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Abstract
Detecting phishing, spam, fake accounts, data scraping,

and other malicious activity in online social networks (OSNs)
is a problem that has been studied for well over a decade, with
a number of important results. Nearly all existing works on
abuse detection have as their goal producing the best possible
binary classifier; i.e., one that labels unseen examples as “be-
nign” or “malicious” with high precision and recall. However,
no prior published work considers what comes next: what
does the service actually do after it detects abuse?

In this paper, we argue that detection as described in pre-
vious work is not the goal of those who are fighting OSN
abuse. Rather, we believe the goal to be selecting actions
(e.g., ban the user, block the request, show a CAPTCHA,
or “collect more evidence”) that optimize a tradeoff between
harm caused by abuse and impact on benign users. With
this framing, we see that enlarging the set of possible actions
allows us to move the Pareto frontier in a way that is unattain-
able by simply tuning the threshold of a binary classifier.

To demonstrate the potential of our approach, we present
Predictive Response Optimization (PRO), a system based on
reinforcement learning that utilizes available contextual infor-
mation to predict future abuse and user-experience metrics
conditioned on each possible action, and select actions that
optimize a multi-dimensional tradeoff between abuse/harm
and impact on user experience.

We deployed versions of PRO targeted at stopping auto-
mated activity on Instagram and Facebook. In both cases
our experiments showed that PRO outperforms a baseline
classification system, reducing abuse volume by 59% and
4.5% (respectively) with no negative impact to users. We
also present several case studies that demonstrate how PRO
can quickly and automatically adapt to changes in business
constraints, system behavior, and/or adversarial tactics.

1 Introduction

Online Social Networks (OSNs) connect billions of people
around the world, allowing them to share content, engage

in discussions, learn about events and issues, find employ-
ment, buy and sell goods, and undertake any number of other
useful activities. However, the very utility and popularity of
OSNs attracts malicious actors who want to take advantage
of the OSN’s users for their own (usually monetary) gain.
As a result, spam [11], phishing [36], fake engagement [22],
abusive accounts [80], and data scraping [56] have become
important problems for both academia and the social networks
themselves.

The traditional approach to fighting OSN abuse has been
to build binary classifiers that distinguish “benign” content,
entities, or actions from “malicious” ones. The OSN then
runs these classifiers either synchronously or asynchronously
and blocks or removes the detected abuse. A great deal of
research has gone into designing better and better classifiers
(see Section 2.1 for a survey), but even the best known classi-
fier will make thousands to millions of mistakes when run on
every account or action in a large OSN, leading to degraded
experiences for the users who encounter these mistakes.

Most binary classifiers produce classifications by compar-
ing a numerical score against a threshold. For instance, scores
above the threshold will result in classifying a piece of con-
tent as “abusive.” Tuning the threshold allows the operator to
control the tradeoff between abuse and user experience in a
rudimentary way. The OSN can set a “budget” on the model’s
precision (e.g., choose the lowest threshold such that at least
X% of spam is classified correctly) or the false positive rate
(e.g., choose the lowest threshold such that at most Y % of
benign content is classified incorrectly). The modeling goal
then becomes improving the classifier’s recall within these
constraints. However, producing only classification results
is insufficient to prevent or mitigate abuse — eventually, the
OSN must take actions with real-world consequences.

Even in a simple setting such as spam detection, where
the obvious action is to simply remove the content, there are
many factors to consider when taking action:

• Classifiers are never 100% precise, so users may com-
plain that their benign content is being taken down.



• Some users may not be aware of the site’s content policy;
these users have the potential to be educated and thus
improve the quality of their content.

• Classifiers have some latency, so malicious users may
post abusive content faster than it can be taken down,
leading to more spam on the OSN.

In the binary-classification approach described above, there is
only one parameter we can adjust to balance these competing
considerations. It follows that if we want to improve user
experience without degrading our ability to remove abusive
content, our only avenue is to improve the model, which is a
difficult and time-consuming effort.

A first direction of improvement is to expand the set of
possible enforcement actions beyond the binary “hard block”
or “allow.” For instance, we can add a third, “soft” enforce-
ment action: an action that introduces some friction but does
not completely block a user. Such actions are less disruptive
to benign users while (possibly) being less effective at stop-
ping abuse. We can now segment our classification results
into three groups instead of two: the “worst” content gets
blocked as before, the “best” is let through, and the “suspi-
cious” is routed through the “soft” action. By adjusting the
relative sizes of the three groups, we gain an extra degree
of freedom to control the tradeoff between amount of abuse
blocked and negative impact to user experience.

As a real-world example, almost every website that has a lo-
gin page chooses to block some logins, let some through, and
send the rest through additional checks such as a CAPTCHA
or SMS code verification. CAPTCHA and SMS code verifica-
tion are examples of “soft” enforcement actions that lower the
cost of false positives, and thus allow the website to send “sus-
picious” users through some non-zero level of enforcement,
which reduces false negatives. However, a multi-class classi-
fication approach would still run into the problem of defining
“worst,” “best,” and “suspicious” in a way that is sufficiently
precise to generate objective and low-noise labels.

This additional complexity compels us to consider the
action-selection problem from an entirely new perspective:
that of adaptive control theory [6] and reinforcement learn-
ing [68], which are frameworks that focus on decision-making
with causal consequences. Reinforcement learning (RL) uses
observations from previous actions to choose actions that
optimize a reward (in our example, a quantity that captures
the amounts of abusive content posted and benign content
blocked) while also implementing a data-collection strategy
that yields adaptation to non-stationary conditions. Contin-
uous exploration is especially important in an adversarial
environment, as future abusive behavior will change in re-
sponse to our actions on past examples. The full technical
details of our formalization appear in Section 3.

In Section 4 we present a reinforcement-learning system for
fighting abuse on OSNs, which we call Predictive Response
Optimization (PRO). We describe the system in terms that

apply to any type of abuse, as long as it can be measured in
some way. The system revolves around models that predict
the cost and benefit of each action (the contextual multi-armed
bandit setting [46]), overlaid with a model predictive control
framework to adjust tradeoffs amongst various abuse and
user-experience metrics.

In Section 5 we describe our application of PRO to the
problem of reducing scraping activity in OSNs. We defined
metrics, implemented the system on Instagram and Facebook,
and collected data for two weeks on each. Our experiments
showed that in both cases PRO stops significantly more abuse
than a baseline system that determines actions by applying a
set of hand-coded rules to classifier outputs. Specifically, we
reduced abuse volume by 59% on Instagram and 4.5% on
fb, with no negative impact on “benign usage” metrics.1

In Section 5 we also detail five case studies illustrating
how PRO can quickly and automatically adapt to changes in
business considerations, system behavior, and/or adversarial
tactics. Specifically, our experiments show that:

• Adding a new user metric led to an 80% reduction in
SMS expenditures with no increase in abuse volume.

• After we saw signs of over-enforcement on Mobile Web,
adding a new user metric led to a 68% decrease in user
churn.

• Introduction of a new enforcement action reduced abuse
volume by 3.0% without any manual intervention.

• When a bug changed the behavior of a particular enforce-
ment action, the system adjusted automatically to stop
selecting the action.

• When adversaries began to evade a particular enforce-
ment action, the system adjusted automatically to select
that action less frequently.

In summary, our contributions are:

• We introduce the perspective that selection of enforce-
ment actions, rather than binary classification, is the true
goal of abuse-fighting systems in online social networks.

• We formalize action selection as a reinforcement learn-
ing problem that attempts to balance abuse volume
against cost of blocking benign users or content.

• We design Predictive Response Optimization (PRO), a
large-scale reinforcement-learning system for action se-
lection and the first application of RL to abuse reduction.

• We implement the PRO system on Instagram and Face-
book and observe that it significantly reduces scraping
activity with no negative impact to users.

• We describe a number of case studies that demonstrate
the ability of PRO to adapt to changing conditions with
minimal manual intervention.

1The difference of an order of magnitude between the two results is due
to the relative maturity of the experimental and control groups on the two
OSNs. For details see Section 5.3.



2 Background and related work

Abuse on social-networking platforms can take various forms.
Attackers can create fake accounts (or “sybils”) [21, 27, 74,
79,81] or compromise existing accounts, which they can then
use to spread phishing links [24, 28], post fraudulent reviews
and advertisements [3], disseminate fake news [23], or make
fraudulent payments [15]. Such attacks motivate research on
detecting and removing abusive content on social networks.

In other types of attacks, attackers collect user data from
social networks to use later for malicious purposes. Previous
studies demonstrate how attackers can scrape social networks
to collect user information that is then used for targeted spam
and phishing [7, 14, 36]. These attacks motivate research on
detecting and blocking automated activity (i.e., “bots”) on
social networks [59].

2.1 Related work in abuse detection
Most prior works focus on how to detect abusive content
and/or users by leveraging machine learning techniques that
differentiate abusive from non-abusive entities. Such research
often aims to improve the precision or recall of various su-
pervised ML algorithms such as k-nearest neighbors, ran-
dom forests, naive Bayes, decision trees, and neural net-
works [3, 11, 15, 23, 51, 67]. Given labeled data, these al-
gorithms can use network information, behavioral patterns,
or features generated from the content itself to detect adver-
saries [38] and even to continuously detect adversaries who
try to elude the model [20]. One challenge in using super-
vised methods is the reliance upon labeled data, which can
limit the scalability of these approaches [38]. This limitation,
combined with the fact that abusive entities such as spammers
also tend to act collusively, has led to the development of
unsupervised methods, including graph-based and clustering
methods [12,16,38,47]. Whether supervised or unsupervised,
these approaches focus on detecting abusive entities but ig-
nore the negative impact of incorrect detection. Such negative
impact arises only after an enforcement action is applied to
the detected entity.

2.2 Enforcement methods
After identifying abusive entities, anti-abuse systems apply
enforcement actions to induce the potentially abusive actor
to stop or change their behavior. In the previously discussed
abuse-detection systems, generally a single action is applied
for all detected abusive entities (e.g., deleting the detected
fake profile or abusive content [67]). In some cases, the
system uses the detection confidence to choose between a
“mild” enforcement (e.g., removing fake engagement) or a
“harsh” enforcement (e.g., taking down accounts) [47].

Some OSNs, such as YouTube [82] and Facebook [53],
use a “strike” system to carry out an escalating series of

enforcement actions to prevent repeat offenders. On both
YouTube and Facebook, the process begins with a warning.
On YouTube, each strike temporarily restricts content cre-
ation, and after 3 strikes in a 90-day period the offending
channel is removed [82]. On Facebook, strikes 2–6 yield tem-
porary feature-specific restrictions, while additional strikes
trigger content-creation restrictions of increasing length [53].
Currently there is no literature on abuse-minimization sys-
tems that addresses the problem of choosing between multiple
enforcement methods based on a set of constraints; our work
fills this gap.

2.3 CAPTCHAs, challenges, and verification

A widely used technique for combatting abuse that leverages
automation (such as fake engagement or data scraping) is
to present “challenges” that are difficult for bots to solve
while remaining relatively accessible for humans. Von Ahn et
al. [73] introduced several practical proposals for designing
“CAPTCHA” schemes for this purpose: problems that most
humans can solve easily but computer programs cannot. A re-
cent survey [30] identified 10 types: text-based, image-based,
audio-based, video-based, math-based, slider-based, game-
based, behavior-based, sensor-based, and CAPTCHAs for
liveness detection. CAPTCHAs have been used to ensure the
safety of network applications [8, 50], including chat rooms,
email registration, online auctions, file sharing, and polls [61].

Many systems also commonly use multi-factor authenti-
cation (MFA) to verify that an entity (e.g., a web session or
social-media account) is being controlled by an authorized
owner and not a malicious actor. Ometov et al. provided a sur-
vey of MFA methods [57]. Some common strategies include
password re-verification, hardware tokens, voice biometrics,
facial recognition, and phone or email verification. Both
CAPTCHA and MFA actions are included as enforcement
options within our system.

2.4 Optimization and control

One of our core contributions is to apply optimization and
control methods to select the “best” enforcement action. Such
methods have been leveraged in many application domains,
but to date this list does not include OSN abuse.

Model Predictive Control (MPC) [5, 33] is a control ap-
proach that leverages a system model to predict or simulate
how different inputs to the system will affect the system’s
output up to a certain time in the future. Based on these pre-
dictions, the operator can choose the input that leads to most
desirable output. They can then repeat the control process
with new observations [33, 34, 63]. MPC is robust, sample-
efficient, and able to handle enforcing constraints, but it can
be difficult to apply to complex systems (e.g., constructing a
system model that also models uncertainty) [5].



Reinforcement learning (RL) [68] is an alternative con-
trol approach that can predict outputs of complex systems
without a pre-defined model. Technically, RL is a class of
algorithms that maximize specified objectives by learning
from prior actions. RL algorithms include “model-free” ap-
proaches such as Q-learning, which learn the “quality” of a
particular action executed while the system is in a particular
state [39, 55, 75]. “Model-based” approaches, on the other
hand, learn a model for the system [63, 68] and are related to
“system identification” from the control field [49, 63]. RL has
been used in applications such as board games (Go, chess),
arcade games (PAC-MAN) [37, 65], recommender systems
[19, 84], transport scheduling [10, 18, 45, 66], finance [1, 43],
and autonomous driving [29, 35, 39, 42].

Prior research has combined MPC with RL to add con-
straints and improve safety of the RL system [5, 83]. Our
work follows this approach, leveraging RL for learning the
system and taking actions at an entity level and leveraging
MPC to apply global constraints.

In the field of security, RL-based solutions have been pro-
posed to defend against cyber-attacks on various IoT sys-
tems [72]. RL has also been used to improve security in
cognitive radio networks [48] and to detect botnets [4]. MPC
has also been applied within a security context to detect cyber-
attacks in microgrids [31]. Other work focuses on detecting
attacks within networked systems controlled with MPC [9].
However, to our knowledge, there is no prior work in any secu-
rity context that explores the application of machine learning
to optimize action selection from a list of possible enforce-
ment actions.

3 Abuse minimization as a constrained opti-
mization problem

In this section we reframe the goal of anti-abuse systems in on-
line social networks: rather than existing to classify content or
behavior, such systems exist to optimize the tradeoff between
abuse reduction (e.g., removing spam) and impact on user
experience (e.g., too much benign content removed). Specif-
ically, our position is that anti-abuse systems are solving
the constrained optimization problem of minimizing abuse
volume within a “budget” of operational costs. We con-
jecture that this reframing will enable us to devise a system
that blocks more abuse than a classification system, without
adversely impacting user experience.

3.1 Abuse minimization is a tradeoff problem

Anti-abuse systems seek to achieve the dual aims of both
reducing abuse prevalence and minimizing costs that arise as
a result of practical considerations. Some of these quantifiable
business considerations are:

• Size of the operational team that processes appeals of
incorrect content deletions or account disables.

• Users choosing to leave the platform because of enforce-
ment actions against their content.

• Negative impact to usability/engagement metrics on the
OSN due to increased user friction (e.g., challenges and
verifications).

• Computer and network hardware needed to run the anti-
abuse system itself.

Conceptually, the abuse-cost tradeoff can be visualized as
a Pareto frontier [76] if we simplify and reduce operational
cost considerations to a single “cost” dimension (Figure 1).
As illustrated, abuse can be fully eradicated by any method
if the cost axis is not constrained — after all, if we block all
users from using the platform, there will be no abuse left!
However, for any anti-abuse method to work in a real-world
setting, the system must be tuned to operate under some cost
constraints (“budget” in Figure 1). The abuse/cost tradeoff
space is also often multi-dimensional; i.e., multiple business-
metric constraints can exist simultaneously.

Figure 1: Two conceptual anti-abuse methods
tuned under constraints.

3.2 Enforcement actions really matter
On its surface, the “what to do” problem seems fairly straight-
forward to solve: if an entity is abusive, remove it from the
OSN! However, if we take content moderation as an example
of a typical use case, we see that a policy of “delete all content
classified as abusive” quickly runs into issues such as those
mentioned in the Introduction.

To address these issues while remaining effective at stop-
ping abuse, anti-abuse systems typically employ multiple
enforcement actions that are designed to hinder or discour-
age abusive behavior to varying degrees. At the same time,
these actions affect benign (i.e., non-violating) users to dif-
ferent extents, ranging from mild annoyance to total loss of
access to their account and the value associated with it. As



an example, in the case of content moderation, a possible
set of enforcement actions could include one or more of the
following (ranging from least to most intrusive):

• No action,
• Incrementing a “strike counter” for the author [82],
• Showing a warning notification to the author,
• Down-ranking/reducing visibility of the content,
• Asking the author to perform an interactive challenge

(e.g., CAPTCHA, MFA) before posting content [64, 73],
• Deleting the content,
• Temporarily banning the author from sharing content,
• Temporarily banning the author from the service,
• Permanently revoking the author’s access to the service.

In “traditional” systems, action selection is implemented
using a set of hand-written logical rules that incorporate infor-
mation such as classifier confidence, past enforcement/strike
counts, and other features related to the entity. The focus of
prior research on the classification problem, while leaving
enforcement selection to rule- or strike-based logic, results in
three major pitfalls when applied in practical settings:

• Abuse prevalence could remain high due to ineffec-
tive enforcement; e.g., as a result of poor optimization
against practical constraints.

• Fixed action-selection rule logic does not adapt to chang-
ing adversarial behavior; e.g., learning to bypass certain
enforcement actions.

• Introducing new actions requires writing new routing
rules and could cause constraint metrics to shift in the
wrong direction.

Instead of relying on hand-written rules, we propose formal-
izing the enforcement-selection problem as a constrained opti-
mization problem and then develop a reinforcement-learning
algorithm to solve it.

3.3 Formalizing the optimization problem
Anti-abuse systems evaluate and execute actions over a po-
tentially very large set E of entities (OSN accounts, pieces of
content, IP addresses, and so on). If the system takes action
on entity e ∈ E at time t0, we can measure the impact of this
action on entity e over the subsequent time period τ = [t0, t1]
using a set of “abuse metrics” Abuse j ( j = 1, . . . ,NA) and
“cost metrics” Cost j ( j = 1, . . . ,NC).

To make our discussion more concrete, we will use the
running example of OSN accounts posting spam, with abuse
metric Abuse∗ being “number of spam posts during the time
period τ” and cost metric Cost∗ being “number of non-spam
posts blocked during the time period τ.”

Let A denote the (finite) set of all possible actions. We
define the vector of all “next actions” for all entities as

a ∈ A |E | =
{
(ae)e∈E : ae ∈ A

}
. (1)

The set A contains the special action A0 denoting “no action,”
plus other actions such as those described in Section 3.2. In
our spam example we will let A be a set of three actions:
A0 = “no action”; A1 = “show a CAPTCHA”; A2 = “disable
the account.”

At optimization time t0, our goal is to determine the action
vector a that minimizes the total abuse over the period τ

min
a ∑

e∈E

NA

∑
j=1

Abuse j(e | a) (2)

while constraining the cost over the same period

∑
e∈E

Cost j(e | a)≤ B j, j = 1, . . . ,NC (3)

where B j ≥ 0 is a global “budget” for the jth metric. In
our concrete example, we want to minimize total spam posts
while keeping the total number of blocked non-spam posts
below a certain fixed number B∗ determined by the business.

We assume that all abuse and cost metrics are normalized
in such a way that

Abuse j(e | a0) =Cost j(e | a0) = 0, (4)

where the baseline action vector a0 = (A0, . . . ,A0) corre-
sponds to applying “no action” to all entities, effectively
“turning off” the anti-abuse system. Furthermore, we assume
that the metrics are signed such that smaller values are “bet-
ter” (i.e., we want to minimize both abuse and cost). This
normalization ensures that a0 always satisfies the constraints,
making the optimization problem feasible (i.e., a solution
always exists).

Let us consider the effect of this normalization on our spam
example. An account espam that posts only spam will (presum-
ably) have Abuse∗(espam | a)≤ 0 for all a, since (presumably)
any nontrivial action will reduce the amount of spam posted by
that account. The account will also have Cost∗(espam | a) = 0
for all a since there are no non-spam posts to block. On the
other hand, an account ebenign that posts no spam will have
Abuse∗(ebenign | a) = 0 for all a and Cost∗(ebenign | a) ≥ 0
for all a since (presumably) any nontrivial action will only
decrease the number of non-spam posts; i.e., contribute a
non-negative number of blocked posts.2

In practice, at optimization time we don’t have access to
any of the abuse and cost metrics since they refer to a future
time period and will only be available after a time delay. More-
over, the constrained optimization problem (2)–(3) couples
together all the entities, which makes it unfeasible to solve at
high frequency. Therefore, we also consider an unconstrained

2Note that “blocked posts” in this example includes not only non-spam
posts blocked directly but also those “prevented” relative to the no-action
baseline. For example, if the action is to disable the account then the Cost∗

metric attempts to estimate how many non-spam posts the user “would have
made” had they not been blocked.



relaxation consisting of maximizing the following “reward”
function with respect to a:

r(x,a) =−∑
e∈E

re(x,a), re(x,a) =
N

∑
j=1

w j ·m j(e | x,a) (5)

where we have combined together all the metric functions

(m1, . . . ,mN) = (Abuse1, . . . ,AbuseNA ,Cost1, . . . ,CostNC),

(setting N = NA +NC) and introduced multipliers w j ≥ 0 that
determine the relative weighting of each Abuse and Cost met-
ric. The w j also implicitly convert all metrics into a common
unit; for example an abuse metric might be in units of spam
posts while a cost metric might be in units of benign users
blocked. The quantity

x = (xe ∈ X )e∈E (6)

represents the state information (features) available at opti-
mization time for all entities, where X is the “feature space”
used to describe the state for a particular entity. This in-
formation allows us to leverage predictive models obtained
via machine learning to approximate a solution to the opti-
mization problem. Applying the notation in (5) to our spam
example gives us the per-entity reward function

re(x,a) = Abuse∗(e | x,a)+w ·Cost∗(e | x,a). (7)

Here we can interpret w as the “relative weight” of the two
harms being traded off: blocking one non-spam post is equiv-
alent to allowing w spam posts.

In general, maximizing (5) is not equivalent to solving (2)–
(3), though in some cases there exist Lagrange multipliers w j
that make the two problems exactly equivalent. Nevertheless,
the multipliers w j can be adjusted periodically to ensure that
the optimal solution of (5) tracks the optimal solution of (2)–
(3) as closely as possible. We show in the next section that the
unconstrained relaxation (5), combined with suitable model-
ing assumptions, enables high-frequency decision making by
decoupling the optimization across entities.

4 Solving the optimization problem

In this section we describe a strategy to approximate solutions
to the optimization problem (2)-(3). Our strategy combines el-
ements of reinforcement learning (RL) with model predictive
control (MPC) and consists of two components:

1. Optimizing actions a at entity level,
2. Optimizing multipliers w to enforce global constraints.

Figure 2 provides an overview of the system components and
the design choices for each component.

We will show that entity-level action optimization can be
described as a contextual multi-armed bandit problem. By

introducing suitable modeling assumptions, we are able to de-
cide actions asynchronously for each entity, at arbitrary time
intervals. Similarly, our approach to finding optimal multi-
pliers can be seen as a form of stochastic model predictive
control (MPC) aimed at enforcing global constraints. Other
works combining RL with MPC include [5, 83].

4.1 Optimizing action selection

In reinforcement learning (RL) terminology, the optimiza-
tion system (a.k.a. agent) acts within an environment. The
agent takes an action chosen from a set of possible actions de-
pending on the agent’s state and then receives an application-
specific reward. The choice of action is based on the agent’s
policy, which in addition to selecting actions to maximize the
expected reward (“exploit”), also strives to gain information
(“explore”) to improve the policy itself [68].

Maximization of (5) can be readily framed as an RL prob-
lem by defining the state x as in (6) and the set of actions A
as in (1). Equation (5) defines the reward as a weighted sum
of the values contributed by each entity towards each metric
(in our example, the amount of spam content and number of
erroneous deletions). Each of these metrics is a cumulative
quantity aggregating data with timestamps between the time
t0 when an action is chosen and a future time t1. We call
the interval τ = [t0, t1] the time horizon. The environment is
modeled via the state and the metric functions.

After applying an action, an entity’s behavior may change,
altering the received reward (i.e., metric values) over the time
horizon τ. In our example, if we temporarily ban an account
e from sharing content, then Abuse1(e) counting number of
spam posts may decrease but Cost1(e) counting number of
non-spam posts blocked may increase (relative to their values
if no action were taken).

In more general RL problems, the reward is a func-
tion of transitioning from state x to state x′ via action a:
r(x,a,x′) [68]; however in Equation (5) we simply have
r(x,a,x′) = r(x,a) (i.e., the contextual multi-armed bandit
setting [46]). In other words, instead of modeling state tran-
sitions from multiple agent actions as a Markov decision
process [62], we aim to predict the incremental reward from
each individual action, thus simplifying the RL problem.

The goal of the RL problem is to maximize the cumulative
reward over multiple action-selection events (also known as
the return). Without loss of generality, action selection can be
viewed as sampling a from a probability distribution Π(A | x)
conditioned on the state x; here A is a random variable taking
values in A |E | and we call the distribution Π the policy [68].
(Note that this framing includes the case when actions are
chosen deterministically.)

Our approach to maximizing cumulative reward is to first
build a predictive model π(R | x,a) describing the probability
distribution for the next reward value (5) modeled as a random
variable R conditioned on a given pair of states and actions



Figure 2: Predictive Response Optimization system design

(x,a) ∈ X ×A |E |. We then implicitly define our policy Π by
its sampling mechanism:

a←Π(A | x) := argmax
z∈A |E |

(
r← π(R | x,z)

)
(8)

In our example of spam posts, we realize the policy in
(8) by building a predictive model for the reward function
(7), predicting the reward for each component of the action
vector z ∈ A |E |, and setting a to be the action vector z with
the greatest reward.

Our sampling approach is derived from Thompson sam-
pling [2,70]; in particular, the variability inherent in the model
π allows us to balance exploration and exploitation (a classic
challenge in reinforcement learning) by tuning model param-
eters [68]. Exploration is necessary to improve the model’s
understanding of how different actions impact each metric
in various regions of the feature space. It is particularly im-
portant in adversarial environments, as malicious actors may
learn to work around certain enforcement actions, rendering
a previously heavily exploited enforcement action ineffective
(see Section 5.6 for an example). Exploration is also useful
as a mechanism to onboard newly developed enforcement
actions to the system (see Section 5.5 for an example).

4.2 Reward models
In general, taking action on one entity may affect other en-
tities’ metrics. For instance, when banning a user account
for spamming, other users will not be exposed to the spam
anymore. However, modeling all possible interactions is pro-
hibitively expensive. Therefore, in the model described in
this section we neglect the impact of actions taken on a given
entity to metrics for other entities. This decoupling allows us
to determine actions in real time whenever a decision for a
particular entity is needed. Formally, we set

π(R | x,a) = ∏
e∈E

π̂(Re | xe,ae), (9)

where Re is a random variable modeling the portion of the
reward contributed by entity e, the contextual features xe

summarize all information about entity e that is deemed useful
to predict future metric values, and π̂ is a (global) model
that predicts rewards at the entity level given the contextual
features xe and the action ae applied to e. Examples of features
relevant for abuse minimization at user-account level include:

• Account properties such as age, classifier scores [80],
number of sessions, or frequency of requests;

• Time series of metric values for the user;
• History of prior actions taken on the account (e.g., a

vector of whether each action was taken the day before,
2 days before, and so on);

• Classifier scores for the account’s content (e.g., proba-
bility of spam);

• IP statistics such as number of requests in a time window
or number of accounts using the IP;

• Request features such as requested URL or browser type.

Let T be the training window; i.e., a set of timestamps in
the past for which we have entity-level historical data. For
each t ∈ T , let xt

e be the value of the feature vector (i.e., state)
xe at time t, let at

e be the action taken on entity e at time t,
and let mt

j be the value of the metric m j starting at time t (i.e.,
over the period [t, t + t1− t0]). For each metric m j and action
Ak ∈ A , we construct datasets

D jk =
{(

xt
e,m

t
j(e | xt

e,a
t
e)
)
∀e ∈ E , t ∈ T : at

e = Ak
}

that document historical (state, metric-value) pairs for each
action and metric. In our spam example, D1k is the dataset
consisting of all (feature-vector, Abuse∗-value) pairs for the
entities e that received action Ak at some time during the train-
ing window, while D2k is the corresponding set of (feature-
vector, Cost∗-value) pairs.

In our implementation we sample t← T in such a way that
the amount of data decreases exponentially as the timestamp
t ∈ T goes back in time, biasing the dataset towards recent
information while still keeping a fraction of older data. When
first deploying the system (the “cold-start problem”), these



datasets can be initialized with data collected from a base-
line rule-based system. Subsequently, they consist of data
collected after applying actions chosen by the RL system.

After constructing the datasets, we model the metric values
mt

j as noisy Gaussian samples

mt
j(e | xt

e,a
t
e)←N (ν j(xt

e,a
t
e),ε)

where ν j ( j = 1, . . . ,N) are realizations of independent Gaus-
sian Processes (see [78]) with mean zero and kernel (covari-
ance function)

K j((x1,a1),(x2,a2)) = (φ j(x1)
T

φ j(x2)) ·δ(a1,a2). (10)

Here the maps φ j : X → RD represent “feature transforma-
tions”: functions that process the raw input features, extract
interactions, and output D-dimensional numerical vectors. For
example, φ j might include taking log of account age to reduce
skew, applying one-hot encoding to categorical features [32],
or combining action history data to create a summary feature
“number of times blocked in the last 14 days.” The function
δ(x,y) is 1 if x = y and 0 otherwise.

Given the modeling assumptions above, we can use Gaus-
sian Process Regression [77] to obtain predictive distributions
ν j for all metrics m j. In view of our assumption that the
metrics appearing in Equation (5) are independent, we obtain
reward models of the form

π̂(Re | xe,ae) = N

(
N

∑
j=1

w j ·µ j(xe,ae),
N

∑
j=1

w2
j ·σ2

j(xe,ae)

)
.

(11)
Moreover, in view of the kernel structure, we have

µ j(xe,ae) = µ jk(xe), σ
2
j(xe,ae) = σ

2
jk(xe) (12)

where k is the index in 0, . . . , |A |−1 such that ae = Ak ∈ A ,
and the functions µ jk and σ2

jk are defined as

µ jk(x) = φ j(x)T
θ jk, σ

2
jk(x) = ε ·

(
φ j(x)T

Σ jkφ j(x)
)
. (13)

The parameters θ jk and Σ jk can be learned by pooling histori-
cal data across all entities to train N · |A | independent models
(one for each metric m j and action type k). Specifically, we
can compute

Σ jk =
(
XT

jkX jk +λ jk · ID
)−1 ∈ RD×D, (14)

θ jk = Σ jk ·XT
jk ·Yjk ∈ RD, (15)

where X jk is a
∣∣D jk

∣∣×D matrix with rows φ j(xt
e) for all (e, t)

in the dataset D jk, Yjk is a
∣∣D jk

∣∣-dimensional column vector
containing the corresponding metric values mt

j, and ID is the
D×D identity matrix. We set Ridge regularization parameters
λ jk by optimizing generalized cross-validation scores [26],
while the noise variance ε is a global parameter that can be
used to control the rate of exploration. (In our experiments

we set ε = 0.05.) In our spam example with two metrics and
three actions, this process gives us 6 predictive models, each
described by D2 +D parameters Σ jk, θ jk.

Computational complexity. For the training step, since the
parameter computations (14)–(15) are linear, they can still be
feasible for datasets D jk with millions of entries and feature
dimensionality D in the hundreds. In particular, the limiting
step is the matrix multiplication and inversion of (14), which
is O

(
D2(D+

∣∣D jk
∣∣)) in our implementation.

For the inference step, the simplicity of the models de-
scribed in (11)–(13) (where the limiting step is O(D2)) en-
ables us to process a very large volume of requests at inference
time, interpret model weights, and understand the directional
impact of features on predictions and decisions. However, we
find in practice that we must frequently update the model be-
cause the highly non-stationary nature of both the adversarial
and business landscapes results in constant shifts in both cost
budgets and system effectiveness. (See Sections 5.4 and 5.6
for examples.)

4.3 Enforcing business constraints
The multipliers w j (Equation (5)) control the tradeoffs
amongst the various abuse and cost metrics. While reinforce-
ment-learning approaches often leverage a single model that
predicts a “quality estimate” of the state resulting from a par-
ticular action applied to a given state [55], by instead decom-
posing the reward into a weighted combination of individual
metric models we can adjust these metric tradeoff weights
“on the fly” without model retraining. This property allows
us to make quick adjustments if we observe the system being
“too harsh” (i.e., cost constraints are violated) or “too lenient”
(i.e., we are not using our entire cost budget). We adjust the
multipliers automatically using a controller designed to max-
imize the estimated reward aggregated over all entities and
over a future time period, while attempting to satisfy the bud-
get constraints for the system (Section 3.1). Our approach can
be interpreted as an instance of stochastic Model Predictive
Control (MPC) [52] with multiple control variables.

In MPC, a model of the system or “plant” to be controlled
(in our case the RL “environment”) may be specified via state
space or a transfer function, or learned via means such as
system identification. Then, using this plant model, MPC
will predict the plant’s outputs for various controller outputs.
These predictions can be at multiple time horizons, e.g., +1
second, +1 day, etc. MPC will select the controller outputs
that are predicted to yield values closest to the plant’s de-
sired output. Additional constraints can also be applied, e.g.,
limiting the plant outputs to a certain range.

The MPC framework is well suited to our goal of mini-
mizing abuse while enforcing the business constraints for our
system. As described previously, we continually learn and up-
date our reward models. Using these models, we can leverage
the prior day’s data to predict the overall action and metric



distributions for a variety of metric tradeoff weights, i.e., the
“simulation” in MPC. This process is a form of multi-variable
MPC where the control horizon is one step ahead. Then, if
we set the metric tradeoff weights w j to be the parameters
controlled by MPC, the controller can pick these parameters
such that the constraints are met (in expectation). Note that
using the prior day’s data for simulation assumes the distribu-
tion of features and metrics does not shift substantially from
one day to the next.

Consider again the optimization problem described in Equa-
tions (2)–(3), now assuming that the action vector a is ob-
tained by sampling from the policy Π defined in (8). Since
Π depends on the multipliers w j via (9) and (11), we can
now consider optimizing the objective (in expectation) with
respect to w:

min
w ∑

e∈E

NA

∑
j=1

E [w j ·m j(e | a)] , subject to

∑
e∈E

E [w j ·m j(e | a)]≤ Budget j, j = NA +1, . . . ,N.

We are now left with optimizing N weights instead of #E
actions, which is a massive reduction in dimensionality. How-
ever, evaluating the objective and constraints by summing
over all the entities is still very costly. To further reduce the
computational cost, we can use a smaller set S of entities sam-
pled uniformly at random from all entities processed by the
optimization system in the previous period (e.g., the previous
day) and use the mean reward models learned previously to
estimate the expectations, leading to the optimization problem

min
w ∑

e∈S

NA

∑
j=1

w j ·µ j(xe,ae), subject to (16)

∑
e∈S

w j ·µ j(xe,ae)≤ b j, j = NA +1, . . . ,N, (17)

where b j = s ·Budget j is a rescaled budged where the scaling
factor s can be used to account for the relative size of the
sample set S compared to the entire set E , or to incorporate
forecasted metric increases from one period to the next (e.g.
due to a planned product change). To solve this optimization
problem we use a grid search centered around the current
metric tradeoff weights w to generate candidate weight sets.
We then set the new weights to be the candidate weight set
that minimizes the abuse metrics while remaining within the
budget constraints set on the cost metrics.

5 The PRO system in practice

The description of Predictive Response Optimization in Sec-
tion 4 is generic; i.e., it can be applied to any OSN abuse
problem using any set of abuse and cost metrics. In this sec-
tion we turn our theory into reality, showing how to adapt the
system to detect and block bots scraping an OSN.

We worked with product and engineering teams to imple-
ment the PRO system on Instagram and Facebook, both of
which have more than one billion monthly active users. In-
stagram is a “directed” social network where people follow
creators and engage with their content, while Facebook is an
“undirected” social network where users connect and engage
with people they know in real life.

On each OSN we implemented the system, collected data,
trained a PRO model, and conducted online controlled ex-
periments [41] to compare PRO’s performance with that of
a “rule-based” baseline. Due to differences in the ways users
interact with the platforms as well as the state of each OSN’s
infrastructure, the exact baseline rules are specific to each
OSN. Below we describe our experimental setup, measure
how much more abuse PRO can stop relative to our baseline
system, and document observations about how PRO adapts to
changing business, system, and adversarial conditions.

5.1 Implementation Details

Metrics. In order to implement PRO we first need to define
the “Abuse” and “Cost” metrics introduced in Section 3. We
selected the following metrics for our experiment:

• weighted scraping requests: Count of logged HTTP
requests identified as scraping using a scaled labeling
system, with each request weighted by the number of
units of user-identifiable information returned to the user.
The labeling system consists of a set of rules gener-
ated by security analysts and expanded by automation.
For example, one rule to detect a particular scraping at-
tack is user-agent="python-requests/<version>"
and endpoint="<endpoint_name>". We use this met-
ric to quantify abuse.

• days active: Count of calendar days during the measure-
ment period during which an account is observed to be
active. This metric correlates with user engagement and
is used to quantify cost: if PRO is over-enforcing then
days active will decrease. (Due to our normalization and
sign conventions (4), the actual cost metric in our model
will be “loss of days active” relative to the no-action
baseline; i.e., days active(a0)−days active(a).)

• feedback events: Count of calendar days during the mea-
surement period during which the account files a bug
report. This metric correlates with incorrect actions and
is used to quantify cost: if PRO takes too many actions
on benign users, some users will perceive the enforce-
ment to be a bug and feedback events will increase.

Note that each of these metrics can be calculated on a per-user
basis to provide training data for the RL models. They can
also be aggregated across multiple users for use in the MPC
controller.
Actions. At the time of our experiments, the following actions
were available on both OSNs:



• Temporarily disable the account.
• Send the account through a compromise recovery flow.
• Invalidate all sessions, forcing the account to re-

authenticate.
• Invalidate all sessions, plus limit the account to a sin-

gle active session (i.e., each new login invalidates the
existing session).

• Invalidate only the suspected automated session.
• No action.

In addition, the following actions were also available on In-
stagram:

• Show a warning dialog that the user has to acknowledge
before they can make further requests.

• “Challenge” the account by sending a One-Time Pass-
code (OTP) via SMS to the account’s phone number.

• Show a CAPTCHA.

Each of these actions (other than “disable” and “no ac-
tion”) forces the user to perform some form of authentication
to regain use of their account. Our hypothesis is that dif-
ferent actions will have different levels of effectiveness on
abusive accounts (some may go away while others may pass
the challenges and continue scraping) and different impacts
for benign users (some may pass the challenges and continue
as before, while others may get frustrated and stop using the
OSN entirely). The PRO system’s goal is to optimize response
selection based on the features of the account in question.
Model training. When the system starts running, the RL
models have no data. However, because we have a baseline
rule-based system, we can initialize the RL model training
dataset using features and metric values after the rule-based
system takes action on the entities. Once the RL system starts
taking actions, it logs training data based on its own actions
and can be retrained daily.

We started training daily models 2–4 weeks before the
experiments so that the RL system was in a steady state by the
time the experimental results were collected. On Instagram,
our training data sets consisted of 8 million rows (accounts)
and 201 columns (features). On Facebook, our training data
sets consisted of 8 million rows and 15 columns. On average,
model training took 3.4 hours per metric on a 26-core x86
CPU with 64 GB RAM.

To assess accuracy of the model predictions, we measure
the RL models’ mean squared error (MSE) against ground-
truth data. To normalize the MSE (i.e., squared ℓ2-norm of
residuals) we divide it by the squared ℓ2-norm of the ground-
truth values. On Instagram the normalized errors for weighted
scraping requests, days active, and feedback events are 0.51,
0.24, and 1.13, respectively, while on Facebook the respective
normalized errors are 0.51, 0.33, and 0.99. These results
show that our models for weighted scraping requests and
days active are good predictors. The relatively high error on

Algorithm 1 Response selection logic for Instagram

if max({automation classifier scores})≥ s1 then
disable account

else no action
end if

feedback events is due to the high sparsity of the data: we
see in Tables 1 and 2 that fewer than three users out of every
thousand file a bug report.

5.2 Experimental setup

Experiment population. Both Instagram and Facebook
were running a number of automation-detection classifiers
C1, . . . ,CK prior to the deployment of PRO, as well as classi-
fiers for producing a general account-level “abuse score” [80],
which is used in the rule-based decision logic for Facebook.
Each classifier outputs a real-number score si ∈ [0,1], and
for each classifier we computed the threshold ti giving the
classifier 90% precision according to human-labeled ground-
truth data. On each OSN we then took a random sample of
accounts for which any classifier score si was greater than
ti and assigned each of these accounts with probability 0.5
to either a Control group or a Test group. Accounts in the
Control group received an action determined by a rule-based
system (described below), while accounts in the Test group
received an action determined by PRO.

For Instagram, the experiment ran from Sep 25 to Oct 8,
2023 (14 days), and the metrics from accounts assigned to
each group were cumulatively aggregated over the entire ex-
periment period and compared. 546,289 unique accounts were
selected for the Control group and 545,949 unique accounts
were selected for the Test group.

For Facebook, the experiment ran from Aug 7 to Oct 3,
2023 (58 days), and the metrics were cumulatively aggregated
over the final 14 days (Sep 20 to Oct 3, 2023) and compared.
495,083 unique accounts were selected for the Control group,
and 494,724 unique accounts were selected for the Test group.

At the time of the experiments, both OSNs used manually
designed, rule-based action-selection algorithms. Rule-based
algorithms are state-of-the-art, used by various OSNs (Sec-
tion 2.2), and a multi-class classification baseline is not fea-
sible due to the inability to obtain ground truth for which
actions are optimal (Section 1). Algorithm 1 describes a rep-
resentative example of the rules on Instagram for this abuse
scenario, while Algorithm 2 does the same for Facebook. The
algorithms incorporate the outputs of the automation classi-
fiers C1, . . . ,CK described above; in particular, we assume that
these classifiers all output scores in [0,1], with scores closer
to 1 indicating higher likelihood of automation. Algorithm 2
also assumes we have an “account abuse” classifier such as
that described in [80].



Algorithm 2 Response selection logic for Facebook

if max({automation classifier scores})≥ s1 then
if account abuse score ≥ s2 or

last compromise recovery was ≤ N1 days ago or
account was registered ≤ N2 days ago then

disable account
else send account through compromise recovery flow
end if

else no action
end if

We note that while the automation classifiers used in the
experiment are retrained throughout the experiment time pe-
riods, these classifiers are shared between control and test
groups and thus affect both the baseline and PRO equally,
enabling us to isolate the difference in performance between
rule-based and PRO action selection in the experiment.

5.3 Experimental results
Experimental results for Instagram and Facebook appear in
Table 1 and Table 2, respectively. Metric values are summed
across the last 14 days of each experiment and averaged per
account. We determined statistical significance using a two-
sample t-test. Bold p-values indicate statistically significant
results (p≤ 0.05).

The experimental results show that our method can signif-
icantly reduce overall Abuse metrics (see Equation (2)). In
particular, on Instagram, PRO reduced weighted scraping
requests by 59% while causing no degradation in the two
Cost metrics, while on Facebook, PRO reduced weighted
scraping requests by 4.5% with no statistically significant
degradation in Cost metrics.

The difference of an order of magnitude between the two
experimental outcomes is a result of the system’s development
timeline. When we first began developing PRO on Instagram,
the heuristic rules on that OSN were fairly rudimentary, as
evidenced by Algorithm 1. Rather than improve the rules,
we focused our efforts on implementing and optimizing PRO
and were able to realize the observed massive reduction in
scraping relative to the prior state. During this period, the
rules on Facebook increased in sophistication, and when we
turned our attention to the second OSN the rules were in the
state exemplified by Algorithm 2. Furthermore, the PRO sys-
tem implemented for Facebook is a simple port of the system
developed and optimized for Instagram; we expect that we
could realize further gains with commensurate optimization.
Thus the large difference in impact between the two OSNs
results from (a) a more sophisticated baseline algorithm on
Facebook and (b) less effort invested in optimizing PRO for
Facebook.3

3The fact that error metrics for model predictions are comparable on the
two OSNs suggests that the difference does not result from the Instagram

Metric Control Test Delta p-value

weighted scraping 16,700 6,830 −59.2% 0.00
requests

days active 2.94 2.98 +1.4% 6.3×10−36

feedback events 2.50×10−3 2.80×10−3 +12.0% 0.089

Table 1: Experimental results for Instagram. Reported num-
bers are per-account averages over a 14-day period.

Metric Control Test Delta p-value

weighted scraping 3,540 3,380 −4.51% 0.0395
requests

days active 3.26 3.25 −0.430% 0.0777
feedback events 1.20×10−3 9.61×10−4 −20.2% 0.163

Table 2: Experimental results for Facebook. Reported num-
bers are per-account averages over a 14-day period.

5.4 Incorporating new business considerations
Another key feature of PRO is the ease of re-optimizing the
system to incorporate new business considerations (cf. ex-
amples in Section 3.1). Here we share two case studies of
introducing such considerations to PRO on Instagram.
Case Study 1: Reducing over-enforcement. After observing
signs of over-enforcement4 on the Instagram Mobile Web
product, we formulated a new constraint aimed at limiting the
reduction in user activity on Mobile Web, in order to serve as
a “guardrail” against over-enforcement. To implement this
constraint we added to the PRO system a new cost metric
quantifying days active on Mobile Web.
Case Study 2: Reducing SMS expenditure. Short message
service (SMS) code verification is one of our available actions
on Instagram. Its goal is to verify user identity and/or prevent
unauthorized access and abusive traffic coming from hacked
accounts. Sending these codes has an associated financial cost.
In order to reduce SMS expenditures, we added a new cost
metric to PRO measuring dollars spent on SMS messaging.

In both of the above cases, we adjusted the PRO system
according to the following steps, and in both cases compared
the effects of the two reward functions:

1. Log account-level attribution of the new cost metric.
(a) For Case Study 1, log whether the account is active

on Mobile Web each day.
(b) For Case Study 2, log the total expenditure due to

SMS messages sent to the account each day.

models using more features than the Facebook models.
4Since PRO is an optimization model rather than a classification model,

the concepts of “false positive” and “false negative” do not technically apply
to it. However, PRO can make locally sub-optimal decisions (as determined
by information obtained later). We call actions that are sub-optimal in the
cost dimension “over-enforcement” (corresponding to false positives) and
actions that are sub-optimal in the abuse dimension “under-enforcement”
(corresponding to false negatives).



2. Join the cost-attribution logs with enforcement-action
logs and account features to generate training data for
new metric-prediction models (Section 4.2).

3. Train the new metric-prediction models.
4. Solve (16) to determine the metric weights in the re-

ward function of Equation (5), with the new constraint
Budgetk as one of the algorithm inputs.

5. Update the system’s reward function with the new metric
weights and new metric prediction models.

In Case Study 1, we determined that the product impact of
over-enforcement was significant enough to warrant an imme-
diate model adjustment rather than an online controlled ex-
periment; we therefore used a “before and after” approach to
quantify the impact. We collected data on the previous reward
function for the 7 days from Jun 20 to 26, 2023, launched the
new reward function on Jun 27, and collected data from Jun
29 to Jul 5. We found that the new reward function increased
days active on Mobile Web by 68% (p = 0.02) and decreased
weighted scraping requests by 12% (p = 0.006), showing
that re-weighting the reward function can both reduce cost
and increase effectiveness.

In Case Study 2, we ran an online controlled experiment,
using the new reward function in the Test group and the previ-
ous reward function in the Control group. We collected data
from Sep 17 to 23, 2023 (7 days) comparing 1,277,330 ac-
counts in Control with 1,277,823 accounts in Test.5 The data
show that we reduced dollars spent on SMS messaging by
80% (p≪ 0.001) without any significant impact on weighted
scraping requests (2.0± 2.6% reduction; p = 0.13). Quali-
tatively, we observed that PRO switched to other available
enforcement actions of similar effectiveness whenever pos-
sible, reserving SMS code verification for entities where it
would be most effective at stopping abuse.

5.5 Onboarding new enforcement actions

The PRO system simplifies the process of introducing and test-
ing new enforcement actions. In the absence of an ML-based
system to select enforcement actions, action selection relies
on domain expertise to create hard-coded rules that decide
when to apply the new enforcement action. RL, on the other
hand, addresses this “cold-start problem” via exploration.

Case Study 3: A new enforcement action. We implemented
a new enforcement action on Facebook and added it to the
“library” of PRO actions. The action invalidates existing web
sessions created by the account, forcing the account to re-
authenticate. In addition, it restricts the account from creating
multiple concurrent sessions, allowing only one device to

5Since this experiment involved changing PRO’s metric weights, which
have a smaller effect than comparing PRO with a baseline selection algo-
rithm, we increased the size of the experiment in order to ensure statistical
significance.

be logged in to Facebook at any given time. Our hypothe-
sis was that the new action would be more effective against
accounts that use multiple concurrent sessions to perform
automation, while having smaller impact on incorrectly clas-
sified users than the account-disable action, since one session
is still allowed. We ran experiments with this action using the
following metrics:

• automated requests (abuse metric): Number of HTTP
requests identified to be resulting from scraping (i.e.,
unweighted version of weighted scraping requests).

• time spent (cost metric): Time duration (in seconds) that
the account spends active on the OSN (i.e., continuous
version of days active).

In Figure 3, we see that initially PRO does not have any
knowledge about the potential impact of the new enforcement
action. In this stage we observe large fluctuations in selection
rate (3a), accompanied by overall sub-optimal action selection
with higher numbers of automated requests (3b) and lower
user-engagement metrics (3c). Around day 31, the system
stabilizes with smaller shifts in action-selection rate, more
optimal action selection (i.e., reduction in abuse) in the test
group, and higher user-engagement metrics. At this point, the
system is starting to utilize the new enforcement action more
effectively.

At the end of the experiment, we aggregated metrics from
the final 5 days (Aug 25 to 29, 2023) comparing 1,057,156
accounts in Control with 1,055,797 accounts in Test. Results
showed the new action led to a 3.0% (p = 0.008) reduction
in automated requests, and no statistically significant change
in time spent (0.7±1.6% reduction; p = 0.38).

5.6 Uncontrolled systemic changes
Since our main results in Section 5.3 are based on data ag-
gregated over a two-week period, an important question is
how the system reacts to changes in feature distributions over
longer periods of time (“concept drift”). We expect the PRO
system to adapt automatically to such changes since we are
retraining the models daily; here we share two case studies
supporting this claim.

Case Study 4: Automatically adjusting to a bug. Engineers
inadvertently introduced a bug into an identity-verification
challenge on Instagram that asked account owners to upload
photos of their face. This challenge was previously found
to be effective at stopping abuse stemming from automated
activity. However, the bug caused some enrolled accounts
to remain in a “stuck” state with no ability to clear the chal-
lenge. After the bug manifested, new observed data points
showed that the action had a significant negative impact on
Cost metrics, which led model coefficients to change sig-
nificantly after the model was retrained. As a result, PRO
completely stopped selecting this action two days after the



(a) Selection Rate (b) ∆ Automated Request Count (c) ∆ Time Spent

Figure 3: (a) Selection rate of the new enforcement action. (b) Daily deltas (Test−Control) of the abuse metric
automated requests. (c) Cost metric time spent (7-day moving average)

bug was observed, without engineers manually altering the
configuration to disallow the action from being selected.

Case Study 5: Adjusting to adversarial adaptation. We in-
corporated a new “warning” challenge into the PRO system’s
action suite on Instagram. This challenge presents accounts
suspected of automated activity with a warning notice and
prevents any future web requests from being served until the
account acknowledges the warning. We ran an online con-
trolled experiment and aggregated metrics from Mar 24 to Apr
6, 2023 (14 days), comparing 803,813 accounts in Control
with 803,753 accounts in Test. Results showed the addition
of this new challenge led to a 15% reduction (p≪ 0.001)
in weighted scraping requests and no statistically significant
change in time spent (0.1±0.3% increase; p = 0.50). In the
Test group, PRO selected the new action 13% of the time.

Based on these promising results, we increased the size of
the experiment group. A month later (Apr 25 to May 8, 2023)
we observed that the daily selection rate for the new action had
a statistically significant drop (p≪ 0.001), falling to only 4%.
Data analysis revealed that traffic from some abusive entities
resumed almost immediately after the warning challenge was
presented to them, providing evidence that some adversaries
had learned how to circumvent the challenge and the system
needed to select other, more effective responses to stop them.
Despite this adversarial adaptation, we found that overall
the 14-day rolling average of weighted scraping requests
decreased by 24% (p = 0.006) between Apr 6 and May 8,
indicating that our changes did have beneficial impact on the
overall scraping ecosystem.

6 Ethics considerations

We have assessed the value of publishing this work against po-
tentially adverse consequences due to its methodology and/or
data practices. Specifically, we considered risks related to
user harm, equitable selection, user consent, and user data
handling [71].

User harm. We acknowledge that fighting abuse on online
social networks is a task fraught with risk: some users are
harmed by the abuse itself, while others are harmed by over-
enforcement when defenses become too aggressive. This
entire work is devoted to systematically balancing reduction
in both of these harms. Our system’s “explore-exploit” strat-
egy aims to reduce harm over the entire platform while taking
into account that not all local decisions can be perfect. How-
ever, our experiments demonstrate that the PRO system offers
significant benefit to users in terms of overall harm reduction.

We also considered the risk of our experiments over-
enforcing on benign users due to system and/or model de-
ficiencies. To mitigate this risk we set up our experiments
to include only users that our binary classifiers predicted to
be abusive with high confidence. The precision of the binary
classifiers was confirmed to be greater than 90% at the time of
the experiments. Given the above considerations, we believe
that our experiment exposes users to risks that are “reasonable
in relation to anticipated benefits” [71].

Equitable selection. Our subjects are necessarily chosen
equitably since a user’s participation in the experiment is
determined by a random number generator whose output is
independent of any user properties.

User consent. Partridge and Allman [60] observe that “direct
consent is not possible in most Internet measurements,” and
our study is a good example. Since we cannot predict in
advance who our classifiers will determine to be abusive, we
would have to obtain consent either from the entire OSN
population or from the specific users acted on by PRO at the
moment action is taken. Building a bespoke consent flow for
this study would be a large engineering task and would risk
both information bias (users might act differently knowing
they were in a security study) and selection bias (both benign
and abusive users who choose to participate in a security study
may not reflect the general population). Either type of bias
could render our statistical analyses invalid and thus handicap
our ability to measurably improve abuse detection.



Partridge and Allman suggest that “proxy consent” is the
de facto standard in large-scale internet measurement studies,
giving the example of “network measurements taken on a
university campus typically seek consent from the university.”
In our case institutional consent was rendered via the OSNs’
agreements to let us conduct and publish this research. In
particular, the reviewers approving the research noted that
all users in our study have accepted the terms of service of
Instagram or Facebook (as applicable), which address use of
data in the context of investigating suspicious activity and ad-
dressing policy violations. The reviewers therefore concluded
that the OSN terms of service provide users a sufficient level
of transparency.

We note that explicit consideration of user consent is not
historically an element of large-scale internet security studies.
Bilogrevic et al. [13] use a proxy approach similar to ours,
deriving their user consent from the fact that users opted in to
a setting to “Make searches and browsing better.” However,
recent work studying millions of users on Reddit [44], Face-
book [25, 58], and Google Chrome [69] do not address user
consent at all in their ethics discussions. We discuss open
questions in this area in Section 7.

Data handling. Before developing and testing our system, we
assessed how data would be used and protected and ensured
that technical systems and/or manual processes were in place
to mitigate any identified risks prior to the launching the
experiment [54]. For this project, we mitigated risks by:

• Limiting data collection to a set of user features identi-
fied as being relevant for abuse detection;

• Specifically excluding any sensitive data from collection;
• Restricting access to both collected and inferred data;
• Deleting all user-identifying data within 90 days of col-

lection;
• Using technical safeguards to ensure that the data are

only used for safety, integrity, and security use cases.

7 Directions for Future Work

Optimizing long-term reward. PRO selects actions to maxi-
mize reward over a fixed time horizon. However, we may wish
to select actions to reduce abuse and cost in the long term. We
could view the RL problem as a “continuing” task, or as an
infinite-horizon task instead of a finite-horizon one [68], and
optimize using RL algorithms such as Q-learning [39, 55, 75].
For each metric, we could train on the sequence of actions
taken on each entity and leverage Q-learning’s ability to learn
cumulative long-term discounted rewards.

Evaluating exploration strategies. Unlike supervised learn-
ing, RL involves an explore-exploit tradeoff. If PRO always
issues the same action to an entity, it can never learn whether
that action was actually the best choice. Having this feedback

loop is even more important in an adversarial setting. How-
ever, comparing exploration strategies can be challenging.
Simply A/B testing the same RL system with two exploration
implementations will not work if the models share training
data, as the Test model will “free-ride” on the Control model’s
exploration, or vice versa. Developing approaches to compare
exploration methods would allow us to test other exploration
strategies such as Upper Confidence Bound [17] or Quantile
Regression-based sampling [40].
Addressing over- and under-enforcement. Case Study 1
describes one set of users on which the system made locally
sub-optimal decisions. Other such populations include:

• “Power users,” defined as non-malicious users who use
the platform in such a way that their activity appears au-
tomated. The population of power users is so small that
over-enforcement on this subset doesn’t meaningfully
impact the global cost metrics.

• “Repeat offenders,” defined as users sent through the
PRO system multiple times. If the system doesn’t update
features quickly enough then it risks repeating a response
that was either too harsh for a benign user or not effective
on a malicious user.

• “Low-information” users, who may use unauthorized
third-party tools or otherwise inadvertently breach the
OSN terms of service.

For each of these cases, we believe that some combination
of new cost metrics (as in Case Study 1) and/or new enforce-
ment actions (as in Case Study 3) can improve the model’s
performance.
Generalizing our solution to other anti-abuse use cases.
Our experiments provide empirical evidence about our system
yielding measurable improvements in reducing scraping of
OSNs. Assessing how our solution can impact other abuse
problems remains an open area of research.
Understanding consent in adversarial studies. In our dis-
cussion of user consent we asserted that “users might act
differently knowing they were in a security study” and that
“both benign and abusive users who choose to participate in a
security study may not reflect the general population.” These
assertions have never been tested rigorously; a study that
tested hypotheses on user consent in adversarial environments
would provide crucial scientific input to the ethical standards
for all future studies involving real-world adversaries.
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MPC/ANN-based false data injection cyber-attack de-
tection and mitigation in DC microgrids. IEEE Systems
Journal, 16(1):1487–1498, 2021.

[32] J.T. Hancock and T.M. Khoshgoftaar. Survey on
categorical data for neural networks. J. Big Data, 7,
2020.

[33] Lukas Hewing, Kim P Wabersich, Marcel Menner, and
Melanie N Zeilinger. Learning-based model predictive
control: Toward safe learning in control. Annual Review
of Control, Robotics, and Autonomous Systems, 3:269–
296, 2020.

[34] Kailas S Holkar and Laxman M Waghmare. An
overview of model predictive control. International
Journal of Control and Automation, 3(4):47–63, 2010.

[35] David Isele, Alireza Nakhaei, and Kikuo Fujimura. Safe
reinforcement learning on autonomous vehicles. In
2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1–6. IEEE, 2018.

[36] Tom N Jagatic, Nathaniel A Johnson, Markus Jakobsson,
and Filippo Menczer. Social phishing. Communications
of the ACM, 50(10):94–100, 2007.



[37] Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex
Serban, and Roderick Bloem. Safe reinforcement learn-
ing using probabilistic shields. Dagstuhl: Schloss
Dagstuhl, 2020.

[38] Meng Jiang, Peng Cui, and Christos Faloutsos. Suspi-
cious behavior detection: Current trends and future di-
rections. IEEE Intelligent Systems, 31(1):31–39, 2016.

[39] Gabriel Kalweit, Maria Huegle, Moritz Werling, and
Joschka Boedecker. Deep constrained Q-learning. arXiv
preprint arXiv:2003.09398, 2020.

[40] Roger Koenker and Kevin F. Hallock. Quantile regres-
sion. Journal of Economic Perspectives, 15(4):143–156,
December 2001.

[41] Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker,
Ya Xu, and Nils Pohlmann. Online controlled experi-
ments at large scale. In 19th International Conference
on Knowledge Discovery and Data Mining (KDD), page
1168–1176. ACM, 2013.

[42] Hanna Krasowski, Xiao Wang, and Matthias Althoff.
Safe reinforcement learning for autonomous lane chang-
ing using set-based prediction. In 23rd Interna-
tional Conference on Intelligent Transportation Systems
(ITSC), pages 1–7. IEEE, 2020.

[43] Pavlo Krokhmal, Jonas Palmquist, and Stanislav Urya-
sev. Portfolio optimization with conditional value-at-
risk objective and constraints. Journal of Risk, 4:43–68,
2002.

[44] Deepak Kumar, Jeff Hancock, Kurt Thomas, and Za-
kir Durumeric. Understanding the behaviors of toxic
accounts on reddit. In Proceedings of The Web Conf,
2023.

[45] Hepeng Li, Zhiqiang Wan, and Haibo He. Constrained
EV charging scheduling based on safe deep reinforce-
ment learning. IEEE Transactions on Smart Grid,
11(3):2427–2439, 2019.

[46] Lihong Li, Wei Chu, John Langford, and Robert E.
Schapire. A contextual-bandit approach to personalized
news article recommendation. In 19th International
Conference on World Wide Web (WWW). ACM, 2010.

[47] Yixuan Li, Oscar Martinez, Xing Chen, Yi Li, and
John E Hopcroft. In a world that counts: Clustering
and detecting fake social engagement at scale. In 25th
International Conference on World Wide Web (WWW),
pages 111–120, 2016.

[48] Mee Hong Ling, Kok-Lim Alvin Yau, Junaid Qadir,
Geong Sen Poh, and Qiang Ni. Application of reinforce-
ment learning for security enhancement in cognitive ra-
dio networks. Applied Soft Computing, 37:809–829,
2015.

[49] Lennart Ljung. System Identification: Theory for the
User (2nd Edition). Prentice Hall, 2 edition, 1999.

[50] OB Longe, ABC Robert, and U Onwudebelu. Check-
ing internet masquerading using multiple CAPTCHA
challenge-response systems. In 2009 2nd International
Conference on Adaptive Science & Technology (ICAST),
pages 244–249. IEEE, 2009.

[51] Michael Mccord and M Chuah. Spam detection on
Twitter using traditional classifiers. In Autonomic
and Trusted Computing: 8th International Conference,
(ATC), pages 175–186. Springer, 2011.

[52] Ali Mesbah. Stochastic model predictive control: An
overview and perspectives for future research. IEEE
Control Systems Magazine, 36(6):30–44, 2016.

[53] Meta Platforms, Inc. Meta Transparency Cen-
ter. https://transparency.fb.com/enforcement/
taking-action/restricting-accounts/, 2024.

[54] Meta Platforms, Inc. Privacy progress update. https:
//about.meta.com/privacy-progress, 2024.

[55] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533,
2015.

[56] MUSA. Mitigating Unauthorized Scraping Alliance.
https://antiscrapingalliance.org/, 2024.

[57] Aleksandr Ometov, Sergey Bezzateev, Niko Mäkitalo,
Sergey Andreev, Tommi Mikkonen, and Yevgeni Kouch-
eryavy. Multi-factor authentication: A survey. Cryptog-
raphy, 2:1, 2018.

[58] Jeremiah Onaolapo, Nektarios Leontiadis, Despoina
Magka, and Gianluca Stringhini. SocialHEISTing: Un-
derstanding stolen Facebook accounts. In 30th USENIX
Security Symposium, pages 4115–4132, 2021.

[59] Mariam Orabi, Djedjiga Mouheb, Zaher Al Aghbari,
and Ibrahim Kamel. Detection of bots in social me-
dia: A systematic review. Information Processing &
Management, 57(4):102250, 2020.

[60] C. Partridge and M. Allman. Ethical considerations in
network measurement papers. Communications of the
ACM, 59:58–64, 2016.

https://transparency.fb.com/enforcement/taking-action/restricting-accounts/
https://transparency.fb.com/enforcement/taking-action/restricting-accounts/
https://about.meta.com/privacy-progress
https://about.meta.com/privacy-progress
https://antiscrapingalliance.org/


[61] Clark Pope and Khushpreet Kaur. Is it human or com-
puter? defending e-commerce with CAPTCHAs. IT
Professional, 7(2):43–49, 2005.

[62] Martin L Puterman. Markov decision processes: Dis-
crete stochastic dynamic programming. John Wiley &
Sons, 2014.

[63] Benjamin Recht. A tour of reinforcement learning: The
view from continuous control. Ann. Rev. Control,
Robotics, & Autonomous Systems, 2:253–279, 2019.

[64] Andrew Searles, Yoshimichi Nakatsuka, Ercan Ozturk,
Andrew Paverd, Gene Tsudik, and Ai Enkoji. An em-
pirical study & evaluation of modern CAPTCHAs. In
32nd USENIX Security Symposium, pages 3081–3097,
2023.

[65] David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanc-
tot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play. Science,
362(6419):1140–1144, 2018.

[66] Arambam James Singh, Akshat Kumar, and
Hoong Chuin Lau. Hierarchical multiagent rein-
forcement learning for maritime traffic management.
IFAAMAS, 2020.

[67] Gianluca Stringhini, Christopher Kruegel, and Giovanni
Vigna. Detecting spammers on social networks. In
26th Annual Computer Security Applications Confer-
ence, pages 1–9, 2010.

[68] Richard S Sutton and Andrew G Barto. Reinforcement
learning: An introduction. MIT press, 2018.

[69] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth
Raghunathan, Patrick Gage Kelley, Luca Invernizzi, Bor-
bala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh,
and Elie Bursztein. Protecting accounts from credential
stuffing with password breach alerting. In 28th USENIX
Security Symposium, 2019.

[70] William R Thompson. On the likelihood that one un-
known probability exceeds another in view of the evi-
dence of two samples. Biometrika, 25(3-4):285–294,
1933.

[71] United States National Archives and Records Adminis-
tration. Criteria for IRB approval of research. 45 CFR
46.111 (July 19, 2018), https://www.ecfr.gov/on/
2018-07-19/title-45/section-46.111.

[72] Aashma Uprety and Danda B Rawat. Reinforce-
ment learning for IoT security: A comprehensive sur-
vey. IEEE Internet of Things Journal, 8(11):8693–8706,
2020.

[73] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and
John Langford. CAPTCHA: Using hard AI problems
for security. In Advances in Cryptology – Eurocrypt
2003, pages 294–311. Springer, 2003.

[74] Gang Wang, Tristan Konolige, Christo Wilson, Xiao
Wang, Haitao Zheng, and Ben Y. Zhao. You are how
you click: Clickstream analysis for sybil detection. In
22nd Usenix Security Symposium, 2013.

[75] Christopher JCH Watkins and Peter Dayan. Q-learning.
Machine learning, 8:279–292, 1992.

[76] Leland Wilkinson. Revising the Pareto chart. The
American Statistician, 60(4):332–334, Nov 2006.

[77] Christopher KI Williams. Prediction with Gaussian
processes: From linear regression to linear prediction
and beyond. In Learning in Graphical Models, pages
599–621. Springer, 1998.

[78] Christopher KI Williams and Carl Edward Rasmussen.
Gaussian processes for machine learning, volume 2.
MIT press Cambridge, MA, 2006.

[79] Cao Xiao, David Mandell Freeman, and Theodore Hwa.
Detecting clusters of fake accounts in online social net-
works. In 8th ACM Workshop on Artificial Intelligence
and Security (AISec), pages 91–101, 2015.

[80] Teng Xu, Gerard Goossen, Huseyin Kerem Cevahir,
Sara Khodeir, Yingyezhe Jin, Frank Li, Shawn Shan,
Sagar Patel, David Freeman, and Paul Pearce. Deep en-
tity classification: Abusive account detection for online
social networks. In 30th USENIX Security Symposium,
2021.

[81] Zhi Yang, Christo Wilson, Xiao Wang, Tingting Gao,
Ben Y. Zhao, and Yafei Dai. Uncovering social network
sybils in the wild. In Internet Measurement Conference,
2011.

[82] YouTube. YouTube Community Guidelines
And Policies. https://www.youtube.com/

howyoutubeworks/policies/community-guidelines/

#taking-action-on-violations, 2024.

[83] Mario Zanon and Sébastien Gros. Safe reinforcement
learning using robust MPC. IEEE Transactions on
Automatic Control, 66(8):3638–3652, 2020.

[84] Xiangyu Zhao, Changsheng Gu, Haoshenglun Zhang,
Xiwang Yang, Xiaobing Liu, Jiliang Tang, and Hui Liu.
DEAR: Deep reinforcement learning for online advertis-
ing impression in recommender systems. In 35th AAAI
Conference on Artificial Intelligence, pages 750–758,
2021.

https://www.ecfr.gov/on/2018-07-19/title-45/section-46.111
https://www.ecfr.gov/on/2018-07-19/title-45/section-46.111
https://www.youtube.com/howyoutubeworks/policies/community-guidelines/#taking-action-on-violations
https://www.youtube.com/howyoutubeworks/policies/community-guidelines/#taking-action-on-violations
https://www.youtube.com/howyoutubeworks/policies/community-guidelines/#taking-action-on-violations

	Introduction
	Background and related work
	Related work in abuse detection
	Enforcement methods
	CAPTCHAs, challenges, and verification
	Optimization and control

	Abuse minimization as a constrained optimization problem
	Abuse minimization is a tradeoff problem
	Enforcement actions really matter
	Formalizing the optimization problem

	Solving the optimization problem
	Optimizing action selection
	Reward models
	Enforcing business constraints

	The PRO system in practice
	Implementation Details
	Experimental setup
	Experimental results
	Incorporating new business considerations
	Onboarding new enforcement actions
	Uncontrolled systemic changes

	Ethics considerations
	Directions for Future Work

