
BarraCUDA: Edge GPUs do Leak DNN Weights

Peter Horvath
Radboud University

Lukasz Chmielewski
Masaryk University, Radboud University

Léo Weissbart
Radboud University

Lejla Batina
Radboud University

Yuval Yarom
Ruhr University Bochum

Abstract
Over the last decade, applications of neural networks have
spread to every aspect of our lives. A large number of com-
panies base their businesses on building products that use
neural networks for tasks such as face recognition, machine
translation, and self-driving cars. Much of the intellectual
property underpinning these products is encoded in the exact
parameters of the neural networks. Consequently, protecting
these is of utmost priority to businesses. At the same time,
many of these products need to operate under a strong threat
model, in which the adversary has unfettered physical con-
trol of the product. In this work, we present BarraCUDA, a
novel attack on general-purpose Graphics Processing Units
(GPUs) that can extract parameters of neural networks run-
ning on the popular Nvidia Jetson devices. BarraCUDA relies
on the observation that the convolution operation, used during
inference, must be computed as a sequence of partial sums,
each leaking one or a few parameters. Using correlation elec-
tromagnetic analysis with these partial sums, BarraCUDA
can recover parameters of real-world convolutional neural
networks.

1 Introduction

The field of machine learning has seen an explosive increase
in interest and use over the last decade. In particular, deep
learning has proven to be a versatile technique that provides
state-of-the-art performance for many real-world applications.
The use of Deep Neural Networks (DNNs) has proved useful
for a broad range of domains, including playing chess [57],
object detection [39], image classification [17, 26, 34, 38, 58],
audio processing [49], forecasting [36, 52, 54, 55] and natural
language processing [46]. Thus, deep learning applications
have become indispensable and are changing many aspects
of our everyday lives.

Deep learning typically employs artificial neural networks
consisting of multiple layers of (simulated) neurons. When
designing a deep learning solution for a problem, the de-
signer first chooses the network architecture, which specifies

the layers of neurons, including their sizes, types, and acti-
vation functions, as well as how the neurons are connected,
i.e., which neurons’ outputs are connected to which inputs.
The designer then trains the network, selecting the weights
used for each weighted sum and bias values that are added to
the sums prior to the computation of a non-linear activation
function, such as rectified linear unit (ReLU) [23].

Training a network for any non-trivial example is a
resource-intensive process. There is a need to curate a spe-
cialized dataset of correctly labeled samples that can be used
for the training. Moreover, the training process often requires
days and even weeks of computation on specialized high-
performance hardware, such as large quantities of graphical
processing units (GPUs), and the whole process requires spe-
cialized expertise that is now in high demand. Thus, to protect
owners’ IP and to defend against potential attacks, trained
models are often considered trade secrets, which should be
protected from undue disclosure.

At the same time, there is a substantial market incentive for
pushing machine learning to edge devices such as intelligent
cameras, autonomous vehicles, and drones. Consequently,
trained models are being deployed under a threat model that
allows adversarial physical access to devices and exposes
them to side-channel attacks. Indeed, side-channel attacks
against neural network implementations on CPUs have been
demonstrated using both electromagnetic side-channel anal-
ysis [13] and microarchitectural attacks [62], among others.
Similarly, commercial deep-learning accelerators on FPGAs
have also been shown to be vulnerable to parameter extrac-
tion via power-analysis [25]. However, GPUs are the dom-
inant hardware in the world of deep learning due to their
performance and the software ecosystem that they provide to
implement neural networks. The CUDA parallel computing
platform allows developers to quickly and efficiently deploy
DNNs on modern GPUs, whose applications have spread
to many areas, from data centers to edge computing. How-
ever, side-channel attacks on GPUs are challenging due to
their complexity and inherent parallelism. So far, attacks on
GPU implementations have only succeeded in recovering the

network architecture but not the parameters [16, 29, 41].
Therefore, this work focuses on the following research

question:

Are proprietary implementations of neural networks on GPU
vulnerable to parameter extraction using side-channel analy-
sis?

Our Contribution

This work answers the question affirmatively. We perform
side-channel attacks on multiple GPU architectures, such as
the Nvidia Jetson Nano [9] and Nvidia Jetson Orin Nano [7],
recovering the weights and biases of real-world networks.

Specifically, our attacks collect multiple traces with ran-
dom inputs and then use correlation electromagnetic analysis
(CEMA) [14] adjusted to recover the model’s parameters from
these traces. We further demonstrate the success of our attack
on different neural network layers, such as convolutional and
dense layers with varying batch sizes.

Our attack relies on the observation that convolution com-
putation, the core operation in many neural network imple-
mentations, cannot be computed at once. Instead, convolution
is computed as a sequence of partial sums, each depending on
the previous sum and a small number of weights and inputs.
Consequently, assuming the previous sum and the inputs are
known, the adversary can guess the weights, use these to pre-
dict leakage, and correlate the prediction with the measured
side-channel trace. However, to carry out the attack, we need
to overcome several challenges.
Partial Sums Identification: Convolutional and dense lay-
ers in neural networks can be implemented in multiple ways;
one of the most commonly used ways is matrix multiplica-
tions [15]. In a differential SCA attack, knowing how the
target algorithm is implemented is crucial. Therefore, we first
reverse-engineer CUDA binaries produced by TensorRT to de-
termine both the parameter representation, the relevant partial
sums, and the weights they depend on.
Attack Localization: A second challenge is that for an
effective attack, the attacker needs to localize the attack, both
spatially and temporally. To overcome this challenge, we
adapt techniques from the domain of side-channel attacks
on cryptographic implementations. We use a variant of Test
Vector Leakage Assessment (TVLA) [56] both for finding the
best physical location for placing the probe and for finding
the time during the operation of the neural network in which
a specific neuron is evaluated. Our leakage detection analysis
proved effective for different GPU architectures.
GPU architecture: The GPU inherently introduces a high
amount of noise due to its Single-Instruction-Multiple-Thread
(SIMT) [10] architecture, where many parallel threads are exe-
cuting simultaneously. Furthermore, due to the GPU hardware
implementation, the scheduling of threads is not guaranteed
to be fixed in time, which makes SCA attacks (e.g., CEMA)

much harder than on other platforms, such as FPGAs and
microcontrollers, where the execution is deterministic and
sequential. Moreover, unlike attacks on cryptographic imple-
mentations, where the attacker typically aims to recover a
relatively short sub-key, we need to extract a large number
of parameters for DNN model extraction. A large number of
traces and efficient signal processing are required to overcome
these challenges. To that end, we develop a CUDA-based im-
plementation of CEMA to execute the attack an order of
magnitude faster for large datasets with millions of traces.
Parameter Extraction: We apply our techniques to con-
volutional and dense layers in neural networks while also
investigating the impact of batch size on our attack. Our at-
tacks against convolutional layers target a variation of the
baseline EfficientNet [59] model. We deploy the model on
the Jetson Nano in FP16 precision and the Jetson Orin Nano
in INT8 precision for the parameters. We successfully and
efficiently extract parameters from both GPUs with different
data types using our CUDA-based analysis tool. Overall, the
attack against the Jetson Nano requires 10 days for collecting
traces and one to two days for trace alignment with an input
batch size of 1. On the other hand, the Jetson Orin Nano re-
quires only 1 day for trace collection and one day for trace
alignment with an input batch size of 1. An experiment with
a larger batch size was also conducted on the Orin Nano, and
it took 5 days to collect traces and align them with an input
batch size of 16. Once aligned, parameters can be extracted
at a rate of one weight in six minutes for FP16 and 5 minutes
for INT8 weights. The whole process is highly parallelizable.
Thus, attacks on moderate-size models are well within the
capabilities of well-resourced adversaries.
Organization. The rest of this paper is organized as follows:
After providing the necessary background on side-channel at-
tacks and deep learning (Section 2), we describe the overview
of our attack and our experiment setup in Section 3. In Sec-
tion 4 we describe our procedure for profiling the implemen-
tation, identifying relevant partial sums, and localizing their
leakage. Finally, we present our parameter extraction attack
in Section 5. In addition, Section 6 covers the limitations,
possible extensions, countermeasures, and related work.

2 Background

Here, we introduce the concepts of side channels and related
techniques used for the attacks, and we provide some back-
ground on Nvidia’s CUDA programming model and GPU
architecture.

2.1 Deep Neural Networks
Deep neural networks (DNN) are universal function approx-
imators [28] that solve tasks by learning from data. First, a
model learns from training data; then it can be deployed to
make predictions on new, unseen data. Two main components

influence the trained model’s performance on unseen data: the
architecture and the parameters. The architecture refers to the
structure of the model, the types, and order of transformations
that the model applies on its inputs to arrive at some output.
These transformations are also commonly called layers, and
their output can be tweaked by changing their internal pa-
rameters. During the training process, these parameters are
tweaked so that the final output yields correct results.
Convolutional layer. A convolutional layer consists of small
kernels that extract different features from the layer’s input
e.g., an image. The dimensions of these kernels are usually
much smaller than the input’s dimensions to be able to extract
fine-grained details. Each kernel extracts different features
with its own parameters: the weights and bias. Each of them
calculates the convolution between their parameters and a
small part of the input by sliding every kernel on the input with
a certain step size. In this work, we demonstrate the extraction
of parameters, the weights, and the bias from convolutional
layers.
Dense layers. A dense layer in a neural network consists of
nodes where each node outputs the weighted sum of all the
inputs. In this paper, we demonstrate the extraction of weights
from dense layers.

2.2 Side-Channel Analysis

Side-Channel Analysis (SCA) exploits unintended physical
leakages of electronic devices to extract secret information
processed by them [32, 33]. Such leakage can occur through
various channels, including power consumption, electromag-
netic emanations (EM), timing, optical, or sound. It might
lead to leakage of various types of secret information, e.g., on
data and instructions processed. In academic settings, Side-
Channel Analysis (SCA) was first introduced in the 90’s,
targeting cryptographic implementations running on then
popular but constrained cryptographic devices such as smart-
cards [32, 33] and SCA poses ever since a constant threat to
the security of various embedded systems. In that context,
SCA aimed to recover the secret keys used in the crypto-
graphic implementations. In this work, we exploit the EM
side channel emanating from a GPU platform on which a
neural network is running, but instead of targeting secret keys,
we show how to recover neural network secret parameters:
weights and biases.

2.2.1 Electromagnetic Emanation

The electromagnetic emanations from a computing device
correlate with the code and data the device processes. This
correlation has been used to break cryptographic implementa-
tions [35, 51], reverse-engineer neural networks [13, 16] and
eavesdrop on display units [22, 27, 40].

In Correlation EM Analysis (CEMA) [14], the attacker uses
the correlation coefficient as a side-channel distinguisher, i.e.,
the statistical method used for the key recovery. Essentially,
CEMA allows an attacker to recover parts of a secret that
is used in a targeted operation by using a known plaintext
attack: measured samples are correlated against a synthetic
leakage value (i.e., leakage model) that is generated from an
intermediate value calculated for all possible values of a (part
of) the secret. In our case, all CNN parameters (i.e., weights
and bias) are considered as the whole secret, and a single
weight or bias is considered to be a single target of CEMA
that needs to be repeated for all of them; the intermediate
values are results of computations within neurons. Observe
that for the above approach to work, we need to assume that
the inputs used in the computations are different and are
known to the attacker.

Two commonly used leakage models in SCA are the Ham-
ming weight (HW) model, which predicts that the leakage is
linear with the number of set bits in the data (i.e. its Hamming
weight), and the Hamming distance (HD) model, which pre-
dicts that the leakage is linear with the number of bits that flip
between consecutive data values. HW leakage usually occurs
in practice when a value is transferred via the system bus, and
HD leakage occurs when an intermediate value stored in a
register is overwritten with another value. We consider both
of these models in this paper.

2.2.2 Leakage Assessment

For leakage assessment, which is a critical part of a security
evaluation of a chip, we rely on the default techniques used
in side-channel analysis, i.e., intermediate-value correlation
and Test Vector Leakage Assessment (TVLA) [56]. The idea
behind intermediate-value correlation is to consider the cor-
relation traces generated for all possible values of the secret.
There should be a correlation peak in the trace when the
correct guess (for the secret) is processed because the guess
is then in agreement with the leakage predicted. This is a
consequence of the fact that processing different data causes
different physical information, such as timing, power, or EM,
often referred to as leakage. While this approach is often used
in actual side-channel attacks, the disadvantage is that it re-
quires a large number of traces, similar to the CEMA attack.
TVLA or other leakage detection methods, like χ2-test [44],
are often more efficient (faster) as we control the parameters
in the leakage detection phase. The main idea of TVLA is to
check whether two distributions that process different inter-
mediate values are equivalent or not using Welch’s t-test. If
the two groups are deemed equivalent, then the TVLA will
not observe the leakage. Concretely, we verify whether two
sets of measurements show significant differences if one set
has a fixed weight and the other has random weights. We
refer to this setting as “fixed versus random”. Since TVLA
searches for any leakage not necessarily exploitable by an

Jetson Nano Jetson Orin Nano

GPU architecture Maxwell Ampere
SMs 1 8
CUDA cores 128 1024
Tensor cores - 32
Max. clock 920 MHz 625 MHz
FP16
INT8 -

Table 1: Comparison between the GPUs of Jetson Nano and
Jetson Orin Nano.

attack like CEMA, it also usually requires much fewer traces
than intermediate-value correlation. Therefore, for the sake of
efficiency, we mainly use TVLA in this paper, especially for
determining which part of the traces processes each weight
using TVLA. We use intermediate-value correlation only to
determine the best location of our probe1 and for preliminary
characterization of leakage patterns.

2.3 CUDA Programming Model
To leverage the parallelism offered by GPUs, Nvidia exposes
the CUDA programming model [5] to developers. In this
model, multiple abstraction levels exist and each level has
different implications forGPU hardware. The lowest level of
abstraction is the thread, which executes a CUDA function
defined by the developer. The number of threads executing
the CUDA function in parallel is specified at the time of
invoking the function.2 Subsequently, multiple threads can
be grouped together into a single block of threads. Threads
in a block have a per-block on-chip shared memory region
where they can exchange data with other threads. Blocks of
threads form a grid of thread blocks. Each block in a grid
executes independently from other blocks, but all blocks in
the grid share the same off-chip global memory region.

2.4 GPU Streaming Multiprocessor
When a CUDA function is invoked, the parallel threads exe-
cute on the GPU’s Streaming Multiprocessor (SM). A GPU
can consist of one or more SMs to improve parallelism fur-
ther. In this paper, we mount our attack on two different GPU
architectures, the Maxwell [11] and Ampere [7] GPUs em-
bedded in a System-on-Chip (SoC). For both architectures,
when blocks of threads are scheduled onto a particular SM,
the threads in the blocks are divided into groups of 32 threads,
also called warps. Every warp is assigned to a particular
Processing Unit (PU) in the SM, and the warp scheduler in

1We simply check at which location the absolute t-test peak is the highest
as in [20].

2Functions in CUDA are also called kernels. We use the term function to
avoid confusion with kernels in CNNs.

Figure 1: High-level description of the attack procedure.

a PU is responsible for scheduling and issuing instructions
for warps that are ready for execution at every clock cycle.
Additionally, both architectures have 4 PUs per SM, each with
dedicated resources (e.g., register file) to manage warps. This
means that 4 warps can be issued instructions in parallel at
every clock cycle in an SM. The Jetson Nano and Jetson Orin
Nano’s GPUs are similar, but significant differences are sum-
marized in Table 1. Overall, the Ampere GPU is a larger and
more capable GPU with more hardware support for different
operations (matrix-multiply) and data types (e.g. INT8) that
are heavily used in deep-learning inference.

2.5 TensorRT Workflow
TensorRT is a framework dedicated to accelerating neural
network inference on GPU, using implementations from dif-
ferent libraries (CuDNN, CuBLAS, TensorRT) that are timed
against each other to choose the fastest. We use the TensorRT
framework in our experiments and demonstrate the parame-
ter extraction attack on the implementations provided by the
framework.

3 Attack Procedure

Our attack, depicted in Figure 1, assumes that the adversary
knows or can recover [16, 29, 41], the DNN model architec-
ture. The adversary aims to use side-channel observations to
recover the unknown weights and biases used in the victim
device. The attack follows two main phases. In the first, the
adversary uses their prior knowledge to instantiate an equiv-
alent DNN architecture on a profiling device with identical
hardware, albeit without the weights. This profiling device is
used to learn how information about weights and biases leaks.
This knowledge is then used to guide the second phase of the
attack, which recovers the desired information.

The attack builds on the observation that convolution is the
core operation performed during inference. Specifically, A
single p×q kernel with weights w, bias b and input feature
map x calculates as follows:

csum = x∗w =
p·q

∑
i=1

wi · xi = w1 · x1 + · · ·+wp·q · xp·q, (1)

cout = csum +b, (2)

where csum is the result of the convolution between the
weights and the input, while cout is the output of the kernel

(if the kernel contains a bias). Finally, if the layer includes an
activation function f then it is applied after the convolution:

c f = f (cout).

Since the convolution in Equation 1 cannot be computed
in a single step, its computation consists of a series of in-
termediate computations, each depending on one on a small
number of weights. Our attack targets these intermediate com-
putations, looking for correlations between the results of the
computations and the side-channel observations. We refer to
these results as intermediate values.

The profiling phase aims to identify the intermediate val-
ues used in the implementation and to localize at which time
points they leak in the traces. The attack then performs correla-
tion analysis on the side-channel information at the identified
locations to recover the weights.

The rest of this section outlines our threat model and de-
scribes the experimental setup. The attack itself is described
in two sections. First, Section 4 describes the profiling phase.
Then, Section 5 describes and evaluates the recovery of
weights and biases from the victim device.

3.1 Threat Model

Our attack targets edge devices that execute machine learning
inference for their functionality. The attacker aims to recover
the trade secrets encoded in the parameters (weights and
biases) of the machine learning model, for example, in order
to steal the IP that encodes them or as a step in designing an
adversarial attack on the machine learning model.

We assume that the target device operates correctly and
that the code is secure so the attacker cannot exploit program-
ming vulnerabilities to acquire the parameters. However, we
assume that the attacker knows the architecture of the model,
including the number of layers, their sizes and types, and how
they interconnect. Attackers that do not have the information
can use techniques developed in past works to recover the
architecture [16, 29, 41].

As is typical for edge devices, we assume the attacker has
unfettered physical access. In particular, we assume the at-
tacker can open the device and place electromagnetic probes
at locations that leak information. As we discuss in Sec-
tion 3.3, our target devices have multiple leaky locations,
allowing the attacker a choice.

Last, we assume that the attacker can monitor the electro-
magnetic emanations from the target device during the time
that the device performs inference. The attacker needs to be
able to observe the emanations over multiple sets of inputs
and should also be able to choose these inputs if the target
parameters have INT8 data to reduce complexity. Otherwise,
FP16 parameters do not require control of the inputs.

3.2 Sensitive Intermediate Values
A successful CEMA attack against a target algorithm requires
the attacker to find sensitive intermediate values that depend
on secret data. In convolutional and dense layers, a sensible
choice for these intermediate values is the partial sums that
depend on the secret weights. The partial sums allow an ad-
versary to attack one or a few weights at a time and, therefore,
to reduce complexity. If an attacker targeted the final results
of these layers, the complexity would increase as these results
depend on many secret weights, making the attack infeasible.

However, the actual implementation of these layers, and
subsequently the computation of partial sums, are dependent
on the target layer and hardware characteristics. Some of the
important layer characteristics are the number of input and
output channels in a layer and the used representation for the
parameters. In addition, hardware characteristics such as the
number of SMs and shared and global memory size can also
influence this implementation. Consequently, different layer
and hardware configurations can lead to slightly different
implementations. Although these implementations can have
identical structures, fine-grained details such as partial sum
computations can differ. Therefore, an attacker first needs
to reverse engineer how each layer of the target DNN archi-
tecture is implemented on the target device. This task can
be aided via reverse-engineering of the GPU framework and
analysis of leakage of the profiling device.3

3.3 Experimental Setup
To gather side-channel information, we collect EM traces as
they are less invasive and can provide more localized infor-
mation than power measurements. It is also closer to the real
world as fewer modifications to the chip are required. Our two
targets, the Jetson Nano and Jetson Orin Nano, are similar in
that both feature a SoC mounted onto a PCB in a flip-chip
package. However, the Jetson Orin package is significantly
larger than the Jetson Nano’s while also surrounded by more
capacitors. In order to access the packages, we remove the
heatsinks from both devices and use an external fan to provide
cooling to the devices. In our setups, the GPU cores operate at
the highest supported clock frequencies4 as shown in Table 1.
We use the Lecroy 8404M-MS oscilloscope at a sampling rate
of 10GS/s with a Langer MFA-R 0.2-75 near-field probe [1]
to collect electromagnetic traces. In our experiments, we find
that we need a sampling rate of at least 5 GS/s to see leakage.
Increasing the frequency up to 20 GS/s does not improve the
results. In the FP16 case, the number of samples in a single
trace for the first convolutional layer is 400 000 with a batch
size of 1. In the INT8 case, it is 150K per trace.

3One can also imagine an attacker without a profiling device searching
through all the possible intermediate values to find the correct one. This
approach is feasible but time-consuming, and we do not follow it.

4At the time of submission, the maximum supported clock frequency was
625 MHz for the Jetson Orin Nano.

(a) Location of Langer EM
probe between two capaci-
tors on the Jetson Nano.

(b) Location of Langer EM
probe between 3 capacitors
on Jetson Orin Nano.

Figure 2: EM probe locations for the Jetson Nano and Jetson
Orin Nano devices for successful parameter extraction attacks.

3.3.1 EM Probe Positioning

To find the best position for the EM probe, we use both TVLA
and intermediate-value correlation experiments. Specifically,
we instantiate models whose architectures are identical to the
target model for each possible location. We then capture two
sets of traces. The weights and inputs are always the same
in the “fixed” set of traces. In the “random” set of inputs, we
select a random value for one of the weights in the model,
and the inputs are the same. We then use TVLA to measure
the statistical difference, expressed as the t-value, between
the set of traces and intermediate-value correlation to find
the correlation between the random weights and the leakage.
Significant correlation and t-value peaks indicate a strong
signal.
Jetson Nano We observe several promising locations for
placing the EM probe. Figure 2a shows one such location
between two capacitors in the power-supply circuit of the
Jetson Nano. Additionally, using XY scan, we find several
locations that exhibit similar leakage on the surface of the
Jetson Nano’s SoC. Parameter extraction is possible from both
the best location on the SoC and between the capacitors. In
the rest of this paper, we use the capacitors’ location because
probe placement is easier and does not require a detailed scan.
Jetson Orin Nano On the Jetson Orin’s chip surface, we
cannot pick any GPU-related signal. However, some nearby
capacitors still leak information related to GPU activity. Fig-
ure 2b shows one vulnerable spot that allows for parameter
extraction. With further experimenting over the chip surface,
we find that probes sensitive to higher frequencies, such as the
Langer RF-B 0.3-3 [2], can pick up exploitable signals over
the chip as well. In this paper, the presented results use the
location shown in Figure 2b with the Langer MFA-R 0.2-75
probe.

3.3.2 Trace Acquisition

In order to extract the parts of the traces related only to the
inference operation, we used nsys from the CUDA Toolkit
to get information about the execution times of the operations
on the GPU. Therefore, we used the Lecroy oscilloscope’s
SmartTrigger feature to trigger on the rising edge of the first

layer as it proved to be more reliable.

3.3.3 Trace Preprocessing

In general, the collected traces contain a lot of jitter and the
clock of the cores is not stable, which can be confirmed by
looking at the traces in the frequency domain. This makes
the detection of time where the implementations leak and the
subsequent CEMA attack harder. Since aligning the traces
accurately with static alignment [42]5 at many locations at
the same time is not possible, we use elastic alignment [60]6

to improve the leakage detection process. Although elastic
alignment performs alignment at every time point, it comes
at a price: it requires finding the optimal input parameters
and is computationally expensive. Moreover, despite tuning
the parameters, it decreases the amount of leakage in the
traces. Therefore, it is used only to detect leaking points, but
the CEMA attack is carried out on the raw traces after static
alignment is applied on the leaky part of the trace.

4 Profiling

We now turn our attention to the profiling phase of the attack,
in which the adversary uses a profiling device to analyze
the model and identify trace positions in which partial sums
leak. Profiling consists of two main steps. In the first step,
the adversary analyzes the software that the GPU executes to
identify partial sums that depend on weights and characterize
the dependencies. Once these are found, in the second step,
the adversary collects side-channel traces from the profiling
device and uses statistical tools to find the leaking time points
in the traces at which leakage of each weight and bias can be
observed.

4.1 Layer Implementation
In this section, we discuss the high-level structure of the code
that performs the operations of convolutional and dense lay-
ers in DNN models. As the code is unavailable to us, we use
cuobjdump [6] to produce assembly code, which we can
analyze. While each implementation is different, all convolu-
tional implementations follow the same structure:
• 1 block of initialization instructions,
• 2 block of convolution operations, and
• 3 block of bias addition and ReLU calculation.
We now explain these three blocks in more detail.
1 Init Block. The first main block consists of instructions

that set up the CUDA function. This block initializes the 64
5Static alignment employs a standard pattern-based approach: we select a

part of a trace as a reference and compute correlation for each offset within a
chosen range for each of the traces. We then shift each trace by the respective
offset that maximizes the correlation.

6Elastic alignment is a parametrized machine-learning-based technique to
align the traces on all the distinctive patterns at the same time. However, this
method tends to be error-prone and results in a decreased leakage in practice.

accumulator registers that are later used to store the convolu-
tion results (R0–R63). Higher registers (R64 and above) are
used to load the weights and inputs. Since the GPU registers
are 32-bit wide, each higher register is loaded with either two
FP16 values or four signed 8-bit integers, depending on the
data type used for the computations.
2 Convolutional Block. The second block performs the

convolution of the weights and the inputs, i.e., the partial sums
are computed in this block. It consists of repeated vectorized
loads and arithmetic instructions. A set of higher registers is
assigned to be loaded with inputs and weights from different
input channels. In addition, this block is executed multiple
times depending on the hyperparameters of the convolutional
layer, such as the kernel size.
3 ReLU Block. The third block adds the biases and per-

forms the activations. For the FP16 implementation, the two
partial sums of the accumulator need to be combined before
adding the bias and calculating the ReLU. Conversely, in
the INT8 implementation, the partial sum results are already
summed into a single register, but there is a need to convert
this number to a floating-point prior to adding the bias and
applying ReLU. Unlike the FP16 implementation, which uses
half precision throughout the computation, the INT8 imple-
mentation converts the integer to a single-precision floating-
point number.

Figure 3: Raw trace of the whole operation on the GPU of
Jetson Nano. The two convolutional layers (light pink and
yellow) are clearly separated in the traces. Additionally, the
CUDA device-to-host memory copy (light purple) is also
clearly visible in the end of the trace.

Matching Instruction Block to Traces. Figure 3 shows the
electromagnetic emanations of the Jetson Nano GPU during
the execution of a CNN with two convolutional layers. Since
each layer is mapped to a separate CUDA function call by
the framework, it can be observed that there is a clear separa-
tion between layers. Additionally, the convolution results are
copied back to memory, which is a separate CUDA call and
is visible in the trace.

In addition, the three blocks of the implementations can
also be identified. The first highlighted part shows the init
block in the first layer. The second highlighted block cor-
responds to the convolutional block where the partial sums
are computed. The third highlighted segment corresponds

to the calculation of the bias addition and ReLU output, re-
peated four times for different sets of registers. Note that these
instruction blocks are also separated by synchronization in-
structions, which are also visible in the trace as the amplitude
of the EM signal drops close to 0 between the blocks.

4.2 Identifying Partial Sums

As no single GPU instruction can process an arbitrary number
of arguments, the code typically processes these convolutions
as a sequence of partial sums. An example of a naive way of
computing Equation 1 is by sequentially computing partial
sums s j using the formula:

s j =
j

∑
i=1

wi · xi = s j−1 +w j · x j (j ≤ p ·q) (3)

With this formula, if we assume we know s j−1 and x j, we
can guess w j and use the guess to compute s j. We then apply a
leakage model to the computed s j, e.g., the Hamming distance
between s j−1 and s j, and search for correlations between the
model and observed leakage. A high correlation indicates that
the guess of w j is correct.

The challenge is that there are multiple ways in which the
code can compute Equation 1. In particular, the implementa-
tion can change the order of computing the sum, and it can
also use vector operations to combine multiple additions into
a single operation. As our attack relies on knowing the previ-
ous partial sum to guess the weight, we must know how the
sum is computed.

In this section, we delve into the implementations of convo-
lutions with two reduced-precision implementations used by
the TensorRT framework: INT8 and FP16. Reduced-precision
implementations, such as these, are typically used during in-
ference because they reduce both the latency and the memory
use compared to single-precision implementations, which
are typically used in the training phase. Our choice of INT8
and FP16 targets the larger and more challenging parameter
sizes in reduced-precision techniques [30, 43, 45, 50, 50], and
covers both integer and floating-point parameters. Here we
describe the high-level design of the implementations. See
Appendix A for further technical details.
FP16 Convolution. The FP16 implementation uses the
HFMA2 instruction, which performs two half-precision fused-
multiply-adds in parallel. It operates on 32-bit registers, each
holding two half-precision floating-point numbers. It first
computes the products of two pairs of numbers in matching
halves of two registers and then adds the results to the match-
ing halves of a third register, which acts as an accumulator.
This, basically, splits the convolution computation across the
two channels, which are summed at the end. Our leakage
model targets each partial sum (16 bits) that is written into
this accumulator register.

INT8 Convolution. The INT8 implementations of convo-
lutional and dense layers use the IDP.4A instruction to per-
form a 4-way dot product and accumulation operation, de-
picted in Figure 9. The instruction first multiplies the elements
in matching channels in two registers. It then sums the results
and adds them to a third register, which stores a signed 32-bit
accumulator.

In many cases, not all four channels of the dot product
contain data. Specifically, when the number of input channels
is three, the channels of a single input point are convolved
with the matching weights. On the other hand, when the input
consists of a single channel, two input points are convolved
during each operation. Values for channels that are not used
are set to zero and do not affect the result of the instruction.

Unlike the HFMA2 instruction, the sum depends on all of
the weights that are convolved by the IDP.4A instruction.
Thus, the attack needs to target all of the weights that are used
by a single instruction.

4.3 Localizing Partial Sums

Section 4.1 demonstrates that we can identify the high-level
operations in the trace, including the layer processing and
the main steps of their computation. In Section 4.2, we show
how we find the partial sums that leak specific weights. In
this section, we complete the profiling and identify the trace
locations that leak each partial sum and, consequently, the
weights. Our approach employs TVLA [24] to find statistical
evidence of leakage.

TVLA. To determine the time points in the traces where
values of the partial sums s j leak, we apply fixed vs. random
TVLA to find statistical evidence for leakage. Specifically, we
collect two sets of traces. In the “fixed” set, we set the target
weight to a fixed non-zero value, all other weights to zero, and
all of the input to fixed randomly chosen values and collect
multiple traces of performing inference with the model. For
the “random” set, we similarly collect multiple traces, but for
each trace, we randomly select the value of the target weight.
All other weights and inputs are set to the same fixed values
as in the “fixed” set. We then compare the distribution of
values of each time point across the two sets using Welch’s
t-test. As common when performing side-channel attacks, if
the absolute t-value is above 4.5, i.e., |t|> 4.5, we mark the
point as a potential leakage.7

Figure 4 shows the results of fixed vs. random TVLA for
the first weight in the kernel in the first layer for FP16 convo-
lution on the Jetson Nano. Leakage is clearly evident at the
start of the convolutional block, around sample 25 000, where
the t value goes above 4.5. Repeating the process for all of

7To verify that TVLA does not yield false positives, we check the cor-
responding intermediate-value correlations of a few weights to confirm the
leakage. For example, when a computation followed Equation 3, we used
HD(s j−1,s j). All these experiments confirmed the TVLA results.

Figure 4: Result of fixed vs. random TVLA for the first weight
(top) and the bias (bottom) in FP16 convolution with 30K and
37K traces, respectively. The middle depicts an example trace.
The dashed red line indicates the 4.5 threshold.

the weights of the kernel allows us to identify the time point
for each weight at which they leak.

To create the random set for fixed vs. random TVLA, we
need to repeatedly modify the target weight to a random value.
The TensorRT framework supports changing the weights of
models, but a new CUDA context [4] has to be created every
time the weights of a network are changed. This contrasts
with the fixed case, where an application is not required to
create a new CUDA context for every inference operation.
However, as TVLA requires changing the weights, we cannot
avoid this.

4.4 Bias Leakage
For the bias, the final partial sum cout or the output of the
activation c f has to leak. Similarly, to detect leakage corre-
sponding to the bias, we apply fixed vs. random bias TVLA.

Figure 4 also shows the results of TVLA for the bias of
the kernel in the first layer for FP16 convolution. A much
clearer leakage is present for the bias than for the weights in
the convolution operation.

After establishing where parameters leak, with the help of
elastic alignment, we use static alignment on the raw traces
at these points as static alignment produced higher individual
TVLA peaks as well as correlation for the attack.

4.5 CEMA Implementation in CUDA
In order to calculate correlation in CEMA, the covariances
of populations have to be calculated, which can be done with
two-pass algorithms. However, for large datasets, two-pass
algorithms are inefficient as the algorithm makes two itera-
tions on the dataset. Therefore, one-pass algorithms have been

developed to estimate these statistics in large datasets [47]. In
a one-pass algorithm, the statistics can be updated when new
data points are added to the dataset. These algorithms also
make it possible to combine the statistics from subsets of the
dataset to estimate the whole dataset’s statistics. This means
that the statistics of each subset can be calculated in parallel,
further speeding up the CEMA attack.

However, the attack has even more aspects that can be par-
allelized, such as the candidate and sample levels. There are
publicly available multithreaded implementations such as the
JlSCA library [8] for CPU, but these cannot fully parallelize
the attack and become slow for large datasets. Since we have a
large number of candidates with FP16 weights, we decided to
implement CEMA for neural networks in CUDA, parallelized
on three levels: dataset, candidate, and sample.

Our implementation in CUDA launches a three-
dimensional grid of thread blocks with dimensions:
(candidates/2,chunks,samples) = (17765,chunks,32). For
our use case, the number of candidates and samples are fixed
at 35530 and 32, respectively. Threads in the same warp
work on the same two candidates (in parallel, due to double
throughput with FP16) but correlate them with different
samples. The implementation also parallelizes CEMA on a
data set level, by setting chunks > 1. The number of chunks
can vary, but setting it to 10 already gives good results in our
use case with millions of traces. The optimal number may be
lower or higher depending on the GPU hardware.

We benchmark the multithreaded JlSCA implementation on
an AMD Ryzen 7950X CPU vs. our CUDA implementation
on a 3080 Nvidia RTX GPU. Overall, the speedup compared
to JlSCA is at least ×5 and typically ×10 when the dataset
consists of millions of traces.

5 Parameter Extraction Results

In this section, we demonstrate the generality of our parameter
extraction framework, shown in Figure 1, on a real-world
CNN architecture by targeting the baseline EfficientNet [59]
to extract a kernel from its first two convolutional layers. Note
that none of the previous works have demonstrated parameter
extraction from real-world CNN architectures.

In these experiments, after using the profiling information
from Section 4, we use the partial sums to extract FP16 and
INT8 weights on the Jetson Nano and Jetson Orin Nano,
respectively. In addition, we also analyze the impact of batch
size on the attack.

5.1 FP16 Parameter Extraction

Following [13], we restrict the search space of the FP16
weights to [−5,5], as most of the parameters of trained CNNs
reside in this range. To verify this, we looked at the parameters
of large real-world architectures, such as our target Efficient-

NetB0, trained on ImageNet. With 16-bit floats, there are
35 330 possible candidates in this range.

In the experiment, the parameters of the target architectures
are initialized randomly. Observe that while we attack in an
iterative fashion, the trace acquisition needs to be executed
only once with random known inputs. We target the FP16
partial sums in each layer to extract weights and biases.

5.1.1 Convolutional Layer

In this experiment, we show the results of our framework by
successfully extracting FP16 parameters from the first 2 con-
volutional layers of the baseline EfficientNet [59] architecture
by targeting the partial sums in the layer.8 Both the HW and
HD leakage models prove to be exploitable in recovering
weights and biases from the layers. Targeting the partial sums
allows us to use a divide-and-conquer approach by reducing
complexity, as only one FP16 weight must be extracted from
a kernel at a time.
Weight Extraction. For the weights, we target the partial
sums s j of the 2D convolution and extract the weights of a
kernel one by one. First, we are able to extract weights using
the HW leakage model. As shown in Figure 5a and Figure 5b,
we successfully recover the third weight of a kernel in the
first layer. For the second layer, Figure 5e and Figure 5f show
the key ranking and correlation for the second weight in the
second layer. In addition, Figure 5g and Figure 5h show the
key ranking and correlation for the third weight in the second
layer, demonstrating that our attack extends to larger layers
as well.

The HD(s j−1,s j) leakage model targeting a register up-
date can also be exploited to recover weights: Figure 5c and
Figure 5d show the key rankings and correlations for the 9th
weight in the first layer of the large architecture using HD.
The attack works similarly for the other weights. As shown in
Figure 5c, the convergence behavior for HD is different from
that for HW as it starts to converge slower.
Bias Extraction. Similarly to the weights, we are also able
to use HD leakage model to extract the bias: we targeted the
register update from csum to cout: HD(csum,cout). Figure 6e
and Figure 6f show the results for the bias in the first layer.
The key rank drops quickly and converges to key rank 0 in
5 million traces. Overall, there is a significant variance in
the number of required traces to recover individual weights
and biases, but an upper bound of 20 million traces proves
sufficient in our experiments.

5.2 INT8 Parameter Extraction
For INT8 weights, we demonstrate our parameter extraction
framework on the first convolutional layer with the same Ef-

8The convolutional layers in this architecture do not have biases. There-
fore, we alter the architecture so that the first layer has biases in the kernels
to demonstrate the bias extraction on this architecture as well.

(a) Key rank vs. number of traces using HW for the
third weight in the first layer with value of 0.8223.

(b) Correlation vs. number of traces using HW for
the third weight in the first layer with value of
0.8223.

(c) Key rank vs. number of traces using HD for the
ninth weight in the first layer with value of -0.7705.

(d) Correlation vs. number of traces using HD for the
ninth weight in the first layer with value of -0.7705.

(e) Key rank vs. number of traces for s j for the sec-
ond weight in the second layer with the value of
-0.5137.

(f) Correlation vs. number of traces for s j for the
second weight in the second layer with the value of
-0.5137.

(g) Key rank vs. number of traces for s j for the third
weight in the second layer with the value of -0.6406.

(h) Correlation vs. number of traces for s j for the
third weight in the second layer with the value of
-0.6406.

Figure 5: Key ranks and correlations of the different FP16 weights in the first and second layer on the Jetson Nano.

ficientNetB0 configuration as in the FP16 case, also with
different batch sizes. Similarly, we target the partial sums in
the INT8 convolution to extract the weights. In addition, we
provide results on dense layer parameter extraction with INT8
weights.

5.2.1 Convolutional Layer

Weight Extraction. In this case, the partial sums can de-
pend on multiple weights, depending on the number of input
channels. In this experiment, the number of input channels to

(a) Key rank vs. number of traces for ReLU. (b) Correlation vs. number of traces for ReLU.

(c) Key rank vs. number of traces for cout . (d) Correlation vs. number of traces for cout .

(e) Key rank vs. number of traces when csum is over-
written with cout .

(f) Correlation vs. number of traces when csum is
overwritten with cout .

Figure 6: Key ranks and correlations of the FP16 biases with different leakage models on the Jetson Nano.

the first layer is one, so the partial sums depend on exactly
one 8-bit weight. If the number of input channels is larger
than 1, as is the case in subsequent layers, then the target
intermediate values depend on multiple weights, increasing
the complexity of the attack.

Similarly to the FP16 case, we extract the weights in a ker-
nel one by one by targeting the partial sums in the convolution.
Figure 7a and Figure 7a show the results for 4th weight in
a kernel, while Figure 7c and Figure 7d show the results for
the 5th weight in a kernel, respectively. In our experiments,
on average, 300K traces were enough for the correct key can-
didates to reach key rank 0. Both the HW and HD leakage
models are exploitable to recover individual weights.

Impact of Batch Size. The batch size does influence the
number of traces required to extract weights but not signifi-
cantly, as 500K traces are sufficient to reach key rank 0. The
difference between smaller and larger batch sizes is the num-
ber of executing threads. For instance, the first convolutional
layer is executed with 512 and 7 232 threads for batch sizes of
1 and 16, respectively. Even though there are 14 times more

threads for batch size 16, the number of executing threads
physically in parallel is limited, e.g., the warp schedulers still
only issue instructions for at most 32 threads at a time. There-
fore, on smaller GPUs, the main impact of batch size might
be only the linear increase in execution time. On the other
hand, a larger batch size provides even more partial sums in
one trace, and a horizontal attack [18] exploiting this might
enhance the efficacy of the attack. We leave analyzing this for
future work.

5.2.2 Dense Layer

We present parameter extraction results of a neural network
containing a single dense layer with INT8 weights running
on the Jetson Orin Nano. In the experiments, our target dense
layer has 512 nodes, and the input size s of the layer is 784.
Therefore, each node has 784 weights associated with it. Our
leakage modeling experiments for dense layers discovered
that, similarly to convolutional layers, the HW and HD leak-
age models are both viable for mounting a successful pa-

(a) Key rank vs. number of traces with HD leakage
model for the fourth weight in the convolutional ker-
nel.

(b) Correlation vs. number of traces with HD leak-
age model for the fourth weight in the convolutional
kernel.

(c) Key rank vs. number of traces with HD leakage
model for the fifth weight in the convolutional kernel.

(d) Correlation vs. number of traces with HD leakage
model for the fifth weight in the convolutional kernel.

(e) Key rank vs. number of traces with HW leakage
model for the 8th weight in the dense layer.

(f) Correlation vs. number of traces with HW leakage
model for the 8th weight in the dense layer.

(g) Key rank vs. number of traces with HD leakage
model for the 8th weight in the dense layer.

(h) Correlation vs. number of traces with HD leakage
model for the 8th weight in the dense layer.

Figure 7: Key ranks and correlations of the different INT8 weights of convolutional and dense layers on the Jetson Orin Nano.

rameter extraction attack. However, these exploitable leakage
models depend on multiple, not just one, 8-bit weights be-
cause the input size to dense layers is significantly larger than
4 in real-world applications. Therefore, most or all partial sum
results depend on four weights, i.e., we face a complexity of
32 bits with the INT8 data type. To combat this issue, we ap-
ply the chosen-input attack mentioned earlier by setting three

channels to 0 so that the registers that hold the input values
contain only 1 non-zero input. Therefore, the final result will
only depend on one 8-bit weight. Since all the nodes in the
layer receive the same inputs, the chosen input attack does not
require a new trace-set for every node separately. Therefore,
the attack is independent of the size of the layer.

Figure 7e and Figure 7f show the results with HW leakage

model while Figure 7g and Figure 7h show the results with
HD leakage model for the 8th weight in the first node. In
our experiments, on average, 300K traces were enough for
the correct key candidates to reach key rank 0, similar to the
convolutional layer. In addition, both the HW and HD leakage
models are exploitable to recover individual weights, which is
unsurprising since the same instruction is used for the layers.

5.2.3 Attacking Deeper Layers.

In deeper layers with INT8 weights, each partial sum de-
pends on four 8-bit weights as the number of input channels
is larger than four. Generally, this increases the complexity
of the attack to guessing four weights at a time, so 232 candi-
dates, which is computationally expensive. However, if the
attacker has enough computing resources, the attack can still
be mounted by attacking 32 bits.

However, the complexity can be reduced in two similar
ways:
1. Collect traces with random inputs and choose only those

where the inputs to deeper layers in specific channels are
zero.

2. Collect traces with chosen inputs so deeper layers receive
zero inputs in specific channels.

Random Inputs. This approach implies that the attacker has
to collect significantly more traces to have 300K traces with
the desired 0-value inputs in specific channels. However, the
inputs in DNNs are usually centered around zero, and some
of their quantized values are exactly 0. More importantly, the
ReLU activation function greatly enhances sparsity in the
inputs due to setting negative values to 0.
Chosen Inputs. In this approach, the attacker has to solve
systems of linear equations to generate inputs to the first layer
such that the inputs to deeper layers are 0, similarly to [25].
The number of collected traces is significantly less than that
of random inputs, but whether this approach works for deeper
layers in practice is still to be determined. Nevertheless, quan-
tization and the ReLU activation function also enhance this
approach as these factors make the solutions space larger.

5.2.4 Parameter extraction comparisons

The summary of parameter extraction of the target Efficient-
NetB0 architecture on different GPUs is presented in Table 2.
For the Jetson Nano with FP16 parameters, the first two con-
volutional layers can be extracted with a complexity of 216

for each parameter. However, a full model extraction is still
computationally expensive as the model contains millions
of parameters. In this case, the parameters required at most
20M traces for successful extraction. Observe that the number
of traces should not increase even if we attack more layers
because the attack does not make assumptions about layers’
inputs.

Jetson Nano Jetson Orin Nano

weights data type FP16 INT8
bias data type FP16 FP32
of extracted layers 2 1
of extracted parameters 9564 288
bias extraction -
of max req. traces 20M 3M

Table 2: Parameter extraction results for different GPUs for
the EfficientNetB0 architecture.

For the Jetson Orin Nano with INT8 weights, we were only
able to extract the weights of the first layer as the parameters
in the second layer have a complexity of 232 candidates due to
how partial sums depend on 4 weights. In addition, the biases
are represented as 32-bit floats that also provide a complexity
of 232 candidates. Although the number of required traces
is at most 3M for the first layer weights, subsequent layers
require most likely more as there are 232 candidates. Overall,
even with FP16 parameters, a full model extraction requires
computing resources that are beyond our capabilities but not
beyond a well-founded commercial or state attacker.

6 Discussion

6.1 Approaching Additional platforms

Our approach is demonstrated on CUDA-enabled GPUs, but
we expect that our methodology is applicable to other plat-
forms as well. An attack on another platform would also
start with a profiling phase where the target architecture’s
implementation is reverse-engineered on a low level. This is
necessary to identify and localize partial sums allowing for
parameter extraction. After the profiling phase, the attacker is
equipped with the appropriate leakage models and locations
to extract the parameters. We expect that there would be some
differences with respect to the exact intermediate values that
would need to be targeted, but the approach should be similar.

6.2 Desktop/Datacenter GPUs

Against large GPUs, our attack can be extended and is likely
to be more expensive depending on the target neural network’s
size. One key difference between the Jetsons and desktop/-
datacenter GPUs is the number of streaming multiprocessors.
Ideally, for a large GPU, an attacker would first locate all the
SMs of the target GPU. Afterward, each SM could be scanned
with an EM probe to see if there is any activity of interest.
If the target neural network is extremely large and saturates
all the SMs during inference, multiple probes may be used to
cover all of them and collect traces in parallel for each SM.
Therefore, the equipment and overall cost is higher the more

SMs the target GPU has.

6.3 Limitations
While we demonstrated parameter extraction on multiple
GPUs, the coverage is still limited:
Concurrent Applications. GPUs are able to handle and
schedule concurrently CUDA functions from multiple appli-
cations. This might introduce noise, but it depends on the re-
quired resources for each CUDA function. Suppose a CUDA
function takes up most of the GPU resources (e.g., shared
memory, registers, etc.). In that case, a different CUDA func-
tion will only be scheduled after all the thread blocks in the
previous CUDA function finished execution [3]. Therefore,
on GPUs with few SMs, this is less likely to be an issue as
the GPU’s resources are already saturated due to the large
computational demand of DNN inference.
Bias Extraction in INT8 Implementations We demon-
strated the extraction of biases from convolutional layers for
FP16 implementations but not INT8 implementations. These
implementations only use INT8 for the weights but not for
the bias. The bias in these implementations has FP32 data
type, which is beyond our computing capabilities to extract.

6.4 Mitigation
Traditional ways to contain electromagnetic emanation, such
as proper shielding or introducing noise to decrease the Signal-
to-Noise ratio, could alleviate the problem [42]. Specifically
against parameter extraction, one of the possible countermea-
sures, which is also mentioned in the CSI-NN paper [13], is
shuffling [61] the order of multiplications in the layers, which
can make it significantly harder for an adversary to recover
the weights. Additionally, masking [19, 48] can also decou-
ple the side-channel measurements and the processed data.
However, this comes at the price of execution speed, which
might not be desired in real-time systems. Specifically for
convolution, the registers containing the results of the partial
sums can be initialized with the bias of the kernel instead of
initializing them with zeros. This would prompt an adversary
to mount a CEMA attack where the correct b+w1 pair has
to be recovered first. The complexity of this attack would be
32 bits due to 16 bits of complexity for the weight and bias
separately in the FP16 case. However, in the INT8 case, the
bias is a single-precision float, so it cannot be used to initialize
the accumulator registers.

6.5 Related Work
To the best of our knowledge, no previous work has been
able to extract the parameters of neural networks on GPU us-
ing physical side-channel. Previous works have demonstrated
parameter extraction on microcontrollers and FPGAs using
power or EM side channel, as shown in Table 3. In addition,

Clock Side Parameter
Author Platform (MHz) channel datatype

Batina, et al. [13] MCU 20, 84 EM FP32
Dubet, et al. [21] FPGA 24 Power Binary
Yoshida, et al. [64] FPGA 25 Power INT8
Regazzoni, et al. [53] FPGA N/A9 EM Binary
Yli-Mäyry, et al. [63] FPGA N/A9 EM Binary
Li, et al. [37] FPGA 25 Power INT8
Joud, et al. [31] MCU 100 EM FP32
Gongye et al. [25] FPGA 320 EM INT8
BarraCUDA GPU 625, 920 EM INT8, FP16

Table 3: Comparison with related work.

these attacks were performed on neural networks with binary
parameters [21, 53, 63], 8-bit parameters [13, 25, 37, 64] or
32-bit parameters [13, 31]. Our work demonstrates parame-
ter extraction of 8- and 16-bit parameters. Furthermore, our
work presents a CEMA attack on weights where the number
of cores and the clock frequency at these cores operate are
significantly larger than in related works. The large number
of cores, with almost 1GHz clock frequency, presents a chal-
lenge in both the measurement and attack stages. Given that
GPUs are the backbone of AI, it is of utmost importance to
assess the resilience of GPU accelerated workloads against
weight extraction attacks, a task our research addresses.

7 Conclusions

In this work, we analyzed the GPUs of Nvidia Jetson Nano
and Nvidia Jetson Orin Nano, commonly chosen platforms
for real-world neural network implementations, for resilience
against side-channel attacks that aim to extract the weights
of the target NN. First, we find multiple vulnerable points
where the GPUs leak information about the parameters of the
target DNN. Subsequently, we demonstrate the extraction of
weights and biases of convolutional and dense layers. Overall,
the neural network implementations of Nvidia’s TensorRT
framework are vulnerable to parameter extraction using EM
side-channel attack despite the networks running in a highly
parallel and noisy environment. Protecting their implementa-
tions in security or privacy-sensitive applications remains an
open problem.

8 Acknowledgments

This research was supported by: an ARC Discovery Project
number DP210102670; the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972; MV
Impact Ai-SecTools (VJ02010010). In addition, this work

9The clock frequency is not disclosed in these attacks, but it is at most
800MHz as both attack XILINX ZYNQ chip [12].

was (in part) supported by Dutch Research Council (NWO)
through the PROACT project (NWA.1215.18.014), TTW
PREDATOR project 19782 and the CiCS project of the re-
search programme Gravitation under the grant 024.006.037.

9 Ethics considerations

We notified Nvidia of the vulnerabilities found, and they ac-
knowledged our findings. Nvidia recommends that users fol-
low guidelines to prevent physical access and information
leakage. In addition, we used our own equipment during the
experiments in our laboratory and no team-member’s well-
being was adversely affected.

10 Open science

We provide code to run neural network models for each
GPU device investigated in this work. We also provide
the code used for elastic alignment. Lastly, we provide a
CUDA implementation for running the attack and an ex-
ample traceset to try. The artifacts are available at https:
//zenodo.org/records/14678147.

References

[1] https://www.langer-emv.de/en/product/mfa-
active-1mhz-up-to-6-ghz/32/mfa-r-0-2-
75-near-field-micro-probe-1-mhz-up-to-1-
ghz/854. Accessed: 2022-01-25.

[2] https://www.langer-emv.de/en/product/rf-
passive-30-mhz-up-to-3-ghz/35/rf-b-0-3-3-
h-field-probe-mini-30-mhz-up-to-3-ghz/17.
Accessed: 2023-03-25.

[3] https://developer.download.nvidia.com/CUDA/
training/StreamsAndConcurrencyWebinar.pdf.
Accessed: 2022-11-30.

[4] Cuda Context. https://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html#
context. Accessed: 2022-09-30.

[5] CUDA programming model. https://docs.
nvidia.com/cuda/cuda-c-programming-
guide/index.html#programming-model. Ac-
cessed: 2022-09-30.

[6] cuobjdump. https://docs.nvidia.com/cuda/
cuda-binary-utilities/#usage. Accessed: 2022-
09-30.

[7] Jetso orin nano module. https://developer.nvidia.
com/downloads/assets/embedded/secure/
jetson/orin_nano/docs/jetson_orin_nano_ds.
Accessed: 2024-03-15.

[8] Jlsca. https://github.com/Riscure/Jlsca. Ac-
cessed: 2022-09-30.

[9] NVIDIA Jetson Nano. https://developer.nvidia.
com/embedded/jetson-nano-developer-kit. Ac-
cessed: 2022-09-30.

[10] SIMT architecture. https://docs.nvidia.
com/cuda/cuda-c-programming-guide/#simt-
architecture. Accessed: 2022-09-30.

[11] Tegra X1 System-On-Chip. http://international.
download.nvidia.com/pdf/tegra/Tegra-X1-
whitepaper-v1.0.pdf. Accessed: 2022-09-30.

[12] ZYNQ Data Sheet. https://docs.xilinx.com/v/u/
en-US/ds187-XC7Z010-XC7Z020-Data-Sheet. Ac-
cessed: 2022-09-30.

[13] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan
Picek. CSI–NN: Reverse engineering of neural network
architectures through electromagnetic side channel. In
USENIX Security, pages 515–532, 2019.

[14] Eric Brier, Christophe Clavier, and Francis Olivier. Cor-
relation power analysis with a leakage model. In CHES,
pages 16–29, 2004.

[15] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High
performance convolutional neural networks for docu-
ment processing. In Frontiers in Handwriting Recogni-
tion, 2006.

[16] Łukasz Chmielewski and Léo Weissbart. On reverse
engineering neural network implementation on GPU. In
AIHWS, pages 96–113, 2021.

[17] François Chollet. Xception: Deep learning with depth-
wise separable convolutions. In CVPR, pages 1251–
1258, 2017.

[18] Christophe Clavier, Benoit Feix, Georges Gagnerot,
Mylène Roussellet, and Vincent Verneuil. Horizontal
correlation analysis on exponentiation. In ICICS, pages
46–61, 2010.

[19] Jean-Sébastien Coron and Louis Goubin. On Boolean
and arithmetic masking against differential power anal-
ysis. In CHES, pages 231–237, 2000.

[20] Josef Danial, Debayan Das, Santosh K. Ghosh, Arijit
Raychowdhury, and Shreyas Sen. Scniffer: Low-cost,
automated, efficient electromagnetic side-channel sniff-
ing. IEEE Access, 8:173414–173427, 2019.

[21] Anuj Dubey, Rosario Cammarota, and Aydin Aysu.
Maskednet: The first hardware inference engine aim-
ing power side-channel protection. In HOST, pages
197–208, 2020.

https://zenodo.org/records/14678147
https://zenodo.org/records/14678147
https://www.langer-emv.de/en/product/mfa-active-1mhz-up-to-6-ghz/32/mfa-r-0-2-75-near-field-micro-probe-1-mhz-up-to-1-ghz/854
https://www.langer-emv.de/en/product/mfa-active-1mhz-up-to-6-ghz/32/mfa-r-0-2-75-near-field-micro-probe-1-mhz-up-to-1-ghz/854
https://www.langer-emv.de/en/product/mfa-active-1mhz-up-to-6-ghz/32/mfa-r-0-2-75-near-field-micro-probe-1-mhz-up-to-1-ghz/854
https://www.langer-emv.de/en/product/mfa-active-1mhz-up-to-6-ghz/32/mfa-r-0-2-75-near-field-micro-probe-1-mhz-up-to-1-ghz/854
https://www.langer-emv.de/en/product/rf-passive-30-mhz-up-to-3-ghz/35/rf-b-0-3-3-h-field-probe-mini-30-mhz-up-to-3-ghz/17
https://www.langer-emv.de/en/product/rf-passive-30-mhz-up-to-3-ghz/35/rf-b-0-3-3-h-field-probe-mini-30-mhz-up-to-3-ghz/17
https://www.langer-emv.de/en/product/rf-passive-30-mhz-up-to-3-ghz/35/rf-b-0-3-3-h-field-probe-mini-30-mhz-up-to-3-ghz/17
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#context
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#context
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#context
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#programming-model
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#programming-model
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#programming-model
https://docs.nvidia.com/cuda/cuda-binary-utilities/#usage
https://docs.nvidia.com/cuda/cuda-binary-utilities/#usage
https://developer.nvidia.com/downloads/assets/embedded/secure/jetson/orin_nano/docs/jetson_orin_nano_ds
https://developer.nvidia.com/downloads/assets/embedded/secure/jetson/orin_nano/docs/jetson_orin_nano_ds
https://developer.nvidia.com/downloads/assets/embedded/secure/jetson/orin_nano/docs/jetson_orin_nano_ds
https://github.com/Riscure/Jlsca
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#simt-architecture
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#simt-architecture
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#simt-architecture
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
https://docs.xilinx.com/v/u/en-US/ds187-XC7Z010-XC7Z020-Data-Sheet
https://docs.xilinx.com/v/u/en-US/ds187-XC7Z010-XC7Z020-Data-Sheet

[22] Fürkan Elibol, Uğur Sarac, and Işin Erer. Realistic eaves-
dropping attacks on computer displays with low-cost
and mobile receiver system. In EUSIPCO, pages 1767–
1771, 2012.

[23] Kunihiko Fukushima. Visual feature extraction by a mul-
tilayered network of analog threshold elements. IEEE
Trans. Syst. Sci. Cybern., 5(4):322–333, 1969.

[24] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Ro-
hatgi, et al. A testing methodology for side-channel
resistance validation. In NIST non-invasive attack test-
ing workshop, volume 7, pages 115–136, 2011.

[25] Cheng Gongye, Yukui Luo, Xiaolin Xu, and Yunsi Fei.
Side-channel-assisted reverse-engineering of encrypted
DNN hardware accelerator IP and attack surface explo-
ration. In IEEE S&P, 2024.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[27] Zhang Hongxin, Huang Yuewang, Wang Jianxin,
Lu Yinghua, and Zhang Jinling. Recognition of electro-
magnetic leakage information from computer radiation
with SVM. Computers & Security, 28(1-2):72–76, 2009.

[28] Kurt Hornik, Maxwell Stinchcombe, and Halbert White.
Multilayer feedforward networks are universal approxi-
mators. Neural Networks, 2(5):359–366, 1989.

[29] Peter Horvath, Lukasz Chmielewski, Leo Weissbart,
Lejla Batina, and Yuval Yarom. CNN architecture ex-
traction on edge GPU. In AIHWS, 2024.

[30] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Binarized neural net-
works. In NeurIPS, 2016.

[31] Raphaël Joud, Pierre-Alain Moëllic, Simon Pontié, and
Jean-Baptiste Rigaud. A practical introduction to side-
channel extraction of deep neural network parameters.
In CARDIS, pages 45–65, 2022.

[32] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differen-
tial power analysis. In CRYPTO, pages 388–397, 1999.

[33] Paul C. Kocher. Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems. In
CRYPTO, pages 104–113, 1996.

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. NeurIPS, 25:1097–1105, 2012.

[35] Markus G. Kuhn and Ross J. Anderson. Soft Tempest:
Hidden data transmission using electromagnetic emana-
tions. In International Workshop on Information Hiding,
pages 124–142, 1998.

[36] Nikolay Laptev, Jason Yosinski, Li Erran Li, and Slawek
Smyl. Time-series extreme event forecasting with neural
networks at uber. In ICML, pages 1–5, 2017.

[37] Ge Li, Mohit Tiwari, and Michael Orshansky. Power-
based attacks on spatial DNN accelerators. ACM Jour-
nal on Emerging Technologies in Computing Systems,
18(3):1–18, 2022.

[38] Min Lin, Qiang Chen, and Shuicheng Yan. Network in
network. arXiv preprint arXiv:1312.4400, 2013.

[39] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth,
Jie Chen, Xinwang Liu, and Matti Pietikäinen. Deep
learning for generic object detection: A survey. Inter-
national journal of computer vision, 128(2):261–318,
2020.

[40] Zhuoran Liu, Niels Samwel, Léo Weissbart, Zhengyu
Zhao, Dirk Lauret, Lejla Batina, and Martha Larson.
Screen gleaning: A screen reading TEMPEST attack
on mobile devices exploiting an electromagnetic side
channel. NDSS, 2021.

[41] Henrique Teles Maia, Chang Xiao, Dingzeyu Li, Eitan
Grinspun, and Changxi Zheng. Can one hear the shape
of a neural network?: Snooping the GPU via magnetic
side channel. In USENIX Security, pages 4383–4400,
2022.

[42] Stefan Mangard, Elisabeth Oswald, and Thomas Popp.
Power analysis attacks: Revealing the secrets of smart
cards, volume 31. Springer Science & Business Media,
2008.

[43] Paulius Micikevicius, Dusan Stosic, Neil Burgess, Mar-
ius Cornea, Pradeep Dubey, Richard Grisenthwaite,
Sangwon Ha, Alexander Heinecke, Patrick Judd, John
Kamalu, Naveen Mellempudi, Stuart Oberman, Moham-
mad Shoeybi, Michael Siu, and Hao Wu. FP8 formats
for deep learning. arXiv preprint arXiv:2209.05433,
2022.

[44] Amir Moradi, Bastian Richter, Tobias Schneider, and
François-Xavier Standaert. Leakage detection with the
x2-test. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 209–237, 2018.

[45] Sharan Narang, Gregory Diamos, Erich Elsen, Paulius
Micikevicius, Jonah Alben, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, et al. Mixed precision training. In ICLR,
2017.

[46] Daniel W Otter, Julian R Medina, and Jugal K Kalita.
A survey of the usages of deep learning for natural lan-
guage processing. IEEE transactions on neural net-
works and learning systems, 32(2):604–624, 2020.

[47] Philippe Pierre Pébay. Formulas for robust, one-pass
parallel computation of covariances and arbitrary-order
statistical moments. Sandia Report SAND2008-6212,
Sandia National Laboratories, 2008.

[48] Emmanuel Prouff and Matthieu Rivain. Masking against
side-channel attacks: A formal security proof. In Euro-
crypt, pages 142–159, 2013.

[49] Hendrik Purwins, Bo Li, Tuomas Virtanen, Jan Schlüter,
Shuo-Yiin Chang, and Tara Sainath. Deep learning
for audio signal processing. IEEE Journal of Selected
Topics in Signal Processing, 13(2):206–219, 2019.

[50] Jerry Quinn and Miguel Ballesteros. Pieces of eight:
8-bit neural machine translation. In NAACL-HLT (3),
pages 114–120, 2018.

[51] Jean-Jacques Quisquater and David Samyde. Elec-
tromagnetic analysis (EMA): measures and counter-
measures for smart cards. In E-smart, pages 200–210,
2001.

[52] Syama Sundar Rangapuram, Matthias W. Seeger, Jan
Gasthaus, Lorenzo Stella, Yuyang Wang, and Tim
Januschowski. Deep state space models for time se-
ries forecasting. NeurIPS, 2018.

[53] Francesco Regazzoni, Shivam Bhasin, Amir Alipour,
Ihab Alshaer, Furkan Aydin, Aydin Aysu, Vincent
Beroulle, Giorgio Di Natale, Paul D. Franzon, David
Hély, Naofumi Homma, Akira Ito, Dirmanto Jap,
Priyank Kashyap, Ilia Polian, Seetal Potluri, Rei Ueno,
Elena Ioana Vatajelu, and Ville Yli-Mäyry. Machine
learning and hardware security: Challenges and oppor-
tunities. In ICCAD, pages 141:1–141:6, 2020.

[54] Alaa Sagheer and Mostafa Kotb. Time series forecast-
ing of petroleum production using deep lstm recurrent
networks. Neurocomputing, 323:203–213, 2019.

[55] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim
Januschowski. Deepar: Probabilistic forecasting with
autoregressive recurrent networks. International Jour-
nal of Forecasting, 36(3):1181–1191, 2020.

[56] Tobias Schneider and Amir Moradi. Leakage assess-
ment methodology. In CHES, pages 495–513, 2015.

[57] David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanc-
tot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,

et al. Mastering chess and shogi by self-play with a gen-
eral reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[58] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[59] Mingxing Tan and Quoc Le. EfficientNet: Rethinking
model scaling for convolutional neural networks. In
ICML, pages 6105–6114, 2019.

[60] Jasper G. J. van Woudenberg, Marc F. Witteman, and
Bram Bakker. Improving differential power analysis by
elastic alignment. In CT-RSA, pages 104–119, 2011.

[61] Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie
Kerckhof, and François-Xavier Standaert. Shuffling
against side-channel attacks: A comprehensive study
with cautionary note. In Asiacrypt, pages 740–757,
2012.

[62] Mengjia Yan, Christopher W. Fletcher, and Josep Torrel-
las. Cache telepathy: Leveraging shared resource attacks
to learn DNN architectures. In USENIX Security, pages
2003–2020, 2020.

[63] Ville Yli-Mäyry, Akira Ito, Naofumi Homma, Shivam
Bhasin, and Dirmanto Jap. Extraction of binarized neu-
ral network architecture and secret parameters using
side-channel information. In ISCAS, pages 1–5, 2021.

[64] Kota Yoshida, Takaya Kubota, Shunsuke Okura, Mit-
suru Shiozaki, and Takeshi Fujino. Model reverse-
engineering attack using correlation power analysis
against systolic array based neural network accelerator.
In ISCAS, pages 1–5, 2020.

A Convolution implementation details

Listing 1: FP16 convolution code snippet

HFMA2 R0 , R94 , R109 , R0;
HFMA2 R3 , R92 , R108 , R3;
LDS .U .128 R116 , [R88 +0 x210];

In this section, we show how the computation of partial
sums differs based on the representation of the parameters
and how this influences the attack. Specifically, the FP16 and
INT8 data types have their own specialized instructions where
the GPU registers are akin to vector registers.
FP16 convolution. As demonstrated in Listing 1, FP16-based
convolution uses the HFMA2 instruction, which performs two
half-precision fused-multiply-adds in parallel. As illustrated

Figure 8: HFMA2 instruction operation with two input chan-
nels.

in Figure 8, the instruction takes three input registers, each
is a two-lane vector. It multiplies the values in the matching
channels of two registers, adds the result to the matching
lanes of the third, and stores the result in the output register.
In all instances we have seen, a single register is used as an
accumulator, where the multiplication result is added to it.
Our leakage model targets each partial sum (16 bits) that is
written into this accumulator register.

Listing 2: INT8 convolution code snippet

IDP .4A.S8.S8 R62 , R71 , R83 , R62 ;
IDP .4A.S8.S8 R59 , R69 , R82 , R59 ;
LDS .128 R64 , [R97 +0 x200];

Figure 9: IDP.4A instruction operation with 4 input channels.

INT8 convolution. Listing 2 shows an example of code
used in the INT8 implementation. The implementation uses
the IDP.4A instruction to perform a 4-way dot product and
accumulate operation, depicted in Figure 9. The instruction
first multiplies the elements in matching lanes in two registers.
It then sums the results and adds them to a third register, which
stores a signed 32-bit integer. As in the FP16 case, in all uses
we have seen, IDP.4A uses a single register as input and
output numbers.

To extract weights, our leakage model targets the 32-bit

partial sum (sc in Figure 9) stored in the accumulator register.
As the result depends on all four input lanes, the complexity of
the CEMA attack grows to up to 32 bits. In practice, the code
often uses less than four lanes. Specifically, when processing
greyscale images, convolutions tend to use only one lane,
whereas when processing color images, convolutions use three
lanes, one for each color channel.

Using the INT8 representation on the Orin Nano, Tensor
Core implementations use the IMMA (Integer Matrix Mul-
tiply and Accumulate) instruction. IMMA works on a warp
level, meaning the threads in the warp must cooperate, but
its execution is similar to IDP.4A on a thread level. The
implementations we experiment with in this paper do not use
the IMMA instruction. However, the techniques we develop
for parameter extraction are directly applicable to it as well.
Dense layer. The implementation of dense layers follows
the same design as convolutional layers. In these implementa-
tions, each accumulator register holds the partial sums of the
weighted sum of a node in the layer. Similarly to INT8 con-
volutional implementations, the dense layer implementation
uses the IDP.4A instruction to calculate the partial sums.
Consequently, as in the convolutional, there is a need to guess
32 bits, except in edge cases, where some channels are set to
zero.

	Introduction
	Background
	Deep Neural Networks
	Side-Channel Analysis
	Electromagnetic Emanation
	Leakage Assessment

	CUDA Programming Model
	GPU Streaming Multiprocessor
	TensorRT Workflow

	Attack Procedure
	Threat Model
	Sensitive Intermediate Values
	Experimental Setup
	EM Probe Positioning
	Trace Acquisition
	Trace Preprocessing

	Profiling
	Layer Implementation
	Identifying Partial Sums
	Localizing Partial Sums
	Bias Leakage
	CEMA Implementation in CUDA

	Parameter Extraction Results
	FP16 Parameter Extraction
	Convolutional Layer

	INT8 Parameter Extraction
	Convolutional Layer
	Dense Layer
	Attacking Deeper Layers.
	Parameter extraction comparisons

	Discussion
	Approaching Additional platforms
	Desktop/Datacenter GPUs
	Limitations
	Mitigation
	Related Work

	Conclusions
	Acknowledgments
	Ethics considerations
	Open science
	Convolution implementation details

