Hoedur, and AidFuzzer-fuzz-
mode for the majority of the targets, while for other targets,
AnnePro2-Shine, nmea_parser, and sam4l_qtouch, AidFuzzer
achieved similar coverage.

Hoedur had a bug when handling a UART interrupt pri-
ority in Blehci and could not continue before the firmware
started processing data. For TauLabs, due to ineffective IRQs,
Hoedur triggered the watchdog interrupt and got stuck in
an infinite loop, and no fuzzing progress was made. We did
not plot Fuzzware and AidFuzzer-fuzz-mode for TauLabs,
as both fuzzers crashed before discovering any valid input
due to triggering unready interrupts. The same problem also
happened for target nmea_parser. The nmea_parser SysTick
interrupt ISR used uninitialized pointers, which was triggered
by Fuzzware and AidFuzzer-fuzz-mode in the early stage.
For sam4l_qtouch, AidFuzzer-fuzz-mode kept triggering the
SysTick interrupt whose ISR involves an infinite loop be-
fore the second interrupt was enabled. An interesting target
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Figure 3: Basic block coverage achieved by Fuzzware, Hoedur, AidFuzzer-fuzz-mode, and AidFuzzer over the course of 24
hours for 10 times. We plot the median and confidence interval.

is mac_no_beacon_sleep. As recommended by Hoedur, we
disabled the interrupt triggering time interval because the
firmware contains WFI instructions(which means Hoedur
only triggers an interrupt when it encounters a WFI instruc-
tion). However, the firmware did not reach the instruction
during the execution. We identified four conditions that can
make the firmware enter a waiting state. However, Hoedur
cannot fully identify all of these conditions.

As shown in Figure 3, although the interrupts did not make
the firmware get stuck or crash in the early stage, triggering
the interrupts in a proper frequency was crucial for firmware
fuzzing as well and made the fuzzer achieve faster basic block
coverage. We take the 3Dprinter as an example to illustrate
the reason behind it.

The 3Dprinter firmware takes a string—called GCode
instruction—as input. The GCode instruction is read one char-
acter at a time when the UART interrupt is triggered. This
character is stored in a buffer and is only processed later on
when a whole line is read. For the fuzz-mode interrupt trigger-
ing strategy, it can be an issue to associate the coverage of the
GCode instruction execution with triggering the UART inter-
rupt multiple times in combination with a meaningful GCode
instruction input. A fuzzer with such an interrupt strategy may
only rarely raise the UART interrupt due to the mentioned
coverage feedback disconnect and therefore greatly decreases
the chance of reaching deep into the 3Dprinter logic. Aid-
Fuzzer identifies the UART interrupt as an effective and ready
IRQ. Its ISR modifies the number of characters stored in the
buffer. The firmware keeps checking the number of elements
in the buffer when it does not receive enough characters from
the UART. AidFuzzer’s state monitor recognizes the firmware
run-time state as waiting and triggers the UART interrupt ac-
cordingly. This way, it increases the chances for the firmware
to receive a whole line of GCode and continue processing. We
noticed that Hoedur achieved higher coverage than AidFuzzer
after 14 hours. We found that an interrupt was not triggered by

AidFuzzer. This interrupt is enabled after a failure occurs and
the firmware enters a throb function. The interrupt is not used
by the firmware. AidFuzzer identifies the IRQ as unready as
it contains uninitialized pointers that persist throughout the
throb function, thus AidFuzzer did not trigger this interrupt,
incurring lower coverage than Hoedur.

Besides Fuzzware and Hoedur, we also compared Aid-
Fuzzer to SafireFuzz using the 12 samples from the Safire-
Fuzz experiments [5]. Since SafireFuzz requires manual
HAL function hook, we reused the data from their pa-
per and plot them separately. Figure 4 shows the unique
basic blocks discovered by AidFuzzer, AidFuzzer-fuzz-
mode, and SafireFuzz. Notably, six of the firmware samples
(6LoWPAN_Receiver, 6LoWPAN_Transmitter, P2IM_Drone,
P2IM_PLC, STM_PLC, WYCINWYC) do not use DMA to
transfer data, hence these samples are fully supported by Aid-
Fuzzer. The other samples use DMA, which is an orthog-
nal challenge not addressed by AidFuzzer. In the WYCIN-
WYC, P2IM_Drone, 6LoWPAN_Transmitter, and P2IM_PLC
samples, AidFuzzer achieves similar or better coverage com-
pared to SafireFuzz. However, AidFuzzer discovered fewer
unique basic blocks than SafireFuzz in STM_PLC and 6LoW-
PAN_Receiver. We observed that the STM_PLC requires a
nested interrupt to be triggered, which AidFuzzer does not
support. Additionally, AidFuzzer could not successfully rec-
ognize the global objects in 6LoWPAN_Receiver due to a bot-
tleneck in symbolic execution. We emphasize that while Aid-
Fuzzer and SafireFuzz address orthogonal firmware fuzzing
challenges, our methodology could be adapted to enhance the
fuzzing efficiency of SafireFuzz.

6.2.2 Crash Analysis

AidFuzzer found in a total of 8 vulnerabilities in the 10
firmware targets shown in Table 2, including 1 buffer
over-read control flow hijacking in TauLabs, 3 buffer
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Figure 4: Basic block coverage achieved by SafireFuzz, AidFuzzer-fuzz-mode, and AidFuzzer over the course of 24 hours for 5
times. We plot the median and confidence interval. AidFuzzer and SafireFuzz work on different architectures; therefore, we
reused the evaluation data from the SafireFuzz experiments.

Table 2: Unique crashes, confirmed vulnerabilities, and vulnerability types found by Fuzzware, Hoedur, AidFuzzer-fuzz-mode
and AidFuzzer. AidFuzzer discovered more vulnerabilities while reporting 0 false positives.

Fuzzware Hoedur Aid-fuzz-mode AidFuzzer

Reported Confirmed Reported Confirmed Reported Confirmed Reported Confirmed Vulnerability types

Blehci 1 0 0 0 0 0 0 0
AnnePro2-Shine 3 3 3 3 3 3 3 3 buffer over-write

TauLabs 1 0 0 0 0 0 1 1 buffer over-read
3Dprinter 1 0 1 0 1 0 0 0

bcn_rfd_ncp 1 1 1 1 1 1 1 1 arbitrary write
coord_ncp 1 1 1 1 1 1 1 1 arbitrary write

mac_no_beacon_sleep 1 1 0 0 1 1 1 1 arbitrary write
nobcn_ffd_ncp 1 1 1 1 1 1 1 1 arbitrary write
sam4l_qtouch 0 0 0 0 0 0 0 0
nmea_parser 1 0 1 0 1 0 0 0

total 11 7 8 6 9 7 8 8

over-writes control flow hijacking in AnnePro2-Shine, and
4 arbitrary memory writes in bcn_rfd_ncp, coord_ncp,
mac_no_beacon_sleep, and nobcn_ffd_ncp. It is worth not-
ing that AidFuzzer did not report any false positives. Hoedur,
Fuzzware, and AidFuzzer-fuzz-mode correctly reported part
of the vulnerabilities; however, they reported false positives
as well. We reported all the vulnerabilities to the vendors.

Fuzzware misreported a reset in Blehci as a crash. Due to
the implementation bug, Hoedur did not correctly handle the
interrupt priority in Blehci and therefore got stuck. Fuzzware,
Hoedur, and AidFuzzer-fuzz-mode reported null pointer de-
references in 3Dprinter. We manually checked the firmware,
and we found that the crashes all happened in an ISR which
has not been fully initialized. When a failure occurs, this
IRQ is enabled by accident and should not be triggered in the
real environment. AidFuzzer successfully identified it as an
unready IRQ and did not trigger it. Fuzzware, Hoedur, and
AidFuzzer-fuzz-mode all got stuck in the early stage when
fuzzing the TauLabs firmware due to ineffective and unready
IRQs. AidFuzzer avoided triggering the IRQs that cause the
firmware to get stuck and successfully found the buffer over-
read vulnerabilities which were not covered by other fuzzers.

AidFuzzer successfully found all the vulnerabilities that
the state-of-the-art tools could also find. Moreover, AidFuzzer
found more vulnerabilities that were not found by others and

reported fewer false positives, which saves manual effort for
crash analysis. Note that we only counted the number of
unique crashes. Hoedur and Fuzzware reported a large num-
ber of false positive crashes in these targets which is why
verification requires a non-trivial manual effort. Five CVEs
have been assigned to our findings.

6.3 Soundness of IRQ Modeling (RQ2)
We collected the following IRQ information for each firmware
presented in Table 3: the number of enabled IRQs, the number
of unique ISRs, the number of effective ISRs (effective ISR
means the ISR makes the corresponding IRQ effective), the
number of monitored global objects, the number of null data
pointers, the number of function pointers, and the mechanisms
employed by the firmware to enter the waiting state. The
presented table reveals that firmware deploy complex interrupt
services for their functionalities. A portion of the ISRs renders
the corresponding IRQs ineffective. The range of monitored
global objects spans from 5 to 186. The number of function
pointers and null-data pointers is consistently below 50 for
all targets. Regarding the conditions to enter the waiting state,
the firmware utilizes all mentioned four conditions. However,
the preference for specific methods varies depending on the
implementation of each firmware.



Table 3: IRQ Modeling Result. Effective ISRs refer to the ISRs that make the corresponding IRQ effective. Global objects refer
to the global objects that the ISRs modify. We count the overall numbers for all enabled IRQs in the firmware. The methods to
enter the waiting state are: 1 constantly enable global interrupt, 2 execute WFI/WFE instructions, 3 infinite loop, 4 constantly
check global objects.

# of
enabled IRQs

# of
unique ISRs

# of
effective ISRs

# of
global objects

# of
NULL data pointers

# of
function pointers

enter
waiting state

Blehci 7 10 6 84 4 4 2 1
AnnePro2-Shine 3 3 3 57 5 1 3
TauLabs 10 10 8 186 13 11 3 4
3Dprinter 7 7 6 66 3 13 4
bcn_rfd_ncp 4 5 3 11 0 16 1 4
coord_ncp 4 4 3 11 0 15 1 4
mac_no_beacon_sleep 3 3 2 16 0 45 1 4
nobcn_ffd_ncp 4 4 3 13 0 19 1 4
sam4l_qtouch 3 3 2 5 0 1 1 4
nmea_parser 2 2 2 45 4 25 1 4
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Figure 5: Interrupt triggering in 3Dprinter

6.3.1 Ineffective IRQ Case Study

Taking the Blehci firmware as an example, it enables 7 IRQs
and employs 10 ISRs to handle these IRQs. However, 4 of
these ISRs render their corresponding IRQs ineffective. One
such IRQ is associated with the watchdog. The implemen-
tation of the watchdog ISR involves halting the system by
executing a break-point instruction and then entering an infi-
nite loop. If triggered, this interrupt results in the termination
of the fuzzing process. Another interrupt is tied to the SysTick,
and its ISR is an infinite loop. Activation of this interrupt also
leads to the cessation of the fuzzing process. Our IRQ model-
ing result correctly identifies the watchdog and SysTick IRQ
as ineffective.

6.3.2 Effective IRQ Case Study

Manually verifying the soundness of each modeling result
for effective IRQs in the target set can be a cumbersome task.
Nonetheless, it is worth illustrating the result with the ex-
ample of the 3Dprinter. We manually analyzed the firmware
code logic and understood the ISR functionalities. Then we
checked if the modeling results fit our manual analysis results.
To have a clear representation of the AidFuzzer interrupt-
triggering for 3Dprinter, we executed the firmware with a
discovered input and visualized the type and frequency of in-
terrupts triggered during the execution, as depicted in Figure 5.

The x-axis is the firmware execution stage, the differently col-
ored columns represent the number and type of the interrupts
triggered. We mark the function names where the interrupts
get triggered for intuitive understanding.

In the 3Dprinter firmware program logic, IRQ 15 serves
the SysTick, and its ISR increases a counter by one. IRQ
53 serves an UART device, and its ISR either consumes one
character from the output buffer or reads a character from the
UART register into the input buffer. IRQ 44 and 66 serve two
timers.

In the setup stage, the UART interrupt is only triggered in
the function usart_putstr. This function keeps looping until
all the characters are consumed. AidFuzzer triggers the UART
interrupt to consume the output buffer and lets the firmware
continue running. The SysTick interrupt is only triggered in
function delay. This function is used to set up the temper-
ature management environment and it checks whether the
counter exceeds a limit and then continues execution. Aid-
Fuzzer triggers the SysTick interrupt to increase the counter
and therefore bypass the check quickly. In the user input
stage, besides being triggered in the usart_putstr function,
the UART interrupt is also triggered in function GCode-
Queue_get_serial_commands. This function checks if there
are enough characters in the input buffer and retrieves the char-
acters to a command buffer. During this stage, the firmware
reads the input from UART, and thus AidFuzzer triggers the
UART interrupt to fill the input buffer. In the last Gcode pro-
cess stage, two timer interrupts are triggered in the function
idle. In this stage, the firmware is busy processing the user
input, therefore AidFuzzer does not trigger any other inter-
rupts. The firmware waits for some tasks to be completed;
consequently, AidFuzzer triggers the timer interrupt to notify
the firmware about the completion of the task. The overall
IRQ modeling result fits our manual analysis result well.

6.3.3 Heuristic Study

In order to verify if our firmware run-time transition cy-
cle applies to the majority of the firmware, we conducted



a heuristic study. Analyzing firmware binaries without access
to the source code requires considerable manual effort and is
prone to errors. Given that firmware is typically closed-source,
we collected 110 firmware samples from well-known open-
source RTOS examples. As shown in Table 6, we manually
analyzed their implementation logic and the corresponding
models based on our observations. We found that 19 (17%)
of the samples do not perform the run-time transition cycle
discussed in our paper, while 91 (83%) adhere closely to our
heuristics: The firmware performs a waiting-processing run-
time state transition cycle. For the 91 samples that follow our
heuristics, we analyzed the functions used for the waiting and
processing logic, the interrupt service routines, and the global
objects involved in changing the run-time state. Regarding
the methods used to transition to the waiting state, 7 (6%), 19
(17%), 8 (7%), and 82 (74%) of the samples use one of the
four identified methods, respectively. Our results indicate that
continuous checking of global objects is a common method in
the analyzed firmware samples. However, the use of different
methods to enter the waiting state is mostly independent of
each other and highly dependent on the RTOS design logic.
For instance, the ChibiOS samples exclusively use an infi-
nite loop, a method that is not commonly used. From this
heuristic study, we conclude that our observation applies to
the majority of firmware samples.

We proposed four conditions that a firmware can use to
enter the waiting state and applied empirical counter values to
each threshold for the four conditions. Depending on the de-
sign logic and implementation of the firmware, the values we
have chosen may not be optimal. For example, in the case of
the 3D printer firmware, which uses two fixed-length buffers
to send and receive characters over UART, both reading and
sending characters take place within a single ISR. The ISR
checks the value of the UART register to determine readi-
ness for sending or receiving characters. When the sending
buffer is full, the firmware continuously checks the buffer
status until it is no longer full, then writes the character to the
buffer. Compared to the sending request, the reading request
is less frequent. If the threshold for checking global objects is
set too low, the ISR will be triggered excessively, making it
easier to consume characters from the sending buffer, but also
increasing the data read for processing, thereby expanding the
input space. Conversely, if the threshold is set too high, the
ISR will be triggered infrequently, reducing the input space
but failing to meet the character-sending requests. This can
lead to the coverage feedback being interrupted if loops are
executed without new basic blocks being detected.

6.4 Overhead (RQ3)

The additional overhead primarily stems from three sources.
The first source is the memory read/write breakpoints. Despite
our efforts to optimize the code and minimize the impact, it
still incurs a 20%-25% overhead throughout the entire fuzzing

Table 4: Extra overhead caused by IRQ modeling

Infinite loop
searching (s)

IRQ Modeling
times

Total time
consuming (s)

Blehci 133 11 525
AnnePro2-Shine 32 7 286
TauLabs 51 15 1433
3Dprinter 136 7 397
bcn_rfd_ncp 76 7 524
coord_ncp 83 7 508
mac_no_beacon_sleep 66 6 390
nobcn_rfd 64 7 519
sam4l_qtouch 51 3 6
nmea_parser 232 4 489

Table 5: IRQ modeling comparison with AIM. Ident refers
to the global objects identified by the tool. TP refers to the
correctly identified global objects.

AIM AidFuzzer Time(s)

Ident TP Ident TP AIM AidFuzzer

cnc_r1 1 1 20 15 28 126
gateway_r2 13 13 12 12 1270 375
plc_r1 13 13 11 11 590 71
robot_r1_hardfpu 1 1 19 19 1784 117
reflow_oven_r1 13 13 1 1 699 135

process, as every memory access in the firmware undergoes
scrutiny.

The second overhead arises from the search for infinite
loops in the firmware image. Table 4 details the time con-
sumed by AidFuzzer in locating infinite loops for all targets.
The majority of these searches can be completed within 250
seconds. It is important to note that we conducted this search
only once for each target, and the results can be reused in
subsequent fuzzing.

The third contributor to overhead is the IRQ modeling.
When the IRQ model needs to be updated and the model is not
found in the model database, an IRQ modeling is conducted.
Table 4 provides the overall times and time used for the IRQ
modeling. In our experiments, IRQ modeling occurred mostly
in the initial half-hour, and the modeling results were reused
in subsequent fuzzing. Therefore, the overhead associated
with IRQ modeling is deemed acceptable when compared to
the overall fuzzing time.

6.5 IRQ Modeling Comparison with AIM
(RQ4)

Since AidFuzzer and AIM use different underlying meth-
ods to analyze firmware—fuzzing and symbolic execution,
respectively—a direct comparison of the number of discov-
ered basic blocks is not meaningful. Instead, we conducted
a quantitative comparison of AidFuzzer and AIM in terms
of IRQ modeling in the firmware samples analyzed in the
AIM paper experiment [6]. Both AidFuzzer and AIM share
the insight that firmware changes global objects in the ISR to
change execution behavior. Therefore, we counted the num-
ber of unique global objects identified by both methods and
manually inspected their correctness as well as the analysis



time spent on IRQ modeling. As shown in Table 5, AidFuzzer
and AIM both identified the global objects correctly. However,
AidFuzzer reported five false positives in cnc_r1. AidFuzzer
aims to find the global objects that can be modified as many
as possible. Therefore, AidFuzzer tries to symbolize the vari-
able values thus it can explore all possible paths. As a result,
due to the symbolic execution mechanism, some unreachable
paths can be explored by our modeling engine, and the corre-
sponding global objects that are modified within the paths are
incorrectly identified. This comprehensive path exploration
can lead to false positive global objects that cannot change
the execution behavior of the firmware. The time required
for IRQ modeling varied between a few seconds and minutes
for the two methods, depending on the firmware logic. These
variations in AidFuzzer are acceptable, as the modeling pro-
cess only occurs once during fuzzing and can be reused in
subsequent fuzzing runs. We observed that AidFuzzer in gen-
eral spent less time on the IRQ modeling compared to AIM.
More specifically, AidFuzzer only spent an average of 33% of
the analysis time on the five samples used in the AIM exper-
iments. For cnc_r1, AidFuzzer spent more time on analysis
than AIM. The reason is that a register indicates the status of
the device for a TIM IRQ ISR. While AidFuzzer explores all
possible paths by symbolizing the register values, AIM only
analyzes one path by giving the register a concrete value.

7 Related Work

Coverage-guided fuzzing works [11] [13] [12] [22] have
found a tremendous number of vulnerabilities in the
past decades. To achieve higher coverage, lightweight
Redqueen [23], IJON [24], and heavy-weight symbolic exe-
cution are used.

Nowadays, besides fuzzing the general programs, domain-
specific fuzzing is becoming more and more popular and
has gained much attention, such as kernel fuzzing [25]
[26], system-wide hypervisor-based fuzzing [27] [28], drone
fuzzing [29], hypervisor fuzzing [30] [31] [32] [33] [34] and
trusted execution environment fuzzing [35] [36]. To fuzz spe-
cific programs, the target-specific problems need to be solved
first. For example, when fuzzing the trusted execution envi-
ronment, the memory cannot be directly accessed during the
run-time Therefore, previous works found methods to get the
coverage or other feedback to guide fuzzing.

In this paper, we focus on embedded device firmware
fuzzing. Instead of re-hosting the firmware in an emulator
environment, black-box fuzzing tools, such as Iotfuzzer [37],
feed the fuzzing data from real devices (e.g., mobile phone
Apps). Although black-box fuzzing mitigates the cumber-
some effort to set up the emulator environment, without hav-
ing direct access to the firmware memory, it suffers from no
coverage guidance. The same problem also happens to drone
fuzzing [29] and [36].

Semi-simulation approaches [38] [38] [39] [40] [41] [42] [43]
implement a hardware in the loop method to forward the
hardware access to the real physical devices, while the
firmware itself runs in a simulated environment. This
approach, however, requires lots of physical devices. Besides,
as the generation of the data from physical devices is slow
and cannot be easily controlled, this approach is not suitable
for fuzzing. Due to the presence of physical devices, it is
difficult to deploy a parallel analysis.

Running the whole firmware in an emulator environment
enables direct memory access to the firmware, turning it into
a grey-box fuzzing. Qemu [10] has been widely used in full-
system emulation. Qemu-based fuzzers [44] [45] [46] [47]
heavily rely on the target-specific information that a large cor-
pus of general firmware cannot deploy. HALucinator [48] and
[49] propose to identify the hardware abstraction layer in the
firmware for re-hosting. Unfortunately, the hardware abstrac-
tion layer has not been widely adopted by firmware develop-
ment yet. Modeling the hardware abstract layer still requires
much manual effort such as reverse engineering. Without
making too many knowledge assumptions about the firmware,
full system emulation-based fuzzing is more scalable and re-
quires less manual effort. PRETENDER [50] runs the original
firmware independently in a simulated CPU. However, it still
needs the hardware to model the peripheral behaviors. The pe-
ripheral behaviors are then solved by P2IM [1] by extracting
the knowledge from the documentation or manuals and later
further addressed by µEmu [2] and Fuzzerware [3] by sym-
bolic execution modeling. Extracting the peripheral behavior
model from the documentation is not stable and sometimes
not reliable. Symbolic execution is known to be limited by
its low scalability and confined to a small control flow scope.
For example, it cannot model the MMIO data that is copied to
global variables. Hoedur [4] splits the single-stream fuzzing
data into multi-stream data that is identified by its MMIO
address and its instruction address, making the fuzzing data
field aware. It avoids the avalanche caused by asynchronous
interrupts. Recently, SafireFuzz [5] proposed to use dynamic
binary re-writing to run the firmware on high-performance
hardware. However, the hardware abstraction layer (HAL)
needs to be present. Although HAL is becoming more and
more popular in firmware development, there is still a large
number of firmware that does not support it. In fact, only two
of the samples in our dataset support HAL. In addition, man-
ually hooking HAL requires a lot of manual effort, which is
also error-prone. All the full system emulation-based fuzzing
either implement a simple round-robin or fuzz-mode interrupt
triggering mechanism or rely on the unstable model extracted
from the documentation and, therefore, cannot handle the
complex interrupt situation.

Concurrent to our work, AIM [6] proposed an idea similar
to AidFuzzer for modeling firmware interrupts. However, our
method has several advantages compared to AIM: First, Aid-
Fuzzer systematically investigates the relationship between



interrupts and firmware run-time state. The global variables
bridge them. In contrast, AIM does not recognize the firmware
run-time state in a general and high-level view. Second, we
propose four conditions that the firmware can use to require an
interrupt. In contrast, AIM considers only one of them. Third,
AIM does not consider the interrupt status and, thus, cannot
prevent the firmware from crashing prematurely. Finally, AIM
has to analyze the ISR by using dynamic symbolic execution
when an event is enabled, which means that it has to perform
symbolic execution frequently. Moreover, its firmware emula-
tion is based on symbolic execution. The overall design has a
strong impact on the execution speed.

8 Discussion

Although the majority of the firmware follows the run-time
state proposed in our paper, according to the heuristic study
result, there is still a portion of firmware that does not align
with this assumption. Even though some firmware does not
rely on the interrupt to accomplish its tasks, accurately model-
ing the firmware interrupt in a broad range requires additional
work that depends on a more generic assumption.

AidFuzzer triggers interrupts only after their data are fully
initialized in the ISR. Some may consider crashes caused by
uninitialized data as bugs. While AidFuzzer may lead to false
negatives in such scenarios, we assert that these bugs are less
closely tied to security vulnerabilities. Our primary focus is
on fuzzing the deep logic within the firmware, prompting
us to strike a balance between deep logic exploration and
the potential for false negatives. Although certain ineffective
interrupts are not triggered by AidFuzzer, resulting in slightly
lower coverage, this impact is deemed trivial when compared
to overall coverage.

Given the well-known bottleneck associated with symbolic
execution, AidFuzzer faces challenges in effectively handling
loops and intricate mathematical operations. To address issues
related to control flow explosion, we chose to first explore
the newly discovered basic blocks, albeit at the expense of
potential false negatives. Moreover, when handling compli-
cated nested structures, AidFuzzer cannot fully model the
ISR, which may generate an incorrect result. When a data
pointer is updated in the ISR that may alter the model result,
we do not re-analyze it, resulting in an incorrect result as well.
However, we need to make a trade-off between the fuzzing
performance and the modeling soundness.

Compared with round-robin and fuzz-mode interrupt trig-
gering mechanisms, AidFuzzer’s adaptive method outper-
forms them in fuzzing, but may not correspond to real sit-
uations. For instance, the SysTick interrupt is only triggered
at a fixed time interval in a real device, however, it is trig-
gered multiple times within a short time window in fuzzing.
We urge that as long as the discovered vulnerabilities can
be reproduced in real devices, we can prioritize the fuzzing
effectiveness.

9 Conclusion

In this paper, we propose AidFuzzer, an adaptive interrupt-
driven firmware fuzzing prototype. By identifying the status
and the type of the IRQ, we trigger the interrupts when the
firmware enters the waiting state and leave the firmware run-
ning in the processing state. In our collected firmware targets,
AidFuzzer achieved higher and faster coverage when dealing
with complex interrupt firmware compared with the state-
of-the-art approaches. Besides, we found eight previously
unknown security issues in real-world firmware.
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Appendix



Table 6: Firmware model analysis based on the observation. Method refers to the four methods above to enter the waiting state.
F1 refers to the waiting function. F2 refers to the processing function. F3 refers to the interrupt service routine that causes the
state transition. GO refers to the global object to be changed. Empty cells refer to the firmware that does not follow our model.

RTOS Category Firmware Method F1 F2 F3 GO

Zephyr

Network

echo 4 while loop in main z_impl_zsock_sendto nrfx_gpiote_0_irq_handler m_cb
echo_async 4 while loop in main setblocking, z_impl_zsock_sendto nrfx_gpiote_0_irq_handler m_cb

echo_async_select 4 while loop in main read, setblocking, write nrfx_gpiote_0_irq_handler m_cb
dumb_http_server 4 while loop in main z_impl_zsock_recvfrom, z_impl_zsock_sendto nrfx_gpiote_0_irq_handler m_cb

socketpair 4 while loop in main fun nrfx_gpiote_0_irq_handler m_cb
mqtt_publisher 4 while loop in main mqtt_ping, publish nrfx_gpiote_0_irq_handler m_cb

mdns_responder 4 while loop in service z_impl_zsock_socket, z_impl_zsock_bind nrfx_gpiote_0_irq_handler m_cb

Bluetooth

central 1 4 start_scan bt_conn_le_create radio_nrf5_isr isr_cb_param
broadcast_audio_sink 4 loop in main bt_bap_broadcast_sink_sync radio_nrf5_isr isr_cb_param

bthome_sensor_template 4 loop in bt_le_adv_update_data get_adv_name_type, le_adv_update radio_nrf5_isr isr_cb_param
broadcast_audio_sink 4 loop in main bt_bap_broadcast_sink_sync radio_nrf5_isr isr_cb_param

central_gatt_write 4 loop in central_gatt_write write_cmd, bt_conn_unref radio_nrf5_isr isr_cb_param
central_iso 4 start_scan handler radio_nrf5_isr isr_cb_param

iso_broadcast 4 loop in main net_buf_simple_add_mem, bt_iso_chan_send radio_nrf5_isr isr_cb_param
iso_receive 4 loop in main gpio_pin_set_dt radio_nrf5_isr isr_cb_param

periodic_adv 4 loop in main bt_le_per_adv_set_data radio_nrf5_isr isr_cb_param
periodic_adv_conn 4 loop in main z_impl_k_sleep radio_nrf5_isr isr_cb_param

periodic_async 4 loop in main gpio_pin_set radio_nrf5_isr isr_cb_param
periodic_sync_conn 4 loop in main bt_conn_disconnect radio_nrf5_isr isr_cb_param

peripheral_gatt_write 4 loop in peripheral_gatt_write write_cmd, bt_conn_unref radio_nrf5_isr isr_cb_param
scan_adv 4 loop in main z_impl_k_sleep, bt_le_adv_stop radio_nrf5_isr isr_cb_param
tmap_bmr 4 loop in main bt_bap_broadcast_sink_sync radio_nrf5_isr isr_cb_param

unicast_audio_client 4 loop in main configure_stream, printk radio_nrf5_isr isr_cb_param
unicast_audio_server 4 loop in main audio_timer_timeout radio_nrf5_isr isr_cb_param

Misc button 4 loop in main button_pressed nrfx_gpiote_0_irq_handler m_cb

Sensor

ens210
adt7420

ams_iAQcore
bmi270
dps310

isl29035
max17262
mpu6050

grove_light
grove_temperature

dht
icm42605

RIOT

Network

ccn-lite-relay 2 4 loop in main _ccnl_content, _ccnl_fib isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state
cord_ep 2 4 loop in main _cord_ep_handler, _gnrc_netif_config isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state

cord_epsim 2 4 loop in event_loop handler isr_rfcorerxtx cc2538_rf_hal, cc2538_state
cord_lc 2 4 loop in main cord_lc_cli_cmd isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state

gnrc_lorawan 2 4 loop in main _gnrc_netif_config, _pm_handler isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state
dtls_echo 4 loop in main udp_client_cmd, udp_server_cmd isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state

dtls_wolfssl 4 loop in main dtls_client, dtls_server isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state
dtls_sock 2 4 loop in main dtls_client_cmd, dtls_server_cmd isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state

gcoap_example 2 4 loop in main gcoap_cli_cmd, _xfa_6ctx_cmd isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state
gcoap_block_server 2 4 loop in main gcoap_cli_cmd, _xfa_6ctx_cmd isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state

gcoap_dtls 2 4 loop in main gcoap_cli_cmd, _xfa_6ctx_cmd isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state
gcoap_fileserver 2 4 loop in main _xfa_ls_cmd, _xfa_6ctx_cmd isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state

gnrc_border_router 2 4 loop in main _xfa_6ctx_cmd, _xfa_ifconfig_cmd isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state
gnrc_networking 2 4 loop in main _xfa_6ctx_cmd, _xfa_ifconfig_cmd isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state

gnrc_networking_mac 2 4 loop in main udp_cmd, mac_cmd isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state
gnrc_networking_subnets 2 4 loop in main udp_cmd, mac_cmd isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state

lorawan
nanocoap_server 2 4 loop in nanocoap_server coap_parse, coap_handle_req isr_rfcorerxtx cc2538_rf_hal, cc2538_state

opendsme_example 2 4 loop in main _nimble_netif_handler, _gnrc_netif_config isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state
paho_mqtt_example 2 4 loop in main _nimble_netif_handler, _gnrc_netif_config isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state
spectrum_scanner 4 loop in spectrum_scanner print_u32_dec, print_u64_dec, print isr_rfcorerxtx cc2538_rf_hal, cc2538_state

telnet_server 2 4 loop in main _gnrc_6ctx, _gnrc_netif_config isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state
twr_aloha 4 loop in main _twr_handler, _twr_ifconfig isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state
wakaama 4 loop in main lwm2m_cli_cmd isr_rfcorerxtx isr_ctx, cc2538_rf_hal, cc2538_state

Storage filesystem 2 4 loop in main _xfa_ls_cmd, _cat, _tee isr_uart0 isr_ctx

Misc

lua_basic
micropython
openthread

example_psa_crypto
thread_duel

timer_periodic_wakeup
saul

Mbed

Bluetooth

BLE_Advertising 4 loop in equeue_dispatch start_advertising radioCback driverState, tifsState
BLE_GAP 4 loop in equeue_dispatch onConnectionComplete, onDisconnectionComplete radioCback driverState, tifsState

BLE_GattClient_CharacteristicUpdates 4 loop in equeue_dispatch start_discovery radioCback driverState, tifsState
BLE_GattClient_CharacteristicWrite 4 loop in main onDataRead, onDataWritten radioCback driverState, tifsState

BLE_GattServer_AddService 4 loop in equeue_dispatch start_advertising radioCback driverState, tifsState
BLE_GattServer_CharacteristicUpdates 4 loop in equeue_dispatch onDataRead, onDataWritten radioCback driverState, tifsState

BLE_GattServer_CharacteristicWrite 4 loop in equeue_dispatch onDataWritten radioCback driverState, tifsState
BLE_GattServer_ExperimentalServices 4 loop in equeue_dispatch start_advertising radioCback driverState, tifsState

BLE_PeriodicAdvertising 4 loop in equeue_dispatch onConnectionComplete radioCback driverState, tifsState
BLE_SecurityAndPrivacy 4 loop in equeue_dispatch onConnectionComplete radioCback driverState, tifsState
BLE_SupportedFeatures 4 loop in equeue_dispatch on_init_complete radioCback driverState, tifsState

NFC NFC_EEPROM 4 loop in equeue_dispatch on_ndef_message_written radioCback driverState, tifsState
NFC_SmartPoster 4 loop in equeue_dispatch on_nfc_initiator_discovered radioCback driverState, tifsState

Network mbed-os-example-cellular 4 loop in equeue_dispatch test_send_and_receive CAN1_RX0_IRQHandler can_irq_contexts

RThread File Parser

json 1 4 loop in _svfscanf_r cJSON_Parse USART1_IRQHandler uart_obj
mp3decode 1 4 loop in dfs_file_read MP3Decode USART1_IRQHandler uart_obj

nmea 1 4 loop in_svfscanf_r nmea_parse USART1_IRQHandler uart_obj
qrcode 1 4 loop in _svfscanf_r qrcode_getModule USART1_IRQHandler uart_obj

sms 1 4 loop in _svfscanf_r sms_deliver_parse USART1_IRQHandler uart_obj
xml 1 4 loop in _svfscanf_r ezxml_parse_str USART1_IRQHandler uart_obj

ChibiOS Misc

NIL-STM32F401RE-NUCLEO64-LCD_II-HD44780 3 loop in main palToggleLine, chnWrite chSysTimerHandlerI nil
NIL-STM32F401RE-NUCLEO64-LCD_II-HD44780 3 loop in main palToggleLine, lcdBacklightOff, lcdBacklightOn chSysTimerHandlerI nil

RT-STM32F303-DISCOVERY-S3DL 3 loop in main s3dl_games_handler chSysTimerHandlerI nil
RT-STM32F401RE-NUCLEO64-ADC-Joystick 3 loop in main palTogglePad, chprintf chSysTimerHandlerI nil, flag
RT-STM32F401RE-NUCLEO64-ADC-Slider 3 loop in main palTogglePad, chprintf chSysTimerHandlerI nil, flag

RT-STM32F401RE-NUCLEO64-LCD_II-HD44780-PCF8574 3 loop in main palReadPad, palClearPad, palSetPad chSysTimerHandlerI nil
RT-STM32F401RE-NUCLEO64-LCD_II-HD44780 3 loop in main lcdBacklightOff, lcdBacklightOn, palToggleLine chSysTimerHandlerI nil

RT-STM32F401RE-NUCLEO64-HC-SR04+HD44780-PCF8574 3 loop in main palClearPad, palSetPad chSysTimerHandlerI nil

Contiki Network

udp-server 4 process_run udp_rx_callback cc2538_rf_rx_tx_isr cc2538_rf_process, poll_requested
snmp-server 4 process_run udp_rx_callback cc2538_rf_rx_tx_isr cc2538_rf_process, poll_requested
border-router 4 process_run httpd_appcall cc2538_rf_rx_tx_isr cc2538_rf_process, poll_requested

sixp-node 4 process_run sixp_output cc2538_rf_rx_tx_isr cc2538_rf_process, poll_requested
channel-selection-demo 4 process_run process_thread_tsch_process cc2538_rf_rx_tx_isr cc2538_rf_process, poll_requested

lwm2m-ipso-objects 4 process_run lwm2m_rd_client_register_with_server cc2538_rf_rx_tx_isr cc2538_rf_process, poll_requested
multicast 4 process_run uip_htonl, printf cc2538_rf_rx_tx_isr cc2538_rf_process, poll_requested

ip64-router 4 process_run ip64_eth_interface_input cc2538_rf_rx_tx_isr cc2538_rf_process, poll_requested
sensniff 4 process_run execute_command cc2538_rf_rx_tx_isr cc2538_rf_process, poll_requested

nullnet-broadcast 4 process_run input_callback cc2538_rf_rx_tx_isr cc2538_rf_process, poll_requested
coap-example-server 4 process_run process_thread_er_example_server cc2538_rf_rx_tx_isr cc2538_rf_process, poll_requested

slip-radio 4 process_run slip_input_callback cc2538_rf_rx_tx_isr cc2538_rf_process, poll_requested

Misc antelope-shell 4 process_run db_query, db_processing uart_isr rxbuf, cc2538_rf_process, poll_requested
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