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Abstract
We present a new approach for detecting credential
spearphishing attacks in enterprise settings. Our method
uses features derived from an analysis of fundamental
characteristics of spearphishing attacks, combined with a
new non-parametric anomaly scoring technique for rank-
ing alerts. We evaluate our technique on a multi-year
dataset of over 370 million emails from a large enterprise
with thousands of employees. Our system successfully
detects 6 known spearphishing campaigns that succeeded
(missing one instance); an additional 9 that failed; plus
2 successful spearphishing attacks that were previously
unknown, thus demonstrating the value of our approach.
We also establish that our detector’s false positive rate is
low enough to be practical: on average, a single analyst
can investigate an entire month’s worth of alerts in un-
der 15 minutes. Comparing our anomaly scoring method
against standard anomaly detection techniques, we find
that standard techniques using the same features would
need to generate at least 9 times as many alerts as our
method to detect the same number of attacks.

1 Introduction
Over the past several years, a litany of high-profile
breaches has highlighted the growing prevalence and po-
tency of spearphishing attacks. Leveraging these attacks,
adversaries have successfully compromised a wide range
of government systems (e.g., the US State Department
and the White House [1]), prominent companies (e.g.,
Google and RSA [3]), and recently, political figures and
organizations (e.g., John Podesta and the DNC [21]).

Unlike exploits that target technical vulnerabilities in
software and protocols, spearphishing is a type of social
engineering attack where the attacker sends a targeted,
deceptive email that tricks the recipient into performing
some kind of dangerous action for the adversary. From
an attacker’s perspective, spearphishing requires little
technical sophistication, does not rely upon any specific
vulnerability, eludes technical defenses, and often suc-
ceeds. From a defender’s perspective, spearphishing is
difficult to counter due to email’s susceptibility to spoof-
ing and because attackers thoughtfully handcraft their at-
tack emails to appear legitimate. For these reasons, there

are currently no generally effective tools for detecting or
preventing spearphishing, making it the predominant at-
tack for breaching valuable targets [17].

Spearphishing attacks take several forms. One of the
most well-known involves an email that tries to fool the
recipient into opening a malicious attachment. However,
in our work, which draws upon several years worth of
data from the Lawrence Berkeley National Lab (LBNL),
a large national lab supported by the US Department of
Energy, none of the successful spearphishing attacks in-
volved a malicious attachment. Instead, the predominant
form of spearphishing that LBNL encounters is creden-
tial spearphishing, where a malicious email convinces
the recipient to click on a link and then enter their creden-
tials on the resulting webpage. For an attachment-driven
spearphish to succeed against a site like LBNL, which
aggressively scans emails for malware, maintains fre-
quently updated machines, and has a team of several full-
time security staff members, an attacker will often need
to resort to an expensive zero-day exploit. In contrast,
credential spearphishing has an incredibly low barrier to
entry: an attacker only needs to host a website and craft a
deceptive email for the attack to succeed. Moreover, with
widespread usage of remote desktops, VPN applications,
and cloud-based email providers, stolen credentials often
provide attackers with rich information and capabilities.
Thus, although other forms of spearphishing constitute
an important threat, credential spearphishing poses a ma-
jor and unsolved threat in-and-of itself.

Our work presents a new approach for detecting cre-
dential spearphishing attacks in enterprise settings. This
domain proves highly challenging due to base-rate is-
sues. For example, our enterprise dataset contains
370 million emails, but fewer than 10 known instances
of spearphishing. Consequently, many natural methods
fail, because their false positive rates are too high: even
a false positive rate as low as 0.1% would lead to 370,000
false alarms. Additionally, with such a small number of
known spearphishing instances, standard machine learn-
ing approaches seem unlikely to succeed: the training set
is too small and the class imbalance too extreme.

To overcome these challenges, we introduce two key
contributions. First, we present an analysis of character-
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istics that we argue are fundamental to spearphishing at-
tacks; from this analysis, we derive a set of features that
target the different stages of a successful spearphishing
attack. Second, we introduce a simple, new anomaly
detection technique (called DAS) that requires no la-
beled training data and operates in a non-parametric fash-
ion. Our technique allows its user to easily incorporate
domain knowledge about their problem space into the
anomaly scores DAS assigns to events. As such, in our
setting, DAS can achieve an order-of-magnitude better
performance than standard anomaly detection techniques
that use the same features. Combining these two ideas to-
gether, we present the design of a real-time detector for
credential spearphishing attacks.

Working with the security team at LBNL, we eval-
uated our detector on nearly 4 years worth of email
data (about 370 million emails), as well as associated
HTTP logs. On this large-scale, real-world dataset, our
detector generates an average of under 10 alerts per day;
and on average, an analyst can process a month’s worth
of these alerts in 15 minutes. Assessing our detector’s
true positive accuracy, we find that it not only detects
all but one spearphishing attack known to LBNL, but
also uncovers 2 previously undiscovered spearphishing
attacks. Ultimately, our detector’s ability to identify both
known and novel attacks, and the low volume and burden
of alerts it imposes, suggests that our approach provides
a practical path towards detecting credential spearphish-
ing attacks.

2 Attack Taxonomy and Security Model
In a spearphishing attack, the adversary sends a targeted
email designed to trick the recipient into performing a
dangerous action. Whereas regular phishing emails pri-
marily aim to make money by deceiving any arbitrary
user [18, 22], spearphishing attacks are specifically tar-
geted at users who possess some kind of privileged ac-
cess or capability that the adversary seeks. This selective
targeting and motivation delineates spearphishing (our
work’s focus) from regular phishing attacks.

2.1 Taxonomy for Spearphishing Attacks
Spearphishing spans a wide range of social-engineering
attacks. To better understand this complex prob-
lem space, we present a taxonomy that characterizes
spearphishing attacks across two dimensions. These cor-
respond to the two key stages of a successful attack.
Throughout this paper, we refer to the attacker as Mal-
lory and the victim as Alice.

2.1.1 Lure
Spearphishing attacks require Mallory to convince Alice
to perform some action described in the email. To ac-
complish this, Mallory needs to imbue her email with a

Previously Unseen Attacker
“Enterprise X IT Staff” 

<director@enterpriseY.com>

Lateral Attacker
“Alice Good”

<alice@enterpriseX.com>

Name Spoofer
“Alice Good” 

<alice@evil.com>

Address Spoofer
“Alice”

<alice@enterpriseX.com>

Real User
“Alice Good”

<alice@enterpriseX.com>

Figure 1: Examples of four different impersonation models for
a real user “Alice Good”. In the address spoofer impersonation
model, an attacker might also spoof the username to exactly
match the true user’s (e.g., by using Alice Good instead of
just Alice). Our work focuses on detecting the latter three
threat models, as discussed in Section 2.2: name spoofer, pre-
viously unseen attacker, and lateral attacker.

sense of trust or authority that convinces Alice to execute
the action. Attackers typically achieve this by sending
the email under the identity of a trusted or authoritative
entity and then including some compelling content in the
email.

Impersonation Model: Spearphishing involves imper-
sonating the identity of someone else, both to create trust
in the recipient and also to to minimize the risk of attri-
bution and punishment. There are several types of im-
personation:

1. An address spoofer uses the email address of a
trusted individual in the From field of the attack
email. The attacker may spoof the name in the
From header as well, so that the attacker’s From
header exactly matches the true user’s typical From
header.
DKIM and DMARC [2] block this impersonation
model by allowing domains to sign their sent
emails’ headers with a cryptographic signature,
which receiving servers can verify with a DNS-
based verification key. In recent years, these pro-
tocols have seen increasingly widespread adoption,
with many large email providers, such as Gmail, de-
ploying them in response to the rise of phishing at-
tacks [4].
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2. A name spoofer spoofs the name in their email’s
From header to exactly match the name of an
existing, trusted individual (e.g.,Alice Good in
Alice Good <alice@evil.com>). How-
ever, in this impersonation model, the attacker does
not forge the email address of their From header,
relying instead on the recipient to only view the
name of the sender, or on the recipient’s mail client
to show only the name of the sender. By not spoof-
ing the From email address, this impersonation
model circumvents DKIM/DMARC.

3. A previously unseen attacker selects a name and
email address to put in the From field of the
spearphishing email, where neither the name nor
the email address actually match a true user’s name
or email address (though they might be perceived
as trustworthy or similar to a real user’s identity).
For instance, Mallory might choose to spoof the
name LBNL IT Staff and the email address
<helpdesk@enterpriseY.com>.

4. A lateral attacker sends the spearphishing email
from a compromised user’s email account.

2.1.2 Exploit Payload
Once Mallory has gained Alice’s trust, she then needs to
exploit this trust by inducing Alice to perform some dan-
gerous action. Three types of exploitation are commonly
seen: (i) attachments or URLs that contain malware, (ii)
URLs leading to websites that attempt to trick Alice into
revealing her credentials, and (iii) out-of-band actions
(e.g., tricking a company’s CFO into wiring money to
a fake, malicious “corporate partner”).

2.2 Security Model

Threat Model: In this work, we specifically focus on an
enterprise credential spearphishing threat model, where
Mallory tries to fool a targeted enterprise’s user (Alice)
into revealing her credentials. We assume that the adver-
sary can send arbitrary emails to the victim and can con-
vince the recipient to click on URLs embedded in the ad-
versary’s email (leading the victim to a credential phish-
ing website). To impersonate a trusted entity, the attacker
may set any of the email header fields to arbitrary values.

In other words, we focus on attacks where Mallory’s
lure includes masquerading as a trusted entity, her pay-
load is a link to a credential phishing page, and she
chooses from any of the last three impersonation mod-
els. Because organizations can deploy DKIM/DMARC
to mitigate address spoofing (and many large email
providers have done so), we exclude address spoofing
from our work.

Security Goals: First, a detector must produce an ex-
tremely low false positive burden, ideally only 10 or so

Data Source Fields/Information per Entry
SMTP logs Timestamp

From (sender, as displayed to recipient)
RCPT TO (all recipients; from the SMTP dialog)

NIDS logs URL visited
SMTP log id for the earliest email with this URL
Earliest time this URL was visited in HTTP traffic
# prior HTTP visits to this URL
# prior HTTP visits to any URL with this hostname
Clicked hostname (fully qualified domain of this URL)
Earliest time any URL with this hostname was visited

LDAP logs Employee’s email address
Time of current login
Time of subsequent login, if any
# total logins by this employee
# employees who have logged in from current login’s city
# prior logins by this employee from current login’s city

Table 1: Schema for each entry in our data sources. All sensi-
tive information is anonymized before we receive the logs. The
NIDS logs contain one entry for each visit to a URL seen in any
email. The LDAP logs contain one entry for each login where
an employee authenticated from an IP address that he/she has
never used in prior (successful) logins.

false alarms per day that take at most minutes for an in-
cident response team to process. Second, a detector must
detect real spearphishing attacks (true positives). Given
that current methods for detecting credential spearphish-
ing often rely on users to report an attack, if our ap-
proach can detect even a moderate number of true posi-
tives or identify undiscovered attacks, while achieving a
low false positive rate, then it already serves as a major
improvement to the current state of detection and mitiga-
tion.

3 Datasets
Our work draws on the SMTP logs, NIDS logs, and
LDAP logs from LBNL; several full-time security staff
members maintain these extensive, multi-year logs, as
well as a well-documented incident database of success-
ful attacks that we draw upon for our evaluation in Sec-
tion 6. For privacy reasons, before giving us access to
the data, staff members at LBNL anonymized all data
using the procedure described in each subsection below.
Additionally, our anonymized datasets do not contain the
contents of email bodies or webpages. Table 1 shows the
relevant information in these datasets and Table 2 sum-
marizes the size and timeframe of our data.

3.1 SMTP Logs
The SMTP logs contain anonymized SMTP headers for
all inbound and outbound emails during the Mar 1, 2013
– Jan 14, 2017 time period. These logs contain informa-
tion about all emails sent to and from the organization’s
employees (including emails between two employees),
a total of 372,530,595 emails. The second row of Ta-
ble 1 shows the relevant header information we receive
for each email in these logs.
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The data was anonymized by applying a keyed hash
to each sensitive field. Consider a header such as
Alice Good <ali@company.com>. The ‘name’
of a header is the human name (Alice Good in our
example); when no human name is present, we treat the
email address as the header’s ‘name’. The ‘address’ of
a header is the email address: <ali@company.com>.
Each name and each email address is separately hashed.

3.2 NIDS Logs
LBNL has a distributed network monitor (Bro) that logs
all HTTP GET and POST requests that traverse its bor-
ders. Each log entry records information about the re-
quest, including the full URL.

Additionally, the NIDS remembers all URLs seen in
the bodies of inbound and outbound emails at LBNL.1

Each time any URL embedded in an email gets visited as
the destination of an HTTP request, the NIDS will record
information about the request, including the URL that
was visited and the entry in the SMTP logs for the email
that contained the fetched URL. The NIDS remembers
URLs for at least one month after an email’s arrival; all
HTTP visits to a URL are matched to the earliest email
that contained the URL.

We received anonymized logs of all HTTP requests,
with a keyed hash applied to each separate field. Also,
we received anonymized logs that identify each email
whose URL was clicked, and anonymized information
about the email and the URL, as shown in Table 1.

3.3 LDAP Logs
LBNL uses corporate Gmail to manage its employees’
emails.2 Each time an employee successfully logs in,
Gmail logs the user’s corporate email address, the time
when the login occurred, and the IP address from which
the user authenticated. From these LDAP logs, we
received anonymized information about login sessions
where (1) the login IP address had never been used by the
user during any previous successful login, (2) the user
had more than 25 prior logins, and (3) the login IP ad-
dress did not belong to LBNL’s network. The last row of
Table 1 shows the anonymized data in each entry of the
LDAP logs.

4 Challenge: Diversity of Benign Behavior
Prior work has used machine learning to identify
spearphishing attacks, based on suspicious content in
email headers and bodies [8,19]. While that work detects
several spearphishing attacks, their optimal false positive

1Shortened URLs are expanded to their final destination URLs.
2Email between two employees also flows through corporate

Gmail, which allows our detector to scan “internal” emails for lateral
spearphishing attacks.

Time span Mar 1, 2013– Jan 14, 2017
Total emails 372,530,595

Unique sender names 3,415,471
(names in From)
Unique sender addresses 4,791,624
(email addresses in From)

Emails with clicked URLs 2,032,921
Unique sender names 246,505
(names in From)
Unique sender addresses 227,869
(email addresses in From)
# total clicks on embedded URLs 30,011,810
Unique URLs 4,014,412
Unique hostnames 220,932

Logins from new IP address 219,027
# geolocated cities among all 7,937
new IP addresses
# of emails sent during sessions 2,225,050
where employee logged in from
new IP address

Table 2: Summary of data in the three logs. Note that some
emails contain multiple URLs, some or all of which may be
visited multiple times by multiple recipients (thus, there are
more clicked-URLs than emails that contain clicked-URLs).

rates (FPR) are 1% or higher, which is far too high for
our setting: a FPR of 1% would lead to 3.7 million false
alarms on our dataset of nearly 370 million.

In this section, we identify several issues that make
spearphishing detection a particularly difficult challenge.
Specifically, when operating on a real-world volume of
millions of emails per week, the diversity of benign be-
havior produces an untenable number of false positives
for detectors that merely look for anomalous header val-
ues.

4.1 Challenge 1: Senders with Limited
Prior History

A natural detection strategy is to compare the headers
of the current email under analysis against all histor-
ical email headers from the current email’s purported
sender. For example, consider a name spoofer who at-
tempts to spearphish one of Alice’s team members by
sending an email with a From header of Alice Good
<alice@evil.com>. An anomaly-based detector
could identify this attack by comparing the email’s From
address (<alice@evil.com>) against all From ad-
dresses in prior email with a From name of Alice
Good.

However, this approach will not detect a different
spearphishing attack where neither the name nor the
address of the From header have ever been seen be-
fore: Alice <alice@evil.com> or HR Team
<hr.enterpriseX@gmail.com>. In this previ-
ously unseen attacker setting, there is no prior history
to determine whether the From address is anomalous.
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Figure 2: Distribution of the number of emails sent per From
name. Nearly 40% of all From names appear in only one
email and over 60% of all From names appear in three or fewer
emails.

To address this gap, one might flag all emails with a
new or previously unknown From name (e.g., any email
where the From name has been seen in two or fewer
emails leads to an alert). Unfortunately, this approach
generates an overwhelming number of alerts in practice
because millions of From names are only ever seen in a
few emails. Figure 2 shows the distribution of the num-
ber of emails per From name in our dataset. In particu-
lar, we find that over 60% of From names sent three or
fewer emails and over 40% of From names sent exactly
one email. Thus, even if one ran a detector retrospec-
tively to alert on every email with a From name that had
never been seen before and did not eventually become
an active and engaged sender, it would produce over 1.1
million alerts: a false positive rate of less than 1% on
our dataset of nearly 370 million emails, but still orders
of magnitude more than our target. Even though spam
might account for a proportion of these emails with new
From names, LBNL’s security staff investigated a ran-
dom sample of these emails and found a spectrum of be-
nign behavior: event/conference invitations, mailing list
management notices, trial software advertisements, and
help support emails. Thus, a detector that only lever-
ages the traditional approach of searching for anomalies
in header values faces a stifling range of anomalous but
benign behavior.

4.2 Challenge 2: Churn in Header Values
Even if we were to give up on detecting attacks that
come from previously unseen From names or addresses,
a detector based on header anomalies still runs into yet
another spectrum of diverse, benign behavior. Namely,
header values for a sender often change for a variety of
benign reasons. To illustrate this, we consider all From
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Figure 3: Distribution of the total number of From addresses
per From name (who send over 100 emails) across all emails
sent by the From name. Over half (52%) of these From names
sent email from two or more From addresses (i.e., have at least
one new From address).

names that appear in at least 100 emails (our dataset con-
tains 125,172 of them) and assess the frequency at which
these names use a new From email address when send-
ing email.

Figure 3 shows the cumulative distribution of the to-
tal number of From email addresses per From name.
From this graph, we see that even among From names
with substantial history (sent over 100 emails), there is
considerable variability in header values: 52% of these
From names send email from more than one From email
address. We find that 1,347,744 emails contain a new
From email address which has never been used in any
of the From name’s prior emails. Generating an alert for
each of these emails would far exceed our target of 10
alerts per day.

This large number of new email addresses per From
name stems from a variety of different sources: work
vs. personal email addresses for a user, popular hu-
man names where each email address represents a
different person in real life (e.g., multiple people
named John Smith), professional society surveys,
and functionality-specific email addresses (e.g. Foo
<noreply@foo.com>, Foo <help@foo.com>,
Foo <donate@foo.com>). While it might be
tempting to leverage domain reputation or domain simi-
larity between a new From address and the From name’s
prior addresses to filter out false positives, this fails in
a number of different cases. For example, consider the
case where Alice suddenly sends email from a new
email address, whose domain is a large email hosting
provider; this could either correspond to Alice sending
email from her personal email account, or it might rep-

USENIX Association 26th USENIX Security Symposium    473



resent a name spoofer using a Gmail account with a
spoofed From name.

Given the prevalence of emails with anomalous, yet
benign, header values, a practical detector clearly needs
to leverage additional signals beyond an email’s header
values. Some prior academic work has attempted to
incorporate stylometry features from an email’s body
to identify spearphishing attacks [19]; however, as dis-
cussed earlier, these systems have false positive rates
of 1% or higher, which would lead to millions of false
alarms, a prohibitively high number for practical usage.
In the following section, we present a novel approach that
leverages a different set of signals based on the underly-
ing nature of spearphishing attacks.

5 Detector Design
At a high level, our detector consists of three stages il-
lustrated in Figure 4 and described below: a feature ex-
traction stage (§ 5.1 and § 5.2), a nightly scoring stage
(§ 5.4), and a real-time alert generation stage (§ 5.5).
Conceptually, our work introduces two key ideas that en-
able our detector to detect a wide range of attacks, while
achieving a practical volume of false positives that is over
200 times lower than prior work. First, our detector ex-
tracts two sets of reputation-based features that indepen-
dently target the two key stages of a spearphishing attack
identified in our attack taxonomy. Second, we introduce
a novel, unsupervised anomaly detection technique that
enables our detector to automatically rank a set of unla-
beled events and select the most suspicious events for the
security team to review. We first discuss each of these
elements and then show how to combine them for our
real-time detector.

5.1 Features per Attack Stage
Fundamentally, spearphishing attacks aim to trick their
recipients into performing a dangerous action described
in the email. If the attacker fails to persuade the vic-
tim into taking the action, the attack fails. For credential
spearphishing, the dangerous action is clicking on a link
in an email that leads the victim to a credential phish-
ing website.3 Thus, we analyze every email that contains
a link that a user clicked on; we call this clicked link a
click-in-email event.

As discussed in our taxonomy (§ 2.1), spearphishing
attacks consist of two necessary stages: the lure stage,
where the attacker persuades the victim to trust him, and
the exploit stage, where the victim performs a dangerous

3While an adversary could attempt to spearphish an employee’s cre-
dentials by fooling them into including the credentials in an email re-
sponse, this attack variant is likely more difficult to successfully exe-
cute given employee awareness from security training and education.
Based on their multi-year incident database, LBNL has not observed
such attacks succeed in practice.

action for the attacker. This insight leads to the first core
idea in our approach: we craft two sets of features to tar-
get both of these stages of a spearphishing attack. Prior
work has often used features that capture only the lure
or the exploit; our insight is that we can do significantly
better by using both types of features.

Accordingly, we have two classes of features: domain
reputation features, and sender reputation features. In
order to steal the victim’s credentials, the attacker must
link to a site under her control. Because spearphish-
ing attacks are so tightly targeted, visits to this mali-
cious website will presumably be rare among the histor-
ical network traffic from the organization’s employees.
Therefore, for each click-in-email event, the domain rep-
utation features characterize the likelihood that an em-
ployee would visit that URL, based on its (fully quali-
fied) domain. The sender reputation features character-
ize whether the sender of that email falls under one of the
impersonation models outlined in our taxonomy. Effec-
tively, the sender reputation features capture elements of
the lure (by recognizing different types of spoofing that
the attacker might use to gain the victim’s trust), and the
domain reputation features capture characteristics of the
exploit.

Because the sender reputation features differ for each
impersonation model (§ 5.2.2), our detector actually con-
sists of three sub-detectors, one for each impersonation
model. As discussed below (§ 5.5), if any of the sub-
detectors flags an email as spearphishing, the detector
treats it as an attack and generates an alert for the se-
curity team.

5.2 Features
Each sub-detector uses a feature vector containing four
scalar values, two for domain reputation and two for
sender reputation; Appendix A contains a summary ta-
ble of these features, which we discuss below. As we
show later (§ 6), these compact feature vectors suffice to
detect a wide-range of attacks while achieving a practical
volume of false positives.

5.2.1 Domain Reputation Features
All sub-detectors use the same two features to character-
ize the reputation of a link that the user clicked on. Intu-
itively, if few employees from the enterprise have visited
URLs from the link’s domain, then we would like to treat
a visit to the email’s link as suspicious. Additionally, if
employees have never visited URLs from a domain until
very recently, then we would also like to treat visits to
the domain’s URLs as risky. Based on these two ideas,
the first feature counts the number of prior visits to any
URL with the same fully qualified domain name (FQDN)
as the clicked URL; this is a global count across all em-
ployees’ visits, from the NIDS logs. The second fea-
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Figure 4: Overview of our real-time detector, which leverages output from a nightly batch job during its real-time analysis, as
described in § 5.4 and § 5.5. As emails arrive, our detector leverages historical logs to extract and save three feature vectors (one FV
per impersonation model) for each URL in the email (§ 5.1). Using the network traffic logs, our detector logs all clicks on URLs
embedded in emails. Each night, our detector runs our anomaly scoring algorithm on the FVs from a sliding window over the
past month’s clicked URLs and stores a ComparisonSet of the month’s most suspicious FVs for each impersonation model (§ 5.4).
Observing real-time network traffic, our detector sees clicked email URLs, compares the real-time click’s feature vector for each
impersonation model against the ComparisonSet, and generates an alert for the security team if needed (§ 5.5).

ture counts the number of days between the first visit by
any employee to a URL on the clicked link’s FQDN and
the time when the clicked link’s email initially arrived at
LBNL.

We chose to characterize a clicked link’s reputation
in terms of its FQDN, rather than the full URL, be-
cause over half of the clicked URLs in our dataset had
never been visited prior to a click-in-email event. Con-
sequently, operating at the granularity of the full URL
would render the URL reputation features ineffective be-
cause the majority of URLs would have the lowest possi-
ble feature values (i.e., never been visited prior to the
email recipient). Additionally, using a coarser granu-
larity such as the URL’s registered domain name or its
effective second-level domain could allow attackers to
acquire high reputation attack URLs by hosting their
phishing webpages on popular hosting sites (e.g., at-
tacker.blogspot.com). By defining a URL’s reputation in
terms of its FQDN, we mitigate this risk.

5.2.2 Sender Reputation Features

Name Spoofer: As discussed earlier (§ 2.1.1), in this at-
tacker model Mallory masquerades as a trusted entity by
spoofing the name in the From header, but she does not
spoof the name’s true email address. Because the trusted
user that Mallory impersonates does not send email from
Mallory’s spoofed address, the spearphishing email will
have a From email address that does not match any of
the historical email addresses for its From name. There-
fore, the first sender reputation feature counts the number
of previous days where we saw an email whose From
header contains the same name and address as the email
being scored.

Also, in this attacker model, the adversary spoofs the
From name because the name corresponds to someone
known and trusted. If that name did not correspond to

someone trustworthy or authoritative, there would be no
point in spoofing it, or it would manifest itself under our
previously unseen attacker threat model. Thus, the sec-
ond sender reputation feature for a clicked email reflects
the trustworthiness of the name in its From header. We
measure the trustworthiness of a name by counting the
total number of weeks where this name sent at least one
email for every weekday of the week. Intuitively, the idea
is that From names that frequently and consistently send
emails will be perceived as familiar and trustworthy.

Previously Unseen Attacker: In this threat model
(§ 2.1.1), Mallory chooses a name and email address
that resembles a known or authoritative entity, but
where the name and email address do not exactly match
any existing entity’s values (e.g.,IT Support Team
<helpdesk@company.net>); if the name or ad-
dress did exactly match an existing entity, the attack
would instead fall under the name spoofer or address
spoofer threat model. Compared to name-spoofing at-
tacks, these attacks are more difficult to detect because
we have no prior history to compare against; indeed,
prior work does not attempt to detect attacks from this
threat model. To deal with this obstacle, we rely on an
assumption that the attacker will seek to avoid detection,
and thus the spoofed identity will be infrequently used;
each time Mallory uses the spoofed identity, she runs the
risk that the employee she’s interacting with might rec-
ognize that Mallory has forged the name or email address
and report it. Accordingly, we use two features: the num-
ber of prior days that the From name has sent email, and
the number of prior days that the From address has sent
emails.

Lateral Attacker: This sub-detector aims to catch
spearphishing emails sent from a compromised user’s ac-
counts (without using any spoofing). To detect this pow-
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erful class of attackers, we leverage the LDAP logs pro-
vided by Gmail’s corporate email services (§ 3). When
a recipient clicks on a link in an email, if the email was
sent by an employee, we check the LDAP logs to see
if the email was sent during a login session where the
sender-employee logged in using an IP address that the
sender-employee has never used before. If so, this sub-
detector computes the geolocated city of the session’s IP
address, say city C. It then extracts two features: the
number of distinct employees that have logged in from
city C, and the number of previous logins where this
sender-employee logged in from an IP address that ge-
olocated to city C.

Content-Based Features: As discussed in Section 3, for
privacy reasons we do not have access to either the bod-
ies of emails or the contents of a clicked URL’s webpage.
If desired, enterprises could augment our sender reputa-
tion features with additional features from the raw con-
tent in the email message or website (e.g., NLP features
that characterize whether the email message relates to ac-
counts/credentials/passwords or reflects particular senti-
ments such as urgency).

5.3 Limitations of Standard Detection
Techniques

Once our detector has extracted features for each click-
in-email event, it needs to decide which ones should trig-
ger an alert for the security team. We first discuss three
natural, but ultimately ineffective, approaches for deter-
mining which events to alert on. Then, in the following
subsection, we present a new technique that our detec-
tor uses to overcome the limitations of these canonical
approaches.

Manual Thresholds: The simplest approach would be
to manually select a threshold for each feature, and gen-
erate an alert if all feature values are below the thresh-
old. One might use domain knowledge of each feature
to guess a threshold for each feature dimension: e.g.,
spearphishing attacks will use URLs whose domain has
fewer than five visits or was first visited less than five
days ago. Unfortunately, this approach is inherently ar-
bitrary since we do not know the true distribution of fea-
ture values for spearphishing attacks. Thus, this ad hoc
approach can easily miss attacks, and does not provide a
selection criteria that generalizes across different enter-
prises.

Supervised Learning: A large body of literature
on attack detection, from spam classification to prior
spearphishing work, draws heavily on supervised ma-
chine learning algorithms. However, those methods are
not suitable for our setting.

To accurately classify new events, supervised learning
techniques require a labeled training dataset that reflects
the range of possible malicious and benign feature val-
ues. Unfortunately, in our context, it is difficult to as-
semble a large enough training set. Because spearphish-
ing attacks are extremely difficult to detect and occur at
a low rate, we have few malicious samples to train on.

Additionally, our setting exhibits extreme class im-
balance: because of the scarcity of data on known
spearphishing attacks, the training set will have vastly
more benign instances than malicious instances. Super-
vised techniques often need a relatively balanced dataset;
classifiers trained on highly imbalanced data often learn
to always predict the majority class (missing real at-
tacks), pathologically overfit to accidental characteris-
tics of the minority class, or generate too lax of a deci-
sion boundary and generate prohibitively high numbers
of false positives [10]. While the machine learning com-
munity has explored a number of techniques for address-
ing imbalanced training data [6, 10], such as undersam-
pling the over-represented class or synthetically generat-
ing samples for the under-represented class, these tech-
niques do not scale to imbalances on the order of millions
to one.

Standard Anomaly Detection: Alternatively, one might
consider unsupervised or semi-supervised anomaly de-
tection techniques. While a number of such tech-
niques exist, including density estimation techniques
such as Gaussian Mixture Models (GMMs) [5] and clus-
tering and distance-based techniques such as k-nearest-
neighbor (kNN) [13], these classical techniques suffer
from three limitations.

First, in a number of security settings, scalar features
often have a directionality to their values; and indeed,
all of our features have this property. For example,
the fewer visits a domain has, the more suspicious it
is; an unusually small number of visits is grounds for
suspicion, but an unusually large number is not. Stan-
dard anomaly detection techniques do not incorporate
notions of asymmetry or directionality into their compu-
tations. For example, density-based anomaly detection
techniques such as kernel density estimation (KDE) and
GMMs fit a probability distribution to the data and alert
on the lowest-probability events. Events that have sta-
tistically extreme—but benign—feature values will have
a very low probability of occurring, triggering a large
number of useless alerts.

Second, standard anomaly detection techniques often
treat an event as anomalous even if only one or a few
of the event’s features are statistically anomalous. How-
ever, in our setting, we expect that attacks will be anoma-
lous and suspicious in all feature dimensions. Conse-
quently, in our setting, classical techniques will generate
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Algorithm 1 Scoring and Alert Selection in DAS

Score(E, L):
1: for each event X in L do:
2: if E is more suspicious than X in every dimension:
3: Increment E’s score by one

AlertGen(L (a list of events), N):
1: for each event E in L do:
2: Score(E, L)
3: Sort L by each event’s score
4: return the N events from L with the highest scores

many spurious alerts for events that are only anomalous
in a few dimensions. As we show in Section 6.3, this
causes classical techniques to miss the vast majority of
spearphishing attacks in our dataset because they exhaust
their alert budget with emails that have benign feature
values in all but one dimension.

Third, classical techniques are parametric: they either
assume the data comes from a particular underlying dis-
tribution, or they contain a number of parameters that
must be correctly set by their deployer in order for the
technique to obtain acceptable performance. GMMs as-
sume the data comes from a mixture of Gaussian distri-
butions, KDE has a bandwidth parameter that requires
tuning by the deployer, and kNN needs the deployer to
select a value of k (the number of nearest neighbors/most
similar events, which the algorithm will use to compute
an event’s anomaly score). These requirements are prob-
lematic for spearphishing detection since we do not know
the true distribution of attack and benign emails, the un-
derlying distribution might not be Gaussian, and we do
not have a sound way to select the parameters.

5.4 Directed Anomaly Scoring (DAS)
Given the limitations of traditional detection techniques,
we introduce a simple and general technique for automat-
ically selecting the most suspicious events from an unla-
beled dataset. We call our technique Directed Anomaly
Scoring (DAS). At a high level, DAS ranks all events by
comparing how suspicious each event is relative to all
other events. Once all events have been ranked, DAS
simply selects the N most suspicious (highest-ranked)
events, where N is the security team’s alert budget.

Algorithm 1 shows the procedure for scoring and gen-
erating alerts with DAS. Concretely, DAS first assigns an
anomaly score for each event, E, by computing the to-
tal number of other events where E’s feature vector is at
least as suspicious as the other event in every feature di-
mension. Thus, E’s score counts how many events it is at
least as suspicious as; events with higher scores are more
suspicious than ones with lower scores. Figure 5 presents
a few visual examples of computing DAS scores. After

scoring every event, our algorithm simply sorts all events
by their scores and outputs the N highest-scoring events.

Formally, we identify each event with its feature vec-
tor E ∈ Rd . We consider event E to be at least as sus-
picious as event E ′, written E < E ′, if Ei ≤ E ′i for all
i = 1,2, . . . ,d. (For simplicity, we assume that smaller
feature values are more suspicious, in every dimension;
for dimensions where the reverse is true, we replace the
comparator≤with≥. Appendix A summarizes the com-
parators we use for each feature.) Then, the score of
event E is the cardinality of the set {E ′ : E < E ′}.

DAS is well-suited for a range of security detection
problems where attacks can be characterized by a com-
bination of numerical and boolean features, such as our
spearphishing use case. As we show in Section 6, DAS
achieves orders-of-magnitude better results than classi-
cal anomaly detection techniques because it leverages
domain knowledge about which regions of the feature
space are most suspicious; in particular, it overcomes all
three limitations of classical techniques discussed in Sec-
tion 5.3.

5.5 Real-time Detection Architecture
We now synthesize the ideas discussed in previous sub-
sections to provide an end-to-end overview of how we
leverage DAS to generate alerts (illustrated in Figure 4).
Our detector has access to the enterprise’s log data, real-
time network traffic (e.g., via a NIDS like Bro), and an
alert budget β for each sub-detector, which specifies the
daily volume of alerts that the security team deems ac-
ceptable. As each email arrives, for each URL in the
email, our detector extracts the feature vector for that
URL and saves it in a table indexed by the URL. Each
HTTP request seen by the enterprise’s NIDS is looked
up in the table. Each time the detector sees a visit to
a URL that was earlier seen in some email (a “click-
in-email event”), it adds that feature vector to a list of
events. Finally, our detector uses the DAS algorithm to
rank the events and determine which ones to alert on.

This approach would work fine for a batch algorithm
that runs the DAS algorithm once a month on the past
thirty day’s events. However, a spearphishing attack
might not be detected by this batch approach until as
much as a month after it occurs. Therefore, we now turn
to extending our approach to work in real-time.

Naively, at the end of each day we could gather the
day’s events, rank them using DAS, and alert on the
β most suspicious. However, this might miss attacks
that would have been detected by the batch algorithm,
as some days might have many benign but seemingly-
suspicious events that mask a true attack.

Instead, we use a more sophisticated algorithm that
comes closer to the batch algorithm, yet operates in real
time. Each night, our detector collects all the click-in-
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Figure 5: Example diagrams of DAS scores for events in a 2
dimensional feature space. X-values to the right and Y-values
toward the top are more benign (thus, values toward the bottom
and left are more suspicious). Each circle represents an exam-
ple event. The number in each circle is the DAS score for the
event. For example, looking at the third diagram, the purple
event only receives a score of 1. Although the purple event has
a more suspicious feature value in the Y dimension than event
B, it is more benign in the X dimension. Thus, event B does
not cause the purple event’s score to increment.

email events for the past month and computes their as-
sociated feature vectors. For each sub-detector, we rank
these events using DAS, select the 30× β most suspi-
cious events, and save them in a set that we call the Com-
parisonSet.

In real time, when our detector observes a click-in-
email event from the NIDS, it fetches the event’s feature
vectors for each impersonation model. Our detector then
computes if any of the current click’s feature vectors are
at least as suspicious as any of the feature vectors in the
ComparisonSet for its respective impersonation model.4

If so, our detector generates an alert for the security team.
Intuitively, this approach alerts if the event would have
been selected by DAS on any day in the past month; or,
more precisely, if it is among the 30β most suspicious
events in the past month. Our evaluation (§ 6) shows
that this real-time approach can safely detect the same
attacks as the batch scoring procedure. On some days
our real-time approach might generate more alerts than
the target budget if a day has a burst of particularly sus-
picious click-in-email events; however, we show in the
next section that this occurs infrequently in practice.

6 Evaluation and Analysis
We evaluated our real-time detector on our dataset of
370 million emails from LBNL, measuring its detection
performance (true positives), the time burden (false pos-
itives) it imposes on an enterprise’s security staff, and
how it performs relative to standard anomaly detection
techniques that use the same set of features.

For each click-in-email event, we computed its repu-
tation features using log data from a sliding window over
the six months prior to the click event. To bootstrap this
process, we use the first six months of our dataset as a
burn-in period and do not generate alerts for any emails
in that period. Later (§ 7), we explore the impact of using
a smaller window of historical data to compute feature
values.

We configured our detector with a daily budget of 10
alerts per day. LBNL’s security team specified 10 alerts
per day as a very tolerable number since their team con-
sists of several analysts who routinely process a few hun-
dred alerts each day. To divide this budget among each of
our three sub-detectors, we allocated 4 alerts per day for
each of the name spoofer and previously unseen attacker
sub-detectors and 2 alerts per day for our lateral attacker
sub-detector; since lateral spearphishing requires the use
of a compromised account, we expect it to occur less of-
ten than spoofing-based spearphishing.

6.1 Detection Results: True Positives
Because spearphishing attacks occur infrequently and of-
ten go undetected, developing ground truth and measur-
ing true positives is a hard problem. For our evaluation,
we draw upon LBNL’s incident database, which contains

4This is equivalent to running DAS to score the current feature vec-
tor against the ComparisonSet and checking whether it gives the current
feature vector a score of at least 1.

478    26th USENIX Security Symposium USENIX Association



Alert Classification Name spoofer Previously unseen attacker Lateral attacker Total Count
Spearphish: known + successful attack 2 2 2 6 / 7
Spearphish: unknown + successful attack 1 1 0 2 / 2
Spearphish: failed attack 3 6 0 9 / 10
Total Spearphish Detected 6 9 2 17 / 19

Table 3: Summary of our real-time detection results for emails in our test window from Sep 1, 2013 - Jan 14, 2017 (1,232 days).
Rows represent the type/classification of an alert following analysis by security staff members at LBNL. Columns 2–4 show alerts
broken down per attacker model (§ 5.2.2). Column 5 shows the total number of spearphishing campaigns identified by our real-time
detector in the numerator and the total number of spearphishing campaigns in the denominator. Out of 19 spearphishing attacks,
our detector failed to detect 2 attacks (one that successfully stole an employee’s credentials and one that did not); both of these
missed attacks fall under the previously unseen attacker threat model, where neither the username nor the email address matched
an existing entity.

7 known successful spearphishing attacks; this includes 1
spearphishing exercise, designed by an external security
firm and conducted independently of our work, that suc-
cessfully stole employee credentials. Additionally, mem-
bers of LBNL’s security team manually investigated and
labeled 15,521 alerts. We generated these alerts from a
combination of running (1) an older version of our detec-
tor that used manually chosen thresholds instead of the
DAS algorithm; and (2) a batched version of our anomaly
scoring detector, which ran the full DAS scoring proce-
dure over the click-in-email events in our evaluation win-
dow (Sep. 2013 onward) and selected the highest scoring
alerts within the cumulative budget for that timeframe.

From this procedure, we identified a total of 19
spearphishing campaigns: 9 which succeeded in stealing
an employee’s credentials and 10 where the employee
clicked on the spearphishing link, but upon arriving at
the phishing landing page, did not enter their creden-
tials.5 We did not augment this dataset with simulated
or injected attacks (e.g., from public blogposts) because
the true distribution of feature values for spearphishing
attacks is unknown. Even for specific public examples,
without actual historical log data one can only speculate
on what the values of our reputation features should be.

To evaluate our true positive rates, we ran our real-
time detector (§ 5.5) on each attack date, with a budget
of 10 alerts per day. We then computed whether or not
the attack campaign was flagged in a real-time alert gen-
erated on those days. Table 3 summarizes our evaluation
results. Overall, our real-time detector successfully iden-
tifies 17 out of 19 spearphishing campaigns, a 89% true
positive rate.

Of these, LBNL’s incident database contained 7
known, successful spearphishing campaigns (their inci-
dent database catalogues successful attacks, but not ones
that fail). Although our detector missed one of these suc-
cessful attacks, it identified 2 previously undiscovered at-
tacks that successfully stole an employee’s credentials.
The missed attack used a now-deprecated feature from

5A campaign is identified by a unique triplet of 〈the attack URL,
email subject, and email’s From header〉.
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Figure 6: Histogram of the total number of daily alerts gener-
ated by our real-time detector (cumulative across all three sub-
detectors) on 100 randomly sampled days. The median is 7
alerts/day.

Dropbox [7] that allowed users to host static HTML
pages under one of Dropbox’s primary hostnames, which
is both outside of LBNL’s NIDS visibility because of
HTTPS and inherits Dropbox’s high reputation. This
represents a limitation of our detector: if an attacker can
successfully host the malicious phishing page on a high-
reputation site or outside of the network monitor’s vis-
ibility, then we will likely fail to detect it. However,
Dropbox and many other major file sharing sites (e.g.,
Google Drive) have dropped these website-hosting fea-
tures due to a number of security concerns, such as facil-
itating phishing. Ironically, in the specific case of Drop-
box, industry reports mention a large increase in phishing
attacks targeted against Dropbox users, where the phish-
ing attack would itself be hosted via Dropbox’s website
hosting feature, and thus appear to victims under Drop-
box’s real hostname [11]. Among the attacks that our de-
tector correctly identified, manual analysis by staff mem-
bers at LBNL indicated that our sub-detectors aptly de-
tected spearphish that fell under each of their respective
threat models (outlined in Section 2.1).
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6.2 False Positives and Burden of Alerts
At a daily budget of 10 alerts per day, our detector
achieved an average false positive rate of 0.004% (the
median number of emails per day is 263,086). How-
ever, as discussed earlier (§ 5.5), our real-time detector
is not guaranteed to produce exactly 10 alerts per day;
some days might have a burst of particularly suspicious
emails while other days might not have any unusual ac-
tivity at all. To evaluate the actual daily alert load, we ran
our real-time detector on one hundred randomly selected
days in our dataset and computed the total number of
alerts it generated on each day, shown in Figure 6. From
this histogram, we see that while our detector occasion-
ally generates bursts over our target budget, on the vast
majority of days (80%) it generates 10 or fewer alerts per
day; on nearly 20% of days, it generates no alerts.

During their manual investigation of the 15,521 alerts
created during our ground truth generation process,
LBNL’s security staff tracked how long it took them to
investigate these alerts. Surprisingly, LBNL’s security
staff reported that a single analyst could process an entire
month’s worth of alerts in under 15 minutes (and thus, on
average, under one minute to analyze one day’s worth of
alerts).

This rapid processing time arises because the analysts
were able to develop a two-pass workflow that enabled
them to quickly discard over 98% of the alerts, at a rate
of 2 seconds per alert; and then follow up with a more in-
depth analysis pass (e.g., analyzing detailed HTTP logs
and examining the full email headers) over the remain-
ing 2% of alerts, at a rate of 30 seconds per alert. The
first pass is so fast because, for the vast majority of our
detector’s alerts, an analyst could quickly tell if an email
constituted a plausible spearphishing threat by inspect-
ing the Subject line, From line, and clicked URL of
the email. For over 98% of our alerts, this trio of in-
formation indicated that the email was highly unlikely
to contain a credential spearphishing attack. For exam-
ple, emails with subjects such as “Never Lose Your Keys,
Wallet, or Purse Again!” and “ATTN: Your Stomach Is-
sues FINALLY Explained. See Video Here” are surely
not spearphishing attacks.

While the more time-intensive 2% of alerts contained
mostly false positives (i.e., not spearphishing), the an-
alysts found two interesting classes of alerts. First, in
addition to detecting spearphishing attacks, our detector
identified 41 emails from regular phishing campaigns.
The analysts distinguished between regular phishing and
spearphishing by checking whether the email and HTTP
response from the clicked URL contained content that
was specifically targeted at LBNL. Second, ironically,
our detector generated 40 alerts where the person who
clicked on the link in the email was not one of the
email’s recipients, but rather a member of LBNL’s se-

curity staff. These clicks were part of routine investiga-
tions conducted by LBNL’s security staff; for example,
in response to a user reporting a suspicious email.

6.3 Anomaly Detection Comparisons
In Section 5.4 we introduced DAS, a simple new tech-
nique for anomaly detection on unlabeled data. Now,
we evaluate the effectiveness of DAS compared to tra-
ditional unsupervised anomaly detection techniques.

We tested three common anomaly detection tech-
niques from the machine learning literature: Kernel
Density Estimation (KDE), Gaussian Mixture Models
(GMM), and k-Nearest Neighbors (kNN) [5]. To com-
pare the real-time detection performance of each of
these classical techniques against DAS’s real-time per-
formance, we ran each of these classical techniques using
the same training and evaluation procedures we used for
our real-time detector’s evaluation. Specifically, given
the date of each of the 19 attacks and its impersonation
model, we extracted the same exact feature values for
all click-in-email events that occurred within a thirty
day window ending on the attack date; the thirty day
window reflected the size of our ComparisonSet. We
then normalized these feature values and ran each of the
three classical anomaly detection techniques on this set
of click-in-email events for each attack date. For quanti-
tative comparisons, we computed (1) the number of at-
tacks that would have been detected by each classical
technique if it used the same budget that our real-time
detector used and (2) the daily budget the classical tech-
nique would need to detect all of the attacks that our
DAS-driven detector identified.

Like other machine learning methods, these classical
algorithms require the user to set various hyperparame-
ters that affect the algorithm’s performance. For our eval-
uation, we tested each classical technique under a range
of different hyperparameter values and report the results
for whichever values gave the best results (i.e., compar-
ing DAS against the best-case version of these classical
techniques).

Table 4 summarizes the results of this comparative ex-
periment. All three traditional techniques detected fewer
than 25% of the attacks found by DAS. Moreover, in or-
der for KDE (the best performing classical technique) to
detect as many attacks as DAS, it would need a daily
budget nearly an order of magnitude larger than ours.

To illustrate why standard unsupervised techniques
perform so poorly, the two plots in Figure 7 show the
sender reputation features for a random sample of 10,000
lateral attacker click-in-email events. The left plot
shows the feature values for the actual alerts our DAS
detector generated (in red), while the right plot shows
the feature values for the alerts selected by KDE using
the same budget as our detector. KDE selects a mass
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Figure 7: Both plots show the sender reputation feature values (scaled between [0, 1]) of a random sample of 10,000 lateral attacker
click-in-email events. Filled red points denote events that generated alerts within the daily budget by DAS (left-hand figure) and
KDE (right-hand figure).

Algorithm Detected Daily Budget
kNN 3/19 10

17/19 2,455
GMM 4/19 10

17/19 147
KDE 4/19 10

17/19 91
DAS (§ 5.4) 17/19 10

Table 4: Comparing classical anomaly detection techniques to
our real-time detector, on the same dataset and features. For
each of the standard anomaly detection algorithms, the first row
shows the number of attacks detected under the same daily bud-
get as ours; the second row shows what the classical technique’s
budget would need to be to detect all 17 attacks that our real-
time detector identified on a daily budget of 10 alerts per day.

of points in the upper-right corner, which illustrates one
of limitations of standard techniques discussed in Sec-
tion 5.4: they do not take into account the directionality
of feature values. Because extremely large feature val-
ues occur infrequently, KDE ranks those events as highly
anomalous, even though they correspond to benign login
sessions where the user happened to login from a new
IP address in a residential city nearby LBNL. Second,
KDE selects a group of events in the bottom-right cor-
ner, which correspond to login sessions where an em-
ployee logged in from a city that they have frequently
authenticated from in the past, but where few other em-
ployees have logged in from. KDE’s selection of these
benign logins illustrates another limitation of standard
techniques: they often select events that are anomalous in
just one dimension, without taking into account our do-
main knowledge that an attack will be anomalous in all

dimensions. Even though the bottom-right corner repre-
sents employee logins where few other employees have
logged in from the same city, they are not suspicious, be-
cause that employee has previously logged in many times
from that location: they correspond to benign logins by
remote employees who live and work from cities far from
LBNL’s main campus. Thus, DAS can significantly out-
perform standard unsupervised anomaly detection tech-
niques because it allows us to incorporate domain knowl-
edge of the features into DAS’s decision making.

7 Discussion and Limitations

Detection systems operate in adversarial environments.
While we have shown our approach can detect both
known and previously undiscovered spearphishing at-
tacks, there are limitations and evasion strategies that ad-
versaries might pursue.

Limited Visibility: Our detection strategy hinges on
identifying if an email’s recipient engaged in a po-
tentially dangerous action. In the case of credential
spearphishing, LBNL’s network traffic logs allowed us
to infer this behavior. However, our approach has two
limitations: first, email and network activity conducted
outside of LBNL’s network borders will not get recorded
in the NIDS logs. Second, LBNL made a conscious
decision not to man-in-the-middle traffic served over
HTTPS; thus, we will miss attacks where the email links
to an HTTPS website. Both of these are typical chal-
lenges that network-level monitoring faces in practice.
One strategy for alleviating this problem would be to use
endpoint monitoring agents on employee machines. Al-
ternatively, a detector could leverage SNI [23] to develop
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its domain reputation for HTTPS and identify when users
visit potentially dangerous HTTPS domains.

In addition to limited network visibility, our detector
might miss attacks if a spearphishing email came from a
compromised personal email account. Since our detector
relies on access to a user’s prior login information to de-
tect lateral spearphishing attacks, it will not have the nec-
essary data to compute the features for this sub-detector.
To defend against this genre of lateral spearphishing,
one could leverage alternative sender reputation features,
such as ones based on stylometry [8, 19].

False Negatives and Evasion Strategies: Our detector
attempts to meet an upper-bound on the number of alerts
it generates. As a result, it might miss some attacks if
a number of successful spearphishing campaigns occur
on a given day; in effect, the clicks on URLs from the
campaigns earlier in the day will mask campaigns that
occur later on. To overcome this problem, the security
staff could increase the detector’s alert budget on days
with many attack alerts.

Aside from trying to mask one attack campaign with
another, an adversary could attempt to escape detection
by crafting an email whose domain or sender reputation
features are high. An attacker could boost her link’s do-
main reputation by compromising a frequently visited
website and using it to host the credential spearphish-
ing website. This strategy incurs greater costs to exe-
cute than modern-day attacks (where an adversary can
simply setup her own cheap phishing webpage), and it
is unclear whether such an attack would succeed if the
site does not normally ask for the employee’s corporate
credentials. For example, if an adversary compromises
a popular video website (e.g., netflix.com), many users
might find it unusual for that popular domain to suddenly
start asking for the user’s enterprise credentials.

Alternatively, an attacker could attempt to inflate the
sender reputation features of their adversarial email be-
fore using it in an attack. For instance, to prepare a mali-
cious email address for a name spoofing attack, an adver-
sary could start sending emails with the malicious email
address and spoofed From name for several days before
sending a spearphishing email to the targeted recipient.
However, the more frequently this address is used, the
more the adversary risks someone detecting the adver-
sary’s use of a spoofed name; thus this evasion strategy
does incur a cost and risk to the attacker.

Future work could explore methods to make DAS
more robust. In particular, rather than treating an event
E as more suspicious than another event X only if E is
more suspicious than X in every dimension, the scoring
algorithm could be changed to treat E as more suspicious
if it is more suspicious than X in at least k dimensions.

Prior History for Feature Extraction: For each click-
in-email event, our detector leveraged 6 months of prior
log data in order to compute meaningful reputation fea-
tures. LBNL stores several years worth of logs, so this
amount of prior history was easily available for our de-
tector. However, with less historical data, the quality of
our detector might degrade (e.g., in the degenerate case
with no prior history, all From names and addresses will
appear as suspicious new entities). To assess how much
history our detector needs, we re-ran our evaluation ex-
periments (§ 6.1 and § 6.2) with 3 months of history and
with 1 month of history. A 3-month historical window
sufficed to detect the same attacks as our 6-month real-
time detector, and the median number of alerts per day
remained the same (7 per day). However, a detector with
only 1 month of history failed to detect one of the attacks
and generated a median of 18 alerts per day. With just
one month of prior data, too many click-in-email events
have the smallest possible feature values; this causes our
detector to select entire batches of them because they
share the same DAS score.

Extending to Preventative Protection: One could ex-
tend our real-time detector to operate in a preventative
fashion. As emails arrived, our detector could compute
each email’s feature values and then check each URL in
the email to see whether or not it would generate an alert
if the URL were clicked at that moment. If so, we could
rewrite the email’s URL (before delivering the email to
its recipient) to point to an interstitial warning page set
up by the enterprise’s security team. Our computations
show that if we used our real-time detector with a budget
of 10 alerts/day, an employee would encounter a median
of 2 interstitial pages over the nearly 4-year time span of
our evaluation data (Appendix B). Given this low bur-
den, future work could explore how to design effective
warning mechanisms as part of a preventative defense.

8 Related Work

Recently, a number of papers have highlighted the threat
of spearphishing and explored potential defenses [8, 12,
19, 24]. Closest to our work, the systems proposed by
Stringhini et al. [19], Duman et al. [8], and Khonji et
al. [12] build behavioral models for senders based on
metadata, stylometry, and timing features. They then
classify an email as spearphishing or not by using the be-
havioral model to see whether a new email’s features dif-
fer from the sender’s historical behavioral profile. This
prior work cannot detect spearphish sent by a previously
unseen attacker since the sender has no prior history (and
thus no behavioral model to compare the attack email
against). More importantly, when they evaluate their sys-
tems on smaller datasets with simulated attacks, the best
performing detectors obtain false positive rates (FPRs)
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in the range of 1–10%. Although quite low, an FPR of
even 1% is too high for a practical enterprise settings;
our dataset contains over 250,000 emails per day, so an
FPR of 1% would lead to 2,500 alerts each day. In con-
trast, our detector can detect real-world attacks, includ-
ing those from a previously unseen attacker, with a bud-
get of 10 alerts per day.

Other work has characterized the landscape of
spearphishing attacks against individual activists and dis-
sidents [9, 15, 16, 20]. This body of work shows that
targeted attacks on individuals span a wide spectrum of
sophistication, from simple third-party tracking software
and common exploits to purchasing specialized spyware
and exploits from commercial firms. Most recently,
LeBlond et al. conducted a large-scale analysis of exploit
documents used in targeted attacks [14]. Their analysis
found that none of these malicious attachments used a
zero-day exploit, and over 95% of these documents relied
on a vulnerability that was at least one year old. While
these attacks can succeed against vulnerable activists and
individuals, such dated exploits will likely fail against an
enterprise with good security hygiene. Indeed, over the
past few years, all of the spearphishing attacks on LBNL
have been credential spearphishing.

9 Conclusion

In this work, we developed a real-time detector for iden-
tifying credential spearphishing attacks in enterprise set-
tings. Two key contributions enabled our detector to
achieve practical performance: (1) a new set of features
that targets the two fundamental stages of successful
spearphishing attacks, and (2) a new anomaly detection
technique that leverages these features to detect attacks,
without the need for any labeled training data.

We evaluated our approach on an anonymized dataset
of over 370 million emails collected from a large national
lab. At a false positive rate of less than 0.005%, our sys-
tem detected all but two attacks in our dataset and uncov-
ered two previously unknown successful attacks. Com-
pared against our anomaly scoring technique, standard
anomaly detection techniques would need to generate or-
ders of magnitude more false positives to detect the same
attacks as our algorithm. Because of our approach’s
ability to detect a wide range of attacks, including pre-
viously undiscovered attacks, and its low false positive
cost, LBNL has implemented and deployed a version of
our detector.
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A Feature Vectors and Comparators per
Sub-Detector

Name spoofer Features Comparator for DAS
Host age of clicked URL ≤
(email ts − domain’s 1st visit ts)
# visits to clicked URL’s host prior to email ts ≤
# weeks that From name has ≥
sent email on ≥ 5 days
# days that From name and From addr ≤
have appeared together in emails

Table 5: Summary of the feature vector for our name spoofer
sub-detector and the “suspiciousness” comparator we provide
to DAS for each feature.

Previously unseen attacker Features Comparator for DAS
Host age of clicked URL ≤
(email ts − domain’s 1st visit ts)
# visits to clicked URL’s host prior to email ts ≤
# days that From name has sent email ≤
# days that From addr has sent email ≤

Table 6: Summary of the feature vector for our previously un-
seen attacker sub-detector and the “suspiciousness” compara-
tor we provide to DAS for each feature.

Lateral attacker Features Comparator for DAS
Host age of clicked URL ≤
(email ts − domain’s 1st visit ts)
# visits to clicked URL’s host prior to email ts ≤
# distinct employees who have previously logged in ≤
from the same city as the session’s new IP addr
# previous logins by the current employee from ≤
the same city as the session’s new IP addr

Table 7: Summary of the feature vector for our lateral attacker
sub-detector and the “suspiciousness” comparator we provide
to DAS for each feature.

B Preventative Interstitials
In Section 7 we discussed how to extend our detec-
tor from a realtime alert system to a preventative de-
fense by rewriting suspicious URLs in emails to redi-
rect to an interstitial page. This defense can only be
practical if it does not cause employees to frequently
land on interstial’ed pages. To assess this concern, we
ran our detector on our entire evaluation dataset (Sep
1, 2013 – Jan 14, 2017) with an average daily budget
of 10 alerts, and selected the alerts that fell within our
cumulative budget for that window (i.e., selecting the
top B = 10∗NdaysInEvalWindow = 12,310 most suspicious
click-in-email events). For each recipient (RCPT TO
email address) that received the emails of those 12,310
alerts, we computed the number alerts that recipient re-
ceived over the entire evaluation time window. Figures 8
and 9 show these results in histogram and CDF form.
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Figure 8: Histogram of alerts per RCPT TO address for our
detector using an average budget of 10 alerts per day across the
Sep 1, 2013 – Jan 14, 2017 timeframe.
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Figure 9: CDF of alerts per RCPT TO address for our detector
using an average budget of 10 alerts per day across the Sep 1,
2013 – Jan 14, 2017 timeframe.

From these figures, we see that over 95% of employ-
ees would see fewer than 10 interstitials across the entire
time span of nearly 3.5 years.
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