
Errata Slip
 Proceedings of the 26th USENIX Security Symposium

Acknowledgements
We thank our anonymous reviewers for their helpful
feedback. This research was supported by the NSF under
award DGE-1500084, CNS-1563848, CRI-1629851,
CNS-1017265, CNS-0831300, and CNS-1149051, ONR
under grant N000140911042 and N000141512162,
DHS under contract No. N66001-12-C-0133, United
States Air Force under contract No. FA8650-
10-C-7025, DARPA under contract No. DARPA
FA8650-15-C-7556, and DARPA HR0011-16-C-0059,
and ETRI under grant MSIP/IITP[B0101-15-0644].

In the paper “Efficient Protection of Path-Sensitive Control Security” by Ren Ding and Chenxiong Qian, Georgia
Tech; Chengyu Song, UC Riverside; Bill Harris, Taesoo Kim, and Wenke Lee, Georgia Tech (Wednesday session,
“Systems Security I,” pp. 131–148 of the Proceedings) the authors wish to add the following:

Page 1

Page 2

In the paper “Venerable Variadic Vulnerabilities Vanquished” by Priyam Biswas, Purdue University; Alessandro Di
Federico, Politecnico di Milano; Scott A. Carr, Purdue University; Prabhu Rajasekaran, Stijn Volckaert, Yeoul Na, and
Michael Franz, University of California, Irvine; Mathias Payer, Purdue University (Wednesday session, “Bug Finding
II”, pp. 183-198 of the Proceedings) the authors wish to add the following:

Programming languages like C and C++ support vari-
adic functions (i.e., functions with variable number of
arguments). For such functions the semantic depends
on the implicit agreement between caller and callee. In
“Venerable Variadic Vulnerabilities Vanquished” [1], we
propose HexVASAN, a sanitizer that makes the contract
between caller and callee explicit by type checking each
function argument that is used in the callee.

For each variadic call, the caller generates a list of
types that is then used in the callee to verify that the ex-
pected types match the actual types. In the paper, we
describe the design of a detailed algorithm that statically
hashes the types to a unique number.

In the initial prototype, we used this described algo-
rithm. As we extended testing to additional software,
we simplified the implementation of the algorithm for
pointer types (to handle some then unsupported corner
cases). This simplified implementation distinguishes be-
tween primitive types, unpacked aggregate types, and
primitive pointers. The simplified implementation was
unable to distinguish between different packed aggregate
types (e.g., struct {int, int} and struct {int,
double}) or sub-types of primitive types. After testing,
we forgot to revert back to the full hashing algorithm.

To fully support all these corner cases, the implemen-
tation needs to be aware of the part of the ABI that cov-
ers packing/unpacking of aggregate types during calls.
We have updated our prototype accordingly and extended
the original implementation with support for packing/un-
packing. Note that the inconsistency only affected the
compile time of programs. We repeated the full evalua-
tion to validate our updated prototype. We tested SPEC
CPU2006 on a server system with an Intel Xeon E5-2660
CPU and 64 GiB of RAM, and Firefox on a desktop
system with an Intel Core i7-4790 CPU and 16 GiB of
RAM. Both systems run Ubuntu 14.0.5 LTS 64-bit. We
tested Firefox 51.0.1 as well as 54.0.1, the latest version
as of this writing. Figure 1 and Table 1 show the SPEC
and Firefox results. As hashing is purely static, the per-
formance remained roughly the same (as expected). Due
to the increased precision, we discovered new type vio-
lations in Firefox.

We would like to thank Istvan Haller for the thorough
external code review of our open-sourced prototype and
for informing us and the PC chairs about the simplifi-

cation in the original prototype. We acknowledge the in-
consistency between the design section and the prototype
used for the evaluation. We have updated the prototype
so that the design section in the paper and open-source
prototype implementation match fully.

0

0.2

0.4

0.6

0.8

1

Native HexVASAN

Figure 1: Runtime overhead of HexVASAN for the
SPEC CINT2006 benchmarks, compared to baseline.

Benchmark Native HexVASAN

Octane
AVERAGE 33824.40 33717.40
STDDEV 74.96 125.89
OVERHEAD 0.32%

JetStream
AVERAGE 194.86 193.68
STDDEV 1.30 0.58
OVERHEAD 0.61%

Kraken
AVERAGE [ms] 885.52 887.12
STDDEV [ms] 11.02 7.31
OVERHEAD 0.18%

Table 1: Updated performance overhead on Firefox
benchmarks. For Octane and JetStream higher is better,
while for Kraken lower is better.

References
[1] BISWAS, P., FEDERICO, A. D., CARR, S. A., RAJASEKARAN,

P., VOLCKAERT, S., NA, Y., FRANZ, M., AND PAYER, M. Ven-
erable Variadic Vulnerabilities Vanquished. In SEC: USENIX Se-
curity Symposium (2017).

In the paper “Venerable Variadic Vulnerabilities Vanquished” by Priyam Biswas, Purdue University; Alessandro
Di Federico, Politecnico di Milano; Scott A. Carr, Purdue University; Prabhu Rajasekaran, Stijn Volckaert, Yeoul
Na, and Michael Franz, University of California, Irvine; Mathias Payer, Purdue University (Wednesday session,
“Bug Finding II,” pp. 183–198 of the Proceedings) the authors wish to add the following:

