
Open access to the Proceedings of
the 24th USENIX Security Symposium

is sponsored by USENIX

Type Casting Verification:
Stopping an Emerging Attack Vector
Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee,

Georgia Institute of Technology

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee

This paper is included in the Proceedings of the
24th USENIX Security Symposium

August 12–14, 2015 • Washington, D.C.

ISBN 978-1-939133-11-3

USENIX Association 24th USENIX Security Symposium 81

Type Casting Verification:
Stopping an Emerging Attack Vector

Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee

School of Computer Science
Georgia Institute of Technology

Abstract
Many applications such as the Chrome and Firefox
browsers are largely implemented in C++ for its perfor-
mance and modularity. Type casting, which converts one
type of an object to another, plays an essential role in en-
abling polymorphism in C++ because it allows a program
to utilize certain general or specific implementations in
the class hierarchies. However, if not correctly used, it
may return unsafe and incorrectly casted values, leading
to so-called bad-casting or type-confusion vulnerabili-
ties. Since a bad-casted pointer violates a programmer’s
intended pointer semantics and enables an attacker to
corrupt memory, bad-casting has critical security implica-
tions similar to those of other memory corruption vulner-
abilities. Despite the increasing number of bad-casting
vulnerabilities, the bad-casting detection problem has not
been addressed by the security community.

In this paper, we present CAVER, a runtime bad-casting
detection tool. It performs program instrumentation
at compile time and uses a new runtime type tracing
mechanism—the type hierarchy table—to overcome the
limitation of existing approaches and efficiently verify
type casting dynamically. In particular, CAVER can be
easily and automatically adopted to target applications,
achieves broader detection coverage, and incurs reason-
able runtime overhead. We have applied CAVER to large-
scale software including Chrome and Firefox browsers,
and discovered 11 previously unknown security vulnera-
bilities: nine in GNU libstdc++ and two in Firefox, all
of which have been confirmed and subsequently fixed by
vendors. Our evaluation showed that CAVER imposes up
to 7.6% and 64.6% overhead for performance-intensive
benchmarks on the Chromium and Firefox browsers, re-
spectively.

1 Introduction
The programming paradigm popularly known as object-
oriented programming (OOP) is widely used for devel-
oping large and complex applications because it encap-
sulates the implementation details of data structures and
algorithms into objects; this in turn facilitates cleaner
software design, better code reuse, and easier software

maintenance. Although there are many programming lan-
guages that support OOP, C++ has been the most popular,
in particular when runtime performance is a key objective.
For example, all major web browsers—Internet Explorer,
Chrome, Firefox, and Safari are implemented in C++.

An important OOP feature is type casting that converts
one object type to another. Type conversions play an im-
portant role in polymorphism. It allows a program to treat
objects of one type as another so that the code can utilize
certain general or specific features within the class hier-
archy. Unlike other OOP languages—such as Java—that
always verify the safety of a type conversion using run-
time type information (RTTI), C++ offers two kinds of type
conversions: static_cast, which verifies the correctness
of conversion at compile time, and dynamic_cast, which
verifies type safety at runtime using RTTI. static_cast
is much more efficient because runtime type checking by
dynamic_cast is an expensive operation (e.g., 90 times
slower than static_cast on average). For this reason,
many performance critical applications like web browsers,
Chrome and Firefox in particular, prohibit dynamic_cast
in their code and libraries, and strictly use static_cast.

However, the performance benefit of static_cast
comes with a security risk because information at com-
pile time is by no means sufficient to fully verify the
safety of type conversions. In particular, upcasting (cast-
ing a derived class to its parent class) is always safe, but
downcasting (casting a parent class to one of its derived
classes) may not be safe because the derived class may
not be a subobject of a truly allocated object in downcast-
ing. Unsafe downcasting is better known as bad-casting
or type-confusion.

Bad-casting has critical security implications. First,
bad-casting is undefined behavior as specified in the C++
standard (5.2.9/11 [26]). Thus, compilers cannot guar-
antee the correctness of a program execution after bad-
casting occurs (more detailed security implication analy-
sis on undefined behavior is provided in §2). In addition
to undefined behavior, bad-casting is similar to memory
corruption vulnerabilities like stack/heap overflows and
use-after-free. A bad-casted pointer violates a program-
mer’s intended pointer semantics, and allows an attacker

1

82 24th USENIX Security Symposium USENIX Association

to corrupt memory beyond the true boundary of an ob-
ject. For example, a bad-casting vulnerability in Chrome
(CVE-2013-0912) was used to win the Pwn2Own 2013
competition by leaking and corrupting a security sensitive
memory region [31]. More alarmingly, bad-casting is not
only security-critical but is also common in applications.
For example, 91 bad-casting vulnerabilities have been
reported over the last four years in Chrome. Moreover,
over 90% of these bad-casting bugs were rated as security-
high, meaning that the bug can be directly exploited or
indirectly used to mount arbitrary code execution attacks.

To avoid bad-casting issues, several C++ projects em-
ploy custom RTTI, which embeds code to manually keep
type information at runtime and verify the type conver-
sion safety of static_cast. However, only a few C++
programs are designed with custom RTTI, and supporting
custom RTTI in existing programs requires heavy manual
code modifications.

Another approach, as recently implemented by Google
in the Undefined Behavior Sanitizer (UBSAN) [42],
optimizes the performance of dynamic_cast and re-
places all static_cast with dynamic_cast. However,
this approach is limited because dynamic_cast only
supports polymorphic classes, whereas static_cast is
used for both polymorphic and non-polymorphic classes.
Thus, this simple replacement approach changes the pro-
gram semantics and results in runtime crashes when
dynamic_cast is applied to non-polymorphic classes. It
is difficult to identify whether a static_cast operation
will be used for polymorphic or non-polymorphic classes
without runtime information. For this reason, tools follow-
ing this direction have to rely on manual blacklists (i.e.,
opt-out and do not check all non-polymorphic classes) to
avoid runtime crashes. For example, UBSAN has to black-
list 250 classes, ten functions, and eight whole source files
used for the Chromium browser [9], which is manually
created by repeated trial-and-error processes. Considering
the amount of code in popular C++ projects, creating such
a blacklist would require massive manual engineering
efforts.

In this paper, we present CAVER, a runtime bad-casting
detection tool that can be seamlessly integrated with large-
scale applications such as commodity browsers. It takes
a program’s source code as input and automatically in-
struments the program to verify type castings at runtime.
We designed a new metadata, the Type Hierarchy Ta-
ble (THTable) to efficiently keep track of rich type infor-
mation. Unlike RTTI, THTable uses a disjoint metadata
scheme (i.e., the reference to an object’s THTable is stored
outside the object). This allows CAVER to overcome all
limitations of previous bad-casting detection techniques:
it not only supports both polymorphic classes and non-
polymorphic classes, but also preserves the C++ ABI and
works seamlessly with legacy code. More specifically,

CAVER achieves three goals:

• Easy-to-deploy. CAVER can be easily adopted to
existing C++ programs without any manual effort.
Unlike current state-of-the-art tools like UBSAN, it
does not rely on manual blacklists, which are re-
quired to avoid program corruption. To demonstrate,
we have integrated CAVER into two popular web
browsers, Chromium and Firefox, by only modify-
ing its build configurations.

• Coverage. CAVER can protect all type castings
of both polymorphic and non-polymorphic classes.
Compared to UBSAN, CAVER covers 241% and
199% more classes and their castings, respectively.

• Performance. CAVER also employs optimization
techniques to further reduce runtime overheads (e.g.,
type-based casting analysis). Our evaluation shows
that CAVER imposes up to 7.6% and 64.6% over-
heads for performance-intensive benchmarks on the
Chromium and Firefox browsers, respectively. On
the contrary, UBSAN is 13.8% slower than CAVER
on the Chromium browser, and it cannot run the
Firefox browser due to a runtime crash.

To summarize, we make three major contribution as fol-
lows:

• Security analysis of bad-casting. We analyzed the
bad-casting problem and its security implications
in detail, thus providing security researchers and
practitioners a better understanding of this emerging
attack vector.

• Bad-casting detection tool. We designed and im-
plemented CAVER, a general, automated, and easy-
to-deploy tool that can be applied to any C++ applica-
tion to detect (and mitigate) bad-casting vulnerabili-
ties. We have shared CAVER with the Firefox team 1

and made our source code publicly available.
• New vulnerabilities. While evaluating CAVER, we

discovered eleven previously unknown bad-casting
vulnerabilities in two mature and widely-used open
source projects, GNU libstdc++ and Firefox. All
vulnerabilities have been reported and fixed in these
projects’ latest releases. We expect that integration
with unit tests and fuzzing infrastructure will allow
CAVER to discover more bad-casting vulnerabilities
in the future.

This paper is organized as follows. §2 explains bad-
casting issues and their security implications. §3 illus-
trates high-level ideas and usages of CAVER, §4 describes
the design of CAVER. §5 describes the implementa-
tion details of CAVER, §6 evaluates various aspects of

1The Firefox team at Mozilla asked us to share CAVER for regression
testing on bad-casting vulnerabilities.

2

USENIX Association 24th USENIX Security Symposium 83

CAVER. §7 further discusses applications and limitations
of CAVER, §8 describes related work. Finally, §9 con-
cludes the paper.

2 C++ Bad-casting Demystified
Type castings in C++. Type casting in C++ allows an
object of one type to be converted to another so that
the program can use different features of the class hi-
erarchy. C++ provides four explicit casting operations:
static, dynamic, const, and reinterpret. In this pa-
per, we focus on the first two types — static_cast and
dynamic_cast (5.2.9 and 5.2.7 in ISO/IEC N3690 [26]) —
because they can perform downcasting and result in bad-
casting. static_cast and dynamic_cast have a variety
of different usages and subtle issues, but for the purpose
of this paper, the following two distinctive properties
are the most important: (1) time of verification: as the
name of each casting operation implies, the correctness
of a type conversion is checked (statically) at compile
time for static_cast, and (dynamically) at runtime for
dynamic_cast; (2) runtime support (RTTI): to verify type
checking at runtime, dynamic_cast requires runtime sup-
port, called RTTI, that provides type information of the
polymorphic objects.

Example 1 illustrates typical usage of both casting
operations and their correctness and safety: (1) casting
from a derived class (pCanvas of SVGElement) to a parent
class (pEle of Element) is valid upcasting; (2) casting
from the parent class (pEle of Element) to the original
allocated class (pCanvasAgain of SVGElement) is valid
downcasting; (3) on the other hand, the casting from an
object allocated as a base class (pDom of Element) to a
derived class (p of SVGElement) is invalid downcasting
(i.e., a bad-casting); (4) memory access via the invalid
pointer (p->m_className) can cause memory corruption,
and more critically, compilers cannot guarantee any cor-
rectness of program execution after this incorrect conver-
sion, resulting in undefined behavior; and (5) by using
dynamic_cast, programmers can check the correctness of
type casting at runtime, that is, since an object allocated
as a base class (pDom of Element) cannot be converted to
its derived class (SVGElement), dynamic_cast will return
a NULL pointer and the error-checking code (line 18) can
catch this bug, thus avoiding memory corruption.
Type castings in practice. Although dynamic_cast
can guarantee the correctness of type casting, it is an
expensive operation because parsing RTTI involves recur-
sive data structure traversal and linear string comparison.
From our preliminary evaluation, dynamic_cast is, on
average, 90 times slower than static_cast on average.
For large applications such as the Chrome browser, such
performance overhead is not acceptable: simply launch-
ing Chrome incurs over 150,000 casts. Therefore, despite
its security benefit, the use of dynamic_cast is strictly

SVGElement

Element (3) invalid
downcast

pDom (allocated)1 class SVGElement: public Element { ... };
2

3 Element *pDom = new Element();
4 SVGElement *pCanvas = new SVGElement();
5

6 // (1) valid upcast from pCanvas to pEle
7 Element *pEle = static_cast<Element*>(pCanvas);
8 // (2) valid downcast from pEle to pCanvasAgain (== pCanvas)
9 SVGElement *pCanvasAgain = static_cast<SVGElement*>(pEle);

10

11 // (3) invalid downcast (-> undefined behavior)
12 SVGElement *p = static_cast<SVGElement*>(pDom);
13 // (4) leads to memory corruption
14 p->m_className = "my-canvas";
15

16 // (5) invalid downcast with dynamic_cast, but no corruption
17 SVGElement *p = dynamic_cast<SVGElement*>(pDom);
18 if (p) {
19 p->m_className = "my-canvas";
20 }

Example 1: Code example using static_cast to convert types
of object pointers (e.g., Element↔ SVGElement classes). (1) is
valid upcast and (2) is valid downcast. (3) is an invalid down-
cast. (4) Memory access via the invalid pointer result in memory
corruption; more critically, compilers cannot guarantee the cor-
rectness of program execution after this incorrect conversion,
resulting in undefined behavior. (5) Using dynamic_cast, on the
other hand, the program can check the correctness of downcast
by checking the returned pointer.

forbidden in Chrome development.
A typical workaround is to implement custom RTTI

support. For example, most classes in WebKit-
based browsers have an isType() method (e.g.,
isSVGElement()), which indicates the true allocated type
of an object. Having this support, programmers can decou-
ple a dynamic_cast into an explicit type check, followed
by static_cast. For example, to prevent the bad-casting
(line 12) in Example 1, the program could invoke the
isSVGElement() method to check the validity of casting.
However, this sort of type tracking and verification has
to be manually implemented, and thus supporting custom
RTTI in existing complex programs is a challenging prob-
lem. Moreover, due to the error-prone nature of manual
modifications (e.g., incorrectly marking the object iden-
tity flag, forgetting to check the identity using isType()
function, etc.), bad-casting bugs still occur despite custom
RTTI [41].
Security implications of bad-casting. The C++ stan-
dard (5.2.9/11 [26]) clearly specifies that the behavior
of an application becomes undefined after an incorrect
static_cast. Because undefined behavior is an enig-
matic issue, understanding the security implications and
exploitability of bad-casting requires deep knowledge of
common compiler implementations.

Generally, bad-casting vulnerabilities can be exploited
via several means. An incorrectly casted pointer will ei-
ther have wider code-wise visibility (e.g., allowing out-of-
bound memory accesses), or become incorrectly adjusted
(e.g., corrupting memory semantics because of misalign-
ment). For example, when bad-casting occurs in proxim-

3

84 24th USENIX Security Symposium USENIX Association

ity to a virtual function table pointer (vptr), an attacker
can directly control input to the member variable (e.g., by
employing abusive memory allocation techniques such as
heap-spray techniques [16, 38]), overwrite the vptr and
hijack the control flow. Similarly, an attacker can also
exploit bad-casting vulnerabilities to launch non-control-
data attacks [7].

The exploitability of a bad-casting bug depends on
whether it allows attackers to perform out-of-bound mem-
ory access or manipulate memory semantics. This in turn
relies on the details of object data layout as specified by
the C++ application binary interface (ABI). Because the
C++ ABI varies depending on the platform (e.g., Itanium
C++ ABI [12] for Linux-based platforms and Microsoft
C++ ABI [11] for Windows platforms), security implica-
tions for the same bad-casting bug can be different. For
example, bad-casting may not crash, corrupt, or alter the
behavior of an application built against the Itanium C++
ABI because the base pointer of both the base class and
derived class always point to the same location of the
object under this ABI. However, the same bad-casting
bug can have severe security implications for other ABI
implementations that locate a base pointer of a derived
class differently from that of a base class, such as HP
and legacy g++ C++ ABI [13]. In short, given the num-
ber of different compilers and the various architectures
supported today, we want to highlight that bad-casting
should be considered as a serious security issue. This
argument is also validated from recent correspondence
with the Firefox security team: after we reported two
new bad-casting vulnerabilities in Firefox [4], they also
pointed out the C++ ABI compatibility issue and rated the
vulnerability as security-high.
Running example: CVE-2013-0912. Our illustra-
tive Example 1 is extracted from a real-world bad-casting
vulnerability—CVE-2013-0912, which was used to ex-
ploit the Chrome web browser in the Pwn2Own 2013
competition. However, the complete vulnerability is more
complicated as it involves a multitude of castings (be-
tween siblings and parents).

In HTML5, an SVG image can be embedded directly
into an HTML page using the <svg> tag. This tag is
implemented using the SVGElement class, which inherits
from the Element class. At the same time, if a web page
happens to contain unknown tags (any tags other than stan-
dard), an object of the HTMLUnknownElement class will be
created to represent this unknown tag. Since both tags are
valid HTML elements, objects of these types can be safely
casted to the Element class. Bad-casting occurs when the
browser needs to render an SVG image. Given an Element
object, it tries to downcast the object to SVGElement so
the caller function can invoke member functions of the
SVGElement class. Unfortunately, since not all Element
objects are initially allocated as SVGElement objects, this

HTMLUnknwonElement
(size: 96 bytes)

...... (56 siblings)

HTMLElement
(size: 96 bytes)

SVGElement
(size: 160 bytes)

Element
(size: 96 bytes)

ContainerNode

...

static_cast
static_cast

(> 10 parent classes)

...

(allocated)

Figure 1: Inheritance hierarchy of classes involved in the CVE-
2013-0912 vulnerability. MWR Labs exploited this vulnerability
to hijack the Chrome browser in the Pwn2Own 2013 competi-
tion [31]. The object is allocated as HTMLUnknownElement and
eventually converted (static_cast) to SVGElement. After this
incorrect type casting, accessing member variables via this ob-
ject pointer will cause memory corruption.

static_cast is not always valid. In the exploit demon-
strated in the Pwn2Own 2013 competition [31], attackers
used an object allocated as HTMLUnknownElement. As the
size of an SVGElement object (160 bytes) is much larger
than an HTMLUnknownElement object (96 bytes), this in-
correctly casted object pointer allowed the attackers to
access memory beyond the real boundary of the allocated
HTMLUnknownElement object. They then used this capabil-
ity to corrupt the vtable pointer of the object adjacent to
the HTMLUnknownElement object, ultimately leading to a
control-flow hijack of the Chrome browser. This example
also demonstrates why identifying bad-casting vulnerabil-
ities is not trivial for real-world applications. As shown
in Figure 1, the HTMLUnknownElement class has more than
56 siblings and the Element class has more than 10 parent
classes in WebKit. Furthermore, allocation and casting
locations are far apart within the source code. Such com-
plicated class hierarchies and disconnections between
allocation and casting sites make it difficult for develop-
ers and static analysis techniques to reason about the true
allocation types (i.e., alias analysis).

3 CAVER Overview
In this paper, we focus on the correctness and effective-
ness of CAVER against bad-casting bugs, and our main
application scenario is as a back-end testing tool for de-
tecting bad-casting bugs. CAVER’s workflow (Figure 2)
is as simple as compiling a program with one extra com-
pile and link flag (i.e., -fcaver for both). The produced
binary becomes capable of verifying the correctness of ev-
ery type conversion at runtime. When CAVER detects an
incorrect type cast, it provides detailed information of the
bad-cast: the source class, the destination class, the truly
allocated class, and call stacks at the time the bad-cast is
captured. Figure 3 shows a snippet of the actual report of
CVE-2013-0912. Our bug report experience showed that
the report generated by CAVER helped upstream main-

4

USENIX Association 24th USENIX Security Symposium 85

Secured
 binary

Source
code

Compile

CaVer
Runtime

CaVer
Optimization

pass

Clang LLVM

CaVer
Static

Instrumentation

Link

+

Figure 2: Overview of CAVER’s design and workflow. Given
the source code of a program, CAVER instruments possible
castings at compile time, and injects CAVER’s runtime to verify
castings when they are performed.

1 == CaVer : (Stopped) A bad-casting detected
2 @SVGViewSpec.cpp:87:12
3 Casting an object of ’blink::HTMLUnknownElement’
4 from ’blink::Element
5 to ’blink::SVGElement’
6 Pointer 0x60c000008280
7 Alloc base 0x60c000008280
8 Offset 0x000000000000
9 THTable 0x7f7963aa20d0

10

11 #1 0x7f795d76f1a4 in viewTarget SVGViewSpec.cpp:87
12 #2 0x7f795d939d1c in viewTargetAttribute V8SVGViewSpec.cpp:56
13 ...

Figure 3: A report that CAVER generated on CVE-2013-0912.

tainers easily understand, confirm, and fix eleven newly
discovered vulnerabilities without further examination.

4 Design
In this section, we introduce the design of CAVER. We
first describe how the THTable is designed to generally
represent the type information for both polymorphic
and non-polymorphic classes (§4.1), and then explain
how CAVER associates the THTable with runtime objects
(§4.2). Next, we describe how CAVER verifies the cor-
rectness of type castings (§4.3). At the end of this section,
we present optimization techniques used to reduce the
runtime overhead of CAVER (§4.4).

4.1 Type Hierarchy Table

To keep track of the type information required for val-
idating type casting, CAVER incorporates a new meta-
data structure, called the Type Hierarchy Table (THTable).
Given a pointer to an object allocated as type T, the
THTable contains the set of all possible types to which T
can be casted. In C++, these possible types are a product
of two kinds of class relationships: is-a and has-a. The
is-a relationship between two objects is implemented as
class inheritance, the has-a relationship is implemented
as class composition (i.e., having a member variable in a
class). Thus, for each class in a C++ program, CAVER cre-
ates a corresponding THTable that includes information
about both relationships.

To represent class inheritance, the THTable employs
two unique design decisions. First, information on inher-
ited classes (i.e., base classes) is unrolled and serialized.
This allows CAVER to efficiently scan through a set of
base classes at runtime while standard RTTI requires re-

cursive traversal. Second, unlike RTTI, which stores a
mangled class name, the THTable stores the hash value
of a class name. This allows CAVER to avoid expensive
string equality comparisons. Note, since all class names
are available to CAVER at compile time, all possible hash
collisions can be detected and resolved to avoid false
negatives during runtime. Moreover, because casting is
only allowed between classes within the same inheritance
chain, we only need to guarantee the uniqueness of hash
values within a set of those classes, as opposed to guaran-
teeing global uniqueness.

The THTable also includes information of whether a
base class is a phantom class, which cannot be represented
based on RTTI and causes many false alarms in RTTI-
based type verification solutions [9]. We say a class P is a
phantom class of a class Q if two conditions are met: (1) Q
is directly or indirectly derived from P; and (2) compared
to P, Q does not have additional member variables or
different virtual functions. In other words, they have the
same data layout. Strictly speaking, allocating an object
as P and downcasting it to Q is considered bad-casting as
Q is not a base class of P. However, such bad-castings
are harmless from a security standpoint, as the pointer
semantic after downcasting is the same. More importantly,
phantom classes are often used in practice to implement
object relationships with empty inheritances. For these
reasons, CAVER deliberately allows bad-castings caused
by phantom classes. This is done by reserving a one bit
space in the THTable for each base class, and marking if
the base class is a phantom class. We will describe more
details on how the phantom class information is actually
leveraged in §4.3.

In addition, the THTable contains information on com-
posited class(es) to generally represent the type informa-
tion for both polymorphic and non-polymorphic classes
and overcome the limitation of RTTI-based type verifica-
tion solutions. RTTI-based solutions locate a RTTI ref-
erence via the virtual function table (VTable). However,
since only polymorphic classes have VTable, these solu-
tions can cause runtime crashes when they try to locate
the VTable for non-polymorphic classes. Unlike RTTI,
CAVER binds THTable references to the allocated object
with external metadata (refer §4.2 for details). There-
fore, CAVER not only supports non-polymorphic objects,
but it also does not break the C++ ABI. However, com-
posited class(es) now share the same THTable with their
container class. Since a composited class can also have
its own inheritances and compositions, we do not unroll
information about composited class(es); instead, CAVER
provides a reference to the composited class’s THTable.
The THTable also stores the layout information (offset and
size) of each composited class to determine whether the
given pointer points to a certain composited class.

Other than inheritance and composition information as

5

86 24th USENIX Security Symposium USENIX Association

described above, the THTable contains basic information
on the corresponding type itself: a type size to represent
object ranges; and a type name to generate user-friendly
bad-casting reports.

4.2 Object Type Binding

To verify the correctness of type casting, CAVER needs
to know the actual allocated type of the object to be
casted. In CAVER, we encoded this type information in
the THTable. In this subsection, we describe how CAVER
binds the THTable to each allocated object. To overcome
the limitations of RTTI-based solutions, CAVER uses a
disjoint metadata scheme (i.e., the reference to an object’s
THTable is stored outside the object). With this unique
metadata management scheme, CAVER not only supports
both polymorphic classes and non-polymorphic classes,
but also preserves the C++ ABI and works seamlessly with
legacy code. Overall, type binding is done in two steps.
First, CAVER instruments each allocation site of an ap-
plication to pass the allocation metadata to its runtime
library. Second, CAVER’s runtime library maintains the
allocation metadata and supports efficient lookup opera-
tions.
Instrumentation. The goal of the instrumentation is to
pass all information of an allocated object to the runtime
library. To bind a THTable to an object, the runtime li-
brary needs two pieces of information: a reference to the
THTable and the base address of the allocated object.

In C++, objects can be allocated in three ways: in heap,
on stack, or as global objects. In all three cases, the
type information of the allocated object can be deter-
mined statically at compile time. This is possible because
C++ requires programmers to specify the object’s type at
its allocation site, so the corresponding constructor can
be invoked to initialize memory. For global and stack
objects, types are specified before variable names; and
for heap objects, types are specified after the new opera-
tor. Therefore, CAVER can obtain type information by
statically inspecting the allocation site at compile time.
Specifically, CAVER generates the THTable (or reuses the
corresponding THTable if already generated) and passes
the reference of the THTable to the runtime library. An
example on how CAVER instruments a program is shown
in Example 2.

For heap objects, CAVER inserts one extra function
invocation (trace_heap() in Example 2) to the runtime
library after each new operator, and passes the information
of the object allocated by new; a reference to the THTable
and the base address of an object. A special case for the
new operator is an array allocation, where a set of objects
of the same type are allocated. To handle this case, we add
an extra parameter to inform the runtime library on how
many objects are allocated together at the base address.

Unlike heap objects, stack objects are implicitly al-

1 // Heap objects (dynamically allocated)
2 void func_heap_ex() {
3 C *p_heap_var = new C;
4 C *p_heap_array = new C[num_heap_array];
5 + trace_heap(&THTable(C), p_heap_var, 1);
6 + trace_heap(&THTable(C), p_heap_array, num_heap_array);
7 ...
8 }
9

10 // Stack objects
11 void func_stack_ex() {
12 C stack_var;
13 + trace_stack_begin(&THTable(C), &stack_var, 1);
14 ...
15 + trace_stack_end(&stack_var);
16 }
17

18 // Global objects
19 C global_var;
20

21 // @.ctors: (invoked at the program’s initialization)
22 // trace_global_helper_1() and trace_global_helper_2()
23 + void trace_global_helper_1() {
24 + trace_global(&THTable(C), &global_var, 1);
25 + }
26

27 // Verifying the correctness of a static casting
28 void func_verify_ex() {
29 B *afterAddr = static_cast<A>(beforeAddr);
30 + verify_cast(beforeAddr, afterAddr, type_hash(A));
31 }

Example 2: An example of how CAVER instruments a program.
Lines marked with + represent code introduced by CAVER, and
&THTable(T) denotes the reference to the THTable of class T.
In this example, we assume that the THTable of each allocated
class has already been generated by CAVER.

located and freed. To soundly trace them, CAVER in-
serts two function calls for each stack object at the
function prologue and epilogue (trace_stack_begin()
and trace_stack_end() in Example 2), and passes the
same information of the object as is done for heap ob-
jects. A particular challenge is that, besides function
returns, a stack unwinding can also happen due to ex-
ceptions and setjmp/longjmp. To handle these cases,
CAVER leverages existing compiler functionality (e.g.,
EHScopeStack::Cleanup in clang) to guarantee that the
runtime library is always invoked once the execution con-
text leaves the given function scope.

To pass information of global objects to the runtime
library, we leverage existing program initialization pro-
cedures. In ELF file format files [46], there is a special
section called .ctors, which holds constructors that must
be invoked during an early initialization of a program.
Thus, for each global object, CAVER creates a helper
function (trace_global_helper_1() in Example 2) that
invokes the runtime library with static metadata (the ref-
erence to the THTable) and dynamic metadata (the base
address and the number of array elements). Then, CAVER
adds the pointer to this helper function to the .ctors sec-
tion so that the metadata can be conveyed to the runtime
library2.

2Although the design detail involving .ctors section is platform de-
pendent, the idea of registering the helper function into the initialization

6

USENIX Association 24th USENIX Security Symposium 87

Runtime library. The runtime library of CAVER main-
tains all the metadata (THTable and base address of an
object) passed from tracing functions during the course
of an application execution. Overall, we consider two pri-
mary requirements when organizing the metadata. First,
the data structure must support range queries (i.e., given
a pointer pointing to an address within an object ([base,
base+size)) CAVER should be able to find the correspond-
ing THTable of the object). This is necessary because the
object pointer does not always point to the allocation base.
For example, the pointer to be casted can point to a com-
posited object. In case of multi-inheritance, the pointer
can also point to one of the parent classes. Second, the
data structure must support efficient store and retrieve
operations. CAVER needs to store the metadata for every
allocation and retrieve the metadata for each casting ver-
ification. As the number of object allocations and type
conversions can be huge (see §6), these operations can
easily become the performance bottleneck.

We tackle these challenges using a hybrid solution (see
Appendix 2 for the algorithm on runtime library func-
tions). We use red-black trees to trace global and stack
objects and an alignment-based direct mapping scheme
to trace heap objects3.

We chose red-black trees for stack and global objects
for two reasons. First, tree-like data structures are well
known for supporting efficient range queries. Unlike
hash-table-based data structures, tree-based data struc-
tures arrange nodes according to the order of their keys,
whose values can be numerical ranges. Since nodes are
already sorted, a balanced tree structure can guarantee
O(logN) complexity for range queries while hash-table-
based data structure requires O(N) complexity. Second,
we specifically chose red-black trees because there are sig-
nificantly more search operations than update operations
(i.e., more type conversion operations than allocations,
see §6), thus red-black trees can excel in performance due
to self-balancing.

In CAVER, each node of a red-black tree holds the
following metadata: the base address and the allocation
size as the key of the node, and the THTable reference as
the value of the node.

For global object allocations, metadata is inserted into
the global red-black tree when the object is allocated at
runtime, with the key as the base address and the alloca-
tion size4, and the value as the address of the THTable.
We maintain a per-process global red-black tree without

function list can be generalized for other platforms as others also support
.ctors-like features

3The alignment-based direct mapping scheme can be applied for
global and stack objects as well, but this is not implemented in the
current version. More details can be found in §7.

4The allocation size is computed by multiplying the type size rep-
resented in THTable and the number of array elements passed during
runtime.

locking mechanisms because there are no data races on
the global red-black tree in CAVER. All updates on the
global red-black tree occur during early process start-up
(i.e., before executing any user-written code) and update
orders are well serialized as listed in the .ctors section.

For stack object allocations, metadata is inserted to
the stack red-black tree similar to the global object case.
Unlike a global object, we maintain a per-thread red-
black tree for stack objects to avoid data races in multi-
threaded applications. Because a stack region (and all
operations onto this region) are exclusive to the corre-
sponding thread’s execution context, this per-thread data
structure is sufficient to avoid data races without locks.

For heap objects, we found that red-black trees are
not a good design choice, especially for multi-threaded
programs. Different threads in the target programs can up-
date the tree simultaneously, and using locks to avoid data
races resulted in high performance overhead, as data con-
tention occured too frequently. Per-thread red-black trees
used for stack objects are not appropriate either, because
heap objects can be shared by multiple threads. There-
fore, we chose to use a custom memory allocator that can
support alignment-based direct mapping schemes [3, 22].
In this scheme, the metadata can be maintained for a par-
ticular object, and can be retrieved with O(1) complexity
on the pointer pointing to anywhere within the object’s
range.

4.3 Casting Safety Verification

This subsection describes how CAVER uses traced in-
formation to verify the safety of type casting. We first
describe how the instrumentation is done at compile time,
and then describe how the runtime library eventually veri-
fies castings during runtime.
Instrumentation. CAVER instruments static_cast to
invoke a runtime library function, verify_cast(), to ver-
ify the casting. Here, CAVER analyzes a type hierarchy
involving source and destination types in static_cast
and only instruments for downcast cases. When invok-
ing verify_cast(), CAVER passes the following three
pieces of information: beforeAddr, the pointer address
before the casting; afterAddr, the pointer address after
the casting; and TargetTypeHash, the hash value of the
destination class to be casted to (denoted as type_hash(A)
in Example 2).
Runtime library. The casting verification (Appendix 1)
is done in two steps: (1) locating the correspond-
ing THTable associated with the object pointed to by
beforeAddr; and (2) verifying the casting operation by
checking whether TargetTypeHash is a valid type where
afterAddr points.

To locate the corresponding THTable, we first check
the data storage membership because we do not know
how the object beforeAddr points to is allocated. Checks

7

88 24th USENIX Security Symposium USENIX Association

are ordered by their expense, and the order is critical for
good performance. First, a stack object membership is
checked by determinig whether the beforeAddr is in the
range between the stack top and bottom; then, a heap ob-
ject membership is checked by whether the beforeAddr
is in the range of pre-mapped address spaces reserved
for the custom allocator; finally a global object member-
ship is checked with a bit vector array for each loaded
binary module. After identifying the data storage mem-
bership, CAVER retrieves the metadata containing the
allocation base and the reference to the THTable. For
stack and global objects, the corresponding red-black tree
is searched. For heap objects, the metadata is retrieved
from the custom heap.

Next, CAVER verifies the casting operation. Because
the THTable includes all possible types that the given ob-
ject can be casted to (i.e., all types from both inheritances
and compositions), CAVER exhaustively matches whether
TargetTypeHash is a valid type where afterAddr points.
To be more precise, the afterAddr value is adjusted for
each matching type. Moreover, to avoid false positives
due to a phantom class, CAVER tries to match all phantom
classes of the class to be casted to.

4.4 Optimization

Since performance overhead is an important factor for
adoption, CAVER applies several optimization techniques.
These techniques are applied in two stages, as shown
in Figure 2. First, offline optimizations are applied to
remove redundant instrumentations. After that, additional
runtime optimizations are applied to further reduce the
performance overhead.
Safe-allocations. Clearly, not all allocated objects will
be involved in type casting. This implicates that CAVER
does not need to trace type information for objects that
would never be casted. In general, soundly and accurately
determining whether objects allocated at a given alloca-
tion site will be casted is a challenging problem because
it requires sophisticated static points-to analysis. Instead,
CAVER takes a simple, yet effective, optimization ap-
proach inspired from C type safety checks in CCured [33].
The key idea is that the following two properties always
hold for downcasting operations: (1) bad-casting may
happen only if an object is allocated as a child of the
source type or the source type itself; and (2) bad-casting
never happens if an object is allocated as the destina-
tion type itself or a child of the destination type. This is
because static_cast guarantees that the corresponding
object must be a derived type of the source type. Since
CAVER can observe all allocation sites and downcasting
operations during compilation, it can recursively apply
the above properties to identify safe-allocation sites, i.e.,
the allocated objects will never cause bad-casting.
Caching verification results. Because casting verifica-

tion involves loops (over the number of compositions
and the number of bases) and recursive checks (in a
composition case), it can be a performance bottleneck.
A key observation here is that the verification result is
always the same for the same allocation type and the
same target type (i.e., when the type of object pointed by
afterAddr and TargetTypeHash are the same). Thus,
in order to alleviate this potential bottleneck, we main-
tain a cache for verification results, which is inspired by
UBSAN [42]. First, a verification result is represented
as a concatenation of the address of a corresponding
THTable, the offset of the afterAddr within the object,
and the hash value of target type to be casted into (i.e.,
&THTable || offset || TargetTypeHash). Next, this concate-
nated value is checked for existence in the cache before
verify_cast() actually performs verification. If it does,
verify_cast() can conclude that this casting is correct.
Otherwise, verify_cast() performs actual verification
using the THTable, and updates the cache only if the cast-
ing is verified to be correct.

5 Implementation
We implemented CAVER based on the LLVM Compiler
project [43] (revision 212782, version 3.5.0). The static in-
strumentation module is implemented in Clang’s CodeGen
module and LLVM’s Instrumentation module. The
runtime library is implemented using the compiler-rt
module based on LLVM’s Sanitizer code base. In to-
tal, CAVER is implemented in 3,540 lines of C++ code
(excluding empty lines and comments).

CAVER is currently implemented for the Linux x86
platform, and there are a few platform-dependent mech-
anisms. For example, the type and tracing functions for
global objects are placed in the .ctors section of ELF. As
these platform-dependent features can also be found in
other platforms, we believe CAVER can be ported to other
platforms as well. CAVER interposes threading functions
to maintain thread contexts and hold a per-thread red-
black tree for stack objects. CAVER also maintains the
top and bottom addresses of stack segments to efficiently
check pointer membership on the stack. We also modified
the front-end drivers of Clang so that users of CAVER can
easily build and secure their target applications with one
extra compilation flag and linker flag, respectively.

6 Evaluation
We evaluated CAVER with two popular web browsers,
Chromium [40] (revision 295873) and Firefox [44]
(revision 213433), and two benchmarks from SPEC
CPU2006 [39]5. Our evaluation aims to answer the fol-
lowing questions:

5 Although CAVER was able to correctly run all C++ benchmarks in
SPEC CPU2006, only 483.xalancbmk and 450.soplex have downcast
operations.

8

USENIX Association 24th USENIX Security Symposium 89

• How easy is it to deploy CAVER to applications?
(§6.1)

• What are the new vulnerabilities CAVER found?
(§6.2)

• How precise is CAVER’s approach in detecting bad-
casting vulnerabilities? (§6.3)

• How good is CAVER’s protection coverage? (§6.4)
• What are the instrumentation overheads that CAVER

imposes and how many type castings are verified by
CAVER? (§6.5)

• What are the runtime performance overheads that
CAVER imposes? (§6.6)

Comparison methods. We used UBSAN, the state-of-art
tool for detecting bad-casting bugs, as our comparison tar-
get of CAVER. Also, We used CAVER-NAIVE, which dis-
abled the two optimization techniques described in §4.4,
to show their effectiveness on runtime performance opti-
mization.

Experimental setup. All experiments were run on
Ubuntu 13.10 (Linux Kernel 3.11) with a quad-core 3.40
GHz CPU (Intel Xeon E3-1245), 16 GB RAM, and 1 TB
SSD-based storage.

6.1 Deployments

As the main design goal for CAVER is automatic deploy-
ments, we describe our experience of applying CAVER to
tested programs including SPEC CPU 2006 benchmarks,
the Chromium browser, and the Firefox browser. CAVER
was able to successfully build and run these programs
without any program-specific understanding of the code
base. In particular, we added one line to the build config-
uration file to build SPEC CPU 2006, 21 lines to the .gyp
build configuration to build the Chromium browser, and
10 lines to the .mozconfig build configuration file to build
the Firefox browser. Most of these build configuration
changes were related to replacing gcc with clang.

On the contrary, UBSAN crashed while running
xalancbmk in SPEC CPU 2006 and while running the Fire-
fox browser due to checks on non-polymorphic classes.
UBSAN also crashed the Chromium browser without
blacklists, but was able to run once we applied the black-
lists provided by the Chromium project [9]. In particular,
to run Chromium, the blacklist has 32 different rules that
account for 250 classes, ten functions, and eight whole
source files. Moreover, this blacklist has to be maintained
constantly as newly introduced code causes new crashes
in UBSAN [10]. This is a practical obstacle for adopt-
ing UBSAN in other C++ projects—although UBSAN has
been open sourced for some time, Chromium remains the
only major project that uses UBSAN, because there is a
dedicated team to maintain its blacklist.

6.2 Newly Discovered Bad-casting Vulnerabilities

To evaluate CAVER’s capability of detecting bad-casting
bugs, we ran CAVER-hardened Chromium and Firefox
with their regression tests (mostly checking functional cor-
rectness). During this evaluation, CAVER found eleven
previously unknown bad-casting vulnerabilities in GNU
libstdc++ while evaluating Chromium and Firefox. Ta-
ble 1 summarizes these vulnerabilities including related
class information: allocated type, source, and destina-
tion types in each bad-casting. In addition, we further
analyzed their security impacts: potential compatibility
problems due to the C++ ABI (see §2) or direct mem-
ory corruption, along with security ratings provided by
Mozilla for Firefox.

CAVER found two vulnerabilities in the Firefox
browser. The Firefox team at Mozilla confirmed and
fixed these, and rated both as security-high, meaning that
the vulnerability can be abused to trigger memory cor-
ruption issues. These two bugs were casting the pointer
into a class which is not a base class of the originally
allocated type. More alarmingly, there were type seman-
tic mismatches after the bad-castings—subsequent code
could dereference the incorrectly casted pointer. Thus the
C++ ABI and Memory columns are checked for these two
cases.

CAVER also found nine bugs in GNU libstdc++ while
running the Chromium browser. We reported these bugs
to the upstream maintainers, and they have been con-
firmed and fixed. Most of these bugs were triggered when
libstdc++ converted the type of an object pointing to
its composite objects (e.g., Base_Ptr in libstdc++) into
a more derived class (Rb_Tree_node in libstdc++), but
these derived classes were not base classes of what was
originally allocated (e.g., EncodedDescriptorDatabase
in Chromium). Since these are generic bugs, meaning
that benign C++ applications will encounter these issues
even if they correctly use libstdc++ or related libraries,
it is difficult to directly evaluate their security impacts
without further evaluating the applications themselves.

These vulnerabilities were identified with legitimate
functional test cases. Thus, we believe CAVER has great
potential to find more vulnerabilities once it is utilized
for more applications and test cases, as well as inte-
grated with fuzzing infrastructures like ClusterFuzz [2]
for Chromium.

6.3 Effectiveness of Bad-casting Detection

To evaluate the correctness of detecting bad-casting
vulnerabilities, we tested five bad-casting exploits of
Chromium on the CAVER-hardened Chromium binary
(see Table 2). We backported five bad-casting vulnera-
bilities as unit tests while preserving important features
that may affect CAVER’s detection algorithm, such as
class inheritances and their compositions, and allocation

9

90 24th USENIX Security Symposium USENIX Association

Product Bug ID Vulnerable Types Security Implication

Function Allocation / Source / Destination ABI Mem Rating

Firefox 1074280 [4] PaintLayer() BasicThebesLayer / Layer / BasicContainerLayer ✓ ✓ High (CVE-2014-1594)
Firefox 1089438 [5] EvictContent() PRCListStr / PRCList / nsSHistory ✓ ✓ High
libstdc++ 63345 [30] _M_const_cast() EncodedDescriptorDatabase / Base_Ptr / Rb_Tree_node ✓ - †
libstdc++ 63345 [30] _M_end() EnumValueOptions / Rb_tree_node_base / Link_type ✓ - †
libstdc++ 63345 [30] _M_end() const GeneratorContextImpl / Rb_tree_node_base / Link_type_const ✓ - †
libstdc++ 63345 [30] _M_insert_unique() WaitableEventKernel / Base_ptr / List_type ✓ - †
libstdc++ 63345 [30] operator*() BucketRanges / List_node_base / Node ✓ - †
libstdc++ 63345 [30] begin() FileOptions / Link_type / Rb_Tree_node ✓ - †
libstdc++ 63345 [30] begin() const std::map / Link_type / Rb_Tree_node ✓ - †
libstdc++ 63345 [30] end() MessageOptions / Link_type / Rb_Tree_node ✓ - †
libstdc++ 63345 [30] end() const Importer / Link_type / Rb_Tree_node ✓ - †

Table 1: A list of vulnerabilities newly discovered by CAVER. All security vulnerabilities listed here are confirmed, and already
fixed by the corresponding development teams. Columns under Types represent classes causing bad-castings: allocation, source
and destination classes. Columns under Security Implication represents the security impacts of each vulnerability: whether the
vulnerability has C++ ABI incompatibility issues (ABI); whether the vulnerability triggers memory corruption (Mem); and the actual
security assessment ratings assigned by the vendor (Rating). †: The GNU libstdc++ members did not provide security ratings.

size. This backporting was due to the limited support
for the LLVM/clang compiler by older Chromium (other
than CVE-2013-0912). Table 2 shows our testing results
on these five known bad-casting vulnerabilities. CAVER
successfully detected all vulnerabilities.

In addition to real vulnerabilities, we thoroughly evalu-
ated CAVER with test cases that we designed based on all
possible combinations of bad-casting vulnerabilities: (1)
whether an object is polymorphic or non-polymorphic;
and (2) the three object types: allocation, source, and
destination.

|{Poly, non-Poly}||{Alloc, From, To}| = 8
Eight different unit tests were developed and evaluated

as shown in Table 3. Since CAVER’s design generally
handles both polymorphic and non-polymorphic classes,
CAVER successfully detected all cases. For comparison,
UBSAN failed six cases mainly due to its dependency on
RTTI. More severely, among the failed cases, UBSAN
crashed for two cases when it tried to parse RTTI non-
polymorphic class objects, showing it is difficult to use
without manual blacklists. Considering Firefox contains
greater than 60,000 downcasts, (see Table 4), creating
such a blacklist for Firefox would require massive manual
engineering efforts.

6.4 Protection Coverage

Table 4 summarizes our evaluation of CAVER’s protection
coverage during instrumentation, including the number
of protected types/classes (the left half), and the number
of protected type castings (the right half). In our evalua-
tion with C++ applications in SPEC CPU 2006, Firefox,
and Chromium, CAVER covers 241% more types than
UBSAN; and protects 199% more type castings.

6.5 Instrumentation Overheads

There are several sources that increase a program’s binary
size (see Table 5), including (1) the inserted functions
for tracing objects’ type and verifying type castings, (2)

Name # of tables # of verified cast

RTTI THTable UBSAN CAVER

483.xalancbmk 881 3,402 1,378 1,967
450.soplex 39 227 0 2

Chromium 24,929 94,386 11,531 15,611
Firefox 9,907 30,303 11,596 71,930

Table 4: Comparisons of protection coverage between UBSAN

and CAVER. In the # of tables column, VTable shows the num-
ber of virtual function tables and THTable shows the number
of type hierarchy tables, each of which is generated to build
the program. # of verified cast shows the number static_cast
instrumented in UBSAN and CAVER, respectively. Overall,
CAVER covers 241% and 199% more classes and their castings,
respectively, compared to UBSAN.

Name File Size (KB)

Orig. UBSAN CAVER

483.xalancbmk 6,111 6,674 9% 7,169 17%
450.soplex 466 817 75% 861 84%

Chromium 249,790 612,321 145% 453,449 81%
Firefox 242,704 395,311 62% 274,254 13%

Table 5: The file size increase of instrumented binaries: CAVER

incurs 64% and 49% less storage overheads in Chromium and
Firefox browsers, compared to UBSAN.

the THTable of each class, and (3) CAVER’s runtime li-
brary. Although CAVER did not perform much instru-
mentation for most SPEC CPU 2006 applications, the
file size increase still was noticeable. This increase was
caused by the statically linked runtime library (245 KB).
The CAVER-hardened Chromium requires 6× more stor-
age compared to Firefox because the Chromium code
bases contains more classes than Firefox. The additional
THTable overhead is the dominant source of file size in-
creases. (see Table 4). For comparison, UBSAN increased
the file size by 64% and 49% for Chromium and Firefox,
respectively; which indicates that THTable is an efficient
representation of type information compared to RTTI.

10

USENIX Association 24th USENIX Security Symposium 91

CVE # Bug ID Type Names Security Rating Mitigated

Allocation Source Destination by CAVER

CVE-2013-0912 180763 HTMLUnknownElement Element SVGElement High ✓
CVE-2013-2931 302810 MessageEvent Event LocatedEvent High ✓
CVE-2014-1731 349903 RenderListBox RenderBlockFlow RenderMeter High ✓
CVE-2014-3175 387016 SpeechSynthesis EventTarget SpeechSynthesisUtterance High ✓
CVE-2014-3175 387371 ThrobAnimation Animation MultiAnimation Medium ✓

Table 2: Security evaluations of CAVER with known vulnerabilities of the Chromium browser. We first picked five known bad-
casting bugs and wrote test cases for each vulnerability, retaining features that may affect CAVER’s detection algorithm, including
class hierarchy and their compositions, and related classes including allocation, source, and destination types). CAVER correctly
detected all vulnerabilities.

(a) CAVER, P Alloc

From
To P Non-P

P ✓ ✓
Non-P ✓ ✓

(b) CAVER, Non-P Alloc

From
To P Non-P

P ✓ ✓
Non-P ✓ ✓

(c) UBSAN, P Alloc

From
To P Non-P

P ✓ X
Non-P ✓ X

(d) UBSAN, Non-P Alloc

From
To P Non-P

P Crash X
Non-P Crash X

Table 3: Evaluation of protection coverage against all possible combinations of bad-castings. P and Non-P mean polymorphic
and non-polymorphic classes, respectively. In each cell, ✓marks a successful detection, X marks a failure, and Crash marks the
program crashed. (a) and (b) show the results of CAVER with polymorphic class allocations and non-polymorphic class allocations,
respectively, and (c) and (d) show the cases of UBSAN. CAVER correctly detected all cases, while UBSAN failed for 6 cases
including 2 crashes.

6.6 Runtime Performance Overheads

In this subsection, we measured the runtime overheads of
CAVER by using SPEC CPU 2006’s C++ benchmarks and
various browser benchmarks for Chromium and Firefox.
For comparison, we measured runtime overheads of the
original, non-instrumented version (compiled with clang),
and the UBSAN-hardened version.
Microbenchmarks. To understand the performance char-
acteristics of CAVER-hardened applications, we first pro-
filed micro-scaled runtime behaviors related to CAVER’s
operations (Table 6). For workloads, we used the built-in
input for the two C++ applications of SPEC CPU 2006,
and loaded the default start page of the Chromium and
Firefox browsers. Overall, CAVER traced considerable
number of objects, especially for the browsers: 783k in
Chromium, and 15,506k in Firefox.

We counted the number of verified castings (see Ta-
ble 6), and the kinds of allocations (i.e., global, stack,
or heap). In our experiment, Firefox performed 710%
more castings than Chromium, which implies that the
total number of verified castings and the corresponding
performance overheads highly depends on the way the
application is written and its usage patterns.
SPEC CPU 2006. With these application characteris-
tics in mind, we first measured runtime performance
impacts of CAVER on two SPEC CPU 2006 programs,
xalancbmk and soplex. CAVER slowed down the exe-
cution of xalancbmk and soplex by 29.6% and 20.0%,
respectively. CAVER-NAIVE (before applying the op-
timization techniques described in §4.4) slowed down
xalancbmk and soplex by 32.7% and 20.8% respectively.

0%

25%

50%

75%

100%

Octane
SunSpider

Dromaeo-JS

Dromaeo-DOM

UBSAN

CAVER-NAIVE

CAVER

Figure 4: Browser benchmark results for the Chromium
browser. On average, while CAVER-NAIVE incurs 30.7% over-
head, CAVER showed 7.6% runtime overhead after the opti-
mization. UBSAN exhibits 16.9% overhead on average.

For UBSAN, xalancbmk crashed because of RTTI limi-
tations in handling non-polymorphic types, and soplex
becomes 21.1% slower. Note, the runtime overheads
of CAVER is highly dependent on the application char-
acteristics (e.g., the number of downcasts performed in
runtime). Thus, we measured overhead with more realis-
tic workloads on two popular browsers, Chromium and
Firefox.
Browser benchmarks (Chromium). To understand the
end-to-end performance of CAVER, we measured the
performance overhead of web benchmarks. We tested
four browser benchmarks: Octane [21], SunSpider [47],
Dromaeo-JS [29], and Dromaeo-DOM [29], each of
which evaluate either the performance of the JavaScript
engine or page rendering.

Figure 4 shows the benchmark results of the Chromium
browser. On average, CAVER showed 7.6% overhead
while CAVER-NAIVE showed 30.7%, which implies the

11

92 24th USENIX Security Symposium USENIX Association

Name
Object Tracing Verified Castings

Global Stack Heap Global Stack Heap Total
Total Peak Total Peak Total

483.xalancbmk 165 32 190k 8k 88k 0 104 24k 24k
450.soplex 36 1 364 141 658 0 0 0 0

Chromium 3k 274 350k 79k 453k 963 338 150k 151k
Firefox 24k 38k 14,821k 213k 685k 41k 524k 511k 1,077k

Table 6: The number of traced objects and type castings verified by CAVER in our benchmarks. Under the Object Tracing column,
Peak and Total denote the maximum number of traced objects during program execution, and the total number of traced objects
until its termination, respectively. Global, Stack, and Heap under the Verified Casts represent object’s original types (allocation)
involved in castings. Note that Firefox heavily allocates objects on stack, compared to Chromium. Firefox allocated 4,134% more
stack objects, and performs 1,550% more type castings than Chromium.

0%

50%

100%

Octane
SunSpider

Dromaeo-JS

Dromaeo-DOM

450%
500%

CAVER-NAIVE

CAVER

Figure 5: Browser benchmark results for the Firefox browser.
On average, CAVER and CAVER-NAIVE showed 64.6% and
170.3% overhead, respectively.

optimization techniques in §4.4 provided a 23.1% per-
formance improvement. This performance improvement
is mostly due to the safe-allocation optimization, which
identified 76,381 safe-allocation types (81% of all types
used for Chromium) and opted-out to instrument alloca-
tion sites on such types. Compared to UBSAN, CAVER
is 13.8% faster even though it offers more wide detection
coverage on type casting. Thus, we believe this result
shows that CAVER’s THTable design and optimization
techniques are efficient in terms of runtime performances.
Browser benchmarks (Firefox). We applied CAVER
to the Firefox browser and measured the performance
overhead for the web benchmarks used in evaluating the
Chromium browser. On average, CAVER imposed 64.6%
overhead while CAVER-NAIVE imposed 170.3% over-
head (Figure 5). Similar to the Chromium case, most of
performance improvements are from safe-allocation op-
timization, which identified 21,829 safe-allocation types
(72% of all used types for Firefox). UBSAN was un-
able to run Firefox because it crashed due to the in-
ability of its RTTI to handle non-polymorphic types,
so we do not present the comparison number. Com-
pared to CAVER’s results on Chromium, the CAVER-
enhanced Firefox showed worse performance, mainly due
to the enormous amount of stack objects allocated by
Firefox (Table 6). In order words, the potential perfor-
mance impacts rely on the usage pattern of target appli-
cations, rather than the inherent overheads of CAVER’s
approaches.

Name Original UBSAN CAVER

Peak Avg Peak Avg Peak Avg

483.xalancbmk 9 8 crash crash 14 12
450.soplex 2 2 2 2 5 5

Chromium 376 311 952 804 878 738
Firefox 165 121 crash crash 208 157

Table 7: Runtime memory impacts (in KB) while running tar-
get programs. UBSAN crashed while running xalancbmk and
Firefox due to the non-polymorhpic typed classes. Peak and
Avg columns denote the maximum and average memory usages,
respectively, while running the program. CAVER used 137%
more memory on Chromium, and 23% more memory on Firefox.
UBSAN used 158% more memory on Chromium.

Memory overheads. UBSAN and CAVER achieve fast
lookup of the metadata of a given object by using a custom
memory allocator that is highly optimized for this purpose,
at the cost of unnecessary memory fragmentation. In our
benchmark (Table 7), UBSAN used 2.5× more memory
at peak and average; and CAVER used 2.3× more mem-
ory at peak and average, which is an 8% improvement
over UBSAN. Considering CAVER’s main purpose is a
diagnosis tool and the amount of required memory is not
large (< 1 GB), we believe that these memory overheads
are acceptable cost in practice for the protection gained.

7 Discussion
Integration with fuzzing tools. During our evaluations,
we relied on the built-in test inputs distributed with the tar-
get programs, and did not specifically attempt to improve
code coverage. Yet CAVER is capable of discovering
dozens of previously unknown bad-casting bugs. In the
future, we plan to integrate CAVER with fuzzing tools like
the ClusterFuzz [2] infrastructure for Chromium to im-
prove code coverage. By doing so, we expect to discover
more bad-casting vulnerabilities.
Optimization. In this paper, we focused on the correct-
ness, effectiveness, and usability of CAVER. Although
we developed several techniques to improve performance,
optimization is not our main focus. With more powerful
optimization techniques, we believe CAVER can also be
used for runtime bad-casting mitigation.

12

USENIX Association 24th USENIX Security Symposium 93

For example, one direction we are pursuing is to use
static analysis to prove whether a type casting is always
safe. By doing so, we can remove redundant cast verifica-
tion.

Another direction is to apply alignment-based direct
mapping scheme for global and stack objects as well.
Please recall that red-black trees used for global and stack
objects show O(logN) complexity, while alignment-based
direct mapping scheme guarantees O(1) complexity. In
order to apply alignment-based direct mapping scheme for
global and stack objects together, there has to be radical
semantic changes in allocating stack and global objects.
This is because alignment-based direct mapping scheme
requires that all objects have to be strictly aligned. This
may not be difficult for global objects, but designing and
implementing for stack objects would be non-trivial for
the following reasons: (1) essentially this may involve
a knapsack problem (i.e., given different sized stack ob-
jects in each stack frame, what are the optimal packing
strategies to reduce memory uses while keeping a certain
alignment rule); (2) an alignment base address for each
stack frame has to be independently maintained during
runtime; (3) supporting variable length arrays (allowed
in ISO C99 [18]) in stack would be problematic as the
packing strategy can be only determined at runtime in this
case.

Furthermore, it is also possible to try even more ex-
treme approaches to apply alignment-based direct map-
ping scheme—simply migrating all stack objects to be
allocated in heap. However, this may result in another
potential side effects in overhead.

8 Related work
Bad-casting detection. The virtual function table check-
ing in Undefined Behavior Sanitizer (UBSAN-vptr) [42]
is the closest related work to CAVER. Similar to CAVER,
UBSAN instruments static_cast at compile time, and
verifies the casting at runtime. The primary difference is
that UBSan relies on RTTI to retrieve the type information
of an object. Thus, as we have described in §4, UBSAN
suffers from several limitations of RTTI . (1) Coverage:
UBSAN cannot handle non-polymorphic classes as there
is no RTTI for these classes; (2) Ease-of-deployments:
hardening large scale software products with UBSAN
is non-trivial due to the coverage problem and phantom
classes. As a result, UBSAN has to rely on blacklisting [9]
to avoid crashes.
RTTI alternatives. Noticing the difficulties in han-
dling complex C++ class hierarchies in large-scale soft-
ware, several open source projects use a custom form of
RTTI. For example, the LLVM project devised a custom
RTTI [27]. LLVM-style RTTI requires all classes to mark
its identity once it is created (i.e., in C++ constructors)
and further implement a static member function to re-

trieve its identity. Then, all type conversions can be done
with templates that leverage this static member function
implemented in every class. Because the static member
function can tell the true identity of an object, theoreti-
cally, all type conversions are always correct and have no
bad-casting issues. Compared to CAVER, the drawback
of this approach is that it requires manual source code
modification. Thus, it would be non-trivial to modify
large projects like browsers to switch to this style. More
alarmingly, since it relies on developers’ manual modifi-
cation, if developers make mistakes in implementations,
bad-casting can still happen [41].
Runtime type tracing. Tracing runtime type informa-
tion offers several benefits, especially for debugging and
profiling. [37] used RTTI to avoid complicated parsing
supports in profiling parallel and scientific C++ applica-
tions. Instead of relying on RTTI, [15, 28] instruments
memory allocation functions to measure complete heap
memory profiles. CAVER is inspired by these runtime
type tracing techniques, but it introduced the THTable, a
unique data structure to support efficient verification of
complicated type conversion.
Memory corruption prevention. As described in §2,
bad-casting can provide attackers access to memory be-
yond the boundary of the casted object. In this case, there
will be a particular violation (e.g., memory corruptions)
once it is abused to mount an attack. Such violations can
be detected with existing software hardening techniques,
which prevents memory corruption attacks and thus po-
tentially stop attacks abusing bad-casting. In particular,
Memcheck (Valgrind) [34] and Purify [23] are popularly
used solutions to detect memory errors. AddressSani-
tizer [36] is another popular tool developed recently by
optimizing the way to represent and probe the status of al-
located memory. However, it cannot detect if the attacker
accesses beyond red-zones or stressing memory alloca-
tors to abuse a quarantine zone [8]. Another direction
is to enforce spatial memory safety [14, 25, 32, 33, 48],
but this has drawbacks when handling bad-casting issues.
For example, Cyclone [25] requires extensive code mod-
ifications; CCured [33] modifies the memory allocation
model; and SVA [14] depends on a new virtual execution
environment. More fundamentally, most only support C
programs.

Overall, compared to these solutions, we believe
CAVER makes a valuable contribution because it detects
the root cause of one important vulnerability type: bad-
casting. CAVER can provide detailed information on how
a bad-casting happens. More importantly, depending on
certain test cases or workloads, many tools cannot detect
bad-casting if a bad-casted pointer is not actually used
to violate memory safety. However, CAVER can immedi-
ately detect such latent cases if any bad-casting occurs.
Control Flow Integrity (CFI). Similar to memory cor-

13

94 24th USENIX Security Symposium USENIX Association

ruption prevention techniques, supporting CFI [1, 49–51]
may prevent attacks abusing bad-casting as many exploits
hijack control flows to mount an attack. Furthermore,
specific to C++ domain, SafeDispatch [24] and VTV [45]
guarantee the integrity of virtual function calls to prevent
hijacks over virtual function calls. First of all, soundly
implementing CFI itself is challenging. Recent research
papers identified security holes in most of CFI implemen-
tations [6, 17, 19, 20]. More importantly, all of these solu-
tions are designed to only protect control-data, and thus it
cannot detect any non-control data attacks [7]. For exam-
ple, the recent vulnerability exploit against glibc [35] was
able to completely subvert the victim’s system by merely
overwriting non-control data—EXIM’s runtime configura-
tion. However, because CAVER is not relying on such
post-behaviors originating from bad-casting, it is agnostic
to specific exploit methods.

9 Conclusion
The bad-casting problem in C++ programs, which occurs
when the type of an object pointer is converted to an-
other that is incorrect and unsafe, has serious security
implications. We have developed CAVER, a runtime bad-
casting detection tool. It uses a new runtime type tracing
mechanism, the Type Hierarchy Table, to efficiently ver-
ify type casting dynamically. CAVER provides broader
coverage than existing approaches with smaller or com-
parable performance overhead. We have implemented
CAVER and have applied it to large-scale software in-
cluding the Chromium and Firefox browsers. To date,
CAVER has found eleven previously unknown vulnerabil-
ities, which have been reported and subsequently fixed by
the corresponding open-source communities.

Acknowledgment
The authors would like to thank the anonymous reviewers
for their helpful feedback, as well as our operations staff
for their proofreading efforts. We also would like to thank
Abhishek Arya, Kostya Serebryany, Alexey Samsonov,
Richard Smith, and Parisa Tabriz for their helpful feed-
back on the paper. This material is based upon work sup-
ported in part by the National Science Foundation under
Grants No. CNS-1017265, CNS-0831300, CNS-1149051
and DGE 1500084, by the Office of Naval Research un-
der Grant No. N000140911042, No. N000141512162,
by the Department of Homeland Security under contract
No. N66001-12-C-0133, by the United States Air Force
under Contract No. FA8650-10-C-7025, and by ETRI
MSIP/IITP[B0101-15-0644]. Any opinions, findings, and
conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect
the views of the National Science Foundation, the Office
of Naval Research, the Department of Homeland Security,
or the United States Air Force.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow
integrity. In ACM Conference on Computer and Communications
Security (CCS), 2005.

[2] C. N. Abhishek Arya. Fuzzing for Security (The
Chromium Blog). http://blog.chromium.org/2012/
04/fuzzing-for-security.html, 2012.

[3] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy Bounds
Checking: An Efficient and Backwards-Compatible Defense
against Out-of-Bounds Errors. In USENIX Security Symposium
(Security), 2009.

[4] Bad casting: From BasicThebesLayer to BasicContainerLayer.
Mozilla Bugzilla - Bug 1074280. https://bugzilla.mozilla.
org/show_bug.cgi?id=1074280, Nov 2014.

[5] Bad-casting from PRCListStr to nsSHistory. Mozilla Bugzilla -
Bug 1089438. https://bugzilla.mozilla.org/show_bug.
cgi?id=1089438, Nov 2014.

[6] N. Carlini and D. Wagner. ROP is still dangerous: Breaking
modern defenses. In USENIX Security Symposium (Security),
2014.

[7] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-
control-data Attacks Are Realistic Threats. In USENIX Security
Symposium (Security), 2005.

[8] Chris Evans. Using ASAN as a protection. http:
//scarybeastsecurity.blogspot.com/2014/09/
using-asan-as-protection.html, Nov 2014.

[9] Chromium. Chromium Revision 285353 - Blacklist for UBsan’s
vptr. https://src.chromium.org/viewvc/chrome?view=
revision&revision=285353, Jul 2014.

[10] Chromium. Chromium project: Log of /trunk/src/tools/ubsan_-
vptr/blacklist.txt. https://src.chromium.org/viewvc/
chrome/trunk/src/tools/ubsan_vptr/blacklist.txt?
view=log, Nov 2014.

[11] Clang Documentation. MSVC Compatibility. http://clang.
llvm.org/docs/MSVCCompatibility.html, Nov 2014.

[12] CodeSourcery, Compaq, EDG, HP, IBM, Intel, R. Hat, and SGI.
Itanium C++ ABI (Revision: 1.83). http://mentorembedded.
github.io/cxx-abi/abi.html, 2005.

[13] CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red Hat, and SGI.
C++ ABI Closed Issues. www.codesourcery.com/public/
cxx-abi/cxx-closed.html, Nov 2014.

[14] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure virtual
architecture: A safe execution environment for commodity operat-
ing systems. In ACM SIGOPS Symposium on Operating Systems
Principles (SOSP), 2007.

[15] Dai Mikurube. C++ Object Type Identifier for Heap
Profiling. http://www.chromium.org/developers/
deep-memory-profiler/cpp-object-type-identifier,
Nov 2014.

[16] M. Daniel, J. Honoroff, and C. Miller. Engineering Heap Overflow
Exploits with JavaScript. In USENIX Workshop on Offensive
Technologies (WOOT), 2008.

[17] L. Davi, D. Lehmann, A.-R. Sadeghi, and F. Monrose. Stitching
the Gadgets: On the Ineffectiveness of Coarse-Grained Control-
Flow Integrity Protection. In USENIX Security Symposium (Secu-
rity), 2014.

[18] GCC. Arrays of Variable Length. https://gcc.gnu.org/
onlinedocs/gcc/Variable-Length.html, Jun 2015.

[19] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of
control: Overcoming Control-Flow Integrity. In IEEE Symposium
on Security and Privacy (SP), 2014.

14

USENIX Association 24th USENIX Security Symposium 95

[20] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and
G. Portokalidis. Size does matter: Why using gadget-chain length
to prevent code-reuse attacks is hard. In USENIX Security Sympo-
sium (Security), 2014.

[21] Google. Octane Benchmark. https://code.google.com/p/
octane-benchmark, Aug 2014.

[22] Google. Specialized memory allocator for ThreadSanitizer, Mem-
orySanitizer, etc. http://llvm.org/klaus/compiler-rt/
blob/7385f8b8b8723064910cf9737dc929e90aeac548/
lib/sanitizer_common/sanitizer_allocator.h, Nov
2014.

[23] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks
and access errors. In Winter 1992 USENIX Conference, 1991.

[24] D. Jang, Z. Tatlock, and S. Lerner. SafeDispatch: Securing C++
Virtual Calls from Memory Corruption Attacks. In Network and
Distributed System Security Symposium (NDSS), 2014.

[25] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney,
and Y. Wang. Cyclone: A safe dialect of C. In USENIX Annual
Technical Conference (ATC), 2002.

[26] I. JTC1/SC22/WG21. ISO/IEC 14882:2013 Programming Lan-
guage C++ (N3690). https://isocpp.org/files/papers/
N3690.pdf, 2013.

[27] LLVM Project. How to set up LLVM-style RTTI
for your class hierarchy. http://llvm.org/docs/
HowToSetUpLLVMStyleRTTI.html, Nov 2014.

[28] J. Mihalicza, Z. Porkoláb, and A. Gabor. Type-preserving heap
profiler for c++. In IEEE International Conference on Software
Maintenance (ICSM), 2011.

[29] Mozilla. DROMAEO, JavaScript Performance Testing. http:
//dromaeo.com, Aug 2014.

[30] Multiple undefined behaviors (static_cast<>) in libstdc++-
v3/include/bits. GCC Bugzilla - Bug 63345. https://gcc.gnu.
org/bugzilla/show_bug.cgi?id=63345, Nov 2014.

[31] MWR Labs. MWR Labs Pwn2Own 2013
Write-up: Webkit Exploit. https://labs.
mwrinfosecurity.com/blog/2013/04/19/
mwr-labs-pwn2own-2013-write-up---webkit-exploit/,
2013.

[32] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. Soft-
Bound: Highly Compatible and Complete Spatial Memory Safety
for C. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2009.

[33] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer.
Ccured: Type-safe retrofitting of legacy software. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 2005.

[34] N. Nethercote and J. Seward. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation
(PLDI), 2007.

[35] Qualys Security Advisory. Qualys Security Advisory CVE-
2015-0235 - GHOST: glibc gethostbyname buffer over-
flow. http://www.openwall.com/lists/oss-security/
2015/01/27/9, Jun 2015.

[36] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Ad-
dressSanitizer: A Fast Address Sanity Checker. In USENIX An-
nual Technical Conference (ATC), 2012.

[37] S. Shende, A. D. Malony, J. Cuny, P. Beckman, S. Karmesin, and
K. Lindlan. Portable profiling and tracing for parallel, scientific
applications using c++. In ACM SIGMETRICS Symposium on
Parallel and Distributed Tools (SPDT), 1998.

[38] A. Sotirov. Heap Feng Shui in JavaScript. Black Hat Europe,
2007.

[39] Standard Performance Evaluation Corporation. SPEC CPU 2006.
http://www.spec.org/cpu2006, Aug 2014.

[40] The Chromium Project. http://www.chromium.org/Home,
Aug 2014.

[41] The Chromium Project. Chromium Issues - Bug 387016.
http://code.google.com/p/chromium/issues/detail?
id=387016, Nov 2014.

[42] The Chromium Projects. Undefined Behavior Sanitizer
for Chromium. http://www.chromium.org/developers/
testing/undefinedbehaviorsanitizer, Nov 2014.

[43] The LLVM Compiler Infrastructure. http://llvm.org, Aug
2014.

[44] The Mozilla Foundation. Firefox Web Browser. https://www.
mozilla.org/firefox, Nov 2014.

[45] C. Tice. Improving Function Pointer Security for Virtual Method
Dispatches. In GNU Tools Cauldron Workshop, 2012.

[46] TIS Committee. Tool Interface Standard (TIS) Executable and
Linking Format (ELF) Specification Version 1.2. TIS Committee,
1995.

[47] WebKit. SunSpider 1.0.2 JavaScript Benchmark. https://www.
webkit.org/perf/sunspider/sunspider.html, Aug 2014.

[48] W. Xu, D. C. DuVarney, and R. Sekar. An efficient and backwards-
compatible transformation to ensure memory safety of c programs.
In ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE), 2004.

[49] B. Zeng, G. Tan, and G. Morrisett. Combining Control-flow In-
tegrity and Static Analysis for Efficient and Validated Data Sand-
boxing. In ACM Conference on Computer and Communications
Security (CCS), 2011.

[50] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou. Practical Control Flow Integrity and Ran-
domization for Binary Executables. In IEEE Symposium on Secu-
rity and Privacy (SP), 2013.

[51] M. Zhang and R. Sekar. Control Flow Integrity for COTS Binaries.
In USENIX Security Symposium (Security), 2013.

15

96 24th USENIX Security Symposium USENIX Association

Appendix
1 def getTHTableByAddr(addr):
2 if isObjectInStack(addr):
3 # addr points to stack objects.
4 stack_rbtree = getThreadLocalStackRbtree()
5 allocBaseAddr, pTHTable = \
6 stack_rbtree.rangedSearch(addr):
7 return (allocBaseAddr, pTHTable)
8

9 if isObjectInHeap(addr):
10 # addr points to heap objects.
11 MetaData = getMetaDataStorage(addr):
12 return (MetaData.allocBaseAddr, MetaData.pTHTable)
13

14 if isObjectInGlobal(addr):
15 # addr points to global objects.
16 allocBaseAddr, pTHTable = \
17 global_rbtree.rangedSearch(addr):
18 return (allocBaseAddr, pTHTable)
19

20 # addr points to unknown area.
21 return ERROR
22

23 # Return True if there exists a good-casting.
24 # False if there is no good-castings.
25 def isGoodCast(addr, allocBaseAddr, THTable, TargetTypeHash):
26 # Handle compositions recursively.
27 for i in range(THTable.num_composites):
28 comp = THTable.comps[i]
29 if addr >= allocBaseAddr + comp.offset
30 and addr < allocBaseAddr + comp.offset + comp.size:
31 if isGoodCast(addr, allocBaseAddr + comp.offset,
32 comp.thtable, TargetTypeHash):
33 return True
34

35 # Check bases.
36 for i in range(THTable.num_bases):
37 base = THTable.bases[i]
38 if addr == allocBaseAddr + base.offset
39 and base.hashValue == TargetTypeHash:
40 return True
41

42 # Check phantom.
43 TargetTHTable = getTHTableByHash(TargetTypeHash)
44 for i in range(TargetTHTable.num_bases):
45 base = TargetTHTable.bases[i]
46 if addr == allocBaseAddr + base.offset
47 and base.hashValue == THTable.type_hash
48 and base.isPhantom:
49 return True
50

51 return False
52

53 def verify_cast(beforeAddr, afterAddr, TargetTypeHash):
54 (allocBaseAddr, pTHTable) = getTHTableByAddr(beforeAddr)
55 if pTHTable == ERROR:
56 return
57

58 if isGoodCast(afterAddr, allocBaseAddr, \
59 THTable, TargetTypeHash):
60 # This is a good casting.
61 return
62

63 # Reaching here means a bad-casting attempt is detected.
64 # Below may report the bug, halt the program, or nullify
65 # the pointer according to the user’s configuration.
66 HandleBadCastingAttempt()

Appendix 1: Algorithm for verifying type conversions based
on the tracked type information.

1 # global_rbtree is initialized per process.
2 def trace_global(pTHTable, baseAddr, numArrayElements):
3 allocSize = pTHTable.type_size * numArrayElements
4 global_rbtree.insert((baseAddr, allocSize), pTHTable)
5 return
6

7 # stack_rbtree is initialized per thread.
8 def trace_stack_begin(pTHTable, baseAddr, numArrayElements):
9 stack_rbtree = getThreadLocalStackRbtree()

10 allocSize = pTHTable.type_size * numArrayElements
11 stack_rbtree.insert((baseAddr, allocSize), pTHTable)
12 return
13

14 def trace_stack_end(baseAddr):
15 stack_rbtree = getThreadLocalStackRbtree()
16 stack_rbtree.remove(baseAddr)
17 return
18

19 # Meta-data storage for dynamic objects are reserved
20 # for each object allocation.
21 def trace_heap(pTHTable, baseAddr, numArrayElements):
22 MetaData = getMetaDataStorage(baseAddr)
23 MetaData.baseAddr = baseAddr
24 MetaData.allocSize = pTHTable.type_size * numArrayElements
25 MetaData.pTHTable = pTHTable
26 return

Appendix 2: Algorithm for tracking type information on objects
in runtime.

16

