
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

Vale: Verifying High-Performance
Cryptographic Assembly Code

Barry Bond and Chris Hawblitzel, Microsoft Research; Manos Kapritsos,
University of Michigan; K. Rustan M. Leino and Jacob R. Lorch, Microsoft Research;

Bryan Parno, Carnegie Mellon University; Ashay Rane, The University of Texas at Austin;
Srinath Setty, Microsoft Research; Laure Thompson, Cornell University

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond

Vale: Verifying High-Performance Cryptographic Assembly Code

Barry Bond⋆, Chris Hawblitzel⋆, Manos Kapritsos†, K. Rustan M. Leino⋆, Jacob R. Lorch⋆,
Bryan Parno‡, Ashay Rane§, Srinath Setty⋆, Laure Thompson¶

⋆ Microsoft Research † University of Michigan ‡ Carnegie Mellon University
§ The University of Texas at Austin ¶ Cornell University

Abstract

High-performance cryptographic code often relies on
complex hand-tuned assembly language that is cus-
tomized for individual hardware platforms. Such code
is difficult to understand or analyze. We introduce a new
programming language and tool called Vale that supports
flexible, automated verification of high-performance as-
sembly code. The Vale tool transforms annotated assem-
bly language into an abstract syntax tree (AST), while
also generating proofs about the AST that are verified via
an SMT solver. Since the AST is a first-class proof term,
it can be further analyzed and manipulated by proven-
correct code before being extracted into standard assem-
bly. For example, we have developed a novel, proven-
correct taint-analysis engine that verifies the code’s free-
dom from digital side channels. Using these tools, we
verify the correctness, safety, and security of implemen-
tations of SHA-256 on x86 and ARM, Poly1305 on x64,
and hardware-accelerated AES-CBC on x86. Several im-
plementations meet or beat the performance of unverified,
state-of-the-art cryptographic libraries.

1 Introduction
The security of the Internet rests on the correctness of the
cryptographic code used by popular TLS/SSL implemen-
tations such as OpenSSL [61]. Because this cryptographic
code is critical to TLS performance, implementations of-
ten use hand-tuned assembly, or even a mix of assembly,
C preprocessor macros, and Perl scripts. For example, the
Perl subroutine in Figure 1 generates optimized ARM
code for OpenSSL’s SHA-256 inner loop.

Unfortunately, while the flexibility of script-generated
assembly leads to excellent performance (§5.1) and helps
support dozens of different platforms, it makes the cryp-
tographic code difficult to read, understand, or analyze. It
also makes the cryptographic code more prone to inadver-
tent bugs or maliciously inserted backdoors. For instance,
in less than a month last year, three separate bugs were
found just in OpenSSL’s assembly implementation of the
MAC algorithm Poly1305 [64–66].

Since cryptographic code is so critical for security,
we argue that it ought to be verifiably correct, safe, and
leakage-free.

sub BODY_00_15 {
my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
$code.=<<___ if ($i<16);
#if __ARM_ARCH__>=7
@ ldr $t1,[$inp],#4 @ $i
if $i==15
str $inp,[sp,#17*4] @ make room for $t4
endif
eor $t0,$e,$e,ror#‘$Sigma1[1]-$Sigma1[0]‘
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
eor $t0,$t0,$e,ror#‘$Sigma1[2]-$Sigma1[0]‘@Sigma1(e)
ifndef __ARMEB__
rev $t1,$t1
endif
#else
@ ldrb $t1,[$inp,#3] @ $i
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
ldrb $t2,[$inp,#2]
ldrb $t0,[$inp,#1]
orr $t1,$t1,$t2,lsl#8
ldrb $t2,[$inp],#4
orr $t1,$t1,$t0,lsl#16
if $i==15
str $inp,[sp,#17*4] @ make room for $t4
endif
eor $t0,$e,$e,ror#‘$Sigma1[1]-$Sigma1[0]‘
orr $t1,$t1,$t2,lsl#24
eor $t0,$t0,$e,ror#‘$Sigma1[2]-$Sigma1[0]‘@Sigma1(e)
#endif

FIGURE 1—Snippet of a SHA-256 code-generating Perl script
from OpenSSL, with spacing adjusted to fit in one column.
§4.1 helps decode and explain the motivations for this style.

Existing approaches to verifying assembly code fall
roughly into two camps. On one side, frameworks like
Bedrock [19], CertiKOS [23], and x86proved [42] are
built on very expressive higher-order logical frameworks
like Coq [22]. This allows great flexibility in how the
assembly is generated and verified, as well as high as-
surance that the verification matches the semantics of
the assembly language. On the other side, systems like
BoogieX86 [37, 77], VCC [56], and various assembly lan-
guage analysis tools [9] are built on satisfiability-modulo-
theories (SMT) solvers like Z3 [25]. Such solvers can
potentially blast their way through large blocks of as-
sembly and tricky bitwise reasoning, making verification
faster and easier.

In this paper, we present Vale, a new language for ex-
pressing and verifying high-performance assembly code
that strives to combine the advantages of both approaches;

USENIX Association 26th USENIX Security Symposium 917

untrusted
trusted

hand-written
libraries	(Dafny)

masm code

Information
Leakage
Analyzer

Vale	tool

Dafny/Z3
Verifier

verified

Cryptographic	code	(Vale)

generated
proofs	(Dafny)

generated
code	AST
(Dafny)

Assembler

Assembly	printer

yes no

yes no

crypto	spec
(Dafny)

semantics
machine

(Dafny)

FIGURE 2—Verifying cryptographic code with Vale and
Dafny.

i.e., it combines flexible generation of high-performance
assembly with automated, rigorous, machine-checked ver-
ification. For any assembly program written in Vale, the
Vale tool constructs an abstract syntax tree (AST) rep-
resenting the program’s code, and produces a proof that
this AST obeys a desired specification for any possible
evaluation of the code (Figure 2). The specification, the
AST, and the proofs are currently expressed in Dafny [50],
an off-the-shelf logical framework supporting SMT-based
verification, higher-order reasoning, datatypes, functions,
lemmas, and extraction of executable code. Dafny uses
Z3 to verify the proofs generated by Vale.

After verification, the AST is available in the logical
framework for further analysis and manipulation. As a
powerful example of this post-analysis, we have devel-
oped a verified analyzer that checks Vale ASTs for po-
tential information leakage through timing and memory-
access channels.

Although we trust our crypto specs, Dafny, and the
assembly language semantics to be correct, as shown in
Figure 2, neither Vale nor the information leakage ana-
lyzer is part of the trusted computing base. The former
merely produces ASTs and proofs that are then checked
against trusted specifications by Dafny; the latter is writ-
ten directly in Dafny and verified once and for all to be
correct for all possible ASTs. Working directly on as-
sembly language means we trust an assembler but not a
higher-level compiler, so we need not worry about com-
pilers that introduce information leaks into cryptographic
code [43].

Contributions In summary, this paper makes the follow-
ing contributions.

• The design and implementation of Vale (§2), which
combines flexible generation of high-performance
assembly with automated machine-checked verifica-
tion.

• A machine-verified analyzer that checks verified
Vale programs for side channels based on a novel
combination of dataflow analysis and Hoare-style
proofs (§3).

• A series of case studies applying Vale to standard
algorithms like Poly1305, AES, and SHA on x86,
x64, and ARM platforms with support for both the
GNU assembler and MASM (§4). They show that
Vale is flexible enough to express and verify even
highly scripted code generation like that in Figure 1.
In particular, it replaces the use of chaotic Perl scripts
with a principled approach based on verification and
partial evaluation.

• An evaluation demonstrating that, because Vale
can match the expressiveness of OpenSSL’s code-
generation techniques, the verified assembly code
generated by Vale can match the performance of
highly-optimized implementations like OpenSSL
(§5). Hence, verification does not require compro-
mising on performance. We believe that Vale is the
first system to demonstrate formally verified assem-
bly language cryptographic code whose performance
matches that of comparable OpenSSL code.

All Vale code and case studies are available on GitHub at
https://github.com/project-everest/vale.

2 Vale Design and Implementation
Vale is currently targeted towards verifying cryptographic
assembly language code, which tends to have simple struc-
tured control flow and heavy inlining. Therefore, the Vale
language includes control constructs such as inline pro-
cedures, conditionals, and loops. Note that these control
constructs are independent of any particular features in the
underlying logical framework. For example, even when
using Dafny as a logical framework, Vale procedures are
not executable Dafny methods, Vale while loops are not
executable Dafny while loops, and executable Vale code
is not compiled with Dafny’s compiler, which compiles
Dafny’s own control constructs to C#. Instead, Vale relies
on the logical framework mainly for mathematical reason-
ing in proofs, and uses executable Dafny code only for
specialized tasks like printing assembly language code
and static analysis of Vale code.

The Vale language does not contain anything specific to
a particular architecture such as x86 or ARM or to a par-
ticular assembler such as the GNU assembler or MASM.
Instead, programmers write Dafny code that defines the
syntax and semantics for the architecture of their choice,
then use Vale to manipulate the syntax and semantics. §2.1
introduces examples of such Dafny declarations. §2.2 and
§2.3 then present Vale code, demonstrating the flexibility
and expressiveness of the Vale language. §2.4 describes
how Vale generates Dafny proofs that make the best use
of Dafny and Z3. Finally, §2.5 describes how Vale handles

918 26th USENIX Security Symposium USENIX Association

https://github.com/project-everest/vale

errors to improve usability. Figures in these subsections
present examples of Dafny and Vale code. Although the
syntax for both languages is similar, Vale’s syntax (see
appendix) is independent from Dafny’s syntax; the figure
captions specify the language of each code snippet.

2.1 Dafny declarations

datatype reg = R0 | R1 | R2 | R3 | R4 | R5
| R6 | R7 | R8 | R9 | R10 | R11 | R12 | LR
datatype op =
op_reg(r:reg)

| op_const(n:uint32)
datatype ins =
Add(addDst:op, addSrc1:op, addSrc2:op)

| Ldr(ldrDst:op, ldrBase:op, ldrOffset:op)
| Str(strSrc:op, strBase:op, strOffset:op)
datatype cmp = Lt(o1:op, o2:op) | Le(o3:op, o4:op)
datatype code =
Ins(ins:ins)

| Block(block:codes)
| IfElse(ifCond:cmp, ifTrue:code, ifFalse:code)
| While(whileCond:cmp, whileBody:code)
type codes = list<code>
datatype state = State(ok:bool,

regs:map<reg, uint32>,
mem:map<int, uint32>)

function evalCode(c:code, s1:state, s2:state):bool
{ match c case Ins(ins) => ...

case Block(block) => ...
case IfElse(cond, ifT, ifF) => ...
case While(cond, body) => ...

}
method PrintCode(c:code) { ... }

FIGURE 3—Example Dafny definitions for simplified ARM.

As a running example, the Dafny declarations in Fig-
ure 3 define registers, operands, instructions, and struc-
tured code for a simplified subset of ARM code. The state
of the simplified ARM machine consists of registers and
memory. To help prove execution safety, the state also
contains an ok flag to indicate whether the state is consid-
ered good (ok = true) or crashed (ok = false). The
operational semantics are defined as a relation evalCode
that specifies all possible states s2 that code c can
reach in a finite number of steps from s1. Since any
crash happens in a finite number of steps, showing
∀s2 . evalCode(c, s1, s2) ⇒ s2.ok proves that
c starting in state s1 cannot crash.

Notice that neither the logical framework nor Vale
needs to know anything about particular assembly lan-
guage architectures. In fact, the logical framework need
not know anything about assembly language at all. This
allows Vale to take advantage of existing logical frame-
works like Dafny. It also ensures portability across ar-
chitectures; supporting a new architecture means writing
a new set of declarations like those in Figure 3, with
no modifications needed to Vale or Dafny. Furthermore,
properties of programs are proven directly in terms of the

method Main()
{
var code := Block(
cons(Add(op_reg(R7), op_reg(R7), op_const(1))
,cons(Add(op_reg(R7), op_reg(R7), op_const(1))
,cons(Add(op_reg(R7), op_reg(R7), op_const(1))
,nil))));

...proof about code...

assert forall s1:state, s2:state ::
s1.ok && evalCode(code, s1, s2)

&& s1.regs[R7] < 0xfffffffd
==> s2.ok && s2.regs[R7] == s1.regs[R7] + 3;

PrintCode(code);
}

FIGURE 4—Example Main method in Dafny.

semantics of assembly language, so the Vale language
and tool need not be trusted. Although Vale builds on
standard Hoare rules for conditional statements, while
loops, and procedure framing, these rules are expressed
as a hand-written library of lemmas, verified relative to
the assembly language semantics, as depicted in Figure 2.

Given a machine’s semantics, a Dafny programmer
can, in theory, construct ASTs for assembly-language pro-
grams and try to prove properties about their evaluation.
Figure 4 shows an example. It creates a block of code
consisting of three Add instructions; proves safety (that
the final state is good); proves that one effect of the code
is to add three to register R7; and prints the code.

However, cons(...), op_reg(...), and
op_const(...) make an awkward syntax for writing
assembly language. Since Dafny is a general-purpose
high-level language that knows nothing about assembly
language instructions, operands, and registers, Vale
provides domain-specific language support for declaring
instructions, declaring and instantiating input and output
operands, declaring which registers an instruction reads
and modifies, and so on. Furthermore, it’s useful to
have language support for constructing proofs about
complex code. Vale can be thought of as an assistant that
generates the code variable in the example above and
fills in the missing “...proof about code...”. Dafny checks
the Vale-generated code object, using the Vale-generated
proof, against a crypto specification the programmer
writes in Dafny; hence, any mistakes in the code or proof
will be caught by Dafny. This means that Vale is not part
of the trusted computing base on which the correctness,
safety, and security of the code depend.

2.2 Vale procedures

Figure 5 shows some simple Vale procedures. The global
variables ok, r0. . .r12, lr, and mem represent distinct
components of the state type declared in Figure 3. Each
procedure declares which of these components it can
read (using reads clauses) or read and modify (using

USENIX Association 26th USENIX Security Symposium 919

modifies clauses). The effect on the state is expressed
using preconditions (requires clauses) and postcondi-
tions (ensures clauses). The Add3ToR7 procedure, for
example, promises to add three to register r7 under the
condition that the initial value or r7 isn’t so big that
adding three would cause overflow.

var{:state ok()} ok:bool;
var{:state reg(R0)} r0:uint32;
var{:state reg(R1)} r1:uint32;
...
var{:state reg(R12)} r12:uint32;
var{:state reg(LR)} lr:uint32;
var{:state mem()} mem:map(int, uint32);

procedure AddOne(inout operand r:uint32)
requires r < 0xffffffff;
ensures r == old(r) + 1;

{
ADD(r, r, 1);

}

procedure Add3ToR7()
modifies r7;
requires r7 < 0xfffffffd;
ensures r7 == old(r7) + 3;

{
AddOne(r7);
AddOne(r7);
AddOne(r7);

}

FIGURE 5—Examples of state declarations and inline proce-
dure declarations in Vale.

In addition to preconditions and postconditions, Vale
also requires loop invariants for loops:
while (r7 <= 100) // example loop in Vale

invariant r7 <= 103; // loop invariant
{

Add3ToR7();
}

For each procedure, the Vale tool generates a Dafny
function that produces an AST value of type code. For ex-
ample, for the code in Figure 5, it generates the following
Dafny code:
function method{:opaque} code_AddOne(r:op):code {

Block(cons(code_ADD(r, r, op_const(1)), nil()))
}
function method{:opaque} code_Add3ToR7():code {

Block(cons(code_AddOne(op_reg(R7)),
cons(code_AddOne(op_reg(R7)),
cons(code_AddOne(op_reg(R7)), nil()))))

}

Here, function method is Dafny’s syntax for a func-
tion whose code can be extracted and executed. Both
Vale and Dafny use the syntax {:...} for attributes. The
opaque attribute indicates that the function definition will
be hidden during proofs except where explicitly revealed.

procedure{:instruction Ins(Add(dst,src1,src2))}
ADDW(out operand dst:uint32,

operand src1:uint32, operand src2:uint32)
ensures dst == (src1 + src2) % 0x100000000;

procedure{:instruction Ins(Add(dst,src1,src2))}
ADD(out operand dst:uint32,

operand src1:uint32, operand src2:uint32)
requires 0 <= src1 + src2 < 0x100000000;
ensures dst == src1 + src2;

procedure{:instruction Ins(Ldr(dst,base,offset))}
LDR(out operand dst:uint32,

operand base:uint32, operand offset:uint32)
reads mem;
requires InMem(base + offset, mem);
ensures dst == mem[base + offset];

procedure{:instruction Ins(Str(src,base,offset))}
STR(operand src:uint32,

operand base:uint32, operand offset:uint32)
modifies mem;
requires InMem(base + offset, mem);
ensures mem == old(mem)[base + offset := src];

FIGURE 6—Example Vale instruction declarations, including
two for the same instruction: both a wrapping (ADDW) and non-
wrapping (ADD) specification of the Add instruction.

The leaves of the AST are the individual instructions
declared in Figure 3. Programmers declare instructions
as Vale procedures with specifications of their choice.
They must prove that the specifications are sound with
respect to the semantics given by evalCode, so these
specifications do not have to be trusted.

Multiple procedures with different specifications may
be given for the same instruction if different specifications
will be more convenient in different situations. For ex-
ample, the ADDW (wrapping add) and ADD (non-wrapping
add) procedures in Figure 6 both have the same body, a
single Add instruction. However, ADD restricts its input
operands so it can provide a simpler postcondition that
need not consider the consequences of overflow. This
hiding often makes code easier to verify in cases when
wrapping is not intended.

The generation of first-class AST values allows pro-
grammers to customize the analysis and processing of
assembly language code. For example, the PrintCode
method in Figure 3 can be customized to print assem-
bly language in various formats; our current PrintCode
emits either GNU assembler or MASM assembly code,
depending on a command-line argument. This makes
Vale more flexible than tools like BoogieX86 [77] and
VCC [56] that hard-wire the generation of assembly
language output. Indeed, Vale initially only supported
MASM output, but adding support for the GNU assem-
bler took less than two hours. §3 pushes this flexibility
even further, implementing an entire verified information
leakage analysis with no modifications to Vale.

920 26th USENIX Security Symposium USENIX Association

procedure ReadA(ghost a:seq(uint32),inline b:bool)
reads r0; mem;
modifies r1;
requires

length(a) >= 3;
a[0] <= 100;
a[1] <= 100;
forall i :: 0 <= i < length(a) ==>

InMem(r0 + 4 * i, mem)
&& mem[r0 + 4 * i] == a[i];

ensures
b ==> r1 == a[0] + 1;
!b ==> r1 == a[1] + 1;

{
inline if (b) {

LDR(r1, r0, 0); //load memory [r0+0] into r1
AddOne(r1);

} else {
LDR(r1, r0, 4); //load memory [r0+4] into r1
AddOne(r1);

}
}
procedure{:recursive} AddNToR7(inline n:nat)

modifies r7;
requires r7 + n <= 0xffffffff;
ensures r7 == old(r7) + n;

{
inline if (n > 0) {

AddOne(r7);
AddNToR7(n - 1);

}
}

FIGURE 7—Ghost and inline parameters in Vale.

2.3 Operands, ghost variables, and inline variables

Parameters to procedures may be operands, ghost vari-
ables, or inline variables. The AddOne procedure in Fig-
ure 5, for example, takes an operand r as a parameter.
Operands are marked as in, out, or inout to indicate
whether the operand is read, written, or both, where in
is the default. These labels are used in place of reads
and modifies clauses. Register and CISC-style mem-
ory operands may be read and/or written, while constant
operands may only be read.

Ghost parameters may be used to make specifications
about the state easier to express. For example, the ReadA
procedure in Figure 7 uses a ghost parameter a to help
express the memory pointed to by register r0. In this case,
each 4-byte word of the memory contains one element of
the sequence a. Ghost parameters are used in the proofs
(but not the ASTs) that Vale generates.

Inline parameters, on the other hand, do appear in the
ASTs and may be used to specialize the generated code
before passing it to PrintCode, as seen in Figure 7. The
ReadA procedure uses an inline bool to generate code to
load from r0 + 0 if b = true, and to load from r0 + 4
if b = false. The AddNToR7 procedure uses an inline
natural number n to repeat the AddOne instruction n times,
generating a completely unrolled loop.

From these, Vale generates functions parameterized

function method{:opaque} code_ReadA(b:bool):code
{

Block(cons((
if b then Block(cons(code_LDR(

op_reg(R1), op_reg(R0), op_const(0))
...

else ...)))
}
function method{:opaque} code_AddNToR7(n:nat):code
{

Block(cons((
if (n > 0) then Block(cons(

code_AddOne(sp_op_reg(R7)) ...
else ...)))

}

FIGURE 8—Dafny code that generates varying assembly
code.

over the inline b and n variables, so that each b and n
produces a possibly different AST (see Figure 8). In these
functions, inline if statements turn into conditional
expressions that generate different code for different in-
line variable assignments, in contrast to ordinary if state-
ments that turn into IfElse nodes in the AST. Neverthe-
less, the proofs generated by Vale verify the correctness of
the procedures for all possible b and n. From the proof’s
perspective, inline variables are no different from ordi-
nary variables and inline if statements are no different
from traditional if statements. The proofs are checked
before picking particular b and n values to generate and
print the code. This may be thought of as a simple form of
partial evaluation, analogous to systems like MetaML [73]
that type-check a program before partially evaluating it.
This sort of partial evaluation provides a principled re-
placement for Perl scripts and ifdefs; §4.1 describes
how these features are used to express and verify the code
in Figure 1.

2.4 Vale proofs

Although Vale ultimately proves properties in terms of the
underlying machine semantics, it still structures its proofs
to take advantage of the automated SMT-based reasoning
provided by Dafny and Z3. For each procedure p, the Vale
tool generates a Dafny lemma which proves that if p’s
preconditions hold then it does not crash and its postcon-
ditions hold. A Dafny lemma is quite similar to a Dafny
method: the desired property is declared as the postcon-
dition (i.e., via ensures clauses) and proof assumptions
are declared as preconditions (i.e., via requires clauses).
In its simplest form, a Vale proof looks much like the as-
sertion in Figure 4; i.e., it consists of a Dafny lemma

• taking an initial state s1 and a final state s2 as pa-
rameters,

• requiring evalCode(p.code, s1, s2),
• requiring s1.ok,
• requiring that all of p’s preconditions hold for s1,

USENIX Association 26th USENIX Security Symposium 921

• ensuring that all of p’s postconditions hold for s2,
and

• ensuring that any state not mentioned in a modifies
clause remains the same from s1 to s2.

The lemma’s proof (i.e., the body of the lemma) consists
largely of calls to the lemmas for other procedures; for
example, the proof of Figure 5’s lemma for Add3ToR7
consists mainly of three calls to the lemma for AddOne,
whose proof consists mainly of one call to the lemma
for ADD. Vale stitches these calls together by adding ad-
ditional calls to library lemmas, written in Dafny, for
sequential composition, if/else, and while loops.

For some procedures, this simple proof form leads to
slower-than-expected proof verification by Dafny and Z3.
We find that the primary culprit is Z3’s reasoning about
long chains of updates to the state type and its compo-
nents state.regs and state.mem. By itself, reasoning
about updates is acceptably fast, but the combination of
updates and complex specifications leads to painfully slow
reasoning.

Therefore, Vale can also generate more sophisticated
proofs that factor reasoning about updates and reasoning
about specifications into two separate lemmas. An outer
lemma reasons about the updates and the well-formedness
of a procedure p’s states and instructions, but does not
attempt to reason about p’s preconditions and postcondi-
tions. Instead, the outer lemma calls an inner lemma to
do this reasoning. Conversely, the state is never exposed
to the inner lemma; instead, the inner lemma reasons only
about the components of the state at each step of the eval-
uation. This frees the inner lemma from reasoning about
long chains of updates to the state. The optimized proof
form speeds up verification of some procedures, such as
the Vale code for the SHA ARM code from Figure 1, by
as much as a factor of three (see §5.2).

2.5 Error handling in Vale

Vale is designed so that, when debugging a Vale program,
users only inspect user-generated code. They never need
to examine the Vale-generated code objects and proofs,
since all error messages are presented to the user in terms
of user-generated Vale code and Dafny specifications.

While Vale error messages do not assign blame to Vale-
generated Dafny code, Vale does leverage Dafny’s error
handling. Dafny provides rich error messages, which in-
clude file names, line and column numbers, and error
descriptions (e.g. “A precondition for this call might not
hold.”). To lift these error messages, Vale translates user-
generated Vale code to an intermediate Dafny representa-
tion that encodes line information from the Vale source
files. As a result, Dafny directs a user to errors within the
lines of the Vale program, as opposed to the lines of a
Vale-generated Dafny file. Thus, Vale gains Dafny’s rich
error handling without reducing usability.

Similarly, in general, a basic Vale user only needs to
know Vale and Dafny; they do not need to know internal
pieces of Dafny’s toolchain, such as Boogie or Z3, since
code for those tools is generated by Dafny.

3 Information Leakage Analysis

Since cryptographic code typically operates on secrets,
proving it secure requires more than functional correct-
ness; it requires proving the absence of leakage. Histor-
ically, attackers have exploited two broad categories of
leakage: leakage via state and leakage via side channels.
Leakage via state occurs when a program leaves secrets or
secret-dependent data in registers or memory [20]. Leak-
age via side channels occurs when an adversary learns
secrets by observing aspects of the program’s behavior.
While physical side channels are a concern [32, 48, 55],
digital side channels are typically more problematic, since
they can often be exploited by a remote attacker. These
side channels include program execution time [10, 17, 47]
and (particularly in shared tenancy deployments, such as
the cloud) memory accesses [8, 13, 31, 40, 68, 78]. Elim-
inating such side channels at the source-code level can be
difficult, as compilers may optimize away defensive code,
or even introduce new side channels [16, 43, 49].

To prove the absence of digital leakage in Vale pro-
grams, we developed a novel approach that combines
functional verification with a taint-based analyzer proven
correct against a simple specification (§3.1). This ana-
lyzer, written in Dafny, makes use of Vale’s ability to
reason about ASTs in a high-level logical framework
(§3.2). It also leverages existing specifications (e.g., fram-
ing conditions) and invariants from the code’s functional
verification to greatly simplify analysis (§3.3).

As we discuss in detail in §4, we run our analyzer on
our various cryptographic implementations to prove them
free of digital leakage. In the process, we have discovered
state leakage in OpenSSL.

Overall, because our analyzer is formally verified
against a small spec (§5.2), it has far fewer lines of trusted
code than prior compiler-aided approaches to detecting
side channels [57, 69, 70, 79]. Additionally, since we
directly analyze assembly programs, our approach does
not suffer from the compiler-introduced side channels
discussed above. Compared with prior approaches to for-
mally proving the absence of side channels (e.g., [9]), we
invest a one-time effort in verifying our analyzer, which
we can then run on an arbitrary number of Vale programs,
rather than formally reasoning about side channels for ev-
ery Vale program we write. Furthermore, previous work
struggled with alias analysis and hence resorted to manu-
ally inserted assumptions [9], whereas our alias analysis
is machine-checked (§3.3).

922 26th USENIX Security Symposium USENIX Association

3.1 Specifying leakage freedom

Below, we first provide some intuition for what it means
for a method to be leakage free. We then conclude the
section with our formal definition of leakage freedom, a
definition based on non-interference [34].

Secret inputs. A method is leakage free if it does not leak
secret inputs to an adversary. Thus, part of the specifica-
tion of leakage freedom is a specification of which inputs
are secret. To be conservative, we have the programmer
specify the opposite: the set of locations PubStartLocs
she is sure contain non-secret information. We then treat
all other locations as containing secrets.

State leakage. Secrets leak when they can be deduced
from architectural state visible to the adversary when
the method terminates. Thus, part of the specification of
leakage freedom is a specification of which outputs are
visible to the adversary. For this, we have the programmer
specify a set of locations PubEndLocs that are visible to
the adversary upon method termination. To prove leak-
age freedom, we must prove that these locations’ final
contents do not depend on secrets.

The programmer may omit from PubEndLocs any lo-
cations whose final contents are fully determined by the
functional-correctness specification. One useful applica-
tion of this principle is declassification; e.g., we leave the
32-byte hash computed by SHA-256 out of PubEndLocs
since it is a fully specified function of the hash’s input.
Another common application of this principle is framing,
i.e., when the calling convention for a method specifies
that it must leave a location unchanged. Since functional
correctness prevents changes to the location, there is no
need to check that location for leakage.

Cache-based side channels. As shown by Barthe et
al., a program is free of cache-based side channels if
it does not branch on secrets, and if it performs no secret-
dependent memory accesses [12]. Thus, to prove freedom
from cache-based side channels, it suffices to show that an
execution trace, which records all branches and memory-
access locations, does not depend on secret inputs.

To enable machine-checked verification of cache-based
side-channel freedom in Vale, we expand the architectural
model of the state with an additional ghost field trace
that represents the execution trace defined above. We also
update our machine semantics to ensure the execution
trace captures all branches and memory access locations.
For instance, we ensure that a store instruction appends
the accessed memory address to the execution trace.

Timing-based side channels. Closing cache-based side
channels is an important step in closing timing-based
side channels, but it is not sufficient. We must also show
that inputs to any variable-latency instructions do not
depend on secrets [69]. Thus, we update our machine

predicate isLeakageFree(
code:code, pubStartLocs:set<location>,
pubEndLocs:set<location>) {

forall s, t, s’, t’ ::
(evalCode(code, s, s’)
&& evalCode(code, t, t’)
&& (forall loc :: loc in pubStartLocs

==> s[loc] == t[loc])
&& s.trace == t.trace)

==> (s’.trace == t’.trace
&& (forall loc :: loc in pubEndLocs

==> s’[loc] == t’[loc]))
}

FIGURE 9—Correctness specification for leakage freedom.

semantics to also capture in trace all inputs to variable-
latency instructions. This way, if we prove that the trace is
independent of secrets then we also prove that the running
time is independent of secrets.

Attacker model. In summary, we model a strong at-
tacker capable of fully observing detailed digital side
channel information. We assume the attacker sees a full
execution trace of our code, including each instruction
executed, all memory locations each instruction accesses,
and any other instruction inputs that can influence tim-
ing. We also assume the attacker sees all architectural
state resulting from running our code, except for locations
where our specification explicitly says we store secrets
(e.g., decrypted messages).

Formal definition of leakage freedom. We now present
a formal definition of leakage freedom; for its encoding
in Dafny, see Figure 9. A Vale method with code Code is
leakage free if, for any two successful runs of Code, the
following two conditions:

• the two initial states, s and t, match in every location
in PubStartLocs; and

• the execution traces in those initial states, s.trace
and t.trace, are identical

imply the following two outcomes:
• the two final states, s’ and t’, match in every loca-

tion in PubEndLocs; and
• the execution traces in those final states are identical.

This is an intuitive specification for leakage freedom:
for any pair of executions of the program with the same
public values but potentially different secrets, the timing
and cache behavior of the program are the same in both
executions. Hence, any adversary’s observations must be
independent of the secret values. It is reasonable to only
consider successful runs since our functional verification
proves that the code always executes successfully.

3.2 Analyzer implementation

Rather than directly proving that each Vale program sat-
isfies our leakage specification, we invest in a one-time
effort to write and prove correct a leakage analyzer that

USENIX Association 26th USENIX Security Symposium 923

can run on any Vale program. Our analyzer takes as input:
• a Vale code value (§2) Code,
• a set of locations (e.g., register names)
PubStartLocs assumed to be free of secrets
when the code begins, and

• a set of locations PubEndLocs that must be free of
secrets when the code ends.

It outputs a Boolean LeakageFree indicating whether the
code is leakage free under these conditions.

The analyzer’s top-level specification states that the
analysis is sound (though it may not be complete); i.e.,
when the analyzer claims that Code is leakage free, then
it satisfies isLeakageFree (Figure 9). More formally, we
prove that the analyzer satisfies the following postcondi-
tion:

LeakageFree ⇒
isLeakageFree(Code,PubStartLocs,PubEndLocs).

We prove this correctness property via machine-checked
proofs in Vale’s underlying logical framework Dafny [50].

The analyzer’s implementation is a straightforward
flow-sensitive dataflow analysis [45] in the tradition of
Denning et al. [27]. The main novelties are that we for-
mally verify the implementation relative to a succinct
correctness condition, and that we leverage the knowl-
edge of aliasing present in the functional verification of
the Vale programs, as described further in §3.3.

The dataflow analysis checks the code one instruc-
tion at a time, keeping track of the set of untainted lo-
cations PubLocs. In other words, it maintains the invari-
ant that each location in PubLocs contains only public
information. Initially, it sets PubLocs to PubStartLocs.
If at any point it concludes that the execution trace may
depend on state outside of PubLocs, the analyzer returns
False to indicate it cannot guarantee leakage freedom.
This may happen if a branch predicate might use a loca-
tion not in PubLocs, or a memory dereference might use
the contents of a register not in PubLocs as its base ad-
dress or offset. Loops are iterated until PubLocs reaches
a fixed point. Taint values are chosen from a lattice of
two elements (Public and Secret, with the partial order
Secret > Public), which helps in conservatively merging
taints. For instance, when the analysis merges taints for
a given destination across multiple program paths (e.g.,
at the end of a loop), the analysis conservatively sets the
destination’s taint to the least upper bound of the desti-
nation’s taint across all paths. Similarly, if an instruction
partially overwrites a destination, then the destination’s
taint is chosen as the least upper bound of the destina-
tion’s existing taint and the new taint. However, if an
instruction completely overwrites a destination, then the
destination’s taint is set to the new taint value. As a result,
the taint of a destination (e.g. a register) can change be-
tween Secret and Public many times during the analysis

of the program, thus affecting the size of the PubLocs set.
If the analyzer reaches the end of Code, it returns True if
PubEndLocs ⊆ PubLocs.

3.3 Memory taint analysis

The main challenge for taint analysis is tracking the taint
associated with memory locations. However, given our
focus on proving functional correctness of cryptographic
code, we observe that we can carefully leverage the work
already done to prove functional correctness, to drastically
simplify memory taint analysis.

Memory taint analysis is challenging because typically
one cannot simply look at an instruction and determine
which memory address it will read or write: the effective
address depends on the particular dynamic values in the
registers used as the base and/or offset of the access. Thus,
existing tools for analyzing leakage of assembly language
code depend on alias analysis, which is often too con-
servative to verify existing cryptographic code without
making potentially unsound assumptions [9].

Our approach to memory taint analysis carefully lever-
ages the work already done to prove functional correct-
ness, since some of that work requires reasoning about
the flow of information to and from memory. After all,
a program cannot be correct unless it manages that flow
correctly. For example, the developer cannot prove SHA-
256 correct without proving that the output hash buffer
does not overlap the unprocessed input.

We can push some of the work of memory taint analysis
to the developer by relying on her to provide lightweight
annotations in the code. In addition to specifying which
addresses are expected to contain public information on
entry and exit, she must make a similar annotation for
each load and store. This annotation consists of a bit in-
dicating whether she expects the instruction to access
public or secret information. For CISC instructions where
each operand may implicitly specify a load or store, she
must annotate each such memory-accessing operand with
a bit. Crucially, however, we do not rely on the correct-
ness of these annotations for security. If the developer
makes a mistake, it will be caught during either functional-
correctness verification or during leakage analysis.

These annotations make our analyzer’s handling of
memory taint straightforward. The analyzer simply labels
any value resulting from a load public or secret based
on the load instruction’s annotation. The analyzer also
checks, for each store annotated as public, that the value
being stored is actually public.

To ensure that annotation errors will be caught during
functional correctness verification, we expand the archi-
tectural model of the state with an additional ghost field
pubaddrs, representing the set of addresses currently
containing public information. A store adds its address to,
or removes it from, pubaddrs, depending on whether the

924 26th USENIX Security Symposium USENIX Association

annotation bit indicates the access is public or secret. A
load annotated as public fails (i.e., causes the state’s ok
field to become False) if the accessed address is not in
pubaddrs.

Thus, the developer is obligated to prove, before per-
forming a load, that the accessed address is in pubaddrs.
She can do this by adding it as a precondition, or by stor-
ing public information into that address. She must also
prove that any intervening store of secret information does
not overwrite the public information; in other words, she
must perform her own alias analysis. Note, however, that
she must already perform such alias analysis to prove her
code correct, so we are not asking her to do more work
than she would already have had to perform, given our
goal of functional correctness.

4 Case Studies
We illustrate Vale’s capabilities via four case studies of
high-performance cryptographic code we built with it.

4.1 OpenSSL SHA-256 on ARM

As we describe in more detail in §5.1, to identify a base-
line for our performance, we measure the performance of
six popular cryptographic libraries. For the platforms and
algorithms we evaluate, OpenSSL consistently proves to
be the fastest.

To achieve this performance, OpenSSL code tends to
be highly complex, as illustrated by the SHA-256 code
snippet in Figure 1. Note that this code is not written
directly in a standard assembly language, but is instead
expressed as a Perl subroutine that generates assembly
code. This lets OpenSSL improve performance by calling
the subroutine 16 times to unroll the loop:
for($i=0;$i<16;$i++) {
&BODY_00_15($i,@V); unshift(@V,pop(@V));

}

Furthermore, each unrolled loop iteration is customized
with a different mapping from SHA variables a. . .h to
ARM registers r4. . .r11 (stored in the @V list). This re-
duces register-to-register moves and further increases per-
formance. Finally, a combination of Perl-based run-time
checks (if ($i < 16)) and C preprocessor macros are
used to select the most efficient available instructions
on various versions of the ARM platform, as well as to
further customize the last loop iteration (i = 15).

OpenSSL’s use of Perl scripts is not limited to SHA on
ARM. It implements dozens of cryptographic algorithms
on at least 50 different platforms, including many per-
mutations of x86 and x64 (with and without SSE, SSE2,
AVX, etc.) and similarly for various versions and permu-
tations of ARM (e.g., with and without NEON support).
Many of these implementations rely on similar mixes of
assembly, C preprocessor macros, and Perl scripts. The
difficulty of understanding such code-generating code is

arguably a factor in the prevalence of security vulnerabili-
ties in OpenSSL.

To demonstrate Vale’s ability to reason about such com-
plex code, we ported all of OpenSSL’s Perl and assembly
code for SHA-256 on ARMv7 to Vale. This code takes
the current digest state and an arbitrary array of plaintext
blocks, and compresses those blocks into the digest. C
code handles the padding of partial blocks.

Porting the Perl and assembly code itself was rela-
tively straightforward and mostly involved minor syn-
tactic changes. The primary challenge was recreating in
our minds the invariants that the developers of the code
presumably had in theirs. As Figure 1 shows, the code
comments are minimalist and often cryptic, e.g.,
eor $t3,$B,$C @ magic
ldr $t1,[sp,#‘($i+2)%16‘*4] @ from future BODY_16_xx

In the second line, the odd syntax with the backticks is
used when the Perl code makes a second pass over the
string representing the assembly code, this time acting as
an interpreter to perform various mathematical operations,
like ($i+2)%16.

As discussed above, OpenSSL’s code generation relies
on many Perl-level tricks that we replicate in Vale. For
example, we use inline parameters to unroll loops and con-
ditionally include certain code snippets, similar to how
the Perl code does. The Perl code also carefully renames
the Perl variables that label ARM registers in each un-
rolled loop to minimize data movement. To support this,
our corresponding Vale procedure takes an inline loop it-
eration parameter i, and eight generic operand arguments.
The mapping from operand to ARM register is then added
as a statically verified function of i, e.g.,
requires @h == OReg(4+(7-(i%8))%8)

which requires the h operand (“@h” refers to the operand h,
not the value stored there) to be R11 on the first iteration,
R10 on the next iteration, etc. This essentially shifts the
contents of the SHA variable h in iteration i into the SHA
variable g in iteration i+ 1, and similarly for other state
variables, some of which are updated in more complex
ways.

To prove the functional correctness of our code, we ver-
ify it against the Dafny SHA-256 specification from the
Ironclad project [37], itself based off the FIPS 180-4 stan-
dard [60]. This proof requires several auxiliary lemmas,
typically to help guide Z3 when instantiating quantifiers,
or to reveal certain function definitions that we hide by
default to improve verifier performance. We also take
advantage of Z3’s bit-vector theory to automatically dis-
charge relations like:

(x&y)⊕ (∼x&z) == ((y ⊕ z)&x)⊕ z

which allow OpenSSL’s code to optimize various SHA
steps; e.g., the relation above saves an instruction by com-
puting the right-hand side.

USENIX Association 26th USENIX Security Symposium 925

To demonstrate that our implementation is not only
correct but side-channel and leakage free, we run our ver-
ified analysis tool (§3) on the Vale-generated AST. To
our surprise (given that the code is a direct translation of
OpenSSL’s implementation), the tool reports that the im-
plementation is free of leakage via side channels, but not
via state. Indeed, further investigation shows that while
OpenSSL’s C implementation carefully scrubs its inter-
mediate state, after OpenSSL’s assembly implementation
returns, the stack still contains most of the caller’s reg-
isters and 16 words from the expanded version of the
final block of hash input. We do not know of an attack to
exploit this leakage, but in general, leakage like this can
undermine security [20].

Discussions with the OpenSSL security team indicate
that while they aim to always scrub key material from
memory, the remainder of their scrubbing efforts are ad
hoc due to their unusual threat model [67]. On the one
hand, OpenSSL usually runs in process with an applica-
tion, and hence everything in the address space is trusted;
nonetheless, they feel an instinctual need to scrub memory
when they can do so without too much performance over-
head. Because they do not have a precise and systematic
way to identify “tainted” memory and scrub it efficiently,
leaks like the one we identified are tolerated. In our case,
the developers acknowledge the leak but have declined to
change the code.

Tools like Vale offer one approach to systematically
track leakage and provably and efficiently block it. In-
deed, after we add the appropriate stack scrubbing to our
implementation, our analyzer confirms that it is free of
both side channels and leakage.

4.2 SHA-256 on x86

To demonstrate Vale’s generality across platforms, we
have also used it to write an x86 version of SHA-256’s
core. This required writing a trusted semantics for a sub-
set of Intel’s architecture, a trusted printer to translate
instructions into assembly code, and a verified proof li-
brary (which in many cases differs very little from our
corresponding ARM library). For the implementation, we
wrote the code from scratch, rather than copying the algo-
rithm from OpenSSL. At no point did we need to change
Vale itself.

One of the benefits of Vale’s platform generality is
that we can write and use high-level lemmas that are
platform-independent. We took advantage of this to reuse
most of the lemmas from §4.1. For instance, our lemma
lemma_SHA256TransitionOKAfterSettingAtoH es-
tablishes that a certain step of the SHA-256 procedure has
been followed correctly; we invoke this lemma from the
ARM, x86, and x64 versions of SHA-256. We also lever-
age Vale’s platform generality to reuse the specification
for SHA-256 across all platforms.

When we run our verified analysis tool on our code, it
confirms that it is leakage free.

4.3 Poly1305 on x64

We have also ported the 64-bit non-SIMD code for
Poly1305 [14] from OpenSSL to Vale. OpenSSL’s
Poly1305 is a mix of C and assembly language code. We
began by writing a trusted semantics for a subset of x64.
We then verify the OpenSSL assembly language code for
the Poly1305 main loop and add our own initialization
and finalization code in assembly language to replace the
C code, resulting in a complete Vale implementation of
Poly1305. Except for an extra instruction for the while-
loop condition, our main loop code is identical to the
OpenSSL code. This forces us to verify the mathematical
tricks that underlie OpenSSL’s efficient 130-bit multipli-
cation and mod implementations. For this verification,
Z3’s automated reasoning about linear integer arithmetic
is quite useful, helping us, for example, to maintain in-
variants on the size of intermediate values that sometimes
exceed 130 bits by various amounts. These invariants are
crucial to establish that numbers are eventually reduced
all the way to their 130-bit form and that enough carry bits
are propagated through larger intermediate values. In fact,
a bug fixed in March 2016 [65] was due to not propagat-
ing carry bits through enough digits; Vale’s verification,
of course, catches this bug.

4.4 AES-CBC using x86 AES-NI instructions

Our final case study illustrates Vale’s ability to support
complex, specialized instructions. Specifically, we have
used Vale to implement the AES-128 CBC encryption
mode using the AES-NI instructions provided by recent
Intel CPUs [36]. AES is a block cipher that takes a fixed
amount of plaintext; cipher-block chaining (CBC) is an
encryption mode that applies AES repeatedly to encrypt
an arbitrary amount of plaintext. In 2008, Intel introduced
AES-NI instructions to both increase the performance of
the core AES block cipher and make it easier to write
side-channel free code, since software implementations
of AES typically rely on in-memory lookup tables which
are expensive to make side-channel free. As we quantify
in §5.1, implementations that take advantage of this hard-
ware support are easily 3.5–4.0× faster than traditional
hand-tuned assembly that does not.

For this case study, we extended our x86 model from
§4.2 by adding support for 128-bit XMM registers, defi-
nitions for Intel’s six AES-support instructions [35], and
four generic XMM instructions [39]. None of these exten-
sions requires changes to Vale. We also wrote a formal
specification for AES-CBC based on the official FIPS
specification [59].

Our implementation follows Intel’s recommendations
for how to perform AES-128 [35]. However, unlike the

926 26th USENIX Security Symposium USENIX Association

 0

 10

 20

 30

 40

 50

 60

O
pe

nS
SL

B
or

in
gS

SL

B
ot

an

C
ry

pt
o+

+

lib
gc

ry
pt

m
be

dT
LS

H
as

h
 t

im
e

(u
se

c)

FIGURE 10—Time for various libraries to compute the SHA-
256 hash of 10 KB of random data. Each data point averages
100 runs.

 0

 5

 10

 15

 20

 25

 30

O
pe

nS
SL

B
or

in
gS

SL

B
ot

an

C
ry

pt
o+

+

lib
gc

ry
pt

m
be

dT
LS

T
im

e
(u

se
c)

Encrypt
Decrypt

FIGURE 11—Time for various libraries to encrypt and decrypt
10 KB of random data using AES-CBC. Decryption is gener-
ally faster because it is more parallelizable. Each data point
averages 100 runs.

code provided by Intel, our code includes a proof of its
correctness. We also run our verified analysis tool on the
code to confirm that it is leakage free.

The implementation involves an elaborate sequence
of AES-NI instructions interwoven with generic XMM
instructions. Proving it correct is non-trivial, particularly
since Intel’s specifications for its instructions assume var-
ious properties of the AES specification that we must
prove. For example, we must prove that the AES RotWord
step commutes with its SubWord step.

5 Evaluation
In our evaluation, we aim to answer two questions:
(1) Can our verified code meet or exceed the perfor-
mance of state-of-the-art unverified cryptographic li-
braries? (2) How much time and effort is required to
verify our cryptographic code?

5.1 Comparative performance

To compare our performance to a state-of-the-art imple-
mentation, we first measure the performance of six pop-
ular cryptographic libraries: BoringSSL [1], Botan [2],
Crypto++ [3], GNU libgcrypt [5], ARM mbedTLS (for-
merly PolarSSL) [6], and OpenSSL [7]. We collect the
measurements on a G5 Azure virtual machine running
Ubuntu 16.04 on an Intel Xeon E5 v3 CPU and config-
ured with enough dedicated CPUs to ensure sole tenancy.
Each reported measurement is the average from 100 runs

 0

 5000

 10000

 15000

 20000

 25000

 30000

16 64 256 1024 8192 16,384

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

Number of input bytes per SHA-256 hash

C
ASM

FIGURE 12—Throughput comparison of two OpenSSL SHA-
256 routines for ARM: one written in C and one written in
hand-tuned assembly. Each data point averages 10 runs.

 0

 200

 400

 600

 800

 1000

16 64 256 1024 8192 16,384

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Number of input bytes per AES-CBC-128 encryption

C
ASM without AES-NI

ASM with AES-NI

FIGURE 13—Throughput comparison of three OpenSSL
AES-CBC-128 routines for x86: one written in C, one writ-
ten in hand-tuned assembly with only scalar instructions, and
one written in hand-tuned assembly using SSE and AES-NI
instructions. Each data point averages 10 runs.

and, as is the case in all figures in this paper, error bars
indicate 95% confidence intervals.

As shown in Figures 10 and 11, our results support the
anecdotal belief that, in addition to being one of the most
popular TLS libraries [61], OpenSSL’s cryptographic im-
plementations are the fastest available. Hence, in our re-
maining evaluation, we compare our performance with
OpenSSL’s. These strong OpenSSL performance results
suggest that OpenSSL’s Byzantine mix of Perl and hand-
written assembly code (recall Figure 1) does result in
noticeable performance improvements compared to the
competition. As further support for the need for hand-
written assembly code, Figures 12 and 13 compare the
performance of OpenSSL’s C implementations (compiled
with full optimizations) to that of its hand-written assem-
bly routines. We see that OpenSSL’s assembly code for
SHA-256 on ARM gets up to 67% more throughput than
its C code, and its assembly code for AES-CBC-128 on
x86 gets 247–300% more throughput than its C code due
to the use of SSE and AES-NI instructions.

To accurately compare our performance with
OpenSSL’s, we make use of its built-in benchmarking
tool openssl speed and its support for extensible cryp-
tographic engines. We register our verified Vale routines
as a new engine and link against our static library. Surpris-
ingly, in collecting our initial measurements, we discov-
ered that OpenSSL’s benchmarking tool does not actually

USENIX Association 26th USENIX Security Symposium 927

 0

 5000

 10000

 15000

 20000

 25000

 30000

16 64 256 1024 8192 16,384

T
h
ro

u
g
h
p
u
t

(K
B

/s
)

Number of input bytes per SHA-256 hash

OpenSSL
Vale

 0

 500

 1000

 1500

 2000

 2500

 3000

16 64 256 1024 8192 16,384

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Number of input bytes per Poly1305 MAC

OpenSSL
Vale

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

16 64 256 1024 8192 16,384

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

Number of input bytes per AES-CBC-128 encryption

OpenSSL
Vale

FIGURE 14—Comparing Vale implementations to OpenSSL’s,
for SHA-256 on ARM, for Poly1305 on x64, and for AES-
CBC-128 on x86. Each data point averages 10 runs.

conduct a fair comparison between the built-in algorithms
and those added via an engine. Calls via an engine per-
form several expensive heap allocations that the built-in
path does not. Hence, the “null” engine that returns im-
mediately actually runs slower than OpenSSL’s hashing
routine! To get a fair comparison, we create a second en-
gine that simply wraps OpenSSL’s built-in routines. We
report comparisons between this engine and ours.

We compare Vale’s performance with OpenSSL’s on
three platforms. We compare our ARM implementation
(§4.1) with OpenSSL’s by running them on Linux (Rasp-
bian Jessie) on a Raspberry Pi with a 900MHz quad-core
ARM Cortex-A7 CPU and 1GB of RAM. For this, we
compile OpenSSL to target ARMv7 and above, but with-
out support for NEON, ARM’s SIMD instructions. For
Intel x64, we compare our Poly1305 (§4.3) implemen-
tation with OpenSSL’s with SIMD disabled. Finally, to
show that we can take advantage of advanced instructions,
on Intel x86, we measure our AES-CBC-128 (§4.4) im-
plementation against OpenSSL’s with full optimizations
enabled, including the use of AES-NI and SIMD instruc-
tions. We collect the x86/x64 measurements on Windows
Server 2016 Datacenter using the same Azure instance as
in §5.1.

Spec Impl Proof ASM Verification
Component (Source lines of code) time (min)
ARM 873 170 650 – 0.6
x86 1565 256 1000 – 2.1
x64 1999 377 1392 – 3.8
Common Libraries 1100 252 4302 – 1.2
SHA-256 (ARM)

237
330 1424 2085 6.6

SHA-256 (x86) 598 2265 4345 5.7
Poly1305 (x64) 47 325 1155 202 2.7
AES-CBC (x86) 413 432 2296 311 8.2
Taint analysis 217 1276 2116 – 4.3
Total 6451 4016 16600 6943 35.3

TABLE 1—System Line Counts and Verification Times.

Figure 14 summarizes our comparative results. They
show that, for SHA-256 and AES-CBC-128, Vale’s per-
formance is nearly identical to OpenSSL’s. Indeed, our
Poly1305 implementation slightly outperforms OpenSSL,
largely due to using a complete assembly implementation
rather than a mix of C and assembly. Our AES-CBC-128
implementation also slightly outperforms OpenSSL (by
up to 9%) due to our more aggressive loop unrolling.
These positive results should be taken with a grain of
salt, however. For real TLS/SSL connections, for instance,
OpenSSL typically calls into an encryption mode that
computes four AES-CBC ciphertexts in parallel (to sup-
port, e.g., multiple outbound TLS connections) to better
utilize the processor’s SIMD instructions. Our Vale im-
plementation does not yet support a similar mode.

5.2 Verification time and code size

Table 1 summarizes statistics about our code. In the table,
specification lines include our definitions of ARM and
Intel semantics, as well as our formal specification for the
cryptographic algorithms. Implementation lines consist
of assembly instructions and control-flow code we write
in Vale itself, whereas ASM counts the number of assem-
bly instructions emitted by our verified code. Proof lines
count all annotations added to help the verifier check our
code, e.g., pre- and post-conditions, loop invariants, asser-
tions, and lemmas. Vale itself is 5,277 lines of untrusted
F# code. Note that the two SHA implementations share
the same Dafny-level functional specification. The proof
entry for SHA-256 (x86) also includes a number of proof
utilities used by the ARM version.

The overall verification time for all the hand-written
Dafny code and Vale-generated Dafny code is about 35
minutes, with the bulk of the time in the procedures con-
stituting the cryptographic code. Most procedures take
no more than 10 seconds to verify, with the most com-
plex procedures taking on the order of a minute. The
reasonably fast turnaround time for individual procedures
is important, because the developer spends considerable
time repeatedly running the verifier on each procedure

928 26th USENIX Security Symposium USENIX Association

1

10

100

1000

10000

0 20 40 60 80 100V
e

ri
fi

ca
ti

o
n

 t
im

e
 (

s)

Number of instructions after unrolling

Add one to
register

AES Key
Inversion

AES Key
Expansion

FIGURE 15—Time to verify various loops, if verification is
done after unrolling.

Vale Taint 1st SHA AES-CBC SHA port Poly1305
12 6 6 5 0.75 0.5

TABLE 2—Person-months per component.

when developing and debugging it.
A key design decision in Vale is the verification of

inlined procedures and unrolled loops before the inlining
and unrolling occurs. Furthermore, as discussed in §4.1,
Vale supports operand renaming for inlined procedures
and unrolled loops, allowing us to match OpenSSL’s Perl-
based register renaming. Figure 15 quantifies the benefits
of this decision by showing the cost of verifying code
after unrolling. (Note the log scale.) The three lines show:
• the cost of verifying an unrolled loop consisting en-

tirely of x86 add eax, 1 instructions, ranging from
10 to 100 total instructions;

• the cost of verifying an unrolled loop of x86 AES
key inversions, up to the maximum 9 iterations per-
formed by AES, where each iteration consists of 3
instructions; and

• the cost of verifying an unrolled loop of x86 AES
key expansions, up to the maximum 10 iterations
performed by AES, where each iteration consists of
10 instructions.

If 100 adds are unrolled before verification, verification
takes 58 seconds, which is tolerable, though much slower
than verifying before unrolling. If all 10 AES key ex-
pansion iterations are unrolled, verification takes 2300
seconds, compared to 105 seconds for verifying before
unrolling. Finally, Dafny/Z3 fails to verify the AES key in-
version for 6 unrolled iterations and 9 unrolled iterations,
indicating that SMT solvers like Z3 are still occasion-
ally unpredictable. Verifying code before inlining and
unrolling helps mitigate this unpredictability and speeds
up verification.

5.3 Verification effort

Table 2 summarizes the approximate amount of time we
spent building Vale, our verified taint analyzer, and our

case studies. Our first implementations of SHA-256 and
of AES-CBC were developed in parallel with Vale itself.
They helped push the tool to evolve, but they also required
multiple rewrites as Vale changed. Once Vale stabilized,
porting SHA-256 to other architectures and implementing
Poly1305 from scratch (including specifications, code,
and proof) went much more rapidly, though the effort
required was still non-trivial. In general, proving func-
tional correctness was far more challenging than proving
absence of leakage. For example, the SHA port initially
only proved functional correctness. We then spent less
than three days extending the functional proof to handle
memory tainting and correcting errors identified by the
taint analysis.

As further evidence for Vale’s usability, an independent
project is using Vale to develop a microkernel. Several
researchers in that project are new to software verifica-
tion and yet are able to make progress using Vale. Their
efforts have also proceeded without the need to modify
Vale, even though they have enriched our relatively sim-
ple machine semantics, which we use to reason about
cryptographic code, with details needed to program a mi-
crokernel, e.g., program status registers, privilege modes,
interrupts, exceptions, and user-mode execution.

6 Related Work
Other projects have verified correctness and security prop-
erties of cryptographic implementations written in C or
other high-level languages, either using Coq [11] or SMT
solvers [28, 80]. The SAW tool [28], for example, verifies
C code (via LLVM) and Java code against mathemati-
cal specifications written in the Cryptol language. Like
Vale, SAW can use SMT solvers for verification, although
unlike Vale, SAW unrolls loops before verification and
assumes a static layout of data structures in memory. We
hope to connect verified assembly language code to veri-
fied high-level language code in the future.

Vale, like other cryptography verification efforts, re-
lies on formal specifications to define the correctness of
implementations. The growing number of verified imple-
mentations, both in high-level languages and assembly
language, motivates standardization and thorough testing
of such formal specifications. Cryptol [30], for exam-
ple, may be used as a common specification language.
In the future, we hope to check our Dafny specifications
against specifications in Cryptol or similar languages.
Vale also depends on formal semantics for the assem-
bly language instructions used by Vale programs; these
could be checked against existing architecture specifi-
cations [71] or extended using more detailed ISA mod-
els [33].

The Vale language follows in the path of Bedrock [19]
and x86proved [42, 44], which use Coq to build assem-
bly language macros for various control constructs like

USENIX Association 26th USENIX Security Symposium 929

IF, WHILE, and CASE. Vale attempts to make these ap-
proaches easier to use by leveraging an SMT-based logical
framework and providing features like mutable ghost vari-
ables and inline variables. Furthermore, although earlier
tools have been used to synthesize cryptography code [29],
Vale has been used to verify existing OpenSSL assembly
language code, where optimizations are nontrivial. Vale
also includes a verified analyzer that checks for leakage
and side channels.

Chen et al. [18] embed a simple Hoare logic in Coq,
which they use to verify the “core part” of a Curve25519
implementation written in the qhasm language, which is
very close to assembly language. Like Vale, they use
an SMT solver to complete the verification, although
they only handle loop-free code and some of the SMT
queries take hours to complete. A successor project uses a
computer algebra system to reduce this verification time,
at least in some initial experiments [15]; this technique
seems promising and could help to better automate many
of Vale’s lemmas about modular arithmetic.

mCertiKOS [23], based on Coq, addresses information
flow, although they do not consider timing and memory
channels. In contrast to the verification done for mCer-
tiKOS, which is targeted at a single difficult system (a
small kernel), our information analysis tool can run auto-
matically on many pieces of code. Such a tool is useful
for verifying large suites of cryptographic code. Dam
et al. [24] do address timing, but they approximate by
assuming each instruction takes one machine cycle.

Other assembly language verifiers like BoogieX86 [77],
used by Ironclad [37], and VCC’s assembly language [56]
have built on SMT solvers, but do not expose ASTs and as-
sembly language semantics as first-class constructs. They
thus are neither as flexible nor as semantically founda-
tional as Vale, Bedrock, and x86proved. For example,
BoogieX86 and Ironclad cannot support verified loop un-
rolling and are tied to the x86 architecture; hence, they
would require tool changes to support ARM and x64.

Both BoogieX86 and Almeida et al. [9] leverage SMT
solvers for information flow analysis. BoogieX86’s analy-
sis is very flexible, but is considerably slower than Vale’s
taint-based approach and does not address timing and
memory channels. As discussed in more detail in §3,
Almeida et al. detect a subset of side channels, but do not
prove correctness of the cryptographic code, and resort to
unproven assumptions about aliasing. Furthermore, they
analyze intermediate code emitted by the LLVM compiler,
whereas Vale verifies assembly code. This distinction is
relevant since a compiler may choose to implement an IR-
level instruction (e.g., srem) using a sequence of variable-
latency assembly instructions (e.g., idiv). Also, their
analysis is tied to the LLVM compiler’s code-generation
strategy, whereas ours is not.

Myreen et al. [58] apply common proofs across similar

pieces of code for multiple architectures by decompiling
the assembly language code to a common format. We use
a different approach to sharing across architectures: write
each architecture’s code as a separate Vale procedure, but
share lemmas about abstract state between the procedures.

Many attacks based on side channels have been demon-
strated [8, 10, 17, 38, 41, 76, 78]. We focus on detect-
ing digital side channels by statically verifying precise
constant-time execution. Side channels can also be miti-
gated via compiler transformations [4, 21, 57, 69, 70, 79],
operating system or hypervisor modifications [46, 54],
microarchitectural modifications [52, 53], and new cache
designs [74, 75].

7 Conclusions and Future Work

Vale is our programming language and tool for writing and
proving properties of high-performance cryptographic as-
sembly code. It is assembler-neutral and platform-neutral
in that developers can customize it for any assembler by
writing a trusted printer, or for any architecture by writing
a trusted semantics. It can thus support even advanced in-
structions, as we demonstrate with an x86 implementation
of AES-128/CBC that leverages SSE and AES-NI instruc-
tions. Also, as we have shown with our implementations
of SHA-256 on both ARM and x86, developers can reuse
proofs and specifications for code across architectures.
Vale supports reasoning about extracted code objects in
a general-purpose high-level verification language; as an
illustration of this style of reasoning, we have built and
verified an analyzer that can declare a program free of
digital information leaks. This analyzer uses taint track-
ing with a unique approach to alias analysis: instead of
settling for a conservative, unsound, or slow analysis, it
leverages the address-tracking proofs that the developer
already writes to prove her code functionally correct.

Vale uses Dafny as a target verification language but
only as an off-the-shelf tool with no customization, sug-
gesting that we can also support other back ends. We hope
to soon target F⋆ [72], Lean [26], and Coq [22].

By porting OpenSSL’s SHA-256 ARM code and
Poly1305 x64 code, we have shown that Vale can prove
correctness, safety, and security properties for existing
code, even if it is highly complex. The proofs ensure that
the verified code meets its mathematical specification,
ruling out bugs like those that appeared in OpenSSL’s
Poly1305 code [64–66], as well as other correctness and
memory safety bugs that have appeared in OpenSSL’s
cryptographic code. We plan to continue porting addi-
tional variants of these algorithms (e.g., adding SIMD
support for SHA and Poly1305 for a performance boost
of 23–41% [62, 63]) and many others. Ultimately, we
hope Vale will enable the creation of a complete crypto-
graphic library providing fast, provably safe, correct, and
leakage-free code for a wide variety of platforms.

930 26th USENIX Security Symposium USENIX Association

Acknowledgments
The authors are grateful to Andrew Baumann and An-
drew Ferraiuolo for their significant contributions to the
ARM semantics, and to Santiago Zanella-Beguelin, Brian
Milnes, and the anonymous reviewers for their helpful
comments and suggestions.

References
[1] BoringSSL. https://boringssl.googlesource.com/boringssl.

Commit 0fc7df55c04e439e765c32a4dd93e43387fe40be.
[2] Botan. https://github.com/randombit/botan.git. Commit

9eda1f09887b8b1ba5d60e1e432ebf7d828726db.
[3] Crypto++. https://github.com/weidai11/cryptopp.git. Com-

mit 432db09b72c2f8159915e818c5f34dca34e7c5ac.
[4] ctgrind: Checking that functions are constant time with

Valgrind. https://github.com/agl/ctgrind.
[5] GNU Libgcrypt. https://www.gnu.org/software/libgcrypt/.

Version 1.7.0.
[6] mbedTLS. https://github.com/ARMmbed/mbedtls.git.

Commit 9fa2e86d93b9b6e04c0a797b34aaf7b6066fbb25.
[7] OpenSSL. https://github.com/openssl/openssl. Commit

befe31cd3839a7bf9d62b279ace71a0efbdd39b0.
[8] O. Aciiçmez, B. B. Brumley, and P. Grabher. New results

on instruction cache attacks. In Proceedings of the In-
ternational Conference on Cryptographic Hardware and
Embedded Systems (CHES), Aug. 2010.

[9] J. B. Almeida, M. Barbosa, and G. Barthe. Verifying
constant-time implementations. In Proceedings of the
USENIX Security Symposium, 2016.

[10] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala,
S. Lerner, and H. Shacham. On subnormal floating point
and abnormal timing. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, May 2015.

[11] A. W. Appel. Verification of a cryptographic primitive:
SHA-256. ACM Trans. Program. Lang. Syst., 37(2):7:1–
7:31, Apr. 2015.

[12] G. Barthe, G. Betarte, J. Campo, C. Luna, and D. Pichardie.
System-level non-interference for constant-time cryptog-
raphy. In Proc. ACM CCS, Nov. 2014.

[13] D. J. Bernstein. Cache-timing attacks on AES. https:
//cr.yp.to/papers.html#cachetiming, 2005.

[14] D. J. Bernstein. The Poly1305-AES message-
authentication code. In Proceedings of Fast Software
Encryption, Mar. 2005.

[15] D. J. Bernstein and P. Schwabe. gfverif.
http://gfverif.cryptojedi.org/.

[16] C. L. Biffle. NaCl/x86 appears to leave re-
turn addresses unaligned when returning through
the springboard. https://bugs.chromium.org/p/
nativeclient/issues/detail?id=245, Jan. 2010.

[17] D. Brumley and D. Boneh. Remote timing attacks are prac-
tical. In Proceedings of the USENIX Security Symposium,
Aug. 2003.

[18] Y.-F. Chen, C.-H. Hsu, H.-H. Lin, P. Schwabe, M.-H.
Tsai, B.-Y. Wang, B.-Y. Yang, and S.-Y. Yang. Verify-
ing Curve25519 software. In Proc. ACM CCS, 2014.

[19] A. Chlipala. The Bedrock structured programming system:
Combining generative metaprogramming and Hoare logic

in an extensible program verifier. In Proceedings of ACM
ICFP, 2013.

[20] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole
system simulation. In Proceedings of the USENIX Security
Symposium, 2004.

[21] J. V. Cleemput, B. Coppens, and B. De Sutter. Com-
piler mitigations for time attacks on modern x86 proces-
sors. Transactions on Architecture and Code Optimization
(TACO), Jan. 2012.

[22] Coq Development Team. The Coq Proof Assistant Ref-
erence Manual, version 8.5. https://coq.inria.fr/
distrib/current/refman/, 2015.

[23] D. Costanzo, Z. Shao, and R. Gu. End-to-end verification
of information-flow security for C and assembly programs.
In Proceedings of ACM PLDI, June 2016.

[24] M. Dam, R. Guanciale, N. Khakpour, H. Nemati, and
O. Schwarz. Formal verification of information flow secu-
rity for a simple ARM-based separation kernel. In Proc.
ACM CCS, Nov. 2013.

[25] L. de Moura and N. Bjørner. Z3: An efficient SMT solver.
In Proceedings of the Conference on Tools and Algorithms
for the Construction and Analysis of Systems, 2008.

[26] L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von
Raumer. The Lean theorem prover. In Proc. of the Confer-
ence on Automated Deduction (CADE), 2015.

[27] D. E. Denning and P. J. Denning. Certification of programs
for secure information flow. Communications of the ACM,
20(7):504–513, 1977.

[28] R. Dockins, A. Foltzer, J. Hendrix, B. Huffman, D. Mc-
Namee, and A. Tomb. Constructing semantic models of
programs with the software analysis workbench. In Con-
ference on Verified Software - Theories, Tools, and Experi-
ments (VSTTE), 2016.

[29] A. Erbsen. Cryptographic primitive code generation in
Fiat. https://github.com/mit-plv/fiat-crypto.

[30] L. Erkök and J. Matthews. Pragmatic equivalence and
safety checking in Cryptol. In Workshop on Programming
Languages Meets Program Verification, PLPV ’09, 2009.

[31] N. J. A. Fardan and K. G. Paterson. Lucky Thirteen: Break-
ing the TLS and DTLS record protocols. In Proceedings of
the IEEE Symposium on Security and Privacy, May 2013.

[32] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic
analysis: Concrete results. In Proceedings of the Interna-
tional Conference on Cryptographic Hardware and Em-
bedded Systems (CHES), May 2001.

[33] S. Goel, W. A. Hunt, Jr., and M. Kaufmann. Engineering
a formal, executable x86 ISA simulator for software veri-
fication. In M. Hinchey, J. P. Bowen, and E.-R. Olderog,
editors, Provably Correct Systems. Springer, 2017.

[34] J. A. Goguen and J. Meseguer. Security policies and
security models. In Proceedings of the IEEE Symposium
on Security and Privacy, 1982.

[35] S. Gueron. Intel R⃝ Advanced Encryption Standard (AES)
New Instructions Set. https://software.intel.com/
sites/default/files/article/165683/aes-wp-
2012-09-22-v01.pdf, Sept. 2012.

[36] S. Gueron and M. E. Kounavis. New processor instructions
for accelerating encryption and authentication algorithms.

USENIX Association 26th USENIX Security Symposium 931

https://github.com/agl/ctgrind
https://cr.yp.to/papers.html#cachetiming
https://cr.yp.to/papers.html#cachetiming
https://bugs.chromium.org/p/nativeclient/issues/detail?id=245
https://bugs.chromium.org/p/nativeclient/issues/detail?id=245
https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf

Intel Technology Journal, 13(2), 2009.
[37] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,

B. Parno, D. Zhang, and B. Zill. Ironclad Apps: End-
to-end security via automated full-system verification. In
Proceedings of the USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), October 2014.

[38] C. Hunger, M. Kazdagli, A. Rawat, A. Dimakis, S. Vish-
wanath, and M. Tiwari. Understanding contention-based
channels and using them for defense. In Symposium on
High Performance Computer Architecture, Feb. 2015.

[39] Intel. Intel R⃝ 64 and IA-32 Architectures Software Devel-
oper’s Manual, Aug. 2012.

[40] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pat-
tern disclosure on searchable encryption: Ramification,
attack and mitigation. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2012.

[41] S. Jana and V. Shmatikov. Memento: Learning secrets
from process footprints. In Proceedings of the IEEE Sym-
posium on Security and Privacy, May 2012.

[42] J. B. Jensen, N. Benton, and A. Kennedy. High-level
separation logic for low-level code. In Proceedings of
ACM POPL, 2013.

[43] T. Kaufmann, H. Pelletier, S. Vaudenay, and K. Villegas.
When constant-time source yields variable-time binary:
Exploiting Curve25519-donna built with MSVC 2015. In
Proceedings of the International Conference on Cryptol-
ogy and Network Security (CANS), Nov. 2016.

[44] A. Kennedy, N. Benton, J. B. Jensen, and P.-E. Dagand.
Coq: The world’s best macro assembler? In Proceedings of
the Symposium on Principles and Practice of Declarative
Programming (PPDP), 2013.

[45] G. A. Kildall. A unified approach to global program opti-
mization. In Proceedings of ACM POPL, 1973.

[46] T. Kim, M. Peinado, and G. Mainar-Ruiz. STEALTH-
MEM: System-level protection against cache-based side
channel attacks in the cloud. In Proceedings of the
USENIX Security Symposium, Aug. 2012.

[47] P. C. Kocher. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In Proceedings
of the International Cryptology Conference (CRYPTO),
1996.

[48] P. C. Kocher, J. Jaffe, and B. Jun. Differential power
analysis. In Proceedings of the International Cryptology
Conference (CRYPTO), Aug. 1999.

[49] N. Lawson. Optimized memcmp leaks useful timing
differences. https://rdist.root.org/2010/08/
05/optimized-memcmp-leaks-useful-timing-
differences, Aug. 2010.

[50] K. R. M. Leino. Dafny: An automatic program verifier for
functional correctness. In Proceedings of the Conference
on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR), 2010.

[51] K. R. M. Leino and N. Polikarpova. Verified calculations.
In Verified Software: Theories, Tools, Experiments, 2014.

[52] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and
E. Shi. GhostRider: A hardware-software system for mem-
ory trace oblivious computation. In Proceedings of the
Conference on Architectural Support for Programming
Languages and Operating Systems, Mar. 2015.

[53] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi,
K. Asanovic, J. Kubiatowicz, and D. Song. PHANTOM:
Practical oblivious computation in a secure processor. In
Proceedings of ACM CCS, Nov. 2013.

[54] R. Martin, J. Demme, and S. Sethumadhavan. Time-
Warp: Rethinking timekeeping and performance moni-
toring mechanisms to mitigate side-channel attacks. In
Proceedings of the Symposium on Computer Architecture,
June 2012.

[55] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele,
and S. Capkun. Thermal covert channels on multi-core
platforms. In Proceedings of the USENIX Security Sympo-
sium, Aug. 2015.

[56] S. Maus, M. Moskal, and W. Schulte. Vx86: x86 assembler
simulated in C powered by automated theorem proving. In
Proceedings of the Conference on Algebraic Methodology
and Software Technology, 2008.

[57] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner. The
program counter security model: Automatic detection and
removal of control-flow side channel attacks. In Proceed-
ings of the Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), Dec. 2005.

[58] M. O. Myreen, M. J. C. Gordon, and K. Slind. Decom-
pilation into logic — improved. In Proceedings of the
Conference on Formal Methods in Computer-Aided De-
sign (FMCAD), Oct. 2012.

[59] National Institute of Standards and Technology. Announc-
ing the ADVANCED ENCRYPTION STANDARD (AES).
Federal Information Processing Standards Publication 197,
Nov. 2001.

[60] National Institute of Standards and Technology. Secure
Hash Standard (SHS), 2012. FIPS PUB 180-4.

[61] Netcraft Ltd. September 2016 Web server survey, 2016.
[62] OpenSSL. Poly1305-x86_x64. https://github.

com/openssl/openssl/blob/master/crypto/
poly1305/asm/poly1305-x86_64.pl.

[63] OpenSSL. Sha256-armv4. https://github.com/
openssl/openssl/blob/master/crypto/sha/asm/
sha256-armv4.pl.

[64] OpenSSL. Chase overflow bit on x86
and ARM platforms. GitHub commit
dc3c5067cd90f3f2159e5d53c57b92730c687d7e, 2016.

[65] OpenSSL. Don’t break carry chains. GitHub commit
4b8736a22e758c371bc2f8b3534dc0c274acf42c, 2016.

[66] OpenSSL. Don’t loose [sic] 59-th bit. GitHub commit
bbe9769ba66ab2512678a87b0d9b266ba970db05, 2016.

[67] OpenSSL Developer Team. Private communication, Jan.
2017.

[68] C. Percival. Cache missing for fun and profit, 2005.
[69] A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing digital

side-channels through obfuscated execution. In Proceed-
ings of the USENIX Security Symposium, Aug. 2015.

[70] A. Rane, C. Lin, and M. Tiwari. Secure, precise, and fast
floating-point operations on x86 processors. In Proceed-
ings of the USENIX Security Symposium, Aug. 2016.

[71] A. Reid. Trustworthy specifications of ARM v8-A and
v8-M system level architecture. In Formal Methods in
Computer-Aided Design (FMCAD 2016), 2016.

[72] N. Swamy, J. Chen, C. Fournet, P. Strub, K. Bhargavan,

932 26th USENIX Security Symposium USENIX Association

https://rdist.root.org/2010/08/05/optimized-memcmp-leaks-useful-timing-differences
https://rdist.root.org/2010/08/05/optimized-memcmp-leaks-useful-timing-differences
https://rdist.root.org/2010/08/05/optimized-memcmp-leaks-useful-timing-differences
https://github.com/openssl/openssl/blob/master/crypto/poly1305/asm/poly1305-x86_64.pl
https://github.com/openssl/openssl/blob/master/crypto/poly1305/asm/poly1305-x86_64.pl
https://github.com/openssl/openssl/blob/master/crypto/poly1305/asm/poly1305-x86_64.pl
https://github.com/openssl/openssl/blob/master/crypto/sha/asm/sha256-armv4.pl
https://github.com/openssl/openssl/blob/master/crypto/sha/asm/sha256-armv4.pl
https://github.com/openssl/openssl/blob/master/crypto/sha/asm/sha256-armv4.pl

and J. Yang. Secure distributed programming with value-
dependent types. In Proceedings of ACM ICFP, 2011.

[73] W. Taha and T. Sheard. Multi-stage programming with
explicit annotations. In Proceedings of the ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-based
Program Manipulation (PEPM), 1997.

[74] Z. Wang and R. B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In Proceedings
of the Symposium on Computer Architecture, June 2007.

[75] Z. Wang and R. B. Lee. A novel cache architecture with
enhanced performance and security. In Proceedings of the
International Symposium on Microarchitecture (MICRO),
Nov. 2008.

[76] Y. Xu, W. Cui, and M. Peinado. Controlled-channel at-
tacks: Deterministic side channels for untrusted operating
systems. In Proceedings of the IEEE Symposium on Secu-
rity and Privacy, May 2015.

[77] J. Yang and C. Hawblitzel. Safe to the last instruction:
Automated verification of a type-safe operating system. In
Proceedings of ACM PLDI, 2010.

[78] Y. Yarom, D. Genkin, and N. Heninger. CacheBleed: A
timing attack on OpenSSL constant time RSA. In Proceed-
ings of the International Conference on Cryptographic
Hardware and Embedded Systems (CHES), Aug. 2010.

[79] D. Zhang, A. Askarov, and A. C. Myers. Language-based
control and mitigation of timing channels. In Proceedings
of ACM PLDI, June 2012.

[80] J. K. Zinzindohoue, E.-I. Bartzia, and K. Bhargavan. A ver-
ified extensible library of elliptic curves. IEEE Computer
Security Foundations Symposium (CSF), 2016.

A Vale Grammar
For reference, this appendix contains an annotated gram-
mar for the Vale language. We use ∗ to indicate zero or
more repetitions, ∗, to indicate zero or more repetitions
separated by commas, +, to indicate one or more repe-
titions separated by commas, and ∗; to indicate zero or
more repetitions, each terminated by a semi-colon. In
most places, vertical bars divide grammar alternatives
and square brackets surround optional grammatical com-
ponents, but in a few places where we think their us-
age is clear, we abuse this notation and use vertical bars
and square brackets to stand for themselves in the gram-
mar. Other punctuation stands for itself. Lowercase letters
stand for identifiers and are suggestive of what kind of
identifiers they represent.

At the top level, a Vale program consists of some num-
ber of declarations.

PROGRAM ::=
| DECL∗

A declaration introduces a variable, function, or pro-
cedure, or provides some declarations in the underlying
logical framework (Dafny) to be included verbatim.

DECL ::=
| var x : TYPE ;

| function f (FORMAL∗,) : TYPE [:= f] ;
| procedure p (PFORMAL∗,)

[returns (PRET∗,)] SPEC∗ { STMT∗ }
| procedure p (PFORMAL∗,)

[returns (PRET∗,)] SPEC∗ extern ;
| procedure p (PFORMAL∗,)

[returns (PRET∗,)] := p ;
| VERBATIM-DECL-BLOCK

A FORMAL represents a formal parameter of a func-
tion or a bound variable. It is simply an identifier and an
optional type. An attempt is made to infer any omitted
types. Procedure parameters are broken down into two
categories, PFORMAL and PRET, the latter of which is
used for parameters that are only being returned from the
procedure.

FORMAL ::=
| x [: TYPE]

PFORMAL ::=
| ghost x : TYPE
| inline x : TYPE
| TYPE x : TYPE
| out TYPE x : TYPE
| inout TYPE x : TYPE

PRET ::=
| ghost x : TYPE
| TYPE x : TYPE

Types are declared in the underlying logical framework
and referred to in Vale by name. Types can be parameter-
ized by other types. Vale also supports tuple types.

TYPE ::=
| t
| TYPE (TYPE∗,)
| tuple (TYPE∗,)
| (TYPE)

A procedure can be declared with specification clauses.
A reads or modifies clause says which global variables
the procedure may read or write, respectively. The key-
words requires and ensures are used to introduce pre-
and postconditions. Since it often happens that a proce-
dure both requires and ensures some invariant condition,
there is a specification clause that avoids the syntactic
repetition of such conditions.

SPEC ::=
| reads x∗;

| modifies x∗;

| requires LEXP∗;

| ensures LEXP∗;

| requires / ensures LEXP∗;

USENIX Association 26th USENIX Security Symposium 933

LEXP ::=
| EXP
| let FORMAL := EXP

Procedure bodies have statements.

STMT ::=
| assume EXP ;
| assert EXP ;
| assert EXP by { STMT∗ }
| calc [CALCOP] { CALC∗ }
| reveal f ;
| p (EXP , ... , EXP) ;
| ASSIGN ;
| [ghost] var x [: TYPE] [:= EXP] ;
| forall FORMAL∗, TRIGGER∗

[:| EXP] :: EXP { STMT∗ }
| exists FORMAL∗, TRIGGER∗ :: EXP ;
| while (EXP) INVARIANT∗ DECREASE

{ STMT∗ }
| for (ASSIGN∗, ; EXP ; ASSIGN∗,)

INVARIANT∗ DECREASE { STMT∗ }
| [ghost] [inline] if (EXP) { STMT∗ }

ELSE

ELSE ::=
| else if (EXP) { STMT∗ } ELSE
| [else { STMT∗ }]

A proof calculation is a statement that helps guide a
proof [51]. CALC represents either an expression or a
hint in a calculation.

CALC ::=
| [CALCOP] EXP ;
| [CALCOP] { STMT∗ }

CALCOP ::=
| < | > | <= | >= | ==
| && | || | <== | ==> | <==>

Assignment statements are standard.

ASSIGN ::=
| x := EXP
| this := EXP
| DESTINATION+, := p (EXP∗,)

DESTINATION ::=
| x
| ([ghost] var x [: TYPE])

Loops are declared with loop invariants and termination
metrics.

INVARIANT ::=
| invariant EXP∗;

DECREASE ::=
| decreases * ;
| decreases EXP+, ;

A matching trigger is a directive for the verifier, a fea-
ture useful to experts.

TRIGGER ::=
| { EXP+, }

Expressions include the expected ones. The produc-
tions below show examples of numerical literals and
bitvector literals.

EXP ::=
| x
| f
| false | true
| 0 | 1 | 2 | 3 | ... | 1_000_000 | ...
| 0.1 | 0.2 | ... | 3.14159 | ...
| 0x0 | 0x1 | ... | 0xdeadBEEF
| 0x1_0000_0000 | ...
| bv1(0) | bv32(0xdeadbeef) | bv64(7) | ...
| "STRING"
| (- EXP)
| this
| @x
| const(EXP)
| f (EXP∗,)
| EXP [EXP]
| EXP [EXP := EXP]
| EXP ?[EXP]
| EXP . fd
| EXP . (fd := EXP)
| old (EXP)
| old [EXP] (EXP)
| seq (EXP∗,)
| set (EXP∗,)
| list (EXP∗,)
| tuple (EXP∗,)
| ! EXP
| EXP * EXP | EXP / EXP | EXP % EXP
| EXP + EXP | EXP - EXP
| EXP < EXP | EXP > EXP
| EXP <= EXP | EXP >= EXP | EXP is c
| EXP == EXP | EXP != EXP
| EXP && EXP
| EXP || EXP
| EXP <== EXP | EXP ==> EXP
| EXP <==> EXP
| if EXP then EXP else EXP
| let FORMAL := EXP in EXP
| forall FORMAL∗, TRIGGER∗ :: EXP
| exists FORMAL∗, TRIGGER∗ :: EXP
| lambda FORMAL∗, TRIGGER∗ :: EXP
| (EXP)

934 26th USENIX Security Symposium USENIX Association

	1 Introduction
	2 Vale Design and Implementation
	2.1 Dafny declarations
	2.2 Vale procedures
	2.3 Operands, ghost variables, and inline variables
	2.4 Vale proofs
	2.5 Error handling in Vale

	3 Information Leakage Analysis
	3.1 Specifying leakage freedom
	3.2 Analyzer implementation
	3.3 Memory taint analysis

	4 Case Studies
	4.1 OpenSSL SHA-256 on ARM
	4.2 SHA-256 on x86
	4.3 Poly1305 on x64
	4.4 AES-CBC using x86 AES-NI instructions

	5 Evaluation
	5.1 Comparative performance
	5.2 Verification time and code size
	5.3 Verification effort

	6 Related Work
	7 Conclusions and Future Work
	A Vale Grammar

