
Thunderdome: Timelock-Free Rationally-Secure Virtual Channels

Zeta Avarikioti
TU Wien & Common Prefix

Yuheng Wang
TU Wien

Yuyi Wang
CRRC Zhuzhou Institute & Tengen Intelligence Institute

Abstract
Payment channel networks (PCNs) offer a promising solu-

tion to address the limited transaction throughput of deployed
blockchains. However, several attacks have recently been pro-
posed that stress the vulnerability of PCNs to timelock and
censoring attacks. To address such attacks, we introduce Thun-
derdome, the first timelock-free PCN. Instead, Thunderdome
leverages the design rationale of virtual channels to extend a
timelock-free payment channel primitive, thereby enabling
multi-hop transactions without timelocks. Previous works ei-
ther utilize timelocks or do not accommodate transactions
between parties that do not share a channel.

At its core, Thunderdome relies on a committee of non-
trusted watchtowers, known as wardens, who ensure that no
honest party loses funds, even when offline, during the chan-
nel closure process. We introduce tailored incentive mech-
anisms to ensure that all participants follow the protocol’s
correct execution. Besides a traditional security proof that
assumes an honest majority of the committee, we conduct a
formal game-theoretic analysis to demonstrate the security of
Thunderdome when all participants, including wardens, act
rationally. We implement a proof of concept of Thunderdome
on Ethereum to validate its feasibility and evaluate its costs.
Our evaluation shows that deploying Thunderdome, including
opening the underlying payment channel, costs approximately
$15 (0.0089 ETH), while the worst-case cost for closing a
channel is about $7 (0.004 ETH).

1 Introduction

Blockchains have introduced a groundbreaking decentralized
financial paradigm through cryptocurrencies, eliminating the
need for trusted intermediaries [42]. However, blockchains
face major scalability limitations, primarily due to the re-
quirement that each transaction be validated by all nodes
in the network [15]. As a result, popular cryptocurrencies
like Bitcoin [31] and Ethereum suffer from relatively slower
processing speeds and much lower transaction throughput

compared to centralized payment systems like Visa, hinder-
ing their potential for mass adoption. While solutions such as
more efficient consensus protocols [13, 16,36] can increase
throughput, they typically require changes to existing proto-
cols, often causing a hard fork. To overcome these scalability
challenges, Payment Channel Networks (PCNs) have emerged
as a promising alternative [23].

A payment channel functions as a secure off-chain "joint
account" between two parties, utilizing the blockchain only
for the opening and closing phases. This approach substan-
tially reduces the number of on-chain transactions, effectively
addressing the scalability issues of the underlying blockchain.
Payment channels involve three primary operations: Open,
Update, and Close. The channel is opened by locking a certain
amount of coins on-chain, referred to as the channel balance.
The parties can then transact off-chain by updating their chan-
nel balance through the exchange of digitally signed messages
that specify the new distribution of coins. Finally, the channel
can be closed, settling all off-chain transactions with the final
agreed-upon state posted on-chain. To prevent fraud, pay-
ment channel protocols often include a dispute period with
a timelock, allowing a counterparty to penalize a potentially
dishonest party. For example, in the Bitcoin Lightning Net-
work [33], a party can claim the entire channel balance if the
other party posts an outdated update.

An overlay Payment Channel Network (PCN) operates as
a Layer 2 solution on top of a single blockchain (Layer 1),
primarily functioning off-chain to address the scalability lim-
itations of the base network. Notably, a PCN allows parties
with at least one direct payment channel to make payments
across the network to other parties, even if they do not share a
direct channel. To facilitate multi-hop payments from sender
to receiver, a path of sufficiently funded channels is identi-
fied. All channels along this path are then updated using lock
contracts with a timelock to ensure the atomic execution of
the payment. Techniques such as Hash Timelock Contracts
(HTLCs), used in the Bitcoin Lightning Network [33], and
methods like adaptor signatures [3, 38] or Verifiable Timed
Signatures (VTS) [39], are commonly employed in PCNs.

These techniques rely on timelocks to ensure that parties can
recover their coins in the event of a payment failure. Thus,
timelocks are essential for the security of both payment chan-
nel primitives and multi-hop payment protocols in PCNs.

Recent research reveals that timelocks can introduce new
attack vectors, notably censorship attacks such as timelock
bribing. These attacks show that PCNs relying on timelock
contracts for multi-hop payments might allow an adversary
to steal the entire channel balance by delaying the on-chain
inclusion of a specific transaction [14, 22, 30, 41]. Similar
vulnerabilities are present in the payment channel primitives,
as noted in [8,9], these issues arise from the design rationale of
timelock-based channel protocols: Lighting [33] and Blitz use
a "revoke until time T , else execute" logic, while DMC [17]
employs a "revoke within time T , else execute" logic. In
these cases, censoring an honest party’s transaction prevents
them from revoking misbehavior. Conversely, Thora [2] uses
an "execute until time T , else revoke" logic, and Perun [18]
follows a "reply within time T , else get punished" logic. In
these designs, censoring an honest party’s transaction blocks
them from executing the committed transactions, resulting in
a loss of funds. These censorship attacks, while difficult to
trace as excluded transactions are not reported on-chain, can
be practically executed using TxWithhold Smart Contracts, as
highlighted by BitMEX Research [1]. Additionally, the cost
of such attacks can be significantly reduced since multiple
contracts can be targeted simultaneously (e.g., as many as fit
in a block) [7, 41].

A common approach to lowering the success probability of
censorship attacks is to use longer timelocks [30]. However,
this strategy worsens another significant drawback of time-
locks, known as the griefing attack [26]. In such attacks, the
receiver initiates a payment path within a PCN but then aborts
the payment, causing intermediaries to incur an opportunity
cost as they lock their assets for the timelock duration without
receiving any routing fee. Given the inherent instability of
real-world networks and the potential for network outages,
relying solely on timelocks for secure and efficient PCN im-
plementation proves to be a flawed approach. This raises a
critical question: Can secure PCNs be designed without the
reliance on timelocks?

1.1 Related work

Various solutions have been proposed to counter the rising
threat of censorship attacks on Payment Channel Networks
(PCNs), many of which exploit miners’ incentives, as miners
often control censorship. Nadahalli et al. [30] were among the
first to identify the safety vulnerabilities of Hash Timelock
Contracts (HTLCs) under censorship, analyzing parameters
like timelock duration and transaction fees to determine when
HTLCs remain secure. Building on this, Tsabary et al. [41] in-
troduced MAD-HTLC, a modified structure that incentivizes
miners to act as natural enforcers by penalizing malicious

actors. However, the counter-bribing vulnerabilities in MAD-
HTLC were later identified, leading to the development of
He-HTLC [22] and Rapidash [14]. Although these approaches
provide secure channel primitives, they rely on specific as-
sumptions, such as mining power distribution, and crucially
require parties to remain online and responsive.

Another approach involves introducing third-party entities,
known as watchtowers, to manage disputes on behalf of pay-
ment channel participants in a timely manner [6, 10, 24, 27].
However, watchtowers are themselves susceptible to censor-
ship attacks [8] unless they also operate as miners, ensuring
independent inclusion of transactions. Thus, the security of
this approach depends on additional assumptions, such as the
watchtower’s mining power and ability to fulfill dual roles.
Furthermore, while watchtowers help secure the payment
channel primitive, they do not address the execution of multi-
hop payments, leaving a gap in overall network protection.

Brick [8] introduced a pioneering payment channel prim-
itive that eliminated the need for timelocks by internalizing
dispute resolution within the channel itself. This was accom-
plished by establishing a committee of watchtowers, known
as wardens, who were incentivized to act honestly through
the collateral they had locked in the payment channel con-
tract. These wardens were authorized to unilaterally close the
Brick channel at the latest update state, removing the need
for timelocks. However, extending Brick to support multi-
hop payments introduced challenges, as current multi-hop
execution mechanisms (e.g., HTLCs) still require timelocks,
irrespective of the underlying channel primitive.

Recently, Ersoy et al. extended Brick to multi-hop scenarios
by proposing a multi-hop payment protocol based on warden
committees [20]. While promising, this protocol still has no-
table limitations. First, like traditional multi-hop payment
protocols, Ersoy’s approach requires the active participation
of intermediary parties in each transaction, leading to higher
costs and increased latency. Although the protocol claims
to support virtual channels, a detailed design is not provided.
Second, the protocol lacks a thorough game-theoretic analysis
to formally evaluate the security implications of its incentive
mechanisms.

Overall, while recent research has made significant
progress in addressing timelock-based attacks in PCNs, cur-
rent solutions remain constrained by specific assumptions
(e.g., mining power distribution, intermediary participation)
or inherent design limitations (e.g., limited applicability to
multi-hop payments). These constraints underscore the need
for an alternative approach that overcomes these challenges.

1.2 Our contribution

In this work, we introduce Thunderdome, the first timelock-
free virtual channel protocol, providing an answer to the pre-
viously posed challenge. The core concept of Thunderdome
revolves around a committee of wardens appointed by the

channel parties, who store the channel states and publish the
most recent state on-chain when parties are unresponsive,
whether due to being offline or censored. These wardens are
incentivized with rewards or penalties based on their actions,
ensuring the security of Thunderdome. As a result, Thunder-
dome effectively neutralizes all blockchain liveness attacks,
including censorship attacks, within its payment channel net-
work. To enable multi-hop payments, Thunderdome leverages
the design principles of virtual channels. First introduced by
Dziembowski et al. [18], virtual channels allow direct off-
chain payments without requiring intermediary involvement
in every transaction, as seen in multi-hop payment protocols
like Blitz. Central to this concept is the mechanism that allows
Alice and Bob, who do not share a direct payment channel,
to collaborate with Ingrid, who does, to create a virtual chan-
nel. This setup enables Alice to transact directly with Bob,
bypassing the need for Ingrid’s participation. In essence, a
virtual channel is a channel built atop two existing payment
channels. Thunderdome adopts a similar architectural design,
constructed over two Brick channels, rather than relying on
timelock-based payment channel primitives.

However, constructing a secure virtual channel atop two
Brick channels presents several challenges due to Brick’s de-
sign and inherent limitations. Specifically, a Brick channel re-
lies on complex incentive mechanisms for both parties and the
warden committee to maintain balance security (i.e., safety)
and prevent hostage situations (i.e., liveness). These incen-
tive mechanisms vary between Brick channels with different
warden committees, making them not directly composable.
As a result, the virtual channel cannot function as a standard
payment channel without additional considerations.

Specifically, three major challenges arise when transition-
ing from Brick to Thunderdome. First, Brick employs proofs-
of-fraud that allow a party to claim the wardens’ collateral.
However, since the virtual channel comprises two separate
Brick channels, a party in one channel cannot directly access
the collateral locked in the other channel’s smart contract.
Furthermore, in a virtual channel, the intermediary party re-
mains unaware of the virtual channel’s state, as transactions
are exclusively exchanged between the other two parties. This
leaves the intermediary party vulnerable to potential fraud
by the other participants or wardens during the channel clo-
sure. Therefore, it is uncertain whether the proof-of-fraud
mechanism can still ensure the security of all virtual channel
participants, including the intermediary. Second, since the
virtual channel is built directly on payment channels without
requiring additional on-chain deposits for its opening, ensur-
ing compatibility with the underlying Brick payment channels
presents a challenge. Third, although Brick is claimed to be
secure in the rational setting, no formal framework or analysis
has been provided. Thus, the third challenge is to develop a
formal model that can prove Thunderdome’s security when
all participants act rationally.

To address the first challenge, we modify the protocols in-

volved in the update and close operations of Thunderdome.
We ensure the correctness of channel closure while allowing
parties to penalize only those wardens with collateral in the
relevant payment channel’s smart contract. Additionally, we
achieve closing security for the intermediary party by ensur-
ing they either have Thunderdome knowledge before closing
the channel or the closing party is indistinguishable in terms
of possessing such knowledge. For the second challenge, we
draw inspiration from [4], offloading the virtual channel to an
on-chain payment channel only in pessimistic cases with the
blockchain’s assistance. This allows us to distribute wardens’
collateral according to each channel’s balance, ensuring Thun-
derdome remains securely compatible with the underlying
payment channel. To address the third challenge, we model
our protocol using Extensive Form Games (EFG), drawing on
recent work that introduced the first game-theoretic analysis
suitable for off-chain protocols like the Bitcoin Lightning Net-
work [34]. Specifically, we model Thunderdome ’s closing
operation as an EFG and prove the game-theoretic security
of the protocol by analyzing all possible strategies during the
channel closure.
Summary of Contribution. Our contributions can be sum-
marized as follows:

• We introduce Thunderdome, the first timelock-free vir-
tual channel protocol [18]. Thunderdome builds upon the
asynchronous payment channel primitive, Brick [8], en-
abling secure payments between parties that do not share
a direct channel, all without the need for timelocks (Sec-
tion 5). We begin by presenting the design and security
analysis of Thunderdome with a single intermediary and
then extend the protocol to support multi-hop payments
involving more than two hops (Section 5.4).

• We formalize the security properties of Thunder-
dome and conduct a security analysis within the hon-
est/Byzantine model (Section 6). Specifically, we demon-
strate that our protocol is secure under the assumption
of distrusting participants, where f out of 3 f + 1 war-
dens in each payment channel are Byzantine, and the
remainder are honest.

• We design the incentive mechanisms of Thunderdome
and introduce a formal game-theoretic model to repre-
sent the protocol (Section 7). We prove that following
the Thunderdome closing protocol honestly constitutes
a Subtree Perfect Nash Equilibrium (SPNE) strategy,
ensuring the protocol’s game-theoretic security in the ra-
tional model. To our knowledge, this is the first off-chain
protocol to include a formal game-theoretic analysis.

• We evaluate the practicality of Thunderdome by fully
implementing its on-chain functions on the Ethereum
blockchain using Solidity (Section 8). We assess the gas
costs for each procedure with 10 wardens in each com-
mittee. While the cost of opening Thunderdome is zero,

deploying and opening the underlying payment channel
requires 444,4861 gas (approximately 14.83 USD). In
the pessimistic scenario, closing Thunderdome along
with the underlying payment channel costs 2,079,766
gas (around 6.94 USD). We compare these costs with
the timelock-based virtual channel protocol Perun: open-
ing Thunderdome’s underlying channel costs 1.5 times
more than Perun, while the pessimistic closing costs are
3 times higher. This shows that the additional cost of
eliminating timelocks is not excessive. Additionally, we
evaluate how gas fees scale as the number of wardens
per committee increases from 10 to 25.

2 Background

In this section, we provide a brief overview of the fundamental
concepts of payment channels, with further details available
in Gudgeon et al. [23]. We then explore the design of the
asynchronous Brick payment channel [8], which serves as
the foundation of our protocol. Finally, we discuss payment
channel networks and virtual channels.

2.1 Payment channels
A payment channel allows two users to exchange arbitrary
transactions off-chain, while only a constant number of trans-
actions are recorded on-chain, such as a worst-case scenario
of three transactions in Lightning [33]. To initiate a payment
channel, parties deposit coins on the blockchain, which can
only be spent when specific conditions are met, such as requir-
ing both parties’ signatures (channel open). Once the coins
are locked on-chain, the parties can communicate off-chain
and update the channel’s balance or state (channel update). To
claim their funds on-chain, the parties can close the payment
channel by publishing the most recent agreed-upon balance
(channel close). In the following, we discuss the key steps
involved in these three operations in detail.

Channel open. Consider two parties, Alice and Bob, who
wish to open a payment channel with initial deposits of xA and
xB coins, respectively. For cryptocurrencies that support smart
contracts, Alice and Bob can publish a payment channel smart
contract CL on the blockchain, containing a total balance of
xA +xB from both parties. These coins can only be spent with
the signatures of both Alice (σA) and Bob (σB). Once CL is
published on-chain, the payment channel is officially open.

Channel update. Suppose Alice wants to pay Bob an
amount a ≤ xA. Alice generates a new payment channel state,
sL, signs it with her private key, and sends {sL,σA(sL)} to
Bob as an update request. Bob then verifies the request. If he
agrees with the new state, he signs it as well and returns the
final state, {sL,σA(sL),σB(sL)}, to Alice. If Bob disagrees,
he simply ignores the request. Once a valid channel state,
signed by both parties, is generated (along with any other
predefined protocol data exchange, such as revocation keys in

Lightning), the new off-chain transaction between Alice and
Bob is considered successfully completed.

Channel close. A payment channel can be closed either col-
laboratively or unilaterally by one party. In a collaborative clo-
sure, both parties publish a state with their signatures on-chain
and distribute the channel balance accordingly. In a unilateral
closure, one party publishes the most recent payment chan-
nel state signed by both, {slatest ,σA(slatest),σB(slatest)}. After
verifying the signatures, the smart contract CL closes the chan-
nel and distributes the coins according to the submitted state.
The key challenge arises when a malicious party attempts to
close the channel using an outdated state. Synchronous pay-
ment channel protocols typically address this by enforcing
a timelock on the submitted state, which corresponds to the
party posting it on-chain. This timelock, often combined with
a secret exchanged during the channel update, enables the
counterparty to punish a malicious party attempting to use
an old state. Alternative techniques, such as verifiable timed
signatures [40], can also be used, but they still rely on timing
assumptions.

2.2 Brick channel
The Brick channel, introduced in [8], is an asynchronous
payment channel primitive. To address the challenges of op-
erating without timelocks, Brick incorporates a committee of
third-party entities known as wardens in the channel opera-
tions. In essence, wardens are responsible for verifying and
storing commitments of channel state updates, which can then
be used by a channel party to unilaterally close the Brick chan-
nel. Importantly, wardens are not fully trusted; rather, they
are incentivized to follow the protocol honestly. Compared
to its synchronous counterparts, Brick exhibits the following
key differences:

Channel structure. In addition to the two primary par-
ties, Alice and Bob, a Brick channel includes a committee
of 3 f +1 wardens, where up to f wardens can behave mali-
ciously (Byzantine). The basic structure of the Brick channel
is illustrated in Fig. 1.

Alice BobBrick
Channel

Warden nWarden 1

Warden 2 Warden
Committee

Monitor

Figure 1: Brick payment channel

Brick open. Once Alice and Bob agree to open a Brick
channel, they broadcast the channel information to the war-

dens. Each party can consider the channel open only after
receiving at least 2 f +1 signed acknowledgments from the
wardens – a quorum certificate. The threshold of 2 f +1 en-
sures safety in asynchronous communication networks.

Brick update. Each state generated by Alice and Bob is
hashed and signed by both parties. The state is then assigned
a sequence number to indicate its order. This sequence num-
ber, along with the hashed state, is signed and broadcast to
the wardens. Once at least 2 f + 1 wardens have signed the
sequence number, the state is considered valid, and the parties
can execute it.

Brick close. The Brick channel closing protocol has two
scenarios: optimistic and pessimistic. In the optimistic case,
both parties are online and responsive, allowing them to col-
laboratively generate and sign a closing request, which is then
published on-chain. In the pessimistic case, one party, say
Alice, may be offline for an extended period and unresponsive
to Bob’s close request. To prevent the channel from being
indefinitely locked, the Brick protocol allows Bob to close
the channel unilaterally. However, Bob alone does not have a
valid closing request, as during the channel update, the parties
only exchange signatures on the hashed state, which is insuffi-
cient to close the channel. To close unilaterally, Bob initiates
a closing request on-chain, prompting the wardens to publish
the latest stored sequence number. The valid closing state is
defined by the highest sequence number signed by Alice, Bob,
and at least one warden. To incentivize honest behavior from
the wardens, Brick employs a punishment mechanism based
on proofs-of-fraud. A proof-of-fraud consists of a warden’s
signature on an update with a higher sequence number than
the one they submitted for the closing request. Bob collects
these signatures during the channel update process. If a valid
proof-of-fraud is provided, Bob can claim the corresponding
warden’s collateral on-chain. According to Brick’s security
analysis, if the aggregate collateral of wardens submitting
outdated states exceeds the channel balance, Bob has no in-
centive to close the channel incorrectly. Instead, he would
claim the wardens’ collateral and award the entire channel
balance to his counterparty. Specifically, for a Brick channel
with v coins as the balance, each of the 3 f +1 wardens must
deposit at least v

f coins on-chain to ensure security.

2.3 Virtual channels

Virtual channels [4, 18] offer a solution for executing trans-
actions between parties who do not share a direct channel
while minimizing the involvement of an intermediary (Ingrid).
Specifically, Alice and Bob can establish a virtual channel on
top of two existing payment channels, as shown in Fig 2. Sim-
ilar to payment channel protocols, virtual channels typically
involve three operations: open, update, and close. However,
Ingrid only needs to participate in the open and close opera-
tions. For example, if Alice and Bob want to create a virtual
channel with a balance of xA+xB coins, not only do Alice and

Bob contribute coins, but Ingrid also deposits xB and xA coins,
respectively, to open the virtual channel, as shown in Fig 2. Im-
portantly, no additional coins are deposited on the blockchain
for the virtual channel; instead, the virtual channel’s fund-
ing is achieved by updating the payment channel state and
utilizing a portion of the payment channel’s funds. Unlike
payment channels, opening a virtual channel generally occurs
off-chain. After the virtual channel is opened, Alice and Bob
can transact directly with each other during the update opera-
tion without needing Ingrid’s involvement. When Alice and
Bob decide to close the virtual channel, Ingrid participates
in updating or closing the two underlying payment channels.
The close operation only affects the underlying payment chan-
nels without directly impacting the blockchain. Accessing the
blockchain is only required in pessimistic situations, such
as when one party becomes unresponsive. Therefore, virtual
channels can be seen as a "Layer 3" solution in blockchain
architecture.

Alice Bob

Virtual Channel

IngridPayment
Channel

Payment
Channel

Figure 2: Virtual channel structure

3 Model

In this section, we first present our system model and underly-
ing assumptions. We then formally define two distinct threat
models: one assumes Byzantine participants, while the other
assumes participants are rational agents aiming to maximize
their profit. Finally, we outline the desired security properties
of Thunderdome under both models.

3.1 System model and assumptions

There are two types of participants in Thunderdome: (1) the
main parties, which include Alice (A), Bob (B), and Ingrid (I)
in the two-hop scenario; and (2) the wardens, organized into
warden committees CA and CB. The three main parties main-
tain two underlying timelock-free payment channels (TPC),
such as Brick. The Alice-Ingrid and Ingrid-Bob channels are
each monitored by the wardens in CA and CB, respectively.
The general structure of Thunderdome is illustrated in Fig. 3.

We assume that all participants are computationally
bounded and that cryptographically secure communication
channels, signatures, hash functions, and encryption mecha-
nisms are in place. The communication channels between
Thunderdome participants are considered asynchronous,

meaning messages from honest parties may be delayed indef-
initely but will eventually be delivered. This includes mes-
sages sent to the blockchain (miners), which can also experi-
ence arbitrary delays. We further assume that the underlying
blockchain is safe and guarantees persistence [21].

3.2 Threat models

We introduce two threat models: the conventional security
model, which assumes the presence of Byzantine participants,
and a game-theoretic model, which considers rational partici-
pants. A game-theoretic analysis is particularly important for
off-chain protocols, as the standard Byzantine security model
may fail to capture certain threats that arise from party collu-
sion, such as the WormHole attack [25]. Given the significant
impact of Byzantine behavior on participant utilities and the
lack-to the best of our knowledge—of a unified framework
that addresses both models, it is crucial to assess the security
of our protocol under both perspectives.

Byzantine security model. In this model, we assume each
committee consists of 3 f + 1 wardens, of which f may be
Byzantine, while the rest are honest and follow the protocol
as specified. We note that the protocol’s security can be ex-
tended to scenarios where the number of wardens differs as
long as the Byzantine ratio remains no larger than f

3 f+1 (i.e.,
the total number of wardens may vary depending on the setup,
but the Byzantine proportion must be maintained). In addition
to wardens, the security model also accounts for cases where
the main Thunderdome parties may be Byzantine, ensuring
security for any honest participant. This is the weakest mean-
ingful assumption, as collusion between all parties against
a single honest party could occur; however, considering all
parties deviating from the protocol holds no value since secu-
rity properties apply only to honest participants. Byzantine
nodes can arbitrarily deviate by delaying, crashing, or sign-
ing/publishing incorrect states or messages. However, they
cannot drop honest messages or forge signatures, as these
actions violate network and cryptographic assumptions.

Game-theoretic model. In this model, all participants
are treated as rational, mutually distrusting agents. Ratio-
nal agents will deviate from the protocol – such as double
signing, publishing outdated states, or crashing – when doing
so allows them to maximize their utility, i.e., gain more profit.
Wardens are required to lock collateral for their participa-
tion in each channel. Overlapping wardens lock collateral in
separate smart contracts for each channel, ensuring that pun-
ishments remain independent. Additionally, the participants’
budgets are limited to their on-chain collateral, and external
budgets are not considered in our analysis. This approach is
consistent with most blockchain protocols, as proving eco-
nomic security in the presence of infinite shorting markets
(e.g., Bitcoin or Ethereum) is infeasible.

3.3 Protocol Goals
The two primary goals of our protocol are balance security
and liveness. Balance security ensures the basic safety of chan-
nels, meaning that no honest participant loses coins during the
execution of the virtual channel protocol. Honest participants
are defined as those who adhere to the protocol specifications.

Definition 1 (Balance security). Any honest participant of
Thunderdome does not lose coins.

In addition to balance security, Thunderdome must ensure
that the protocol progresses meaningfully. For example, con-
sider a channel protocol that only contains dummy functions
that make no changes to the channel state. Although no par-
ticipant would lose coins, such a protocol is useless, as no
valid channel state could ultimately be committed on-chain.
More broadly, hostage situations can still cause losses for
participants, even if the channel funds remain intact. The live-
ness property addresses these issues, complementing balance
security by ensuring meaningful progress.

Definition 2 (Liveness). Any valid operation (update or close)
on the state of the virtual channel, involving at least one honest
participant (Alice, Bob, or Ingrid), will eventually either be
committed on-chain or invalidated.

We note that the validity of operations is determined by
the protocol specification. For example, in our protocol, an
operation is considered valid if it is agreed upon by the two
main parties, involving at least one honest participant (Al-
ice, Bob, or Ingrid). In contrast, in the Lightning Network, a
valid update corresponds to the so-called commitment trans-
action [33]. A valid update is either the latest one, capable of
being committed on-chain, or it is replaced by a newer valid
update and thereby invalidated.

In our analysis, we demonstrate that Thunderdome satisfies
these properties in both the Byzantine and game-theoretic
models. However, to prove these properties in the game-
theoretic model, we employ different tools: we model the
protocol as an Extensive Form Game (EFG) with perfect in-
formation and show that the correct strategy profile forms a
Subgame Perfect Nash Equilibrium (SPNE).

Definition 3 (Extensive Form Game-EFG). And Extensive
Form Game (EFG) is a tuple G = (N,H,P,u), where set N
represents the game player, the set H captures EFG game his-
tory, T ⊆ H is the set of terminal histories, P denotes the next
player function, and u is the utility function. The following
properties are satisfied.

(A) The set H of histories is a set of sequence actions with

1. /0 ∈ H;
2. if the action sequence (ak)

K
k=1 ∈ H and L < K, then also

(ak)
L
k=1 ∈ H;

3. an action sequence is terminal (ak)
K
k=1 ∈ T , if there is no

further action aK+1 that (ak)
K+1
k=1 ∈ H.

(B) The next player function P

1. assigns the next player p ∈ N to every non-terminal his-
tory (ak)

K
k=1 ∈ H \T ;

2. after a non-terminal history h, it is player P(h)’s turn to
choose an action from the set A(h) = {a : (h,a) ∈ H}.

A player p’s strategy is a function σp mapping every history
h ∈ H with P(h) = p to an action from A(h). Formally, σp :
{h ∈ H : P(h) = p} → {a : (h,a) ∈ H,∀h ∈ H}, such that
σp(h) ∈ A(h).

The subgame of an EFG is a subtree determined by a certain
history (i.e., whose root note is the last history node) and is
formalized by the following definition [34]:

Definition 4 (EFG subgame). The subgame of an EFG
ϕ=(N,H,P,u) associated to history h∈H is the EFG ϕ(h)=
(N,H|h,P|h,u|h) defined as follows: H|h := h′|(h,h′) ∈ H,
P|h(h′) := P(h,h′), and u|h(h′) := u(h,h′).

In an EFG, a strategy profile that prescribes utility-
maximizing choices at every decision point in every subgame
is named Subgame Perfect Nash Equilibrium (SPNE) [32].

Definition 5 (Subgame Perfect Nash Equilibrium (SPNE)).
A subgame perfect equilibrium strategy is a joint strategy
σ = (σ1, ...,σn) ∈ S, s.t. σ|h = (σ1|h, ...,σn|h) is a Nash Equi-
librium of the subgame ϕ(h), for every h ∈ H. The strategies
σi|h are functions that map every h′ ∈ H|h with P|h(h′) = i to
an action from A|h(h′).

Using the definitions above, we establish below a security
property for Thunderdome in the game-theoretic model that
encompasses that rational participants will consistently follow
the protocol. We primarily focus on the closing procedure
of Thunderdome, as the security of opening Thunderdome
is straightforward. In the following, α represents the regular
profit parties receive from closing Thunderdome, ensuring
that they are incentivized to close the virtual channel, and ε

denotes the small value cost associated with unilateral closing,
required when some parties are offline.

Definition 6 (Game-theoretic security). A closing protocol is
game-theoretic secure if each main party n∈ {A, I,B}’s utility
of the closing game G ’s history h∗, which is composed by the
SPNE joint strategy σ∗, is no less than α− ε, un(h∗)≥ α− ε.

4 Protocol Overview

The core structure of Thunderdome is illustrated in Fig. 3.
Despite its apparent simplicity, several challenges arise in
securely designing the protocol: a) unlike the two-party TPC,
Thunderdome involves three main parties, introducing the
possibility of collusion between two parties (and the wardens)
to defraud the third party; b) the wardens in Thunderdome can
only be penalized in the TPC if they have deposited collateral,

even though they may verify transactions that affect both
underlying channels; and c) Thunderdome transactions are
only known to Alice and Bob, leaving Ingrid unaware of the
most recent state of the virtual channel. In the following, we
present Thunderdome using a strawman approach.

Alice Bob

Thunderdome

IngridTPC TPC

Warden nAWarden 1

Warden 2 Warden
Committee A

Warden nBWarden 1

Warden 2 Warden
Committee B

Monitor Monitor

Alice-Ingrid's part Ingrid-Bob's part

Figure 3: Thunderdome structure

Naive design. In a naive design of Thunderdome, we follow
the same rationale as regular TPC protocols like Brick. When
opening the virtual channel, the wardens of each TPC lock a
portion of their collateral into Thunderdome. For example, if
2 out of 10 coins in a TPC are locked in the virtual channel,
each warden locks 20% of their collateral during the fund-
ing transaction. The update phase of Thunderdome operates
similarly to Brick. However, the closing phase differs during
collaborative closing: Thunderdome cannot be closed solely
by Alice and Bob; Ingrid’s agreement is also required. For
unilateral closing, the smart contract only requires a quorum
certificate (2 f +1 signatures) from the closing party’s warden
committee (e.g. CA or CB).

However, the security of this protocol can be easily compro-
mised if two parties collude. Suppose Alice and Bob collude
to cheat Ingrid. Since unilateral closing only requires the quo-
rum certificate from each warden committee independently,
Alice and Bob can create and broadcast two different update
states, one to each warden committee, CA and CB. For in-
stance, in one state, Alice holds all the coins, while in the
other, Bob holds all the coins of the virtual channel. During
the Thunderdome unilateral closing procedure, neither Alice
nor Bob will publish any proof-of-fraud, even if the wardens
from different committees submit different states on-chain,
as each warden only signs one state and publishes it honestly.
Consequently, Thunderdome will close with two different
states in the underlying TPCs, causing Ingrid to lose coins. A
straightforward solution would be to require the wardens to
send their signatures to Ingrid as well. However, under asyn-
chronous conditions, it becomes impossible to differentiate
between a Byzantine warden who deliberately withholds the
signature from Ingrid (but sends it to Alice) and an honest
warden whose signature simply doesn’t arrive in time.

Smart contract cross-checking. To prevent attacks and
protect Ingrid in Thunderdome, we introduce a smart contract
cross-checking scheme during the unilateral closing proce-
dure. Specifically, after a smart contract receives enough states
from wardens that have not been proven fraudulent, it notifies
the other contract of the latest state it has learned and queries
the other contract’s latest state by sending a transaction. Both
contracts then decide on the state with the higher sequence
number, which will be used as the final closing state.

However, this approach remains vulnerable to certain safety
attacks. For example, if Alice and Bob collude to generate
two different states with the same sequence number, they can
broadcast these states to their respective warden committees
and initiate unilateral closing simultaneously. In the worst-
case scenario, both smart contracts may send transactions to
notify each other of the states they have received, and these
transactions could be included in the same block, arriving
simultaneously. If a naive scheme such as "only storing the
state from the counterparty contract" is applied in this situa-
tion, the two parts of Thunderdome could still be closed with
different states, resulting in potential losses for Ingrid.

Use leader contract to solve collision. To address the po-
tential collision when transactions from two contracts arrive
simultaneously, we designate one contract as the leader con-
tract. In the event that two different states have the same
sequence number, both contracts will store only the state from
the leader contract. The leader contract must be agreed upon
by all parties before the virtual channel is opened and should
notify the corresponding smart contract as required.

Once we establish how smart contracts should handle states
published by wardens, the next question is how many on-
chain publications are necessary, given that asynchrony only
guarantees eventual message delivery. If an updated state is
confirmed with only 2 f +1 signatures from each warden com-
mittee, there could still be up to f (honest) wardens who have
not received the latest state, even after the protocol was closed
(incorrectly). To mitigate this, we require the smart contract
to wait for at least f +1 publishments from the corresponding
committee before closing the channel. This ensures that at
least one warden with locked collateral knows the latest state.

However, if we consider rational, profit-maximizing play-
ers, Bob could simply bribe that specific warden and close the
channel using an outdated state. Since the collateral held by
each warden in TPC is much smaller than the total channel
value (which could be equal to the value locked in Thunder-
dome), Bob could benefit by bribing the warden and closing
the channel in a more favorable state. Thus, this protocol
would not be secure in the rational model.

Ensuring enough collateral. A straightforward solution to
this bribing problem is to require each warden to lock collat-
eral equal to the full channel value. However, this approach is
impractical due to over-collateralization. Additionally, either
the funding transactions of the underlying TPCs would need
to be topped up to support future virtual channels, or addi-

tional on-chain transactions would be required when a virtual
channel opens. These implications are undesirable, so we aim
for a solution that does not require additional collateral.

The first step is determining the necessary amount of
collateral. Let the balance of Thunderdome be v, and as-
sume the parties have locked vi, i ∈ {A, IA, IB,B} coins in
the Alice-Ingrid and Ingrid-Bob payment channels, respec-
tively. Since Ingrid participates in both channels, she locks
coins in both, and the locked balances must satisfy the rela-
tionship: vA + vB = vIA + vIB = vA + vIA = vIB + vB = v. Any
collusion set could potentially gain up to v coins. On the one
hand, a single Byzantine party could cheat their counterparty
and gain at most the number of coins locked by the counter-
party, which is no more than the Thunderdome balance v. On
the other hand, collusion between Alice and Bob could cheat
Ingrid, who has locked vIA + vIB = v coins, or Alice (or Bob)
could collude with Ingrid to cheat Bob (or Alice), who has
locked vA (or vB) coins, which are also less than or equal to
v. Therefore, to guarantee security, we must ensure that the
total collateral of wardens that can be punished in the event
of fraud is no less than Thunderdome’s balance v.

Thus, we require at least 2 f +1 wardens from each commit-
tee,CA and CB, to publish their closing state in Thunderdome’s
unilateral closing protocol. Combined with the quorum cer-
tificates required to update the Thunderdome state, we ensure
that at most f wardens per committee can be slow. By waiting
for 2 f + 1 publications from accountable wardens, at least
f + 1 publications can be punished if they submit outdated
information. Given that each warden locks v/ f coins in Thun-
derdome, the total collateral that can be claimed per channel
in case of fraud is (f +1)× v

f > v.

5 Thunderdome Design

In this section, we present the detailed Thunderdome protocol,
which consists of three operations: Open, Update, and Close.
We assume two consecutive underlying TPCs: Alice-Ingrid’s
and Ingrid-Bob’s. Each channel is managed by an on-chain
smart contract, which handles the locked coins of both channel
parties as well as the collateral of the wardens in the respective
committee. The smart contract only has information about the
specific payment channel it governs and has no knowledge of
other payment channels or virtual channels.

5.1 Thunderdome Open
To initiate the opening of Thunderdome, agreement among
all three main parties is required. As evidence for the channel
opening, our protocol mandates that all three parties collabora-
tively generate a unique transaction, referred to as the "register
transaction," T Xr. This transaction includes the signatures of
all three parties, serving as proof of their unanimous consent
to open the virtual channel. Additionally, T Xr contains es-
sential information related to the virtual channel, such as its

initial state, total channel balance, and contract information,
including the contract address and leader contract identifier.
Under optimistic conditions, T Xr remains off-chain and is not
published on the blockchain. However, in pessimistic scenar-
ios, such as when some parties go offline, the remaining online
parties may involve the payment channel smart contract to
help close Thunderdome. In this case, T Xr will be submitted
to the smart contract and used to facilitate decisions during
the Thunderdome unilateral closing process when some par-
ties are offline. Protocol 1 outlines the process of opening a
Thunderdome channel.

Protocol 1 Thunderdome Open

Input: Parties A, I and B, TPC committees CA and CB, ini-
tial virtual channel state s1, total channel balance v and
contract information ci.

Result: Virtual channel register transaction T Xr and open a
virtual channel
/*Combine wardens to form a virtual channel commit-
tee*/

1: A, I and B combine wardens from CA and CB to form
virtual channel committee CV =CA ∪CB.
/*Parties reach agreement on the open state*/

2: A and B generate two pre-register trans-
action with their signatures T X ′

r =
{pkA, pkB, pkI ,{pkCV },s1,v,ci,σA/σB} and send to
I.

3: After receiving two transactions, I responds with T X ′′
r =

{pkA, pkB, pkI ,{pkCV },s1,v,ci,σA/σB,σI}.
4: A and B exchange responses of I and generate final

register transaction with all partis’ signatures T Xr =
{pkA, pkB, pkI ,{pkCV },s1,v,ci,σA,σB,σI}.

5: All parties broadcast T Xr to wardens in virtual channel
committee CV , and receive more than t responses with
wardens’ signatures, then the virtual channel is consid-
ered to be opened.

6: A and I (I and B) update payment channels according to
initial virtual channel state s1.

First, all three parties—Alice, Ingrid, and Bob—must select
a new committee for Thunderdome based on the two existing
payment channel committees, CA and CB. A straightforward
approach is to combine the two committees into one. While
selecting a subset of wardens from each committee could
reduce message complexity, it introduces additional security
concerns, such as ensuring the safety of the selected virtual
channel committee, which is beyond the scope of this paper.
Therefore, to simplify the analysis, we assume the virtual
channel committee CV is the combined set of the two payment
channel committees, CA and CB.

Once CV is finalized, the three main parties collaboratively
generate the register transaction T Xr. To ensure that all par-
ties eventually have the same T Xr, or none at all, Alice and
Bob first generate and send two pre-register transactions with

their signatures to Ingrid. Upon receipt, Ingrid verifies the
transactions match, and sends the new pre-register transaction
back to Alice and Bob. Alice and Bob then exchange response
messages to collect each other’s signatures. Finally, all three
parties obtain the complete T Xr, which includes the public
keys of the wardens in CV , the public keys of Alice, Bob, and
Ingrid (pkA, pkB, and pkI), the initial state s1, and the signa-
tures of the three parties (σA, σB, and σI). After generating
the register transaction T Xr, the main parties broadcast it to
all wardens in CV for verification.

The final step in opening Thunderdome, after all parties
reach an agreement, is to "virtually lock" the coins for the
virtual channel. Unlike payment channels, which require pub-
lishing funding transactions on-chain, the parties of both un-
derlying payment channels—Alice and Ingrid, and Ingrid and
Bob—update their respective payment channels to lock coins
for use in the virtual channel. For example, if the payment
channel state between Alice and Ingrid is (a,b), and Alice
wants to open a virtual channel with Bob with an initial state
of (c,d), then Alice and Ingrid must update their payment
channel state to (a− c,b− d). This means Alice deposits c
coins and Ingrid deposits d coins for the virtual channel. This
update locks the coins (c+ d) for exclusive use in the vir-
tual channel, while the wardens’ collateral is allocated based
on the balance of both the payment channel and the virtual
channel. The virtual channel is considered open once the pay-
ment channel has been updated accordingly. It’s important
to note that opening and closing are the only operations that
require changes to the underlying payment channels. Updates
to Thunderdome and the payment channels can occur in par-
allel, as long as the coins locked for the virtual channel are
not used during the payment channel update.

5.2 Thunderdome Update
The update procedure of Thunderdome is outlined in Pro-
tocol 2. After Alice and Bob agree on the new Thun-
derdome state si and sequence number i, they gener-
ate an announcement containing their signatures, M =
{si, i,σA(si, i),σB(si, i)}, and broadcast it to all wardens in
the Thunderdome committee CV . To limit the influence of
slow wardens in each committee, both parties must wait for
the quorum certificate from each warden committee (CA and
CB) before proceeding with the next state update. Although
Byzantine or rational wardens could deviate from this pro-
tocol by broadcasting different states to wardens or by not
waiting for sufficient responses, our closing protocol, which
will be introduced in the next section, ensures that these devi-
ations will not compromise the protocol’s security.

5.3 Thunderdome Close
The final operation of Thunderdome is the close, which is ini-
tiated when at least one participant wishes to close the virtual

Protocol 2 Thunderdome Update
Main Parties
Input: Parties A and B, warden committee CV comprising

CA and CB, current state EPI (si).
Result: Update Thunderdome to a new valid state.

1: Both parties A and B sign and exchange the new virtual
channel state: M = {si, i,σA(si, i),σB(si, i)}.

2: A and B broadcast M to committee CV . /*Along with a
fee r*/

3: A (B) waits for a quorum certificate (2 f +1 signatures)
from each warden committee, then A (B) execute the
virtual channel state si.

Wardens
Input: Parties A and B, warden committee CV comprising

CA and CB, sequence number i.
Result: CV updates to a new valid state.

1: Each warden Wj, upon receiving M, verifies that both
parties’ signatures are present and the sequence number
is exactly one higher than the previously stored sequence
number. If the warden has published a state or has signed
an M or M′ with the same sequence number, it ignores
the state update. Otherwise, Wj stores M (as a possible
update, not yet replacing the i− 1-th committed state),
and sends its signature σW j(M) to both parties. /*Only to
parties that paid the fee*/

channel. This can be optimistically executed by unlocking
the previously virtually locked coins in the underlying TPCs
through a simple channel update, provided that all parties
are online and responsive. However, to ensure that coins are
not locked indefinitely if some participants are unresponsive,
Thunderdome includes a mechanism that allows any party
to unilaterally initiate the closing of the virtual channel on-
chain, using the wardens. In the following, we outline the
different subroutines for the Thunderdome close operation
and explain the rationale behind the design, starting from the
most optimistic scenario.

5.3.1 Optimistic situation

In the optimistic scenario, all three parties—Alice, Bob, and
Ingrid—are online and acting honestly. In this case, Thun-
derdome can be closed by simply updating the underlying
payment channels. Alice and Bob first send closing requests
to Ingrid. Once Ingrid receives matching announcements from
both parties, she verifies that the requests align. The parties
then collaborate to update their payment channels according
to the final virtual channel state.

However, the optimistic closing procedure is insufficient
on its own for several reasons. First, the closing requests from
Alice and Bob may differ, leading to inconsistencies. Addi-
tionally, any of the three parties could be offline, preventing
them from sending or responding to closing requests and re-

Protocol 3 Thunderdome Closing protocol

Input: Closing party P ∈ {A, I,B} and payment channel
counter party Q ∈ {A, I,B}, closing request sent by party
m ∈ {P,Q}: V Sm = {sim , i,σm(sim , i),σm(sim , i)}.

Result: Close the virtual channel when all parties are online
and responsive.
/*Parties send closing request*/

1: Closing party P sends closing requests to others.
/*Counterparty is offline or sends incorrect request*/

2: if Q is offline or V SQ ̸=V SP then
3: P runs Protocol 4 separately to close the channel with

Q
4: else
5: P update the payment channel with Q
6: end if
7: If both parts of Thunderdome are closed, the virtual chan-

nel is successfully closed.

sulting in a deadlock. To address these issues, we ensure the
correct closing of Thunderdome by allowing any online party
to unilaterally close the channel. This protocol handles cases
where counterparty agreement cannot be obtained due to an
asynchronous network, offline status, or Byzantine behavior.
To facilitate unilateral closure in Thunderdome, we leverage
the assistance of wardens, as described below. Crucially, the
initiating party does not need to determine whether the coun-
terparty is offline or if their message has not arrived; the mere
absence of a response triggers the unilateral closing process.

5.3.2 Pessimistic situation

Ingrid is offline or misbehaves. The first situation occurs
when Ingrid is offline while Alice and Bob wish to close
the virtual channel, or when Ingrid responds inconsistently
to Alice’s and Bob’s honest closing requests. In this case,
Thunderdome allows Alice and Bob to close the channel uni-
laterally, requiring them to interact with the smart contract,
effectively offloading the virtual channel closure to the un-
derlying payment channel. Protocol 4 outlines the steps from
Alice’s perspective.

The core idea of Protocol 4 is for the warden committee CV
to publish the latest channel state, enabling the closing party
to punish malicious wardens by slashing their collateral in the
smart contract. At the start of Protocol 4, the closing party
submits the register transaction T Xr to the smart contract,
allowing the payment channel contract to verify published
states and proofs-of-fraud using the public keys of the Thun-
derdome parties and wardens from the respective committees
included in T Xr. With 3 f + 1 wardens in each committee,
the closing party publishes proofs-of-fraud only after at least
2 f +1 wardens from their committee have published closing
states, ensuring sufficient collateral for penalties.

As discussed in Section 5.2, it is possible for parties to

deviate from the update protocol. As a result, when Alice
and Bob execute Protocol 4 simultaneously, the closing states
published by the wardens could differ. To address this poten-
tial security issue, we require smart contracts to cross-check
the states published by the wardens, as shown in Protocol 5.
In this process, the two contracts exchange the latest state
they have received and only retain the one with the higher se-
quence number. If two states have the same sequence number
but different values, only the state from the leader contract,
which is pre-determined in the register transaction T Xr during
the channel opening, will be stored. Ultimately, Thunderdome
will be closed using the stored state after cross-checking, if
there are not enough fraud proofs to invalidate it.

In Thunderdome, parties can close the virtual channel uni-
laterally only by simultaneously closing the payment channel,
as the latter becomes redundant if Ingrid does not respond
to the Thunderdome closing request. Furthermore, Thunder-
dome enforces the virtual channel to be closed before the
payment channel. To close both channels, parties first interact
with the TPC’s smart contract to verify the virtual channel’s
existence. The virtual channel is then closed through the com-
bined warden committees, followed by the payment channel’s
closure. If a party attempts to close the payment channel with-
out settling the virtual channel first, the Thunderdome balance
is forfeited to the payment channel counterparty as a penalty.

Bob (Alice) is offline or misbehaves. The second scenario
occurs when one party, such as Bob, is offline. In this case,
Ingrid only receives the closing request from Alice. However,
Ingrid cannot immediately agree to Alice’s request, as she has
no knowledge of the virtual channel state and could potentially
be deceived if Alice and Bob are colluding. To address this,
Ingrid is allowed to unilaterally close the part of Thunderdome
involving the offline party first, thereby gaining access to the
virtual channel state. Once Ingrid has this information, she
can verify Alice’s closing requests and act accordingly. In
our game-theoretic analysis, we demonstrate that wardens
will continue to publish honestly, even if Ingrid is initially
unaware of the Thunderdome state.

Alice and Bob are both offline or collude. The final pes-
simistic situation covers two scenarios: (1) Ingrid wants to
close Thunderdome, but both Alice and Bob are offline; (2)
Alice and Bob send valid closing requests but with different
closing states. The second scenario suggests that Alice and
Bob are colluding during the Thunderdome update procedure,
generating two different final states to deceive Ingrid. In both
cases, Ingrid cannot rely on Alice and Bob to close Thunder-
dome properly. Therefore, Ingrid must execute Protocol 4
sequentially to close both parts of Thunderdome unilaterally.
We stress that if Alice and Bob send identical but outdated
closing requests, Ingrid incurs no loss by agreeing to them;
so this scenario is excluded from our security analysis.

Ingrid and Bob (Alice) are offline. In the final possible
scenario, which is not covered in Protocol 3, both Ingrid and
Bob (or Alice) are offline during the closing process. In this

Protocol 4 Unilateral closing

Input: Party A, wardens W1, · · · ,WnA from payment channel
committee CA, virtual channel state V S, virtual channel
register transaction T Xr.

Result: Close the payment channel and one part of the virtual
channel.
/*Alice registers virtual channel*/

1: A publishes the register transaction T Xr on-chain and
prove the validity of virtual channel.
/*Wardens publish virtual channel states */

2: Each warden Wj publishes on-chain signature lists on the
stored announcements for payment channel and virtual
channel {V S,σW j(V S)}.
/*Closing party submits proof-of-fraud*/

3: After verifying 2 f +1 on-chain signed announcements
from committee CA, A publishes proofs-of-fraud.
/*Closing with punishment*/

4: After the state is included in a block, the smart contract
verifies the signature of V S based on the information in
the register transaction T Xr.

5: Then the smart contract verifies the proofs-of-fraud:

(a) If the valid proofs about a channel are x ≤ f , the
smart contract follows Protocol 5 to decide the war-
dens’ published state, WSA. Then the smart contract
virtually distributes coins by updating the parties’
current balances according to WSA.

(b) If the valid proofs about a channel are x ≥ f + 1,
smart contracts award all channel balances to the
counterparty.

6: Smart contracts award all the cheating wardens’ collateral
to party A.

7: First 2 f +1 wardens that have no cheating behaviors get
an equal fraction of the closing fee.

8: If the virtual channel is not closed before closing the
payment channel, the whole channel balance will be given
to the payment channel counterparty.

case, the online party can execute Protocol 4 to close their part
of Thunderdome unilaterally. Once the other two parties come
back online, they can close their portion of Thunderdome
either unilaterally or collaboratively.

5.4 Multi-hop Thunderdome

Thunderdome can also be extended to multi-hop scenarios.
We illustrate this with example involving four parties: Alice,
Bob, Charlie, and Dave, connected through TPCs (see Fig. 4).

The main difference in a multi-hop scenario is the involve-
ment of additional intermediary parties who are unaware of
the Thunderdome states. As with the two-hop Thunderdome,
it is crucial to ensure that each committee has enough wardens

Protocol 5 Smart contract cross-checking
Sending transaction
Input: Alice-Ingrid smart contract SCA, Ingrid-Bob smart

contract SCB, wardens’ published state WSA.
Result: Send notification and query transaction.

/*Decide state*/
1: SCA stores the state with the highest sequence number as

WSA. If there is more than one, SCA selects the first one
it receives.
/*Exchange cross-checking transaction*/

2: SCA sends the notification and query transaction T XqA
containning WSA to SCB.

3: SCA waits for the transaction T XqB from SCB.
Receiving transaction
Input: Alice-Ingrid smart contract SCA, Ingrid-Bob smart

contract SCB, wardens’ published state WSA.
Result: SCA decides on the closing state.

/*Receive transaction from the other contract*/
1: SCA receives transaction T XqB containing WSB from SCB.

/*React when state is not decided yet*/
2: If SCA hasn’t deceided WSA yet, then stores WSB as WSA

and reply with NULL.
/*React when state is decided decided*/

3: If WSA has already been decided, then SCA reacts as fol-
low:

(a) If WSA and WSB have different sequence number.
Then SCA updates WSA to the one with the higher
sequence number.

(b) If WSA and WSB have the same sequence number
but different value. Then SCA updates WSA to the
state from the leader contract.

who know the latest Thunderdome state. The key steps for a
multi-hop Thunderdome are as follows: (1) During the open-
ing procedure, all four parties, along with the wardens, must
collaborate to generate the register transaction. Each party
considers the channel open after receiving a quorum certifi-
cate from each committee. (2) To successfully update Thun-
derdome, Alice and Dave must broadcast the updated state to
all wardens and wait for a quorum certificate from each com-
mittee. (3) Thunderdome can be optimistically closed once
all four parties reach an agreement. In a pessimistic closing
scenario, each smart contract should wait for at least 2 f +1
wardens to publish their states from the corresponding pay-
ment channel committee and cross-check with other contracts
to determine the final closing state.

Alice BobTPC

Warden
Committee

C1

Carol DaveTPC TPC

Warden
Committee

C2

Warden
Committee

C3

Monitor Monitor Monitor

Figure 4: Multi-hop Thunderdome

6 Byzantine Security Analysis

We prove that Thunderdome is secure under the Byzantine
model, provided at least t = 2 f + 1 wardens remain honest
in each committee, CA and CB. We then extend our analysis
to multi-hop Thunderdome. Due to space constraints, we
present only sketch proofs below, with full proofs available
in the extended version [11].
Balance Security. According to Protocol 5, the contracts
governing both parts of Thunderdome always close with the
same state, ensuring balance security for Ingrid. We thereby
analyze two possible closing scenarios: (i) In collaborative
closing, all three main parties (Alice, Ingrid, and Bob) must
agree. Hence, collaborative closing cannot succeed with an
outdated state, as long as at least one party is honest. (ii) In
unilateral closing, any main party can close the channel, but
this requires 2 f + 1 signatures from the respective warden
committee. If either Alice or Bob is honest, at least 2 f + 1
wardens in each committee will be notified by Protocol 2,
ensuring that at least one honest warden will publish the latest
state. Even in the worst-case scenario where both Alice and
Bob are Byzantine, the cross-checking mechanism guarantees
Ingrid’s security by preventing state inconsistencies between
the two parts of Thunderdome.

Theorem 1. Thunderdome achieves balance security for hon-
est parties under asynchrony, assuming at most f Byzantine
wardens in each committee.

Liveness. Liveness can fail if an insufficient number of war-
dens are available to process a valid request. However, with
at most f Byzantine wardens in each committee, every valid
request will always be processed by at least 2 f +1 honest war-
dens, ensuring execution. Thus, valid operations always pro-
ceed, and Byzantine parties cannot indefinitely stall progress.

Theorem 2. Thunderdome achieves liveness for honest par-
ties under asynchrony, assuming at most f Byzantine wardens
in each committee.

Multi-hop Thunderdome. The same guarantees hold for
multi-hop Thunderdome. As long as at least one main party
is honest and each committee contains at least 2 f +1 honest
wardens, invalid operations cannot succeed, and valid oper-
ations will always execute. Additionally, the cross-checking
mechanism ensures state consistency across all parts of the
multi-hop Thunderdome.

Theorem 3. Multi-hop Thunderdome achieves balance secu-
rity for honest parties under asynchrony, assuming at most f
Byzantine wardens in each committee.

Theorem 4. Multi-hop Thunderdome achieves liveness for
honest parties under asynchrony, assuming at most f Byzan-
tine wardens in each committee.

7 Game-theoretic Security Analysis

We prove Thunderdome is game-theoretically secure (Def. 6)
by showing that no party can increase their utility by deviating
from the protocol specification during the open, update, or
close phases. While Thunderdome comprises three phases,
the update phase is effectively reflected in the closing process.
Therefore, we model the opening and closing procedures as
an EFG to prove the scheme’s security.

The correctness of the Thunderdome open procedure is
ensured by the fact that if the two parts of Thunderdome
are initialized inconsistently, certain state transitions become
impossible due to channel balance constraints. This imbalance
disrupts state consistency, ultimately causing a financial loss
for Ingrid. As a rational participant, Ingrid will thus reject any
inconsistent initialization of Thunderdome.

We assume the whole Thunderdome closing process is ini-
tiated by Alice and Bob. According to Protocol 3, the closing
of Alice-Ingrid’s part and Ingrid-Bob’s part are symmetric;
for simplicity, we only show the game involving Bob and
Ingrid. The possible strategies for these two parties are de-
fined in Table 3 and 4. Depending on whether Ingrid knows
the Thunderdome state, there could be two different game
trees depicted in Fig. 6 and 7. The blue dotted circle in Fig. 6
represents that the parties inside the circle share the same
information set [32]. Specifically, if Bob sends a closing re-
quest while Alice is offline, Ingrid cannot determine whether
the request is correct, which makes the game an EFG with
imperfect information. Conversely, if Alice also sends a clos-
ing request or Ingrid gains knowledge of the virtual channel
through unilateral closing, the closing game changes to an
EFG with perfect information, as shown in Fig. 7.

Subgame 1 models the unilateral closing game between the
closing party and the wardens, as illustrated in Fig.5. We con-
sider a setting with 10 wardens in each committee, with their
strategies detailed in Tables 1 and 2. The wardens choose
their strategies simultaneously. By comparing utilities, we
establish that the SPNE strategy for wardens is to publish
honestly, avoiding penalties on their collateral. This outcome
extends to Ingrid, as wardens cannot ascertain whether she has
obtained information from other parties and can impose penal-
ties. Notably, this game also applies to the update protocol,
where wardens decide whether to sign honestly. Additionally,
the cross-checking scheme ensures that both parts of Thun-
derdome can only be unilaterally closed with the same state,
guaranteeing Ingrid’s security and incentivizing the other two

rational parties to honestly follow the update protocol. The
reward k here is used as an incentive to guarantee liveness
from the perspective of wardens.

Table 1: Strategy for unilateral closing party (P)

PF Number of valid proofs-of-fraud she publishes on-chain

Table 2: Strategy for warden i (Wi)

Pl Publish the honest state \ Sign honestly
Po Publish the dishonest state \ Sign dishonestly

Table 3: Strategy for Bob (B)

Old Send a dishonest collaborative closing request with the old
virtual channel state

New Send an honest collaborative closing request with the latest
virtual channel state

Uni Unilaterally close the part of Thunderdome with Ingrid

Table 4: Strategy for Ingrid (I)

Agree Agree and sign the closing request
Disagree Disagree and go for unilateral closing
Ignore Ignore the closing request or go offline

By incorporating the SPNE utility from Subgame 1 into
the closing game illustrated in Fig.6 and Fig.7, we analyze
the SPNE strategies in both cases. The SPNE of an extensive-
form game (EFG) with imperfect information is equivalent to
the Nash Equilibrium (NE) strategy of the normal-form game
(NFG) derived from it [32]. Thus, to determine the SPNE, we
first transform the closing game with imperfect information
into its corresponding NFG, represented in Table 5, where the
NE strategy is highlighted in blue.

Following this transformation, Ingrid’s optimal SPNE strat-
egy is to initially ignore Bob’s closing request when lacking
sufficient knowledge. Two possible outcomes then emerge:
(1) If Bob aims to expedite the closure of his part of Thun-
derdome, he may unilaterally initiate Protocol 4. From the
analysis of Subgame 1, Ingrid will not incur any loss in this
scenario. (2) Alternatively, Ingrid may acquire knowledge of
Thunderdome through either Alice’s closing request or by
closing the Alice-Ingrid part of Thunderdome. If, at this point,
the Ingrid-Bob part remains open, the game transitions into
an EFG with perfect information, as shown in Fig. 7. By eval-
uating the utilities in this game, we conclude that the unique
SPNE outcome is for all parties to close their respective parts
of Thunderdome with the latest state.

In case both Alice and Bob are offline, Ingrid must unilater-
ally close the Alice-Ingrid and Ingrid-Bob parts by executing
Protocol 4. As previously established, Ingrid remains pro-
tected from loss during unilateral closing. Furthermore, Ingrid

Figure 5: Subgame 1 – Unilateral closing game started by party P, P ∈ {A,B, I}. The utility is shown in order of {P, P’s
counterparty, warden group 1 (3 wardens), warden group 2 (4 wardens), warden group 3 (3 wardens)}. α represents the default
value for closing, c for warden collateral, d for profit of incorrect closing and k for reward of correct warden publishment. The
SPNE of the game is shown with the blue arrow.

Subgame 1 Subgame 1

Subgame 1 Subgame 1

Subgame 1

Figure 6: Closing game started by Bob. Utilities are in the
form of (Bob, Ingrid), where α is the incentive for closing
Thunderdome, and dB is Bob’s profit for incorrect closure. The
SPNE utility of subgame 1 is (α− ε,α), with ε representing
a small preference cost. The SPNE strategy is indicated by
the blue arrow, and the blue-dotted circle denotes a shared
information set.

cannot exploit Alice or Bob, as the cross-checking mechanism
ensures that both parts of Thunderdome close with identical
states. We formally establish the game-theoretic security of
Thunderdome in Theorem 5.

Theorem 5. Thunderdome closing protocol is game-theoretic
secure.

The multi-hop Thunderdome remains secure in the game-

Ignore Agree Disagree
Uni (α− ε,α) (α− ε,α) (α− ε,α)

Old (α− ε,α) (α+dB ,α−dB) (α,α− ε)

New (α− ε,α) (α,α) (α,α− ε)

Table 5: Transformed NFG of Bob’s closing game with im-
perfect information.

Subgame 1 Subgame 1

Subgame 1 Subgame 1

Subgame 1

Figure 7: Closing game started by Bob; Ingrid gains knowl-
edge about Thunderdome, distinguishing Bob’s requests. α

represents the incentive for closing Thunderdome, and dB
represents Bob’s profit for close Thunderdome incorrectly.
The SPNE utility of subgame 1 is (α− ε,α), where ε is a
small value of cost to denote preference. The SPNE strategy
is shown by the blue arrow.

theoretic model, as any closing game in multi-hop Thunder-
dome can be reduced to the two-hop case.

Channel open: Rational intermediary main parties will
prevent potential losses from incorrect state initialization,
similar to the two-hop Thunderdome.

Channel update: The unilateral closing subgame remains
unchanged for multi-hop Thunderdome. Therefore, rational
wardens will follow the update protocol honestly to avoid
penalties, while the cross-checking scheme prevents rational
main parties from misbehaving.

Channe closing: A key observation is that when a party,
such as Dave, initiates the closure of a multi-hop Thunder-
dome, the closing game effectively involves only Dave and
Carol, despite multiple intermediaries. This is because Dave’s
objective is to modify the underlying payment channel with
Carol, which requires either Carol’s consent or the wardens’
intervention. Additionally, the cross-checking scheme ensures
that all parts of Thunderdome close with the same state, pre-
venting rational parties from colluding to close Thunderdome
inconsistently. Since the presence of intermediaries does not
alter the game tree or utility outcomes, the analysis for two-
hop Thunderdome extends naturally to the multi-hop setting.

Theorem 6. The multi-hop Thunderdome is game-theoretic
secure.

8 Implementation and Evaluation

In this section, we present a proof-of-concept implementa-
tion of Thunderdome. The smart contract for the channel
is written in Solidity V0.8.21 and deployed using Truffle
V5.11.4 on a private Ethereum testing blockchain set up with
Ganache V7.9.1. The source code is publicly available at
https://github.com/BartWaaang/Thunderdome. We evaluate
the gas fee cost of smart contracts on Ethereum as our primary
metric. Gas fees are paid by blockchain users to miners as
transaction fees, which depend on both the amount of data
and the complexity of operations in the transaction. In our im-
plementation, we set the per unit gas price to 2×10−9 ETH, a
typical setting. Additionally, we set the exchange rate between
ETH and USD at 1668 : 1, based on the latest rate at the time
of writing. Under these conditions, the total cost to deploy
the payment channel contract supporting our Thunderdome
protocol is approximately 0.006 ETH (3,174,554 gas, around
10.59 USD). We evaluate the cost for each procedure using
an evaluation script written in JavaScript, which generates
testnet accounts for the main parties and wardens, simulating
their actions. The gas fee costs for various procedures in our
protocol are summarized in Table 6.

We compare our gas fee costs with Perun, as shown in Ta-
ble 6. To deploy and open an underlying payment channel
(PC), Alice (Bob) and Ingrid, along with 10 wardens, send
funding transactions on-chain. The total cost for Thunder-
dome amounts to 0.0089 ETH, which is 1.5 times the cost of

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Et
he

r

10 12 14 16 18 20 22 24
Number n of Wardens

0

2

4

6

8

10

12

14

US
D

Gas cost of a Thunderdome

Cost of deployment
Cost of opening
Cost of pessimistic close
Cost of optimistic close
Cost of pessimistic virtual close

Figure 8: Gas fee changes in Thunderdome’s procedures as
the number of wardens per committee grows from 10 to 25.

Perun, primarily due to the additional funding transactions
required from the wardens. Given the need for extra funding
transactions and the removal of timelocks, this increase is rea-
sonable. Regarding off-chain communication, Thunderdome
requires quorum certificates from committees to open the
channel. Additionally, updating the payment channel for Thun-
derdome’s "virtual lock" involves two rounds of broadcasting,
leading to higher message complexity compared to updating
a standard payment channel. To close the payment channel
optimistically, Alice and Ingrid must publish the closing state
agreed upon by both parties on-chain, costing 0.0005 ETH.
The pessimistic closing, where at least 7 wardens publish the
state on-chain after one party (e.g., Alice) submits a closing
request, costs approximately 0.0017 ETH. The message cost
for the optimistic closing of the virtual channel is the same
as for a payment channel update. In pessimistic situations,
closing the virtual channel requires the closing party to submit
the register transaction to the smart contract and wardens to
publish Thunderdome states on-chain, costing 0.0024 ETH —
3 times the cost of Perun. This additional closing cost arises
because all wardens must publish on-chain transactions for
the closing state, similar to the Thunderdome opening process.
However, given that pessimistic scenarios like censorship are
infrequent and the difference in optimistic payment channel
closing is only around 0.4 USD, Thunderdome remains com-
parable to Perun in most cases. We also evaluate how gas
fees change as the size of each warden committee increases
from 10 to 25. Naturally, costs for all procedures rise with
more wardens, as more participants need to interact with the
smart contract during Thunderdome execution. The results
are illustrated in Fig. 8.

9 Extensions

Privacy-preserving protocol. In Thunderdome, the privacy
of virtual channel states is not protected from the wardens.

On-chain transaction off/on-chain message Thunderdome Cost Perun Cost
Alice (Bob) Ingrid Warden (10) Gas ETH USD Gas ETH USD

Deploy & Open PC 2+10 1+10 / 1 1+10 / 1 14 ≤ m ≤ 20 / 10 4444861 0.0089 14.83 2819448 0.0057 9.54
Update PC 0 1+10 / 0 1+10 / 0 14 ≤ m ≤ 20 / 0 0 0 0 0 0 0
Open VC 0 3+30 / 0 2+40 / 0 35 ≤ m ≤ 50 / 0 0 0 0 0 0 0
Update VC 0 1+20 / 0 0 / 0 14 ≤ m ≤ 20 / 0 0 0 0 0 0 0
Optimistic VC close 0 1+10 / 0 1+10 / 0 14 ≤ m ≤ 20 / 0 0 0 0 0 0 0
Optimistic PC close 2 1 / 1 1 / 1 0 / 0 252760 0.0005 0.84 147788 0.0003 0.49
Pessimistic VC close

by Alice
2+7 ≤ m ≤ 2+10 0 / 2 0 / 0 0 / 7 ≤ m ≤ 10 1217307 0.0024 4.06 418318 0.0008 1.40

Pessimistic PC close

by Alice
1+7 ≤ m ≤ 1+10 0 / 1 0 / 0 0 / 7 ≤ m ≤ 10 862459 0.0017 2.88 275049 0.0006 0.92

Table 6: Gas and communication cost for different procedures in Thunderdome and Perun [18]. Warden refers to a single payment
channel warden committee. PC denotes a payment channel and VC denotes a virtual channel. The column “on-chain” transaction
counts transactions sent by the main parties (before “+”) and by wardens (after “+”). The column “off/on-chain message” counts
the off-chain messages among the main parties (before “+”) and to wardens (after “+”), as well as the on-chain messages.

It is not straightforward to design a privacy-preserving pro-
tocol that ensures both: a) Ingrid can recover the state, and
b) the wardens cannot retrieve the state, even in collusion
with Ingrid, while still being able to verify the validity of
the private state. A compromise is to enable state recovery
and privacy against wardens, assuming Ingrid does not col-
lude with them. However, even in this case, the repetitive
nature of updates poses challenges. Trapdoor one-way func-
tions, though promising candidates, lack IND-CPA security.
On the other hand, asymmetric encryption schemes offering
such protection require a new random number for each en-
crypted value [12]. In our protocol, this can be implemented
by Alice, Bob, and Ingrid sharing a vector of random values
during the creation of the register transaction in Thunder-
dome open. However, this solution has two main drawbacks:
a) the number of states that can be updated in the virtual
channel is limited by the length of this vector. Optimistically,
Ingrid may occasionally renew it, but this depends on Ingrid
being online and cooperative; b) the virtual channel parties
must provide the wardens with corresponding evidence (e.g.,
ZK proof) at each update to certify that the correct random
number was used, adding communication and computational
overhead to Thunderdome’s update process. Other crypto-
graphic tools, such as Verifiable Secret Sharing [37] or thresh-
old signatures [35], could be leveraged to enhance privacy in
Thunderdome transactions. For example, one could explore
the possibility of allowing Ingrid and f +1 wardens from her
committee to recover the states. This scheme may be secure
under the assumption of 2 f +1 honest wardens, but it remains
an open question whether suitable incentive mechanisms can
ensure security in the rational model.

Scaling the multi-hop protocol. An interesting question is
whether it is feasible to scale the multi-hop Thunderdome by
involving fewer wardens. We argue that this is possible by
defining the employed wardens and the closing rules during

the opening phase. Assuming that only n′ < n wardens are
selected per committee, two necessary compromises arise:
(1) Selection algorithm: Among n′ = 3 f ′+1 wardens, there
should still be at most f ′ Byzantine wardens; (2) Extra de-
posit: If the multi-hop Thunderdome channel balance is v,
then each warden must lock collateral of at least v

f ′ >
v
f . How-

ever, the validity rule (e.g., requiring a quorum certificate per
committee during the update procedure) remains unchanged
for two key reasons. First, the security model assumes that the
two end parties of the multi-hop Thunderdome could collude,
necessitating warden committees to ensure there are no two
conflicting valid states. Second, intermediary parties without
knowledge of the virtual channel state rely on the wardens in
the local committee to publish the correct state.

Extend to state channel. Thunderdome is introduced as a
virtual payment channel but can also be extended to function
as a virtual state channel. Although numerous state channel
primitives exist in the literature [19, 27–29] that generalize
payment channels to more complex applications, these con-
structions cannot be directly applied to Thunderdome due to
their synchronous nature, which relies on timelocks. However,
Thunderdome can utilize two Brick state channels [5] as the
underlying layer, provided that each state can be mapped to a
monetary valuation to ensure security in the game-theoretic
model. This assumption, as proposed in [5], is essential for
converting the payment channel primitive into a rationally
secure state channel, which Thunderdome also adopts.

References

[1] Txwithhold smart contracts by gleb naumenko, 2022.

[2] Lukas Aumayr, Kasra Abbaszadeh, and Matteo Maffei.
Thora: Atomic and privacy-preserving multi-channel
updates. In Proceedings of the 2022 ACM SIGSAC

Conference on Computer and Communications Security,
pages 165–178, 2022.

[3] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebas-
tian Faust, Kristina Hostáková, Matteo Maffei, Pedro
Moreno-Sanchez, and Siavash Riahi. Generalized chan-
nels from limited blockchain scripts and adaptor signa-
tures. In Advances in Cryptology - ASIACRYPT 2021 -
27th International Conference on the Theory and Appli-
cation of Cryptology and Information Security,, volume
13091 of Lecture Notes in Computer Science, pages 635–
664. Springer, 2021.

[4] Lukas Aumayr, Matteo Maffei, Oğuzhan Ersoy, An-
dreas Erwig, Sebastian Faust, Siavash Riahi, Kristina
Hostáková, and Pedro Moreno-Sanchez. Bitcoin-
compatible virtual channels. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 901–918. IEEE,
2021.

[5] Georgia Avarikioti, Eleftherios Kokoris-Kogias, and
Roger Wattenhofer. Brick: Asynchronous state chan-
nels. corr abs/1905.11360 (2019). arXiv preprint
arXiv:1905.11360, 2019.

[6] Georgia Avarikioti, Felix Laufenberg, Jakub Sliwinski,
Yuyi Wang, and Roger Wattenhofer. Towards secure and
efficient payment channels. arXiv preprint, 2018.

[7] Zeta Avarikioti, Pawel Kedzior, Tomasz Lizurej, and
Tomasz Michalak. Bribe & Fork: Cheap bribing attacks
via forking threat. Advances in Financial Technologies
(AFT), 2024.

[8] Zeta Avarikioti, Eleftherios Kokoris-Kogias, Roger Wat-
tenhofer, and Dionysis Zindros. Brick: Asynchronous
incentive-compatible payment channels. In Financial
Cryptography and Data Security (FC), pages 209–230.
Springer, 2021.

[9] Zeta Avarikioti and Orfeas Stefanos Thyfronitis Litos.
Suborn channels: Incentives against timelock bribes. In
International Conference on Financial Cryptography
and Data Security, pages 488–511. Springer, 2022.

[10] Zeta Avarikioti, Orfeas Stefanos Thyfronitis Litos, and
Roger Wattenhofer. Cerberus channels: Incentivizing
watchtowers for bitcoin. In Financial Cryptography and
Data Security (FC), pages 346–366. Springer, 2020.

[11] Zeta Avarikioti, Yuheng Wang, and Yuyi Wang. Thun-
derdome: Timelock-free rationally-secure virtual chan-
nels. arXiv: 2501.14418, 2025.

[12] Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas
Ristenpart, Gil Segev, Hovav Shacham, and Scott
Yilek. Hedged public-key encryption: How to protect

against bad randomness. In Advances in Cryptology–
ASIACRYPT 2009: 15th International Conference on the
Theory and Application of Cryptology and Information
Security, pages 232–249. Springer, 2009.

[13] Same Blackshear, Andrey Chursin, George Danezis,
Anastasios Kichidis, Lefteris Kokoris-Kogias, Xun Li,
Mark Logan, Ashok Menon, Todd Nowacki, Alberto
Sonnino, et al. Sui lutris: A blockchain combining broad-
cast and consensus. arXiv preprint arXiv:2310.18042,
2023.

[14] Hao Chung, Elisaweta Masserova, Elaine Shi, and Sri
Aravinda Krishnan Thyagarajan. Rapidash: Improved
constructions for side-contract-resilient fair exchange.
IACR Cryptol. ePrint Arch., 2022:1063, 2022.

[15] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe
Gencer, Ari Juels, Ahmed Kosba, Andrew Miller, Pra-
teek Saxena, Elaine Shi, Emin Gün Sirer, et al. On
scaling decentralized blockchains: (a position paper). In
Financial Cryptography and Data Security (FC), pages
106–125. Springer, 2016.

[16] George Danezis, Lefteris Kokoris-Kogias, Alberto Son-
nino, and Alexander Spiegelman. Narwhal and tusk:
a dag-based mempool and efficient bft consensus. In
Proceedings of the Seventeenth European Conference
on Computer Systems, pages 34–50, 2022.

[17] Christian Decker and Roger Wattenhofer. A fast and
scalable payment network with bitcoin duplex micro-
payment channels. In Stabilization, Safety, and Security
of Distributed Systems - International Symposium, SSS,
volume 9212 of Lecture Notes in Computer Science,
pages 3–18. Springer, 2015.

[18] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and
Daniel Malinowski. Perun: Virtual payment hubs over
cryptocurrencies. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 106–123. IEEE, 2019.

[19] Stefan Dziembowski, Sebastian Faust, and Kristina
Hostáková. General state channel networks. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 949–966, 2018.

[20] Oguzhan Ersoy, Jérémie Decouchant, Satwik Prabhu
Kumble, and Stefanie Roos. Syncpcn/psyncpcn: Pay-
ment channel networks without blockchain synchrony.
In Proceedings of the 4th ACM Conference on Advances
in Financial Technologies, pages 16–29, 2022.

[21] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos.
The bitcoin backbone protocol: Analysis and applica-
tions. J. ACM, apr 2024. Just Accepted.

[22] Karan Singh Garewal and Karan Singh Garewal. The he-
lium cryptocurrency project. Practical Blockchains and
Cryptocurrencies: Speed Up Your Application Devel-
opment Process and Develop Distributed Applications
with Confidence, pages 69–78, 2020.

[23] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos,
Patrick McCorry, and Arthur Gervais. Sok: Layer-two
blockchain protocols. In Financial Cryptography and
Data Security (FC), pages 201–226. Springer, 2020.

[24] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert,
Emin Gün Sirer, and Peter Pietzuch. Teechain: a se-
cure payment network with asynchronous blockchain
access. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, pages 63–79, 2019.

[25] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schnei-
dewind, Aniket Kate, and Matteo Maffei. Anonymous
multi-hop locks for blockchain scalability and interop-
erability. In Network and Distributed System Security
(NDSS) Symposium, 2019.

[26] Subhra Mazumdar, Prabal Banerjee, Abhinandan Sinha,
Sushmita Ruj, and Bimal Kumar Roy. Strategic analysis
of griefing attack in lightning network. IEEE Trans.
Netw. Serv. Manag., 20(2):1790–1803, 2023.

[27] Patrick McCorry, Surya Bakshi, Iddo Bentov, Sarah
Meiklejohn, and Andrew Miller. Pisa: Arbitration out-
sourcing for state channels. In Proceedings of the 1st
ACM Conference on Advances in Financial Technolo-
gies, pages 16–30, 2019.

[28] Patrick McCorry, Chris Buckland, Surya Bakshi, Karl
Wüst, and Andrew Miller. You sank my battleship! a
case study to evaluate state channels as a scaling solu-
tion for cryptocurrencies. In Financial Cryptography
and Data Security: FC 2019 International Workshops,
VOTING and WTSC, pages 35–49. Springer, 2020.

[29] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Ku-
maresan, and Patrick McCorry. Sprites and state chan-
nels: Payment networks that go faster than lightning. In
Financial Cryptography and Data Security (FC), vol-
ume 11598 of Lecture Notes in Computer Science, pages
508–526. Springer, 2019.

[30] Tejaswi Nadahalli, Majid Khabbazian, and Roger Wat-
tenhofer. Timelocked bribing. In Financial Cryptogra-
phy and Data Security, pages 53–72. Springer, 2021.

[31] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. https://bitcoin.org/bitcoin.pdf,
2008.

[32] Martin J Osborne and Ariel Rubinstein. A course in
game theory. MIT press, 1994.

[33] Joseph Poon and Thaddeus Dryja. The bitcoin lightning
network: Scalable off-chain instant payments. 2016.

[34] Sophie Rain, Georgia Avarikioti, Laura Kovács, and
Matteo Maffei. Towards a game-theoretic security analy-
sis of off-chain protocols. In 2023 2023 IEEE 36th Com-
puter Security Foundations Symposium (CSF), pages
31–46. IEEE Computer Society, 2022.

[35] Victor Shoup. Practical threshold signatures. In Ad-
vances in Cryptology – EUROCRYPT: International
Conference on the Theory and Application of Crypto-
graphic Techniques, pages 207–220. Springer, 2000.

[36] Alexander Spiegelman, Neil Giridharan, Alberto Son-
nino, and Lefteris Kokoris-Kogias. Bullshark: Dag bft
protocols made practical. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 2705–2718, 2022.

[37] Markus Stadler. Publicly verifiable secret sharing. In In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, pages 190–199. Springer,
1996.

[38] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei.
Post-quantum adaptor signature for privacy-preserving
off-chain payments. In Financial Cryptography and
Data Security (FC), volume 12675 of Lecture Notes in
Computer Science, pages 131–150. Springer, 2021.

[39] Sri Aravinda Krishnan Thyagarajan, Adithya Bhat,
Giulio Malavolta, Nico Döttling, Aniket Kate, and Do-
minique Schröder. Verifiable timed signatures made
practical. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security,
pages 1733–1750, 2020.

[40] Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta,
Fritz Schmid, and Dominique Schröder. Verifiable timed
linkable ring signatures for scalable payments for mon-
ero. In Computer Security - ESORICS 2022 - 27th Eu-
ropean Symposium on Research in Computer Security,
volume 13555 of Lecture Notes in Computer Science,
pages 467–486. Springer, 2022.

[41] Itay Tsabary, Matan Yechieli, Alex Manuskin, and Ittay
Eyal. Mad-htlc: because htlc is crazy-cheap to attack.
In 2021 IEEE Symposium on Security and Privacy (SP),
pages 1230–1248. IEEE, 2021.

[42] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping
Chen, and Huaimin Wang. Blockchain challenges and
opportunities: A survey. International journal of web
and grid services, 14(4):352–375, 2018.

https://bitcoin.org/bitcoin.pdf

	Introduction
	Related work
	Our contribution

	Background
	Payment channels
	Brick channel
	Virtual channels

	Model
	System model and assumptions
	Threat models
	Protocol Goals

	Protocol Overview
	Thunderdome Design
	Thunderdome Open
	Thunderdome Update
	Thunderdome Close
	Optimistic situation
	Pessimistic situation

	Multi-hop Thunderdome

	Byzantine Security Analysis
	Game-theoretic Security Analysis
	Implementation and Evaluation
	Extensions

