
Open access to the Proceedings of the
22nd USENIX Security Symposium

is sponsored by USENIX

This paper is included in the Proceedings of the
22nd USENIX Security Symposium.
August 14–16, 2013 • Washington, D.C., USA

ISBN 978-1-931971-03-4

Transparent ROP Exploit Mitigation Using
Indirect Branch Tracing

Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis, Columbia University

USENIX Association 22nd USENIX Security Symposium 447

Transparent ROP Exploit Mitigation using Indirect Branch Tracing

Vasilis Pappas, Michalis Polychronakis, Angelos D. Keromytis
Columbia University

Abstract

Return-oriented programming (ROP) has become the
primary exploitation technique for system compromise
in the presence of non-executable page protections. ROP
exploits are facilitated mainly by the lack of complete
address space randomization coverage or the presence
of memory disclosure vulnerabilities, necessitating ad-
ditional ROP-specific mitigations.

In this paper we present a practical runtime ROP ex-
ploit prevention technique for the protection of third-
party applications. Our approach is based on the detec-
tion of abnormal control transfers that take place during
ROP code execution. This is achieved using hardware
features of commodity processors, which incur negli-
gible runtime overhead and allow for completely trans-
parent operation without requiring any modifications to
the protected applications. Our implementation for Win-
dows 7, named kBouncer, can be selectively enabled for
installed programs in the same fashion as user-friendly
mitigation toolkits like Microsoft’s EMET. The results of
our evaluation demonstrate that kBouncer has low run-
time overhead of up to 4%, when stressed with specially
crafted workloads that continuously trigger its core de-
tection component, while it has negligible overhead for
actual user applications. In our experiments with in-the-
wild ROP exploits, kBouncer successfully protected all
tested applications, including Internet Explorer, Adobe
Flash Player, and Adobe Reader.

1 Introduction

Despite considerable advances in system protection and
exploit mitigation technologies, the exploitation of soft-
ware vulnerabilities persists as one of the most common
methods for system compromise and malware infection.
Recent prominent examples include in-the-wild exploits
against Internet Explorer [7], Adobe Flash Player [2],
and Adobe Reader [19, 1], all capable of successfully

bypassing the data execution prevention (DEP) and ad-
dress space layout randomization (ASLR) protections of
Windows [49], even on the most recent and fully updated
(at the time of public notice) systems.

Data execution prevention and similar non-executable
page protections [55], which prevent the execution of in-
jected binary code (shellcode), can be circumvented by
reusing code that already exists in the vulnerable pro-
cess to achieve the same purpose. Return-oriented pro-
gramming (ROP) [62], the latest advancement in the
more than a decade-long evolution of code reuse at-
tacks [30, 51, 50, 43], has become the primary exploita-
tion technique for achieving arbitrary code execution in
the presence of non-executable page protections.

Although DEP is complemented by ASLR, which
is meant to prevent code reuse attacks by randomiz-
ing the load addresses of executables and DLLs, its de-
ployment is problematic. A few code segments left in
static locations can be enough for mounting a robust
ROP attack, and unfortunately this is quite often the
case [35, 75, 40, 54]. More importantly, even if a process
is fully randomized, it might be possible to calculate the
base address of a DLL at runtime [19, 61, 44, 69, 37, 66],
or infer it in a brute-force way [63].

This situation has prompted active research on ad-
ditional defenses against return-oriented programming.
Recent proposals can be broadly classified in static
software hardening and runtime monitoring solutions.
Schemes of the former type include compiler extensions
for the protection of indirect control transfers [45, 52],
which break the chaining of the “gadgets” that comprise
a return-oriented program, and code diversification tech-
niques based on static binary rewriting [70, 53], which
randomize the locations or the outcome of the available
gadgets. The lack of source code for proprietary software
hinders the deployment of compiler-based approaches.
Depending on the applied code transformations, static
binary rewriting approaches may be applied on stripped
binaries, but their outcome depends on the accuracy

448 22nd USENIX Security Symposium USENIX Association

of code disassembly and control flow graph extraction,
while the rewriting phase is time-consuming. Depending
on the vulnerable program, fine-grained code randomiza-
tion may be circumvented by dynamically building the
ROP payload at the time of exploitation [66, 16]. Run-
time solutions monitor execution at the instruction level
to apply various protection approaches, such as perform-
ing anomaly detection by checking for an unusually high
frequency of instructions [24, 28], ensuring the in-
tegrity of the stack [29], or randomizing the locations of
code fragments [36]. The use of dynamic binary instru-
mentation allows these systems to be transparent to the
protected applications, but is also their main drawback,
as it incurs a prohibitively high runtime overhead.

Transparency is a key factor for enabling the practi-
cal applicability of techniques that aim to protect pro-
prietary software. The absence of any need for modifi-
cations to existing binaries ensures an easy deployment
process, and can even enable the protection of applica-
tions that are already installed on end-user systems [47].
At the same time, to be practical, mitigation techniques
should introduce minimal overhead, and should not af-
fect the proper execution of the protected applications
due to incompatibility issues or false positives.

Aiming to fulfill the above requirements, in this pa-
per we present a fully transparent runtime ROP exploit
mitigation technique for the protection of third-party ap-
plications. Our approach is based on monitoring the ex-
ecuted indirect branches at critical points during the life-
time of a process, and identifying abnormal control flow
transfers that are inherently exhibited during the execu-
tion of ROP code. The technique is built around Last
Branch Recording (LBR), a recent feature of Intel pro-
cessors. Relying mainly on hardware for instruction-
level monitoring allows for minimal runtime overhead
and completely transparent operation, without requiring
any modifications to the protected applications.

Inspired by application hardening toolkits like Mi-
crosoft’s EMET [47], our prototype implementation for
Windows 7, named kBouncer, can be selectively enabled
for the protection of already installed applications. Be-
sides typical ROP code, kBouncer can also identify the
execution of “jump-oriented” code that uses gadgets end-
ing with indirect or instructions. To mini-
mize context switching overhead, branch analysis is per-
formed only before critical system operations that could
cause any harm. To verify that kBouncer introduces min-
imal overhead, we stress-tested our implementation with
workloads that trigger excessively the protected system
functions. In the worst case, the average measured over-
head was 1%, and it never exceeded 4%. As the protected
operations occur several orders of magnitude less fre-
quently in regular applications, the performance impact
of kBouncer in practice is negligible. We evaluated the

effectiveness and practical applicability of our technique
using publicly available ROP exploits against widely
used software, including Internet Explorer, Adobe Flash
Player, and Adobe Reader. In all cases, kBouncer blocks
the exploit successfully, and notifies the user through a
standard error message window.

The main contributions of our work are:
• We present a practical and transparent ROP exploit

mitigation technique based on runtime monitoring
of indirect branch instructions using the LBR fea-
ture of recent CPUs.

• We have implemented the proposed approach as a
self-contained toolkit for Windows 7, and describe
in detail its design and implementation.

• We provide a quantitative analysis of the robust-
ness of the proposed ROP code execution preven-
tion technique against potential evasion attempts.

• We have experimentally evaluated the performance
and effectiveness of kBouncer, and demonstrate that
it can prevent in-the-wild exploits against popular
applications with negligible runtime overhead.

2 Practical Indirect Branch Tracing for

ROP Prevention

The proposed approach uses runtime process monitor-
ing to block the execution of code that exhibits return-
oriented behavior. In contrast to typical program code,
the code used in ROP exploits consists of several small
instruction sequences, called gadgets, scattered through
the executable segments of the vulnerable process. Gad-
gets end with an indirect branch instruction that transfers
control to the following gadget according to a sequence
of gadget addresses contained in the “payload” that is in-
jected during the attack. As the name of the technique
implies, gadgets typically end with a instruction, al-
though any combination of indirect control transfer in-
structions can be used [23].

The key observation behind our approach is that the
execution behavior of ROP code has some inherent at-
tributes that differentiate it from the execution of legit-
imate code. By monitoring the execution of a process
while focusing on those properties, kBouncer can iden-
tify and block a ROP exploit before its code accom-
plishes any critical operation.

In this section, we discuss in detail how kBouncer
leverages the Last Branch Recording feature of recent
processors to retrieve the sequence of the most recent in-
direct branch instructions that took place right before the
invocation of a system function. In the following sec-
tion, we discuss how kBouncer uses this information to
identify the execution of ROP code. As the vast major-
ity of in-the-wild ROP exploits target Windows software,

USENIX Association 22nd USENIX Security Symposium 449

Table 1: Qualitative comparison of alternative techniques
for runtime branch monitoring.

our design focuses on achieving transparent operation for
existing Windows applications without raising any com-
patibility issues or false alerts.

2.1 Branch Tracing vs. Other Approaches

Execution monitoring at the instruction level usually
comes with an increased runtime overhead. Even when
tracking only a particular subset of instructions, e.g., in
our case only indirect control transfer instructions, the
overhead of interrupting the normal flow of control and
updating the necessary accounting information is pro-
hibitive for production systems. There are several dif-
ferent approaches that can be followed for monitoring
the execution of indirect branch instructions, each of
them having different requirements, performance over-
head, transparency level, and deployment effort.

Extending the compiler to generate and embed run-
time checks in the executable binary at compile time is
one of the simplest techniques [52]. However, the high
frequency of control transfer instructions in typical code
means that a lot of additional instrumentation code must
be added. Also, deployment requires a huge effort as all
programs have to be recompiled. Another option is static
binary rewriting. Its main advantage over compiler-level
techniques is that no source code is required, but only
debug symbols (e.g., PDB files) [17]. Still, all control
transfers need to be checked. Even worse, it breaks self-
checksumming or signed code and cannot be applied to
self-modifying programs. Dynamic binary instrumenta-
tion is another alternative that can handle even stripped
binaries (no need for source code or debug symbols), but
the runtime performance overhead of existing binary in-
strumentation frameworks slows down the normal exe-
cution of an application by a factor of a few times [29].

In contrast to the above approaches, our system moni-
tors the executed indirect branch instructions using Last
Branch Recording (LBR) [39, Sec. 17.4], a recent fea-
ture of Intel processors introduced in the Nehalem archi-
tecture. When LBR is enabled, the CPU tracks the last
N (16 for the CPU model we used) most recent branches
in a set of 64-bit model-specific registers (MSR). Each
branch record consists of two MSR registers, which hold
the linear addresses of the branch instruction and its
target instruction, respectively. Records from the LBR

stack can be retrieved using a special instruction ()
from privileged mode. The processor can be configured
to track only a subset of branches based on their type:
relative/indirect calls/jumps, returns, and so on.

Table 1 shows a summarized comparison of the alter-
native strategies discussed above. For our particular case,
the use of LBR has several advantages: it incurs zero
overhead for storing the branches; it is fully transparent
to the running applications; is does not cause any incom-
patibility issues as it is completely decoupled from the
actual execution; it does not require source code or debug
symbols; and it can be dynamically enabled for already
installed applications—there is no need for recompila-
tion or instruction-level instrumentation.

2.2 Using Last Branch Recording for ROP

Prevention

Although the CPU continuously records the most recent
branches in the LBR stack with zero overhead, accessing
the LBR registers and retrieving the recorded informa-
tion unavoidably adds some overhead. Considering the
limited size (16 entries) of the LBR stack, and that it can
be accessed only from kernel-level code, checking the
targets of all indirect control transfer instructions would
incur a prohibitively high performance overhead. Indi-
rect branches occur very frequently in typical programs,
and a monitored process should be interrupted once ev-
ery 16 branches with a context switch. In fact, the im-
plementation of such a scheme is not facilitated by the
current design of the LBR feature, as it does not provide
any means of interrupting execution whenever the stack
gets full after retrieving its previous 16 records.

Fortunately, when considering the actual operations of
a ROP exploit, it is possible to dramatically reduce the
number of control transfer instructions that need to be in-
spected. The typical end goal of malicious code is to give
the attacker full control of the victim system. This usu-
ally involves just a few simple operations, such as drop-
ping and executing a malicious executable on the victim
system, which unavoidably require interaction with the
OS through the system call interface. Based on this ob-
servation, we can refine the set of indirect branches that
need to be inspected to only those along the final part
of the execution path that lead to a system call invoca-
tion. (Depending on the vulnerable program, exploita-
tion might be possible without invoking any system call,
e.g., by modifying a user authentication variable [25], but
such attacks are rarely found in the client-side applica-
tions that are typically targeted by current ROP exploits,
and are outside the scope of this work.)

Figure 1 illustrates this approach. Vertical bars corre-
spond to snapshots of the address space of a process, and
arrows correspond to indirect control transfers. The ver-

450 22nd USENIX Security Symposium USENIX Association

kernel

user
space

time system call

LBR check

Figure 1: Illustration of a basic scheme for ROP code de-
tection. Whenever control is transferred from user to ker-
nel space (vertical line), the system inspects the most re-
cent indirect branches to decide whether the system call
was invoked by ROP code or by the actual program.

tical line denotes the point at which the flow of control
is transferred from user space to kernel space through a
system call. At this point, by interposing at the OS’s sys-
tem call handler, the system can access the LBR stack
and retrieve the targets of the indirect branches that led
to the system call. It can then check the control flow path
for abnormal control transfers and distinctive properties
of ROP-like behavior using the techniques that will be
described in Sec. 3, and decide whether the system call
is part of malicious ROP code, or it is being invoked le-
gitimately by the actual program.

2.2.1 System Calls vs. API Calls

User-level programs interact with the underlying system
mainly through system calls. Unix-like systems provide
to applications wrapper functions for the available sys-
tem calls (often using the same name as the system call
they invoke) as part of the standard library. In contrast,
Windows does not expose the system call interface di-
rectly to user-level programs. Instead, programs inter-
act with the OS through the Windows API [13], which
is organized into several DLLs according to different
kinds of functionality. In turn, those DLLs call functions
from the undocumented Native API [59], implemented
in , to invoke kernel-level services.

Exploit code rarely relies on the Native API for sev-
eral reasons. One problem is that system call numbers
change between Windows versions and service pack lev-
els [18, 14], reducing the reliability of the exploit across
different targets (or increasing attack complexity by hav-
ing to adjust the exploit according to the victim’s OS ver-
sion). Most importantly, the desired functionality is often
not conveniently exposed at all through the Native API,
as for example is the case with the socket API [65]. Typi-
cally, the purpose of ROP code is to give execute permis-
sion to a second-stage shellcode using
or a similar API function [31, 27, 1, 6, 7, 2]. The

Number of indirect branches (ret, jmp, call)

0 1 10 16 100 1000 10 4

C
u
m

u
l.
 f
ra

c
ti
o
n
 o

f
A

P
I
fu

n
c
ti
o
n
s

0

0.2

0.4

0.6

0.8

1

Figure 2: LBR overwriting due to indirect branches that
take place within Windows API functions, prior to the
execution of a system call.

second-stage shellcode can be avoided altogether by im-
plementing all the necessary functionality solely using
ROP code, as is the case with a recent exploit against
Adobe Reader XI, in which the ROP code calls directly
the , , , and func-
tions to drop and execute a malicious DLL [19].

The implementation of many of the functions exported
by the Windows API is quite complex, and often involves
several internal functions that are executed before the in-
vocation of the intended system call. Due to the lim-
ited size of the LBR stack, this means that by the time
execution reaches the actual system call, the LBR stack
might be filled with indirect branches that took place af-

ter the Windows API function was called. To assess the
extent of this effect, we measured the average number
of indirect branch instructions (, , and) that
are executed between the first instruction of a Windows
API function and the system call it invokes, for a set of
52 “sensitive” functions that are commonly used in Win-
dows shellcode and ROP code implementations (a com-
plete list of the tested functions is provided in the ap-
pendix). As shown in Fig. 2, about 34% of the API func-
tions execute less that 16 indirect branches, while the rest
of them completely overwrite the LBR stack.

As these branches are made as part of legitimate ex-
ecution paths, calling a function that completely over-
writes the LBR stack would allow ROP code to evade
detection. However, this scheme can be improved to pro-
vide robust detection of ROP code that calls any sensitive
API function, irrespectively of the extent of overwriting
in the LBR stack due to code in the function body.

2.2.2 LBR Stack Inspection on API Function Entry

Given that i) exploit code usually calls Windows API
functions instead of directly invoking system calls, and
ii) most API functions overwrite the LBR stack with le-
gitimate indirect branches before invoking a system call,

USENIX Association 22nd USENIX Security Symposium 451

kernel

user
space

time

API call verification

system
DLL

LBR check

API call system call

Figure 3: Overview of the detection scheme of kBouncer.
Before the invocation of protected Windows API func-
tions, the system inspects the LBR stack to identify
whether the execution path that led to the call was part
of ROP code, and writes a checkpoint. To account for
ROP code that would bypass the check by jumping over
kBouncer’s function hook, the system then verifies the
entry point of the API function at the time of the corre-
sponding system call invocation.

kBouncer inspects the LBR stack at the time an API
function is called, instead upon system call invocation.
This allows the detection of ROP code that uses any sen-
sitive API function, irrespectively of the number of legit-
imate indirect branches executed within its body. In case
an API function is called by ROP code, all entries in the
LBR stack at the time of function entry will correspond
to the indirect branches of the gadgets that lead to the
function call, as depicted in Fig. 3.

Still, without any additional precautions, this scheme
would allow an attacker to bypass the LBR check at the
entry point of a function. An implementation of the LBR
check in the system call handler—within the kernel—
safeguards it from user-level code and any bypass at-
tempt. In contrast, implementing the LBR check as a
hook to a user-level function’s entry point does not pro-
vide the same level of protection. An attacker could
avoid the check by jumping over the hook at the func-
tion’s prologue, instead of jumping at its main entry
point, and then normally executing the function body.
Alternatively, by trading off some of its reliability, the
ROP code could avoid calling the API function alto-
gether by invoking directly the relevant Native API call.

Fortunately, as the Native API is not exposed to user-
level programs, i.e., applications never invoke Native
API calls directly; we can solve this issue by ensur-
ing that system calls are always invoked solely through
their respective Windows API functions. After a clear
LBR check at an API function’s entry point, kBouncer
writes a checkpoint that denotes a legitimate invocation
of that particular function. When the respective system
call is later invoked, the system call handler verifies that
a proper checkpoint was previously set by the expected
API function, and clears it. If the checkpoint was not

set, then this means that the flow of control did not pass
through the proper API function preamble, and kBouncer
reports a violation.

We should note that user-level ROP code cannot by-
pass kBouncer’s checks by faking a checkpoint. The
code for setting a checkpoint can only run with kernel
privileges, and the checkpoint itself is stored in kernel
space so that i) the system call handler can later access
it, and ii) any user-level code (and consequently the ROP
code itself) cannot tamper with it. The checkpoint code
is tied with and comes right after the code that inspects
the LBR stack, and both run in an atomic way at kernel
level, i.e., the checkpoint cannot be set without previ-
ously analyzing the LBR for the presence of ROP code.
This prevents any ROP code from faking a checkpoint
without being detected—the part of the ROP code with
the task of setting the checkpoint would be detected by
the LBR check before the checkpoint is actually set.

3 Identifying the Execution Behavior of

ROP Code

Before allowing a Windows API function call to proceed,
kBouncer analyzes the most recent indirect branches that
were recorded in the LBR cache prior to the function call.
LBR is configured to record only , indirect , and
indirect instructions. The execution of ROP code is
identified by looking for two prominent attributes of its
runtime behavior: i) illegal instructions that target
locations not preceded by call sites, and ii) sequences
of relatively short code fragments “chained” through any
kind of indirect branches.

Returns that do not transfer control right after call
sites is an illegitimate behavior exhibited by all pub-
licly available ROP exploits against Windows software,
which rely mainly on gadgets ending with instruc-
tions (conveniently manipulates both the program
counter and the stack pointer). The second, more generic
attribute captures an inherent property of not only purely
return-oriented code, but also of advanced (and admit-
tedly harder to construct) jump-oriented code (or even
“hybrid” ROP/JOP code that might use any combination
of gadgets ending with , , and instructions).

3.1 Illegal Returns

When focusing on the control flow behavior of ROP code
at the instruction level, we expect to observe the succes-
sive execution of several instructions, which corre-
spond to the transfer of control from each gadget to the
next one. Although this control flow pattern is quite dis-
tinctive, the same pattern can also be observed in legiti-
mate code, e.g., when a series of functions consecutively

452 22nd USENIX Security Symposium USENIX Association

call f1

mov eax, esi

...

xchg eax, edi

ret

call f2

test al, al

...

pop ecx

ret

call f3

add esp, 0Ch

...

add eax, edx

ret

pop eax

ret

normal

execution

ROP code

execution

Figure 4: In normal code, instructions target valid
call sites (left), while in ROP code, they target gadgets
found in arbitrary locations (right).

return to their callers. However, when considering the
targets of instructions, there is a crucial difference.

In a typical program, instructions are paired with
instructions, and thus the target of a legitimate

corresponds to the location right after the call site of the
respective caller function, i.e., an instruction that follows
a instruction, as illustrated in the left part of Fig. 4.
In contrast, a instruction at the end of a gadget trans-
fers control to the first instruction of the following gad-
get, which is unlikely to be preceded by a instruc-
tion. This is because gadgets are found in arbitrary lo-
cations across the code image of a process, and often
may correspond to non-intended instruction sequences
that happen to exist due to overlapping instructions [62].

At runtime, the instructions of ROP code can be
easily distinguished from the legitimate return instruc-
tions of a benign program by checking their targets. A

instruction that transfers control to an instruction not
preceded by a is considered illegal, and the obser-
vation of an illegal is flagged by kBouncer as an in-
dication of ROP code execution.

Ensuring - pairing by verifying caller-callee
semantics, e.g., using a shadow stack [29], constrains
the control flow of a process in a much stricter way
than the proposed scheme. In practice, though, enforc-
ing such a strict policy is problematic, due to the use of

constructs, “getPC” code
commonly found in position-independent executables,
tail call optimizations, and lightweight user-level threads
such as Windows fibers, in which the context switch
function called by the current thread returns to the thread
that is scheduled next.

Instead of enforcing a strict control flow, kBouncer
simply makes sure that instructions always target
any among all valid call sites (even those that correspond
to non-intended instructions). This is a more re-
laxed constraint that is not expected to be violated (and
which did not, for the set of applications tested as part
of our experimental evaluation) even in programs that
use constructs like the above. Its implementation is also
much simpler, as there is no need to track the execution
of instructions—checking that the target of each

falls right after a is enough.

Call-preceded Gadgets Although the above scheme
prohibits the execution of illegal returns, which are
prominently exhibited by typical ROP exploits, an at-
tacker might still be able to construct functional ROP
code using gadgets that begin right after instruc-
tions, to which we refer as -preceded gadgets. Note
that -preceded gadgets may begin after either in-
tended or unintended instructions. As kBouncer
cannot know which instructions were actually
emitted by the compiler, if any of the possible valid in-
structions immediately preceding the instruction at a tar-
get address is a instruction, then that address may
correspond to the beginning of a -preceded gadget.

The observation of a that targets an instruction
located right after a is considered by kBouncer
as normal, and thus ROP code comprising only -
preceded gadgets would not be identified based on the
first ROP code attribute kBouncer looks for during
branch analysis. Although such code would still be iden-
tified due to its “chained gadgets” behavior, which we
will discuss below, we first briefly explore the feasibility
of such an attempt.

For our analysis we use a set of typical Windows ap-
plications, detailed in Table 2. The data is collected us-
ing a purpose-built execution analysis framework, de-
scribed in Sec. 4.2. We consider as a gadget any (in-
tended or unintended) instruction sequence that ends
with an indirect branch, and which does not contain
any privileged or invalid instruction. In contrast to the
gadget constraints typically considered in relevant stud-
ies [62, 23, 60, 24, 73, 53, 36, 70] and the actual gadgets
used in real exploits [27, 19, 1, 6, 7, 2], i.e., contiguous
instruction sequences no longer than five instructions, we
follow a more conservative approach and consider gad-
gets that i) may be split into several fragments due to
internal conditional or unconditional relative jumps, and
ii) have a maximum length of 20 instructions.

Figure 5 shows the fraction of -preceded gadgets
among all gadgets that end with a instruction, for
different Windows applications. In the worst case, only
6.4% of the gadgets begin right after call sites, a per-
centage much smaller compared to all available gad-

USENIX Association 22nd USENIX Security Symposium 453

Table 2: Details about the dataset used for gadget analysis.

Media Player

Internet Explorer

Flash Player

MS Word

MS Excel

MS Powerpoint

Adobe Reader

Fraction of allowed RET gadgets (%)

0 1 2 3 4 5 6 7

Figure 5: Among all gadgets that end with a instruc-
tion, only a small fraction (6.4% in the worst case for
Adobe Reader) begin right after call sites.

gets. Given that many of them are longer than the typical
gadget size, and are thus harder to use in ROP code due
to the many different operations and register or memory
state changes they incur, an attacker would be left with
a severely limited set of gadgets to work with. For com-
parison, the ROP payloads of the exploits we used in our
evaluation, listed in Table 4, collectively use 44 unique
gadgets with an average length of just 2.25 instructions,
and only three of them happen to be -preceded—the
rest of them would all result in illegal returns.

3.2 Gadget Chaining

It is clear from the previous section that even a “lighter”
version of kBouncer that would just prohibit the execu-
tion of illegal returns would still significantly raise the
bar, as i) it would prevent the execution of the ROP code
typically found in publicly available Windows exploits,
and more importantly, ii) it would force attackers to ei-
ther use only a limited set of gadgets, or resort to
jump-oriented code—options of increased complexity.

To account for potential future exploits of these sorts,
the second attribute that kBouncer uses to identify the
execution of ROP code is an inherent characteristic of its
construction: the observation of several short instruction
sequences chained through indirect branches. This is a
generic constraint that holds for both return-oriented and
jump-oriented code (or potential combinations—in the
rest of this section we refer to both techniques as ROP).

Figure 6: The state of the LBR stack at the time
kBouncer blocks an exploit against Adobe Flash [2]. Di-
agonal pairs of addresses with the same shade correspond
to the first and last instruction of each gadget.

Although legitimate programs also contain an abundance
of code fragments linked with indirect branches, these
fragments are typically much larger than gadgets, and
more importantly, they do not tend to form long unin-
terrupted sequences (as we show below).

The CPU records in-sequence all executed indirect
branches, enabling kBouncer to reconstruct the chain of
gadgets used by any ROP code. Each LBR record R[b, t]
contains the address of the branch (b) and the address of
its target (t), or from the viewpoint of ROP code, the end

of a gadget and the beginning of the following one.
Figure 6 illustrates the contents of the LBR stack at

the time kBouncer blocks the ROP code of an exploit
against Adobe Flash [2] (although kBouncer blocks this
exploit due to illegal returns, we use it for illustrative pur-
poses, as we are not aware of any publicly available JOP
exploit). Starting with the most recent (bottom-most)
record, the detection algorithm checks whether the tar-

454 22nd USENIX Security Symposium USENIX Association

get (located at address Rn−1[t]) of the previous branch,
is an instruction that precedes the branch (located at ad-
dress Rn[b]) of the current record. If starting from address
Rn−1[t], there exists an uninterrupted sequence of at most
20 instructions that ends with the indirect branch at ad-
dress Rn[b], then the sequence is considered as a gadget.
Recall that kBouncer treats as gadgets even fragmented
instruction sequences linked through conditional or un-
conditional relative jumps. The same process repeats
with the previous records, moving upwards, as long as
chained gadgets are found.

The ROP code in this example consists of 11 gad-
gets, all ending with a instruction except the final
one (G11), which is a single-instruction gadget with an
indirect that transfers control to
in (note the difference in the high
bytes of the target address in record 13). The two
bottom-most records in the LBR stack correspond to
kBouncer’s function hook (from to

, which signals the kernel compo-
nent), and a from which is called
by .

A crucial question for the effectiveness of the above
algorithm is whether legitimate code could be misclas-
sified as ROP code due to excessively long chains of
gadget-like instruction sequences. To assess this possi-
bility, we measured the length of the gadget chains ob-
served across all inspected LBR stack instances for the
applications and workloads listed in Table 2. As de-
scribed in Sec. 2.2.2, kBouncer inspects the LBR stack
right before the execution of a sensitive Windows API
function. In total, kBouncer inspected 79,885 LBR stack
instances, i.e., the tested applications legitimately in-
voked a sensitive API function 79,885 times.

Figure 7 (solid line) shows the percentage of instances
with a given gadget chain length. In the worst case, there
is just one instance with a chain of five gadgets, and
there are no instances with six or more gadgets. On the
other hand, complex ROP code that would rely on -
preceded or non- gadgets would result in excessively
long gadget chains, filling the LBR stack. Indicatively, a
jump-oriented Turing-complete JOP implementation for
Linux uses 34 gadgets [23]. Furthermore, current JOP
code implementations rely on a special dispatcher gad-
get that always executes between useful gadgets, at least
doubling the amount of executed gadgets.

Although we can never rule out the possibility that
benign code in some other application might result in a
false positive, to ascertain that this possibility is unlikely,
we also analyzed 97,554,189 LBR stack instances taken
at the entry points of all executed functions during the
lifetime of the same tested applications. In this orders-
of-magnitude larger data set, the maximum gadget chain
length observed is nine (dashed line), which is still far

Gadget chain length

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L
B

R
 s

ta
c
k
 i
n
s
ta

n
c
e
s
 (

%
)

100

10

1

0.1

0.01

10 −3

10 −4

Protected API calls

All function calls

Figure 7: Percentage of LBR stack instances with a
given gadget chain length for i) the instances inspected
by kBouncer at the entry points of protected API func-
tion calls, and ii) the instances taken at the entry points
of all function calls.

from filling up the LBR stack. This means that even if
there is a need in the future to protect more API func-
tions, or perform LBR checks in other parts of a program,
we will more than likely still be able to set a robust detec-
tion threshold that will not result in false positives. For
the current set of protected functions we use a threshold
of eight gadgets, which allows for increased resilience to
false positives.

Finally, note that in the above benign executions, the
vast majority of the gadget-like chains stem from our
conservative choice of considering fragmented gadgets
of up to 20 instructions long—significantly more com-
plex and longer than the gadgets used in actual exploits.
Although we could choose more reasonable constraints
about what is considered as a gadget, we preferred to
stress the limits of the proposed approach.

4 Implementation

4.1 kBouncer

To demonstrate the effectiveness of our proposed ap-
proach, we developed a prototype implementation for the
x86 64-bit version of Windows 7 Professional SP1. Our
prototype, kBouncer, consists of three components: i) an
offline gadget extraction and analysis toolkit, ii) a user-
space thin interposition layer between the applications
and Windows API functions, and iii) a kernel module.

For the executable segments of a protected application,
the gadget extraction toolkit identifies any instruction se-
quence ending in an indirect branch, starting from each
and every byte of a segment. In the current version of
our prototype we assume that the complete set of an ap-
plication’s modules is available in advance. However, it
is possible to trivially relax this assumption by process-

USENIX Association 22nd USENIX Security Symposium 455

application

call VirtualProtect

detour.dll

API call:

LBR check

ntoskrnl.exe

system call handler:

API call verif cationi

user

space

LBR stackCPU

kernel32.dll

BOOL VirtualProtect() {

...

kBouncer

module

kernel

space

Figure 8: Overview of kBouncer’s implementation. At
the entry point of Windows API functions, kBouncer de-
tours the execution, inspects the LBR stack in kernel
mode, and then returns control back to the application.

ing new modules on-the-fly at the time they are loaded
by a protected application. The maximum gadget length
is given as a parameter—in our experiments we conser-
vatively used a length of 20 instructions. As discussed
in Sec. 3.1, our extraction algorithm differs from previ-
ous approaches as it considers even instruction sequences
that contain conditional or unconditional relative jumps.
For this reason, code analysis explores all possible paths
from every offset within a code segment, and follows re-
cursively any conditional branches. The output of the
analysis phase is two hash tables: one containing the off-
sets of -preceded gadgets, and another containing
the rest of the found gadgets. In the future, we will con-
sider switching to Bloom filters to save space.

The overall operation of the runtime system is de-
picted in Fig. 8. The interposition component is imple-
mented on top of the Detours framework [38], which
provides a library call interception mechanism for the
Windows platform. During initialization, it requests by
kBouncer’s kernel module to enable the LBR feature
on the CPU. The two components communicate through
control messages over a pseudo-device that is exported
by the kernel module (using the API
function). Then, it selectively hooks the set of the pro-
tected Windows API functions. Each time a protected
function is called, the detour code sends a control mes-
sage to the kernel component, instructing it to inspect the
contents of the LBR stack for abnormal control transfers.

The kernel module is responsible for three main tasks:
i) enabling or disabling the LBR facility, ii) analyzing the
recorded indirect branches, and iii) writing and verifying
the appropriate checkpoint before allowing a system call
to proceed. The first task involves reading and writing
a few Model Specific Registers (MSR) using the

and instructions. For the second task, whenever
a control request is received from the user-space compo-
nent, kBouncer analyzes the contents of the LBR stack,
looking for the attributes described in Sec. 3. The MSR
registers that hold the recorded information and configu-
ration parameters are considered part of the running pro-
cess context, and are preserved during context switches.

To identify illegal return instructions, the kernel mod-
ule fetches a few bytes before each return target and at-
tempts to decode any instruction located right be-
fore the target instruction (call site check). Gadget chain-
ing patterns are identified as follows: starting from the
most recent branch in the LBR stack, the number of con-
secutive targets that point to gadgets are counted. Any

targets are looked up in the -preceded gadgets
hash table, whereas or targets are looked up
in both hash tables, -preceded or not. The most re-
cent branch target is not considered, as it does not point
to a gadget, but to the protected API function. To pro-
tect the kernel-level component from potential crashes
when accessing invalid user-level locations, we use the

function of the Windows kernel API.
Unfortunately, the final task for API call verification

has been only partly implemented, as it is not possible
to perform system-call interposition in the current ver-
sion of Windows 7. A recently added kernel feature in
the 64-bit version of Windows, called PatchGuard [32],
protects against kernel-level rootkits by preventing any
changes to critical data structures, such as the System
Service Descriptor Table (SSDT). Although this is effec-
tive against rootkits, PatchGuard removed the ability of
legitimate applications, such as antivirus software, to in-
tercept system calls. In response, Microsoft added a set
of kernel-level APIs for filtering network and file-system
operations (Windows Filtering Platform [48]). Hope-
fully, future OS versions will provide system call filtering
capabilities as well.

Still, we did verify the correct operation of checkpoint
verification by simulating it using the dataset of Table 2.
We should note that this is not a design limitation, but
only an implementation issue stemming from our choice
of the target platform. For example, this would not have
been an issue had we decided to implement kBouner for
Linux, or any other open platform. For now, we plan to
implement the checkpointing functionality for 32-bit ap-
plications by hooking system calls at user level through
the WOW64 layer [4] (which, however, will not provide
the same protection guarantees as an actual kernel-level
implementation).

In case an attack attempt is detected after the analy-
sis of the recorded branches, the process is terminated
and the user is informed with an alert message, as shown
in Fig. 9. In this example, kBouncer blocks a mali-
cious PDF sample that exploits an (at the time of writing)

456 22nd USENIX Security Symposium USENIX Association

Figure 9: A screen capture of kBouncer in action, block-
ing a zero-day exploit against Adobe Reader XI [19].

unpatched vulnerability in the latest version of Adobe
Reader XI [19]. The displayed information, such as
branch locations and targets, is supplied from the kernel-
level module.

4.2 Analysis Framework

Moving from the basic concept to a functional prototype
required a number of decisions that were mostly based on
analyzing the behavior of large applications. To ease the
effort required to perform this type of analysis, we devel-
oped an LBR analysis framework. Its goal is to provide a
way to iterate over the LBR instances during the lifetime
of an application, while at the same time providing useful
information, such as translating addresses to function or
image names. The framework is split in two parts: data
gathering and analysis.

The data-gathering component is based on dynamic
binary instrumentation. Although the runtime overhead
of dynamic instrumentation is quite high (as discussed in
Sec. 2.1), we use it here only for data gathering, which
is an off-line and one-time operation. The tool we de-
veloped is built on top of Pin [64, 46], and records the
following information during process execution: i) the
file path and starting and ending address of any loaded
executable image, ii) the location and name of any rec-
ognized function (e.g., exported functions), iii) the thread
ID, location, and target of executed indirect branches
(, or), iv) the thread ID, location, and num-
ber of system calls, and v) the thread ID, location, and
return address of any identified function that was called.

The analysis part is a set of Python scripts that process
the gathered data for each application. It provides a con-
figurable LBR iterator which simulates different scenar-
ios, such as returning LBR stack instances before system
calls or certain function calls, or even after each branch is

Table 3: Microbenchmarks.

executed. To avoid mixing branches from different sys-
tem threads in the same LBR instance, it internally keeps
a list of separate LBRs per thread id. Finally, it provides
convenient methods to translate addresses to function or
image names when available.

5 Evaluation

In this section we present the results of our experimental
evaluation of kBouncer in terms of runtime overhead and
effectiveness against real-world ROP exploits. All exper-
iments were performed on a computer with the following
specifications: Intel i7 2600S CPU, 8GB RAM, 128GB
SSD, 64-bit Windows 7 Professional SP1.

5.1 Performance Overhead

5.1.1 Microbenchmarks

We started with some micro-benchmarks of differ-
ent parts of kBouncer’s functionality. Specifically, we
measure the average time needed for the following op-
erations, also listed in Table 3: hash table lookups
(“HashLookup”), checks for illegal returns (“Illegal-
Ret”), performing a system call (“SysNull”), reading the
contents of the LBR stack (“SysLBR”), and reading parts
of a process’ address space (“SysRead”).

In each case, we isolated the measured operation and
tried to make the experiment as realistic as possible. For
example, we extracted the hash table characteristics (do-
main size, hash table size, hit ratio) based on the dataset
shown in Table 2. The data we used for the illegal return
checks come from , and use a worst-case
workload by treating each location in its code segment
as a possible return target. The next three experiments
where measured in kernel level, as opposed to the first
two. We measured the time needed to perform a no-op
system call, a system call that only reads the LBR stack
contents, and finally, a system call that in addition to
reading the LBR stack, also fetches data from the sources
and targets of each branch.

Table 3 shows the results of these benchmarks. Each
benchmark runs the number of operations shown in the
second column ten times, and calculates the average and

USENIX Association 22nd USENIX Security Symposium 457

profile pipe mailslot file thread comm console sync process

A
v
g

.
c
o

m
p

le
ti
o

n
 t

im
e

 (
s
e

c
)

0

2

4

6

8

10

12

14

Normal

kBouncer

Figure 10: Execution time with and without kBouncer
for Wine’s test suite, which resulted in
the invocation of about 100K monitored Windows API
functions. The average runtime overhead is 1%.

standard deviation (next two columns). The last column
shows the average time for a single operation. As we can
see, looking up the hash table and checking for an ille-
gal return are both very fast operations, in the order of a
few nanoseconds. Performing a system call and reading
the LBR stack are relatively more expensive, but still, in
the order of a few microseconds. When attempting to
access the instructions located at the source and target
addresses of each branch record, the measured duration
starts to fluctuate. We are not sure whether this behavior
is normal, or it is a result of non-optimal use of the ker-
nel API for accessing user-level memory. Overall, these
microbenchmarks show that kBouncer’s LBR stack anal-
ysis on each protected API function call takes on average
no more than 5 microseconds.

5.1.2 Runtime Overhead

Measuring the performance overhead impact on inter-
active applications, such as web browsers and docu-
ment viewers, is a challenging task. Instead, we de-
cided to measure the performance overhead on programs
that stress the core functionality of kBouncer, by making
heavy use of the monitored Windows API functions. For
this purpose, we used a subset of the tests provided in
the test suite of Wine [15], which repeatedly call Win-
dows API functions with different arguments. To get
more confident timing results, we kept only tests that
do not interfere with external factors, such as network
communication. The final set we used performs about
100,000 calls to Windows API functions that are pro-
tected by kBouncer, which is 20 times more than the
protected calls made by the actual applications we pre-
viously tested (listed in Table 2).

Figure 10 shows the completion time for each of the
different tests, with and without kBouncer. The average
runtime overhead is 1%, with the maximum being 4%

Table 4: Tested ROP exploits.

in the worst case. The total extra time spent across all
tests when enabling kBouncer was 0.3 sec, a result con-
sistent with the average cost of 5 µs per check based on
our microbenchmarks (100,000 calls × 5 µs = 0.5 sec).
Based on these results, which show that the performance
overhead is negligible even for workloads that continu-
ously trigger the core detection component, we believe
that kBouncer is not likely to cause any noticeable im-
pact on user experience.

5.2 Effectiveness

In the final part of our evaluation, we tested whether
our prototype can effectively protect applications that
are typically targeted by in-the-wild attacks, using the
ROP exploits shown in Table 4. All exploits except
the ones against Internet Explorer work on the latest
and up-to-date version of Windows 7 Professional SP1
64-bit. For the IE exploits to work, we had to unin-
stall the updates that fixed the relevant vulnerabilities
(KB2744842 and KB2799329). We also had to tweak the
ROP payload of the MPlayer exploit to correctly calcu-
late the offset of for the latest version
of , as the public version of the exploit
was based on a previous version of that DLL.

The ROP code in the exploit against Adobe Reader
v9.3.4 creates a file (), memory-maps the
file in RWX mode (,

), copies the shellcode in the newly mapped area,
and executes it. Similarly, the MPlayer and IE 8 ex-
ploits change the permissions of the memory region
where the shellcode resides to RWX ()
and execute it. What is interesting about the IE 8
ROP code, is that it is constructed from the statically
loaded Skype protocol handler DLL ().
The last two exploits in Table 4 were generated using
the Metasploit Framework [5]. For vulnerable applica-
tions that include widely used non-ASLR modules (like
Java’s , which is loaded in Internet Ex-
plorer), Metasploit uses the same ROP payload based
on , which has been pre-generated by
Mona [27]. This payload is similar to the one used in
the MPlayer exploit, as it also uses
to bypass Data Execution Prevention (DEP). Finally, the
Adobe Reader XI (v11.0.1) exploit is more complex,

458 22nd USENIX Security Symposium USENIX Association

as it is the first in-the-wild exploit that uses ROP-only
code, i.e., it does not carry any shellcode [19]. The mali-
cious sample we tested (“Visaform Turkey.pdf”) exploits
a first vulnerability to escape from Reader’s sandboxed
process, and a second one to hijack the execution of
its privileged process by loading a malicious DLL using

.
In the first five exploits, the embedded shellcode sim-

ply invokes using . The Reader XI
exploit drops a malicious DLL. In all cases, we verified
that the exploits worked properly on our testbed, by con-
firming that the calculator was successfully launched, or,
for the Reader XI exploit, that the malicious DLL was
loaded successfully. When kBouncer was enabled, it
successfully blocked all exploits due to the identification
of illegal returns at the time one of the ,

or functions was in-
voked by the ROP code in each case.

6 Limitations

The Last Branch Recording feature of recent Intel pro-
cessors is what enables kBouncer to achieve its transpar-
ent and low-overhead operation. Many of our design de-
cisions are corollaries of the very limited size of the LBR
stack, which in the most recent processors holds only 16
records. Given that previous processor generations had
even more size-constrained LBR implementations, this
is definitely a significant improvement, and hopefully fu-
ture processors will support even larger LBR stacks. This
would allow kBouncer to achieve even higher accuracy
by inspecting longer execution paths, making potential
evasion attempts even harder.

Currently, an attacker could evade kBouncer by ensur-
ing that the final 16 executed gadgets before the invoca-
tion of an API function are considered legitimate. Specif-
ically, given that kBouncer looks for both illegal returns
and gadget chaining in parallel, this would require i) all
16 gadgets to be either -preceded or non- gad-
gets, and ii) at least one out of every eight of them (eight
is our current gadget chaining detection threshold) to be
longer than 20 instructions.

A more thorough analysis on the feasibility of con-
structing such a payload for typical applications is part of
our future work. Our preliminary evidence (Section 3.1),
however, shows that only 6.4% of all gadgets ending
with are -preceded, and this is when consid-
ering even fragmented gadgets up to 20 instructions long
(this percentage drops to 3% when considering gadgets
with at most five instructions). On the other hand, ROP
compilers like Q [60] typically take into account non-
fragmented gadgets up to five instructions long. Longer
gadgets incur more CPU state changes, which compli-
cate the (either manual or automated) gadget arrange-

ment process. Indicatively, for a similar set of appli-
cations, even when 20% of all gadgets are available, Q
could not generate a functional payload [53]. Note that
the selection of a maximum gadget length of 20 instruc-
tions was arbitrary—four times the typically used stan-
dard seemed enough. If evasion becomes an issue, longer
gadgets could be considered during the gadget chaining
analysis of an LBR snapshot.

Alternatively, an attacker could look for a long-enough
execution path that leads to the desired API call as part
of the application’s logic. Such a path should satisfy
the following constraints: i) contain at least 16 indirect
branches, the targets of which happen to lead to the ex-
ecution of the desired API function, and ii) the executed
code along the path should not alter the state or the func-
tion arguments set by the previously executed ROP code.
Finding such a path seems quite challenging, as in many
cases the desired function might not be imported at all,
and the path should end up with the appropriate regis-
ter values and arguments to properly invoke the function.
This is even more difficult in 64-bit systems, where the
first four parameters are passed trough registers, as op-
posed to the 32-bit standard calling conventions in which
parameters are passed through the stack.

Our selection of sensitive Windows API functions was
made empirically based on a large set of different shell-
code and ROP payload implementations [5, 3, 56, 12,
27, 60]. A list of the 52 currently protected functions
is provided in the appendix. Although current ROP ex-
ploits rely mainly on only a handful of API functions
(see Sec. 5.2), we have included many others that have
been used in the past in legacy shellcode, as some ex-
ploits might implement their whole functionality using
purely ROP code (as demonstrated recently by an exploit
against the latest version of Adobe Reader XI [19]). The
set of protected functions can be easily extended with any
additional potentially sensitive functions that we might
have left out. Although it would be possible to protect
all Windows API calls, we believe that this would not
offer any additional protection benefits, and would just
introduce unnecessary overhead.

7 Related Work

Address Space Randomization and Code Diversifica-

tion As code-reuse attacks require precise knowledge
of the structure and location of the code to be reused,
diversifying the execution environment or even the pro-
gram code itself is a core concept in preventing code-
reuse exploits [26, 33]. Address space layout randomiza-
tion [55, 49] is probably one of the most widely deployed
countermeasures against code-reuse attacks. However,
it’s effectiveness is hindered by code segments left in
static locations [35, 75, 40], while, depending on the ran-

USENIX Association 22nd USENIX Security Symposium 459

domization entropy, it might be possible to circumvent
it using brute-force guessing [63]. Even if all the code
segments of a process are fully randomized, vulnerabil-
ities that allow the leakage of memory contents can en-
able the calculation of the base address of a DLL at run-
time [19, 61, 44, 69, 37, 66].

Intra-DLL randomization at the function [20, 21, 42,
9], basic block [11, 10], or instruction level [53, 36, 70]
can provide protection for executables that do not sup-
port ASLR, or against de-randomization attacks through
memory leaks. The practical deployment of these tech-
niques for the protection of third-party applications de-
pends on the availability of source code [20, 21, 42, 9],
debug symbols [11, 10], or the accuracy of disassembly
and control flow graph extraction [53, 36, 70, 74].

As kBouncer is completely transparent to user appli-
cations, it can complement all above randomization tech-
niques as an additional mitigation layer against ROP ex-
ploits, while it does not depend on source code, debug
symbols, or code disassembly.

Control Flow Integrity and Indirect Branch Protec-

tion The execution of ROP code disrupts the normal
call path of typical programs, resulting to an unantici-
pated flow of control. Control flow integrity [17] can
confine program execution within the bounds of a pre-
computed profile of allowed control flow paths, and thus
can prevent most of the irregular control flow transfers
that connect the gadgets of a ROP exploit. Depending on
program complexity, however, deriving an accurate view
of the control flow graph is often challenging. Alter-
native approaches against return-oriented programming
enforce a more relaxed policy for the integrity of indi-
rect control transfers [52, 45, 22]. Using code trans-
formations, these techniques eliminate the occurrence of
unintended indirect branch instructions in the generated
code, and safeguard all legitimate indirect branches us-
ing cookies or additional levels of indirection.

The main factor that limits the practical applicabil-
ity of the above techniques is that they require the re-
compilation of the target application, which is usually
not possible for the popular proprietary applications that
are commonly targeted by ROP exploits. In contrast,
kBouncer is completely transparent to applications and
does not require any modification to their code.

Runtime Execution Monitoring Many defenses
against return-oriented programming are based on
monitoring program execution at the instruction level.
A widely used mechanism for this purpose is dynamic
binary instrumentation (DBI), using frameworks such
as Pin [46]. DROP [24] and DynIMA [28] follow this
approach to monitor the frequency of instructions,
and raise an alert in case irregularly many of them are

observed within a small window of executed instruc-
tions. ROPdefender [29] also uses DBI to keep a shadow
stack that is updated by instrumenting and
instructions. A disruption of the expected -
pairs due to ROP code is detected by comparing the
shadow stack with the system’s stack on every function
exit. A limitation of the above techniques is that they
cannot prevent exploits that use gadgets ending with
indirect or instructions. More importantly,
though, the significant runtime overhead imposed by
the additional instrumentation instructions and the DBI
framework itself limit their practical applicability.

Similarly to kBouncer, ROPGuard [34] is based on
the observation that a ROP exploit will eventually in-
voke critical API functions, and performs various checks
before such a function is called. These include check-
ing whether is within the proper stack boundaries,
whether a proper return address is present at the top
of the stack, the consistency of stack frames, and other
function-specific attributes. Although ROPGuard fo-
cuses only on non-JOP code, and some of its checks can
result in false positives or can be easily evaded [58, 57],
they are effective against current in-the-wild exploits,
and some have been integrated in EMET [47].

Last branch recording is only one of the available
instruction tracing facilities available in modern CPUs.
Branch Trace Storage (BTS) is a debugging mechanism
that enables the recording of all branch instructions in a
user-defined memory area. However, the overhead due
to the significant number of memory accesses, combined
with the overall slower operation of the processor due
to the special debug mode in which it enters when BTS
is enabled, result to slowdowns typically in the range of
20–40× [67]. Consequently, systems that use BTS and
similar mechanisms for control flow integrity [72, 73] or
execution recording [68] suffer from significant runtime
overheads. In contrast, LBR uses on-chip registers to
store the traced branches with no additional overhead.

A recent technique against kernel-level ROP uses the
processor’s performance counters to raise an interrupt af-
ter a number of mispredicted instructions, an indica-
tion of possible ROP code execution [71]. To rule out
mispredicitons caused by legitimate code, upon an inter-
rupt, the LBR stack is used to check whether the targets
of the previously executed instructions are preceded
by a instruction. The use of JOP or call-preceded
gadgets, however, can circumvent this protection.

Branch regulation [41] is a proposal for extending cur-
rent processor architectures with a protection mechanism
against ROP attacks. Besides maintaining a secondary
call stack, the technique restricts the allowed targets of
indirect instructions to locations within the same
function, or to the entry point of any other function, and
only the latter for instructions. Besides being quite

460 22nd USENIX Security Symposium USENIX Association

restrictive for many legitimate programs, this approach
requires protected binaries to go through a static binary
instrumentation phase for annotating function bound-
aries, a process that requires precise code disassembly.

8 Conclusion

Exploit mitigation add-ons that can be readily enabled
for the protection of already installed applications are
among the most practical ways for deploying additional
layers of defenses on existing systems. To be usable in
practice, any such solution should be completely trans-
parent and should not impact in any way the normal op-
eration of the protected applications.

Starting on this basis, we have presented the design
and implementation of kBouncer, a transparent ROP ex-
ploit mitigation based on the identification of distinctive
attributes of return-oriented or jump-oriented code that
are inherently exhibited during execution. Built on top of
the Last Branch Recording (LBR) feature of recent pro-
cessors for tracking the execution of indirect branches at
critical points during the lifetime of a process, kBouncer
introduces negligible runtime overhead, and does not re-
quire any modifications to the protected applications. We
believe that the most important advantage of the pro-
posed approach is its practical applicability. We demon-
strate that our prototype implementation for Windows 7
can effectively protect complex, widely used applica-
tions, including Internet Explorer, Adobe Flash Player,
and Adobe Reader, against in-the-wild ROP exploits,
without any false positives.

As part of our future work, we plan to perform a more
extensive evaluation with real applications to ensure the
compatibility of the detection checks with existing code,
assess the feasibility of constructing ROP payloads that
could evade the currently implemented checks, and port
our prototype implementation to Linux.

Acknowledgements

This work was supported by DARPA, the US Air Force, and
ONR through Contracts DARPA-FA8750-10-2-0253, AFRL-
FA8650-10-C-7024 and N00014-12-1-0166, respectively, with
additional support from Intel. Any opinions, findings, conclu-
sions, or recommendations expressed herein are those of the
authors, and do not necessarily reflect those of the US Govern-
ment, DARPA, the Air Force, ONR, or Intel.

References

[1] Adobe CoolType SING Table “uniqueName” Stack Buffer Over-
flow.

.

[2] Adobe Flash Player 11.3 Kern Table Parsing Integer Over-
flow.

.

[3] Common Shellcode Naming Initiative.
.

[4] Intercepting System Calls on x86_64 Windows.

.

[5] Metasploit framework. .

[6] Mplayer (r33064 lite) buffer overflow + rop exploit.
.

[7] MS12-063 Microsoft Internet Explorer execCommand Use-
After-Free Vulnerability.

.

[8] MS13-008 Microsoft Internet Explorer CButton Use-After-Free
Vulnerability. .

[9] /ORDER (put functions in order).
.

[10] Profile-guided optimizations.
.

[11] Syzygy - profile guided, post-link executable reorder-
ing.

.

[12] White Phosphorus Exploit Pack.
.

[13] Windows api list.
.

[14] Windows X86 System Call Table.
.

[15] Wine. .

[16] MWR Labs Pwn2Own 2013 Write-up - Webkit Exploit,
2013.

.

[17] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.
Control-flow integrity. In Proceedings of the 12th ACM confer-

ence on Computer and Communications Security (CCS), 2005.

[18] Piotr Bania. Windows Syscall Shellcode, 2005.
.

[19] James Bennett, Yichong Lin, and Thoufique Haq. The Number
of the Beast, 2013.

.

[20] Eep Bhatkar, Daniel C. Duvarney, and R. Sekar. Address obfus-
cation: an efficient approach to combat a broad range of memory
error exploits. In In Proceedings of the 12th USENIX Security

Symposium, 2003.

[21] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient
techniques for comprehensive protection from memory error ex-
ploits. In Proceedings of the 14th USENIX Security Symposium,
August 2005.

[22] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. Mitigating code-
reuse attacks with control-flow locking. In Proceedings of the

27th Annual Computer Security Applications Conference (AC-

SAC), 2011.

[23] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko,
Ahmad-Reza Sadeghi, Hovav Shacham, and Marcel Winandy.
Return-oriented programming without returns. In Proceedings

of the 17th ACM conference on Computer and Communications

Security (CCS), 2010.

[24] Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin, Bing Mao,
and Li Xie. DROP: Detecting return-oriented programming ma-
licious code. In Proceedings of the 5th International Conference

on Information Systems Security (ICISS), 2009.

USENIX Association 22nd USENIX Security Symposium 461

[25] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and Rav-
ishankar K. Iyer. Non-control-data attacks are realistic threats.
In Proceedings of the 14th USENIX Security Symposium, August
2005.

[26] Frederick B. Cohen. Operating system protection through pro-
gram evolution. Computers and Security, 12:565–584, October
1993.

[27] Corelan Team. Mona.
.

[28] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. Dy-
namic integrity measurement and attestation: towards defense
against return-oriented programming attacks. In Proceedings of

the 2009 ACM workshop on Scalable Trusted Computing (STC),
2009.

[29] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy.
ROPdefender: A practical protection tool to protect against
return-oriented programming. In Proceedings of the 6th Sym-

posium on Information, Computer and Communications Security

(ASIACCS), 2011.

[30] Solar Designer. Getting around non-executable stack (and fix).
.

[31] Úlfar Erlingsson. Low-level software security: Attack and de-
fenses. Technical Report MSR-TR-07-153, Microsoft Research,
2007.

.

[32] Scott Field. An introduction to kernel patch protec-
tion.

.

[33] S. Forrest, A. Somayaji, and D. Ackley. Building diverse com-
puter systems. In Proceedings of the 6th Workshop on Hot Topics

in Operating Systems (HotOS-VI), 1997.

[34] Ivan Fratric. Runtime prevention of return-oriented programming
attacks, 2012. .

[35] Giampaolo Fresi Roglia, Lorenzo Martignoni, Roberto Paleari,
and Danilo Bruschi. Surgically returning to randomized lib(c). In
Proceedings of the 25th Annual Computer Security Applications

Conference (ACSAC), 2009.

[36] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and
Jack W. Davidson. ILR: Where’d my gadgets go? In Proceedings

of the 33rd IEEE Symposium on Security & Privacy (S&P), 2012.

[37] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing
side channel attacks against kernel space ASLR. In Proceedings

of the 34th IEEE Symposium on Security & Privacy (S&P), 2013.

[38] Galen Hunt and Doug Brubacher. Detours: Binary Interception
of Win32 Functions. In Proceedings of the 3rd USENIX Windows

NT Symposium, 1999.

[39] Intel. Intel 64 and IA-32 architectures software developer’s man-
ual, volume 3B: System programming guide, part 2.

.

[40] Richard Johnson. A castle made of sand: Adobe Reader X sand-
box. CanSecWest, 2011.

[41] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev.
Branch regulation: Low-overhead protection from code reuse at-
tacks. In Proceedings of the 39th Annual International Sympo-

sium on Computer Architecture (ISCA), pages 94 –105, 2012.

[42] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and
Peng Ning. Address space layout permutation (ASLP): Towards
fine-grained randomization of commodity software. In Proceed-

ings of the 22nd Annual Computer Security Applications Confer-

ence (ACSAC), 2006.

[43] Sebastian Krahmer. x86-64 buffer overflow exploits and the bor-
rowed code chunks exploitation technique.

.

[44] Haifei Li. Understanding and exploiting Flash ActionScript vul-
nerabilities. CanSecWest, 2011.

[45] Jinku Li, Zhi Wang, Xuxian Jiang, Michael Grace, and Sina
Bahram. Defeating return-oriented rootkits with “return-less”
kernels. In Proceedings of the 5th European conference on Com-

puter Systems (EuroSys), 2010.

[46] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Ar-
tur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi,
and Kim Hazelwood. Pin: building customized program anal-
ysis tools with dynamic instrumentation. In Proceedings of the

2005 ACM SIGPLAN conference on Programming language de-

sign and implementation, 2005.

[47] Microsoft. The Enhanced Mitigation Experience Toolkit.
.

[48] Microsoft. Windows filtering platform.

.

[49] Matt Miller, Tim Burrell, and Michael Howard. Mitigating soft-
ware vulnerabilities, July 2011.

.

[50] Nergal. The advanced return-into-lib(c) exploits: PaX case study.
Phrack, 11(58), December 2001.

[51] Tim Newsham. Non-exec stack, 2000.
.

[52] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti,
and Engin Kirda. G-Free: defeating return-oriented programming
through gadget-less binaries. In Proceedings of the 26th Annual

Computer Security Applications Conference (ACSAC), 2010.

[53] Vasilis Pappas, Michalis Polychronakis, and Angelos D.
Keromytis. Smashing the gadgets: Hindering return-oriented pro-
gramming using in-place code randomization. In Proceedings of

the 33rd IEEE Symposium on Security & Privacy (S&P), 2012.

[54] Parvez. Bypassing Microsoft Windows ASLR with a little help by
MS-Help, August 2012.

.

[55] PaX Team. Address space layout randomization.
.

[56] Michalis Polychronakis, Kostas G. Anagnostakis, and Evange-
los P. Markatos. An empirical study of real-world polymor-
phic code injection attacks. In Proceedings of the 2nd USENIX

Workshop on Large-scale Exploits and Emergent Threats (LEET),
April 2009.

[57] Aaron Portnoy. Bypassing all of the things. SummerCon, 2013.

[58] Dan Rosenberg. Defeating Windows 8 ROP Mitiga-
tion, 2011.

.

[59] Mark Russinovich. Inside native applications, November 2006.

.

[60] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley.
Q: Exploit hardening made easy. In Proceedings of the 20th

USENIX Security Symposium, 2011.

[61] Fermin J. Serna. CVE-2012-0769, the case of the perfect info
leak, February 2012.

.

[62] Hovav Shacham. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In Proceed-

ings of the 14th ACM conference on Computer and Communica-

tions Security (CCS), 2007.

462 22nd USENIX Security Symposium USENIX Association

[63] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagen-
dra Modadugu, and Dan Boneh. On the effectiveness of address-
space randomization. In Proceedings of the 11th ACM conference

on Computer and Communications Security (CCS), 2004.

[64] Alex Skaletsky, Tevi Devor, Nadav Chachmon, Robert Cohn,
Kim Hazelwood, Vladimir Vladimirov, and Moshe Bach. Dy-
namic program analysis of microsoft windows applications. In
International Symposium on Performance Analysis of Software

and Systems, 2010.

[65] Skape. Understanding windows shellcode, 2003.
.

[66] Kevin Z. Snow, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, Fabian Monrose, and Ahmad-Reza Sadeghi. Just-in-
time code reuse: On the effectiveness of fine-grained address
space layout randomization. In Proceedings of the 34th IEEE

Symposium on Security & Privacy (S&P), 2013.

[67] Mary Lou Soffa, Kristen R. Walcott, and Jason Mars. Exploit-
ing hardware advances for software testing and debugging (nier
track). In Proceedings of the 33rd International Conference on

Software Engineering (ICSE), 2011.

[68] A. Vasudevan, Ning Qu, and A. Perrig. Xtrec: Secure real-time
execution trace recording on commodity platforms. In Proceed-

ings of the 44th Hawaii International Conference on System Sci-

ences (HICSS), 2011.

[69] Peter Vreugdenhil. Pwn2Own 2010 Windows 7 Internet Explorer
8 exploit.

.

[70] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and
Zhiqiang Lin. Binary stirring: Self-randomizing instruction ad-
dresses of legacy x86 binary code. In Proceedings of the 19th

ACM Conference on Computer and Communications Security

(CCS), pages 157–168, October 2012.

[71] Georg Wicherski. Taming ROP on Sandy Bridge. SyScan, 2013.

[72] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. CFIMon:
Detecting violation of control flow integrity using performance
counters. In Proceedings of the 42nd Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks (DSN),
2012.

[73] Liwei Yuan, Weichao Xing, Haibo Chen, and Binyu Zang. Se-
curity breaches as PMU deviation: detecting and identifying se-
curity attacks using performance counters. In Proceedings of the

Second Asia-Pacific Workshop on Systems (APSys), 2011.

[74] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, László Szek-
eres, Stephen McCamant, Dawn Song, and Wei Zou. Practical
control flow integrity & randomization for binary executables. In
Proceedings of the 34th IEEE Symposium on Security & Privacy

(S&P), 2013.

[75] Dino A. Dai Zovi. Practical return-oriented programming.
SOURCE Boston, 2010.

Appendix

In our current prototype implementation, kBouncer protects the
following 52 Windows API functions:

