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Abstract
ARM TrustZone, a security extension that provides a se-

cure world, a trusted execution environment (TEE), to

run security-sensitive code, has been widely adopted in

mobile platforms. With the increasing momentum of

ARM64 being adopted in server markets like cloud, it

is likely to see TrustZone being adopted as a key pil-

lar for cloud security. Unfortunately, TrustZone is not

designed to be virtualizable as there is only one TEE

provided by the hardware, which prevents it from be-

ing securely shared by multiple virtual machines (VMs).

This paper conducts a study on variable approaches to

virtualizing TrustZone in virtualized environments and

then presents vTZ, a solution that securely provides each

guest VM with a virtualized guest TEE using existing

hardware. vTZ leverages the idea of separating function-

ality from protection by maintaining a secure co-running

VM to serve as a guest TEE, while using the hardware

TrustZone to enforce strong isolation among guest TEEs

and the untrusted hypervisor. Specifically, vTZ uses a

tiny monitor running within the physical TrustZone that

securely interposes and virtualizes memory mapping and

world switching. vTZ further leverages a few pieces of

protected, self-contained code running in a Constrained

Isolated Execution Environment (CIEE) to provide se-

cure virtualization and isolation among multiple guest

TEEs. We have implemented vTZ on Xen 4.8 on both

ARMv7 and ARMv8 development boards. Evaluation

using two common TEE-kernels (secure kernel running

in TEE) such as seL4 1 and OP-TEE shows that vTZ pro-

vides strong security with small performance overhead.

1 Introduction

ARM TrustZone [20] has been widely used as an ap-

proach to providing a TEE for mobile devices including

Samsung’s Galaxy [14] and Huawei’s Mate [17]. TEE

has been used to protect security-critical data like cryp-

tographic keys and payment information [45, 42, 54].

Generally, TrustZone provides hardware-based access

control of hardware resources, by enabling a proces-

sor to run in two asymmetrically-isolated execution en-

vironments: a secure world, which is a trusted execu-

tion environment (TEE), can be configured to access all

resources of a normal world but not vice versa. To

enable TrustZone as a security pillar for ARM-based

platform, there have been many secure kernels running

in TEEs (called TEE-kernel), including Trustonic [11],

Qualcomm’s QSEE [7] and Linaro’s OP-TEE [6], to host

various Trusted Applications (TAs) with different func-

tionalities [21, 55, 43, 42, 38, 66, 59, 8].

While currently TrustZone is mainly deployed on mo-

bile platforms, AMD has integrated TrustZone in their

first 64-bit ARM-based SoC solution named “Hiero-

falcon” [1]. There are also many ARM-based server

SoC in the market, including AppliedMicro’s “X-Gene

3” [12], Cavium’s ThunderX [47], and AMD’s “Opteron

A1100” [2]. Internet companies like PayPal and Baidu

have deployed ARM servers at scale for years [60, 52].

On the other hand, an increasing number of virtualization

features have been incorporated into ARM platforms.

For example, in ARMv7 architecture, a special CPU

mode called hyp mode is added for hosting a hypervi-

sor; two-stage address translation together with System

Memory Management Unit (SMMU) are also provided

to support address translation and secure DMA for virtu-

alization. With such virtualization extensions, commer-

cial virtualization softwares like Xen [37] and KVM [28]

have provided built-in support for ARM platform.

With ARM gaining increasing momentum in the

server market, one natural question to ask is: can Trust-

Zone, the security pillar of ARM platform, be leveraged

by multiple VMs on a virtualized platform? Unfortu-

nately, as TrustZone currently provides almost no sup-

port for virtualization, all VMs have to share one secure

world, which means one TEE-kernel in the secure world

serves different TAs for all VMs. Meanwhile, it is known

that TEE-kernels are not bug-free and there have been
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multiple security vulnerabilities discovered from major

TEE-kernel providers including Samsung, Huawei and

Qualcomm [61, 62, 24]. Since the TEE-kernel has a

higher privilege than any normal world software, once

it gets compromised, attackers can access any resources

of all VMs as well as the hypervisor, which makes the

TEE-kernel the “single point of breach”.

One straightforward way to virtualize TrustZone

would be using a hypervisor in the normal world to sim-

ulate TrustZone without leveraging any features of the

hardware TrustZone. However, such an approach heav-

ily relies on the security of the hypervisor, which has a

Trusted Computing Base (TCB) with millions of lines of

code and usually hundreds of security vulnerabilities dis-

covered [68, 23]. Hence, once a hypervisor is compro-

mised, all guest TEEs (in the following paper, the guest

TEE presents the virtual secure world for each guest and

the secure world presents the hardware secure world) are

also under attackers’ control.

To address these issues, this paper introduces vTZ that

provides transparent virtualization of TrustZone while

still maintaining strong isolation among guest TEEs with

minimal software TCB. The key idea is separating func-

tionality from protection by maintaining one secure co-

running VM serving as a guest TEE for each guest, while

using the physical TrustZone to enforce strong isolation

among them together with the hypervisor. Specifically,

vTZ uses two secured modules running within the secure

world that interpose memory mapping and world switch-

ing. Based on the interposition, vTZ further provides

multiple Constrained Isolated Execution Environments

(CIEEs) that protect self-contained code snippets run-

ning inside them by leveraging TrustZone-enabled same-

privilege isolation [30, 21, 31] such that the hypervisor

cannot tamper with the CIEE or break their execution

integrity. The CIEEs are then used to contain the logic

that virtualizes the functionalities of the physical Trust-

Zone, including secure booting, secure configuration of

memory and devices for each guest TEE. vTZ also pro-

vides Control Flow Locking (CFLock) to enforce that the

CIEEs will be invoked at some specific point and cannot

be bypassed. Building atop vTZ, we also provide various

VM management operations including VM suspending

and resuming while preserving the security properties.

We have implemented vTZ based on Xen-ARM 4.8

on both LeMaker Hikey ARMv8 development board as

well as a Samsung’s Exynos Cortex development board,

and run two common TEE-kernels: seL4 [40, 39] and

OP-TEE [6] from STMicroelectronics and Linaro in

the guest TEE. The performance evaluation shows that

the average applications overhead introduced by vTZ is
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Figure 1: ARM with TrustZone and virtualization extensions:

TrustZone splits CPU into normal world and secure world, all other

hardware resources are split as well. Each world has its own user and

kernel space, and can switch to each other by smc instruction. Only

the normal world has virtualization support. TrustZone Address Space

Controller (TZASC): configure DRAM as secure or non-secure (S/NS)

partition. TrustZone Memory Adapter (TZMA): configure SRAM S/NS

partition. TrustZone Protection Controller (TZPC): configure periph-

eral S/NS partition. General Interrupt Controller (GIC): control in-

terrupt, can also configure interrupt S/NS partition. Random Number

Generator (RNG): device for generating the random number.

about 3% compared with Xen.

2 Background and Motivation

We first give a detail introduction on ARM hardware ex-

tensions including TrustZone and virtualization. Then

we introduce existing applications of TrustZone and dis-

cuss why virtualize it.

2.1 Overview of TrustZone

TrustZone [20] is a hardware security mechanism since

ARMv6 architecture, which includes security extensions

to ARM System-On-Chip (SoC) covering the processor,

memory and peripherals. For processor, TrustZone splits

it into two execution environments, a normal world and

a secure world (as shown in Figure 1). Both worlds

have their own user space and kernel space, together with

cache, memory and other resources. It is noted that only

the normal world has hyp mode.

The normal world cannot access the secure world’s re-

sources while the latter can access all the resources. Base

on this asymmetrical permission, the normal world is

used to run a commodity OS, which provides a Rich Exe-

cution Environment (REE). Meanwhile, the secure world,

always locates a secure small kernel (TEE-kernel). The

two worlds can switch to each other under the strict su-

pervision of a Secure Monitor running in monitor mode.

Typically, a special instruction called “secure monitor

call” (smc) is used for worlds switching.

TrustZone divides all memory into two parts: normal

part and secure part, which are distributed into normal
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world and secure world accordingly. Again, TrustZone

ensures that the normal world cannot access the secure

part of memory while the secure world can access the en-

tire memory. With this feature, two worlds can commu-

nicate with each other by using a piece of shared mem-

ory. Besides, the memory partition can be dynamically

controlled by the secure world, which gives secure ser-

vices running in the secure world the ability to dynami-

cally protect certain memory.

For I/O devices and interrupts, TrustZone also splits

them into two worlds. An I/O device can be partitioned

to one specific world. TrustZone ensures that the normal

world cannot access the secure world’s I/O devices while

the secure world can control the whole system’s devices.

For each interrupt, TrustZone can designate which world

to handle it. When a secure interrupt arrives, TrustZone

will switch the processor to the secure world to handle it.

Similar to memory, the partitioning of I/O devices and

interrupts can be dynamically configured by the secure

world.

2.2 Address Translation in ARM

The ARM virtualization extension not only adds a new

hyp mode in CPU, but brings a complex address trans-

lation [4]. ARM architecture leverages translation ta-

ble, which is pointed by a translation table base regis-

ter, to perform address translation. There exist two dif-

ferent kinds of address translations: one-stage and two-

stage. The one-stage translation simply maps virtual ad-

dress (VA) to physical address (PA). It is used in the hyp

mode (using a hyp-mode translation table) and the se-

cure world (using a stage-1 translation table). Both of

them have their own translation table base register. Two-

stage translation includes stage-1 and stage-2, which is

used by guest VMs. In stage-1, a VA is translated to an

intermediate physical address (IPA); in stage-2, the IPA

is further translated to the corresponding PA. The stage-1

page table is controlled by guest OS and the stage-2 page

table is controlled by the hypervisor.

2.3 TrustZone-based Applications

TrustZone is getting increasing popularity and has been

used in various scenarios to protect security-critical data

and enhance the security of the normal world.

Secure Storage and Credential Protection: The iso-

lation property of TrustZone makes it an ideal choice to

store user’s secret data, e.g., private keys, passwords,

credit card numbers, etc. For example, a web server

could put the private key and all the code accessing it into

the secure world [55] so that the private key will never

be accessed by the normal world, which can effectively

defend against memory exposure attacks such as Heart-

bleed attack [16] or buffer overread attack [58]. The

TrustOTP project [59] provides a secure one-time pass-

word (OTP) device on a mobile phone using TrustZone,

which can keep working even if the REE OS crashes.

Rubinov et al. [54] propose a method to automatically

partition a Java application to two parts: one security-

sensitive part in secure world and one feature-rich part in

normal world. All these systems and technologies can be

applied to the server platform in a seamless way.

Enforcing REE Security: TEE can be used to en-

hance the security of REE because the secure world

has higher privilege than the normal world. For ex-

ample, TZ-RKP [21] provides real-time protection for

the normal world kernel from within the secure world.

SPROBES [32] provides an introspection mechanism

protected by TrustZone that can instrument any instruc-

tion of a REE OS, which is able to detect REE kernel

rootkit. These technologies can also be used to enforce

the security of server OS and applications.

2.4 The Need to Virtualize TrustZone

On mobile phone, the TEE-kernel is usually device de-

pendent and is deployed by the phone manufacturer. For

example, Apple [35], Samsung [14] and Huawei [36] use

different TEE-kernels in their phones. A phone user is

not allowed to install a third party TEE-kernel even after

iOS jailbreak or Android root. Each TEE has one root

key, which is controlled by the device manufacturer and

used for TA authentication. A new TA needs to be signed

by the root key before running in the TEE of correspond-

ing device.

Since trustZone is not designed to be virtualizable,

currently on a virtualized environment, e.g., cloud, all

VMs on the same host have to share one TEE-kernel.

Such solution is not only inefficient, but may also cause

security issues, since there is no way for each VM to de-

ploy its own TEE-kernel. It means that cloud users are

restricted to use the root key controlled by the vender to

sign their TAs, and have to trust the only TEE-kernel pro-

vided by the vender which is the single point of breach in

software running inside TrustZone. Unfortunately, there

have been various security vulnerabilities discovered in

major vendors’ TEE-kernel [62, 61, 63, 64, 15]. These

motivate us to design vTZ to virtualize TrustZone to be

seamlessly used by multiple virtual machines, while pre-

serving the security properties offered by the hardware-

based TrustZone, so that each virtual machine can run its

own TEE-kernel in a secure and isolated environment.

3 Design Overview

In this section, we first discuss the goals and challenges

of TrustZone virtualization, and present two intuitive de-
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Table 1: Properties enforced by TrustZone which should also be enforced by vTZ. Meanwhile, shows how a malicious hypervisor can violate

these properties as well as possible results. S/W means secure world. N/W means normal world.

TrustZone

Features
System Properties Properties Violation by Malicious Hypervisor → Consequence

Secure Boot
P-1.1: S/W must boot before N/W. Violate boot order. → Secure configuration bypass.

P-1.2: Boot image of S/W must be checked. Violate integrity check of boot image. → Code injection in guest TEE.

P-1.3: S/W cannot be replaced. Replace a guest TEE with another one. → Providing malicious TEE.

CPU States

Protection

P-2.1: smc must switch to the correct world. Switch to a wrong guest TEE. → Providing malicious TEE.

P-2.2: Protect the integrity of N/W CPU states

during switching.
Tamper CPU states during switching. → Controlling execution of guest TEE.

P-2.3: Protect S/W CPU states. Tamper guest TEE’s CPU states. → Controlling execution of guest TEE.

Memory

Isolation

P-3.1: Only S/W can access secure memory. Let arbitrary VM access guest secure memory. → Info leakage.

P-3.2: Only S/W can configure memory parti-

tion.

Let arbitrary VM configure guest memory partition. → Reconfigure secure

memory as normal.

Peripheral

Assignment

P-4.1: Secure interrupts must be injected into

S/W.

Forbid interrupt being injected into guest TEE. → Disturbing the execution of

guest TEE.

P-4.2: N/W cannot access secure peripherals. Let guest N/W access secure peripherals. → Info leakage of secure peripherals.

P-4.3: Secure peripherals are trusted for S/W. Provide malicious peripherals for guest TEE. → Info leakage of guest TEE.

P-4.4: Only S/W can partition interrupt/periph-

erals.

Let arbitrary VM configure guest interrupt/peripherals. → Reconfigure secure

peripheral as normal.

signs. We then show our threat model, assumptions and

the design of vTZ.

3.1 Goals and Challenges

The goal of vTZ is to embrace both strong security as

well as high performance. We analyze a set of security

properties that physical TrustZone provides, as shown in

Table 1, which should be kept after TrustZone virtualiza-

tion. To enforce these properties, vTZ needs to address

the following challenges:

• Challenge 1: A compromised hypervisor may vio-

late the booting sequence or booting a compromised

or even a malicious guest TEE-kernel.

• Challenge 2: A compromised hypervisor may hi-

jack a guest TEE’s execution by tampering with its

CPU states. It may even switch to a malicious TEE

when performing world switching.

• Challenge 3: Once the hypervisor is compromised,

there is no confidentiality and integrity guarantee

for the secure memory owned by a guest TEE.

• Challenge 4: Guest TEEs trust peripherals that are

configured as secure. A malicious hypervisor may

provide a malicious virtual peripheral to a guest

TEE.

3.2 Alternative Designs

Design-1: Dual-Hypervisor. This design uses a full-

featured hypervisor to virtualize the secure world, which

can be called a TEE hypervisor, as shown in Figure 2(a).

Like the hypervisor in the normal world, the TEE hyper-

visor is in charge of multiplexing the secure world and

offers a virtualized interface of TrustZone to the normal

world. It also needs to associate a guest VM with its cor-

responding guest TEE. However, this design has several

issues.

The first issue is its large TCB. A TEE hypervisor

needs to virtualize a full-featured execution environment

as the physical TrustZone provides, which requires non-

trivial implementation complexity due to the lack of vir-

tualization support in the secure world. This leads to a

large code base for the TEE hypervisor. Further, since

the TEE hypervisor needs to work together with the REE

hypervisor to bind one guest TEE for each guest, the

TCB of such a design includes not only the TEE hyper-

visor but also the REE hypervisor. Otherwise, a mali-

cious REE hypervisor may let one guest VM in the nor-

mal world switch to another guest’s TEE.

The second issue is the poor compatibility with ex-

isting TEE-kernels. The TEE-kernel cannot run in the

kernel mode, since only the TEE hypervisor can reside

at the highest privilege level. While “trap and emulate”

may be a viable solution, there are some sensitive but

unprivileged instructions, which will silently fail instead

of trapping into the hypervisor when being executed in

user mode. For example, modifying some privileged

bits in CPSR register in user mode will just be ignored.

Para-virtualization is also possible, but it may lead to

compatibility and security problems since existing TEE-

kernels have to be modified and the TEE hypervisor has

to weaken isolation due to exposing more states and in-

terfaces to guest TEE-kernels.

The third issue is the large overhead due to costly

world switching, which involves two hypervisors to trap
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and emulates the world switching. An smc (secure mon-

itor call) will first be trapped in the REE hypervisor and

then transferred to the TEE hypervisor, which in turn

transfer the call to the designated guest TEE. This results

in a long call path and several privilege level crossings.

Design-2: Full Simulation of TrustZone. This de-

sign fully simulates multiple guest TEEs by using the

hypervisor running in the normal world to virtualize the

guest TEEs along with the normal world guest VMs and

to handle their interaction, as shown in Figure 2(b). All

switches between two virtualized worlds are simulated

by switching between two different VMs (called VMn

and VMs). This also means that the physical TrustZone

is not essential (not used).

Comparing with the first design, this design can

achieve better performance, less complexity, and better

compatibility. The main problem is its large TCB of a

commodity hypervisor, which includes not only the hy-

pervisor but also the management VM (for Xen) or the

host OS (for KVM). Either contains millions of lines of

code (LoC). There have been 236 and 103 security vul-

nerabilities uncovered in Xen [19] and KVM [18] respec-

tively, not to mention those in Linux itself.

3.3 Threat Model and Assumptions

vTZ assumes an ARM-based platform that implements

the TrustZone extension together with the virtualization

extension. All the hardware implementations are correct

and trustworthy. vTZ also assumes that the whole sys-

tem is loaded securely, including both the secure world’s

and the normal world’s code, which is ensured by se-

cure boot technology of TrustZone. Intuitively, secure

boot only guarantees the integrity of the system during

the boot-up process, but not the integrity thereafter. We

do not consider side channel attacks or physical attacks

to the memory and SoC, like cold boot or bus snooping.

We also do not consider the vulnerabilities within a guest

TEE.

We assume that any guest VM or guest TEE can be

malicious. Like prior work using same privilege level

protection [30, 21, 31], we assume the hypervisor itself

is not malicious, which is trust during system booting to

do initialization correctly. After booting, the hypervisor

can be compromised.

3.4 Our Design: vTZ

vTZ adopts the principle of separating functionality from

protection [68]. Specifically, vTZ relies on the nor-

mal world hypervisor to virtualize functionality of guest

TEEs but leverages the physical TrustZone to enforce

protection, as shown in Figure 2(c).

To enforce the booting integrity, vTZ uses the secure

world to check the booting sequence as well as perform

integrity checking (Section 5.1). To provide efficient

memory protection, vTZ uses Secured Memory Mapping

(SMM), a module in the secure world, to control all the

stage-2 translation tables as well as hypervisor’s transla-

tion table (Section 4.1). Based on that, vTZ can set secu-

rity policies to, e.g., ensure that any of the guest TEE’s

secure memory will never be mapped to other VMs or

the hypervisor, and the hypervisor cannot map any new

executable pages in hyp mode after booting up.

To protect the CPU states during context switching

and guest TEE’s execution, Secured World Switching

(SWS) hooks and checks all the switches in the secure

world, which alternatively saves and restores guest CPU

states for each guest TEE (Section 4.3). The virtual pe-

ripherals are also isolated through securely virtualizing

resource partitioning of peripherals and interrupts (Sec-

tion 5.3).
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The key to achieving the above interposition and pro-

tection is efficiency and vTZ achieves these by extend-

ing prior work with same privilege isolation [30, 21, 31]

to virtualized environments. Specifically, vTZ provides

a set of Constrained Isolated Execution Environments

(CIEEs) in hyp mode (Section 4.4). CIEE is isolated

from each other as well as from the hypervisor. To pre-

vent sophisticated attacks like ROP [53], vTZ ensures

the control flow and data flow integrity for code snip-

pets within each CIEE. Control Flow Locking (CFLock)

(Section 4.2) is used to provide non-bypassable hook for

CIEE and secured modules (SMM and SWS) in the se-

cure world. CIEE is not part of TCB since a compro-

mised CIEE cannot affect the security of other CIEEs or

guest TEEs.

The TCB of vTZ contains only the secured modules

running in the secure world, which has less than 2k LoC.

In contrast, the TCB for design-1 contains the huge REE

hypervisor as well as a smaller TEE hypervisor contain-

ing tens of thousands of LoC (e.g., NOVA [57] con-

tains a 9k LoC microhypervisor and 29k LoC VMM,

OKL4 [33] contains 9.8k LoC). The TCB for design-2

includes a whole commodity hypervisor, which contains

several millions of LoC.

4 Protection Mechanisms

As mentioned in Section 3.4, vTZ leverages four mech-

anisms: SMM, CFLock, SWS and CIEE to enforce the

security properties for guest TEEs, as demonstrated in

Figure 3. This section will describe all these mechanisms

in details.

4.1 SMM: Secured Memory Mapping

The Secured Memory Mapping (SMM) module runs in

the secure world for memory isolation. SMM controls

the VA-to-PA mapping in the hyp mode as well as IPA-

to-PA mappings for guest VMs in an exclusive way. It

provides two interfaces to the hypervisor, one for load-

ing a translation table and the other for modifying en-

tries of a translation table. Based on that, SMM manages

and enforces different security policies on every mem-

ory mapping operation. It only provides one interface to

some specific CIEEs which contain virtual partitioning

controller emulator (introduced in Section 5.3) to config-

ure security policies.

Exclusive Control of Memory Mapping: To ensure

that only the SMM can load or change memory mapping,

vTZ enforces that the hypervisor does not contain any in-

struction to do so. There are three ways for a hypervisor

to modify memory mapping: changing the base regis-

ter to a new translation table 2, changing the entries of

translation table, or disabling the address translation 3. In

vTZ, the hypervisor is modified so that is no instruction

that loads new translation table or disables translation.

Meanwhile, all the page tables are set as read-only to the

hypervisor. The corresponding operations are replaced

to invocations to SMM.

SMM maps the code pages of the hypervisor as read-

only so that the code will not be changed at runtime. It

also controls the swapping of hypervisor code and en-

sures the integrity of code during swapping in process.

To prevent return-to-guest attack, SMM ensures that no

guest memory will be mapped as executable in hyper-

visor’s space. Moreover, SMM forbids to map any new

page as executable in the hypervisor’s address space after

system booting. vTZ also ensures that there is no ROP

gadget that can be used to form new instructions to op-

erate the translation table (which is relatively trivial on

ARM platform since instruction alignment is required).

We also consider all the ISAs with different length.

4.2 CFLock: Control Flow Locking

Locking the control flow means enforcing a control flow

transfer to specific code at some certain event, so that the

code will not be bypassed to handle the event. CFLock

can “lock” the control flow when any exception hap-

pens, which is used to ensure the non-bypassability of

the SWS and CIEEs (described in following sections).

We force the control flow at the entry of different ex-

ception handlers. The ARM architecture uses a special

register to point to the base address of exception table,

and each table entry will correspond to one exception

handler. We deprive the hypervisor of ability to mod-

ify this base register by replacing all the modification

instructions with invocations to secure world, similar as

Section 4.1. The exception table will also be marked as

read-only by SMM, to enforce that each exception will

eventually reach to one specific handler. After that, cer-

tain control flow transfer instructions (e.g., an uncondi-
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tional jump to the entry of a CIEE) will be implanted in

these handlers. Since SMM ensures the code of hypervi-

sor is read-only, such instruction will never be modified.

4.3 SWS: Secured World Switching

Secured World Switching (SWS) is a module running

in the secure world enforcing the security properties of

guest’s world switching. SWS interposes two types of

switching: between one guest’s V Mn and VMs, as well

as between a virtual machine and the hypervisor. In vTZ,

these two types can be handled uniformly since the for-

mer is also handled by the hypervisor. To achieve com-

plete interposition, SWS ensures that each switching will

first trap to SWS itself.

Complete Interposition: On ARM architecture, there

are two situations causing switching from a guest VM

to the hypervisor. One is IRQ/FIQ interrupt which is

caused by hardware interrupts, the other is guest sync ex-

ception (hyp trap in ARM32), which is caused by any

trapping instructions (like smc, co-processor accessing,

hypercall, etc.) or data abort (like stage-2 translation ta-

ble abort). In both situations, switching is caused by ex-

ception. Hence, CFLock can be used to enforce that the

control flow will eventually be transferred to SWS.

If the hypervisor needs to switch to a guest, it must

change the current exception level from the hyp mode to

kernel mode. There are three methods for the hypervi-

sor to do so: by executing eret instruction, by executing

movs pc, lr instruction, or directly setting the exception

level (e.g., by executing CPS instruction); In order to en-

force a single exit point, SWS requires the hypervisor to

remove all these instructions and replace them with cor-

responding invocations to SWS. Thus, SWS ensures that

its interposition will be non-bypassable for each control

transfer between guest VMs and the hypervisor.

4.4 CIEE: Constrained Isolated Execution

Environment

CIEE is an environment in the hyp mode, which is used

to implement some key logics that emulate the function-

alities of TrustZone, e.g., virtualizing partition controller

(see Section 5.3). Each CIEE has its own translation ta-

ble, stack page and secure objects, and contains a piece

of code with a strong control flow integrity as well as

data flow integrity. Meanwhile, SMM and SWS will as-

sign different capabilities to different CIEEs, so that one

CIEE can only access its own secure objects. Each CIEE

has different copies of secure objects for different guests,

and one CIEE can only serve one caller guest at a time.

Enforce Security of CIEE: In order to protect CIEE

from a compromised hypervisor and ensure that it cannot

be bypassed, it must satisfy following requirements:

Normal World

CIEE
(Constrained Isolated 

Execution Environment)

Secure World

smc

smc

CIEE-code

stack 
page

write

request

writeread

hypervisor
data

r/w

code

Secure Obj

Figure 4: Constrained Isolated Execution Environment (CIEE): an

execution environment which is fixed on memory location to identify

itself to the secured modules running in the secure world. Its execu-

tion only depends on the stack page and secure objects. Interrupts are

disabled when in CIEE.

1. Single entry point: It is illegal to jump to the mid-

dle of a CIEE.

2. Run-to-completion: Once starting to run, it must

run to the completion without being interrupted.

3. No dependence on the hypervisor’s data: Other-

wise a compromised hypervisor can affect CIEE’s

execution.

4. No data exposure to the hypervisor: Otherwise a

compromised hypervisor may tamper with CIEE’s

running states.

5. Unforgeable to the secure world: A CIEE needs to

identify itself to the modules running in the secure

world; otherwise the hypervisor may impersonate to

be CIEE.

Figure 4 shows the design of CIEE in vTZ. Each

CIEE’s code is loaded to a fixed memory address during

initialization. The secure world is aware of CIEE’s meta-

data, which includes {entry addr, exit addr}, to meet the

requirement- 5©. The code pages of CIEE are mapped

as read-only by SMM to ensure the code integrity. By

default, the code pages of CIEE are mapped as non-

executable. The first and last instructions of a CIEE are

always smc. After the first smc (on a different executable

page) trapping to the secure world, vTZ will check the

trapping address stored in LR mon 4 and to identify the

specific CIEE by the address. Then SMM will remap the

corresponding CIEE’s code body to be executable, and

map stack pages as read/write. The remapping is done

only on the current CPU core; thus on other cores the

CIEE is still non-executable and its stack is not accessi-

ble. In this way, the execution must start from the first

smc, and the requirement- 1© is satisfied.

vTZ will disable any interrupt before transferring con-

trol to a CIEE. The code in CIEE must be self-contained,
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and will keep running till the last smc instruction. Thus,

the requirement- 2© is met. When trapping due to the

last smc, SMM will again remap the code body to non-

executable and clean the stack page to meet requirement-

4©. There is no need for the hypervisor to access CIEE’s

code, secure objects or CIEE’s stack page.

To further enforce the control flow integrity, protecting

the code page alone is not enough. We also ensure that

CIEE’s code only depends on either local data in stack

page or secure objects. The former is only mapped when

CIEE is executed, and the latter is mapped as read-only in

the hyp mode and can only be modified by invoking the

secured modules. So that we can satisfy requirement- 3©,

and hypervisor cannot tamper with CIEE’s control flow.

Since a CIEE contains code which serves the guest or

the hypervisor, vTZ enables a CIEE to write results back

to them. The memory used to store results for a guest

is marked as secure object, and the CIEE needs to ask

the SMM to write it. The hypervisor’s data is mapped

to the CIEE, so that the CIEE can directly write results

to the hypervisor’s memory. For example, the CIEE for

VM suspending (Section 5.4) could directly return the

encrypted snapshot of a VMs back to the hypervisor.

Privilege Isolation: CIEE is not in the TCB of vTZ.

vTZ isolates the privilege of different CIEEs from two

dimensions. First, one CIEE cannot access any sensitive

data not belonging to it. This is enforced by SMM which

ensures one CIEE’s own secure object and stack page

will never be mapped into other’s address space. Second,

one CIEE can only provide service to the current guest.

One CIEE will have different secure objects for different

guests. SWS can identify the current guest and then only

allows a CIEE to access current guest’s secure objects.

5 TrustZone Virtualization

In this section, we present how to virtualize TrustZone

features listed in Table 1 by using the four mechanisms

described in last section. We also demonstrate the pro-

cess of suspending and resuming a guest with its guest

TEE.

5.1 Virtualizing Secure Boot

Secure boot is used to ensure the integrity of booting.

The booting process of a TrustZone-enabled device in-

cludes following steps: 1) Loading a bootloader from

ROM, which is tamper resistant. 2) The bootloader ini-

tializes the secure world and loads a TEE-kernel to mem-

ory. 3) The TEE-kernel does a full initialization of the

secure world, including the secure world translation ta-

ble, vector table and so on. 4) The TEE-kernel switches

to the normal world and executes a kernel-loader. 5) The

kernel-loader loads a non-secure OS and runs it.

During the process, each time a loader loads a binary

image, it will calculate the checksum of the image to ver-

ify its integrity. Meanwhile, the booting order is also

fixed: the TEE-kernel is the first to run so that it can ini-

tialize the platform first. To virtualize the secure boot

process, vTZ is required to enforce the following proper-

ties:

• P-1.1: S/W must boot before N/W.

• P-1.2: Boot image of S/W must be checked.

• P-1.3: S/W cannot be replaced.

The virtualized secure boot process of vTZ is shown

in the top part of Figure 5. The hypervisor initializes

the data structure and allocates memory for both guest

VMn and its corresponding V Ms, loads the TEE-kernel

image and guest normal world OS image to the mem-

ory, respectively. Then the hypervisor will register the

two VMs in the Secured World Switching (SWS) mod-

ule. Since SWS controls all the world switches between

the hyp mode and a VM, it can ensure that only regis-

tered VM can be executed. During registration, SWS

first asks the Secured Memory Mapping (SMM) module

to remove all the mapping of memory pages allocated

to the guest from the hypervisor’s translation table and

checks the integrity of a guest’s TEE-kernel. Then SWS

creates a binding between the guest VMn and VMs by

recording their VMID, and marks their context data as

read-only to hypervisor. SMM will also initialize the

stage-2 translation tables of these two VMs and set the

VMID in the stage-2 translation table base register. So

the P-1.2 and P-1.3 are enforced. The scheduling of VM

is done by the hypervisor. SWS will ensure that the VMs

must run before the corresponding VMn to enforce P-1.1.

5.2 Protecting CPU states

vTZ needs to enforce following properties to provide the

same CPU states protection of TrustZone.

• P-2.1: smc must switch to the correct world.

• P-2.2: Protect the integrity of N/W CPU states dur-

ing switching.

• P-2.3: Protect S/W CPU states.

SWS intercepts all the switching between a guest VM

and the hypervisor, A switching includes saving states

of the current VM, finding the next VM, and restoring

its states. The states saving and restoring are done by

SWS in the secure world, while the finding of next VM

is done by the hypervisor, as shown in the bottom half of

Figure 5. Then SWS can check the restored target VM
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Figure 5: Boot and context switch process: Hypervisor is responsible

to build VM for each guest. SWS verifies every guest before hypervisor

can execute it, including initializing guest EPT and checking image

integrity. Let hypervisor switch between V Ms and V Mn. SWS checks

all entering to a VM.

to ensure P-2.1 and P-2.2 are satisfied. During execu-

tion, SWS also prevents the hypervisor from stealing or

tampering with V Ms’s context to achieve P-2.3. For ex-

ample, if one VM is exited because of the scheduling,

then its CPU states cannot be modified. Further, VMs’s

system control registers also cannot be modified by the

normal world hypervisor.

5.3 Virtualizing Resource Partitioning

TrustZone can split hardware resources to the normal

world or the secure world. Three different resource par-

titions are provided, together with three different con-

trollers which are used to configure the partition:

• Memory partitioning, which is configured by

TrustZone Address Space Controller (TZASC).

• Peripheral partitioning, which is configured by

TrustZone Protection Controller (TZPC).

• Interrupt partitioning, which is configured by

General Interrupt Controller (GIC).

Once set as secure, the resource can only be accessed by

the secure world. A secure interrupt must be injected to

the secure world and will lead to a world switching if it

happens in the normal world. All the three controllers

can be used to repartition the resource only by the secure

world.

It is needed for a guest to dynamically partition some

critical virtual devices such as virtual Random Num-

ber Generator (vRNG), vGIC and so on. For example,

a guest may only allow its guest TEE to configure the

vGIC, or first initialize a vRNG in VMs and then use it in

VMn. To support these requirements, vTZ provides the

same semantic of resource partitioning as a real Trust-

Zone, which includes the configuration of partitioning

and the enforcement of partitioning.

Virtualizing Partitioning Controllers: Following

two properties should be satisfied:

• P-3.2: Only S/W can configure memory partition.

• P-4.4: Only S/W can partition interrupt/peripher-

als.

The virtualization of partitioning configuration is done

by the classic “trap and emulate” method. vTZ provides

three virtual controllers (vTZASC, vTZPC and vGIC) for

each guest. ARM only provides memory mapped I/O, all

devices are operated by accessing their device memory

region. By mapping all the three controllers’ memory re-

gions as read-only in each guest’s stage-2 translation ta-

ble, any write to them will cause a trap to the hypervisor.

The CFLock enforces that the trap will be handled by a

handler in a CIEE. The handler first checks whether the

trap is raised by a VMs, and will ignore it if not, which

enforce P-3.2 and P-4.4. The handler then invokes a cor-

responding controller emulator to do the configuration.

The emulator runs in another CIEE and can only reparti-

tion for the guest who performs the write operation.

Secure Memory Partitioning: The following prop-

erty is a fundamental one:

• P-3.1: Only S/W can access secure memory.

This property is enforced by the SMM module through

the following policy: any guest’s secure memory region

can only be mapped in its VMs but not any other VMs or

the hypervisor.

Secure Device Partitioning: In secure device part,

vTZ must enforce the following two properties:

• P-4.2: N/W cannot access secure peripherals.

• P-4.3: Secure peripherals are trusted for S/W.

We have implemented commonly used secure devices

for existing TEE-kernel, like TZASC, TZPC, GIC, uart,

RTIC and so on. We virtualize these devices for each

guest by “trap and emulate”. Since all ARM devices use

memory mapped I/O, access to a virtual secure device

can be easily trapped by controlling stage-2 translation

table. When a virtual secure device is accessed, the CPU

will get trapped. The trap will be handled by a corre-

sponding emulator, which runs in a CIEE. The device

states are stored as secure objects belonging to the CIEE.

vTZ keeps different copies of devices state for different

guests, so that the emulator can virtualize the secure de-

vice for different guests. If the device is marked as a

secure peripheral by one guest, the emulator will enforce
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that it cannot be accessed by this guest’s VMn, so the

P-4.2 is enforced. One guest’s configuration will not in-

fluence others. The entire process is also protected by

CFLock, so that all the operations on virtual secure de-

vice will eventually be handled by the emulator in CIEE,

and P-4.3 is satisfied.

Secure Interrupt Partitioning: For interrupts, vTZ

needs to ensure the following property:

• P-4.1: Secure interrupts must be injected into S/W.

Each time when an interrupt happens, it will be han-

dled by a secure interrupt dispatcher. The dispatcher can

decide whether the interrupt is secure or not according

to a virtual interrupt partition list which is managed by

trusted virtual GIC. The CFLock enforces that the dis-

patcher cannot be bypassed and the CIEE ensures the se-

curity of it. These work together to enforce P-4.1.

5.4 Supporting TEE Management Opera-

tions

Suspending and resuming are two important operations

of virtualization. vTZ enforces the correctness and secu-

rity of these operations, as shown in Figure 6.

Guest TEE Suspension/Resumption: The hypervi-

sor needs to ask a suspend CIEE to save all secure states

of one guest. The suspend CIEE will first invoke the

SWS to encrypt and hash guest’s vTZ related data, in-

cluding CPU states, memory partition, interrupt parti-

tion, device partition, etc. Then it asks the SMM to en-

crypt and hash all guest’s secure pages and share them

with the hypervisor. The hypervisor stores all these en-

crypted data and hash value together with guest VMn’s

states into a snapshot file. Resuming process is similar

with that for suspending but in the opposite direction.

6 Performance Evaluation

We evaluate the performance of vTZ on both a Hikey

ARMv8 development board (64-bit) and an Exynos Cor-

tex ARMv7 development board (32-bit). The Hikey

board enables eight 1.2 GHz cores together with 2GB

memory. The Exynos board enables one 1.7 GHz core

and 1GB memory. We use Xen 4.4 [13] as the hyper-

visor and Linux 4.1 as the guest normal world kernel

and Dom0 kernel. For guest TEE-kernel, We ported

two widely used TEE-kernels, namely seL4 [9] and OP-

TEE [6], to vTZ. On the Exynos board, each guest to-

gether with Dom0 has one virtual CPU. On the Hikey

board, each guest, as well as Dom0, has one virtual CPU

and each virtual CPU is pinned on one physical CPU.

We leverage ARM’s performance monitor unit (PMU) to

measure the clock cycles.

Running Existing TEE-kernel: Running a TEE-

kernel on vTZ needs three steps. First, vTZ leverages

Xen’s multi-boot loader to load TEE-kernel’s image, so

we need to add a multi-boot header in the image. Second,

we add a new description file (e.g., platform config.h in

OP-TEE) to describe the memory layout of our guest

TEE. Finally, since vTZ already provides a secure con-

text switch, we remove the context switching logic in

TEE-kernel.

6.1 Micro-benchmark

World Switch Overhead: For the physical TrustZone,

the time of switching between two worlds is about

17,840 cycles on Exynos board and 1,294 cycles on

Hikey board. The cost includes context saving and

restoring in the monitor mode (shown in Table 2). In

vTZ, one switching between guest’s normal world and

guest TEE is about 34,164 cycles on Exynos and 6,837

cycles on Hikey. The overhead is still acceptable since

world switching happens rarely and thus has little effect

on TrustZone-based applications.

Secure Configuration Overhead: A TEE-kernel usu-

ally configures system resource partitioning during ini-

tialization or occasional run-time protection. Table 2

shows the overhead of these configurations in vTZ. The

native value is performing configuration by hardware in

the real secure world. Since HiSilicon, the vender of

hikey’s SoC, does not publish the register mapping of

TZASC or TZPC, the native time of Hikey is not pro-

vided. Same as world switching, secure configuration

operations happen rarely, so the overhead will have lim-

ited effect on the whole system.

Run-Time Integrity Checker: Besides virtualizing

secure devices like vTZASC, vTZPC and virtual GIC

(virtual devices used to perform resource partition),

we also virtualize and use Run-Time Integrity Checker

(RTIC) to evaluate the overhead of vTZ’s virtual secure

devices. RTIC is a commonly used security-related de-

vice which can calculate hash values of at most five dif-

ferent memory regions. TEE-kernel can leverage it to de-

tect whether some memory regions have been tampered

with. We leverage RTIC to perform SHA1 hashing on

five memory regions with sizes from 1K to 128K. Fig-

ure 7(a) shows the overhead of vRTIC (virtual RTIC)

emulated by vTZ in CIEE. It only incurs overhead from

0.3% to 4%.

Table 2: Single operation overhead (unit: cycle). Native means real

TrustZone and vTZ is our system.

Native

(ARMv7)

vTZ

(ARMv7)

Native

(ARMv8)

vTZ

(ARMv8)

World Switching 17840 34164 1294 6837

Memory Partition 5798 10341 n/a 7918

Device Partition 1886 10395 n/a 7289

Interrupt Partition 1073 4031 755 2903
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Figure 6: TEE suspension and resumption: During suspension operation, all V Ms’s memory and CPU states are encrypted in secure world, and

a hash value is computed as well. During resumption operation, such states are decrypted in secure world and SWS will then verify the integrity.

6.2 Application Overhead

Single Guest: We test four real applications (ccrypt,

mcrypt, GnuPG and GoHttp) and compare them with

original Xen on ARMv7 and ARMv8 platform. We use

these applications to encrypt/transfer file about 1KB, and

protect the encryption logic in real secure world/guest

TEE. The application/guest VM is pinned on one phys-

ical core in native environment/virtualization environ-

ment, respectively. Figure 7(b) and Figure 7(c) show the

overhead. Our system has little overhead compared with

original Xen on both ARMv7 and ARMv8 platform.

Multi-Guest: We compare the concurrent perfor-

mance of vTZ with native environment, real TrustZone

and original virtualization environment (Xen). The Go-

Http server is used to do the evaluation, and we protect

its encryption logic in secure world/guest TEE. In native

environment (including protection with TrustZone), each

GoHttp server runs as a normal process. In virtualization

environment (including protected by vTZ), each of them

runs in one guest VM. The client, which sends the https

request, runs in the same guest with the server to bypass

the network overhead. Each client downloads a 20M file

from the server. We do not evaluate more applications

concurrently because the memory on the board limits the

number of VMs. The results are shown in Figure 8.

On ARMv7 platform, which only has one core en-

abled, the virtualization (Xen hypervisor) itself brings

non-negligible (about 40%) performance slowdown.

While on ARMv8 platform, the overhead is remitted with

the benefit of 8 enabled cores. The overhead of virtu-

alization becomes larger compared with the single case

because that the GoHttp server transfers a big file (20

MB) for each request. Such transferring time is larger

than Xen scheduler’s time slices (30ms), and then the

scheduler will influence the performance. Finally, vTZ

has about a 5% performance slowdown compared with

original Xen on ARMv8 implementation, and less than

30% performance slowdown compared with native envi-

ronment.

6.3 Server Application Overhead

We also evaluate two widely used server applications,

MongoDB [5] and Apache [3] on Hikey board. Same as

the multi-guest evaluation, we run applications on four

different environments. Meanwhile, the clients are ex-

ecuted together with the server to bypass the network

overhead. One difference is that the guest has eight vir-

tual cores instead of one.

Figure 9(a) shows the insert operation throughput of

MongoDB. The client continually inserts object to the

server. We evaluate the throughput with different sizes

of objects. The result shows that vTZ has little overhead

compared with virtualization environment. For Apache

(shown in Figure 9(b)), we evaluate the downloading

throughput by downloading a file (size is 100MB) from

the server with https protocol. The result shows that us-

ing virtual TrustZone caused less than 5% overhead in

virtualization environment.

7 Security Analysis

In this section, we assume a strong adversary who can di-

rectly boot a malicious guest (including a malicious guest

TEE) and even compromise the hypervisor.

7.1 Breaking TrustZone Properties

Booting Protection: A compromised hypervisor can

tamper with the system image loaded in guest TEE. The

Secured World Switching (SWS) module will check the

integrity of the image before execution, and only allow

the hypervisor to enter a registered guest TEE. Mean-

while, the attacker may want to boot a guest V Mn before
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Figure 7: Performance evaluation (normalized execution time, lower is better): Figure (a) shows the overhead of vRTIC. Figure (b) and (c) show

the application overhead of vTZ on ARMv7 and ARMv8 respectively. The https server here is GoHttp.
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results on ARMv7 with OP-TEE and seL4 respectively. Figure (c) and (d) show results on ARMv8.The https server is GoHttp.
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Figure 9: Throughput of MongoDB and Apache (higher is better):

Figure (a) shows the throughput of MongoDB’s insert operation with

different size of objects. Figure(b) shows the performance of Apache

server, with different TCP buffer sizes.

its guest VMs, and then tries to bypass the security con-

figuration. SWS will defend against it by ensuring that

guest TEE must be executed first.

CPU States Protection: When a guest switches be-

tween its two worlds, a compromised hypervisor may

switch to another malicious world. SWS will check ev-

ery world switch operation issued by guest and ensure

that the target world must be executed thereafter. This

will also forbid the hypervisor to ignore the world switch

operation or to make one guest’s two worlds being exe-

cuted at the same time. During the world switch, the at-

tacker may also try to tamper with the CPU states. Since

SWS is responsible for saving and restoring each VM’s

CPU states and synchronizing general registers between

guest’s two worlds, it will check and refuse the tamper-

ing.

Memory Protection: A compromised hypervisor may

want to map one guest’s secure memory to a compro-

mised VM or the hypervisor itself. Secured Memory

Mapping (SMM) prevents these malicious behaviors by

controlling and checking all the mapping to the physical

address and ensuring that one guest’s secure memory can

only be mapped to its guest TEE.

vTZ allows a guest TEE to dynamically repartition its

memory through a virtual memory configuration device,

which invokes SMM to update the security policy. A

compromised hypervisor may try to configure a guest’s

secure memory to normal memory by sending a faked

request to SMM or the configuration device. In vTZ,

SMM will only handle requests from the virtual configu-

ration device, which can be identified by its CIEE entry

address, and will deny the fake requests from the hyper-

visor. Meanwhile, the configuration device also verifies

whether the request is from one guest TEE.

Peripheral Protection: vTZ enables guest TEE to

configure interrupts as secure or normal. A compromised

hypervisor may try to inject it into a compromised VM.

CFLock ensures all the interrupts will first be handled in

a CIEE which identifies the type of interrupt and injects

it to guest TEE. The interrupt will be later handled by the

hypervisor if it is non-secure. The hypervisor may also

provide some malicious virtual devices to guest TEE.

Guest TEE only trusts the virtual devices provided by

vTZ, and all other devices must be treated as untrusted.

7.2 Hacking vTZ

Tampering with System Code: During system initial-

ization, the attacker may try to modify the code of hyper-
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visor, CIEEs or even the secured modules in real secure

world. The secure boot technology provided by hard-

ware enables vTZ to ensure the integrity of all secured

modules, hypervisor and all CIEEs during system boot.

After that, the SMM will ensure that all codes in hyp

mode are write-protected. Meanwhile, the SMM never

allows mapping any new executable memory in the hyp

mode after system boot to forbid code injection into the

hyp mode. A benign hypervisor also does not need to

load code dynamically.

Code-reuse or Return-to-guest Attacks: Attacker

may try to reuse code of the hypervisor or let the hyper-

visor jump to some code region of a guest VM to execute

critical instructions (e.g., switching translation table) and

bypass the SMM. ARM has several ISAs (e.g., aarch64,

aarch32), the instructions of them are fix-byte aligned.

vTZ ensures there is no key instruction under any ISAs

in the hyp mode’s text section, so that there is no ROP

gadget in the code to reuse. Meanwhile, the SMM en-

sures that only the code of the hypervisor can be mapped

as executable in the hyp mode, thus return-to-guest at-

tack also can be prevented.

DMA Attack: An attacker may try to access guest se-

cure memory or inject code into hypervisor’s memory by

leveraging Direct Memory Access (DMA). vTZ defends

this attack by controlling System Memory Management

Unit (SMMU), which performs address translation for

DMA. SMMU is controlled by certain memory mapped

registers. It is ensured that these memory regions are

only mapped in the secure world. After exclusively con-

trolling the SMMU, we can ensure that all DMAs cannot

access guest’s secure memory, hypervisor’s text section

or CIEE’s memory.

Debugging Attack: The attacker may also want to by-

pass the SWS or CFLock by setting debug checkpoint on

the smc instruction. Then she can perform some opera-

tions before switching to SWS or CFLock works. vTZ

controls the entry points of all limited exception han-

dlers, and the debug procedure is also under control.

Thus, the debug point on smc instruction in the hyp mode

will trigger an infinite iteration, since the first instruction

a debug exception handler executed is also smc. This is

a kind of DoS attack and is not considered in this paper.

Security of CIEEs: While CIEE contains some logic

which provides critical services for guest TEE, e.g., vir-

tualizing TZPC (TrustZone Protection Controller), vTZ

still excludes it from the system TCB. Although there is

work which can verify some small piece of privileged

code (e.g., Jitk [65]), vTZ currently does not formally

verify the code in CIEE. Hence, even all CIEEs are small

and virtuous, they may still contain bugs. For example,

the attacker first compromises the CIEE responsible for

virtualizing memory configuration device. Then she tries

to configure other guest’s memory partition or compro-

mise other CIEEs. vTZ prevents these attacks by con-

straining a CIEE’s abilities. First, SWS can identify cur-

rent guest TEE and SMM will forbid a CIEE to access

any data belonging to other guests. Second, SMM en-

sures that different CIEEs have different memory map-

ping and can only access their own secure objects.

7.3 Security Limitations

As described in the threat model, vTZ does not con-

sider hardware-based attacks, e.g., the cold-boot attack,

or side-channel attacks. Meanwhile, vTZ can not pre-

vent DoS attacks, e.g., a hypervisor may never execute a

guest TEE. But note that vTZ can ensure that if a guest

VM uses smc instruction to switch to its guest TEE, such

switching cannot be ignored.

TEE-kernels may have bugs [61, 62, 24]. Such bugs

enable an attacker to directly get data from a guest TEE

or even to get control of it. Defending against these at-

tacks is not the goal of vTZ, as the real TrustZone also

cannot handle it. However, vTZ does ensure that a com-

promised TEE-kernel can only affect its corresponding

guest while cannot bypass the isolation or attack other

TEE-kernels. In all, vTZ aims to achieve the same secu-

rity level with TrustZone, but no more.

8 Related Work

ARM-based servers are increasingly getting more atten-

tions [50, 51, 25]. It can be expected that virtualization,

as one of the most important enabling technologies in

the cloud, will also be prevalent on ARM-based servers.

There have already been many TrustZone based systems

[55, 59, 54, 21, 32, 14], as mentioned in Section 2.3.

Many of these designs are not specific for mobile de-

vices, which can be used on ARM servers. vTZ paves

the way for the use of TrustZone guarantees in similar

environments.

Virtualization of Security Hardware: Similar as

TrustZone, Trusted Platform Module (TPM) is a hard-

ware extension for security. vTPM [48] makes TPM

functions available to virtual machines by virtualizing

the TPM hardware to multiple virtual vTPM instances,

which supports suspending and resuming operations.

vTZ shares a similar goal with vTPM but is harder since

the interaction between the secure world and the nor-

mal world is much more complex than TPM. fTPM [49]

presents a design and implementation of a TrustZone-

based TPM-2.0, which is a pure software solution with-

out the need of a real TPM chip. It can be seen as an

application of TrustZone, and by using vTZ fTPM can

now inherently support virtualization as well.

Other Hardware-based TEE: Intel’s Software Guard

eXtension (SGX) [10] offers a strongly isolated execu-
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tion environment that can defend against physical at-

tacks. AMD has also announced two security fea-

tures [34] named Secure Memory Encryption (SME) for

defending against physical attack and Secure Encrypted

Virtualization (SEV) for protecting VM against hyper-

visor. Unlike TrustZone, an SGX-TEE does not have

higher privilege and can only run in user mode, which

makes it not suitable for certain scenarios like security

monitoring. Meanwhile, these technologies focus more

on memory isolation while TrustZone can also support

peripheral partitioning (e.g., random number generator,

trust timer, secure co-processors, etc.) Further, currently

on ARM platform there is no extension like SGX or

SME/SEV while TrustZone has already been widely de-

ployed and has various applications.

Software-based TEE: There are many types of TEE

that are based on hypervisor [68, 56, 26, 67, 44, 41, 46],

or based on Linux kernel [31, 22, 27], or based on com-

piler [30, 29], to name a few. These researches are

orthogonal to our work. vTZ does not try to provide a

new abstraction of TEE but aims to virtualize the exist-

ing TrustZone hardware and let all the guests have their

own TEE without trusting a large TCB.

9 Hardware Design Discussion

In this section we discuss how to modify TrustZone hard-

ware to support virtualization. One design choice is

adding virtualization extension (e.g., hyp mode) in the

secure world. After that, software developers can run

a TEE hypervisor inside the secure world to virtualize

multiple TEEs for different guests (similar with Design-

1 in Section 3.2). Although this design simplifies the im-

plementation of the TEE hypervisor, the whole system’s

security still depends on the interaction between two hy-

pervisors.

Another design is to make the hypervisor unware of

the TrustZone. When a virtual machine executes a smc

instruction, it will directly switch from the normal world

to secure world or vice versa, without trapping to the hy-

pervisor. The CPU states are protected by the hardware

as before. Both the secure world and the normal world

share the same guest physical address space, so that the

secure world can still access all the memory of its VM,

but cannot access other VM’s memory. All the hardware

resource partition devices (e.g., TZASC) are virtualized

(e.g., by trap-and-emulate) for multiplexing. For exam-

ple, a vTZASC can only be configured by a VM when

the VM is running in its secure world. In this design,

only one hypervisor is needed. The secure world and

normal world runs as a single VM, which also simplifies

the scheduling of VCPU.

10 Conclusion

This paper described vTZ, a design aiming at virtual-

izing TrustZone in ARM architecture. vTZ provides

each guest with an isolated guest TEE, which has the

same functionalities and security with the physical se-

cure world. vTZ uses a few modules running in the se-

cure world to securely interpose memory mapping, world

switching and device accesses. vTZ further leverages

Constrained Isolated Execution Environments (CIEEs)

in the normal world to virtualize the functionality of

TrustZone. vTZ’s TCB only contains the secured mod-

ules in the secure world together with system’s boot-

loader. The performance overhead incurred by vTZ is

shown to be small.
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Notes

1 Though seL4 is not originally designed for TrustZone, we found

that many TEE-kernels in the market are based on a port of seL4 due

to its provable security.
2E.g., by “MSR TTBR0 EL2, Xt” in 64-bits ARM.
3E.g., by configuring HSCTLR or HCR registers.
4Link register of monitor mode, which contains the address of trap-

ping instruction
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