
Open access to the Proceedings of the
22nd USENIX Security Symposium

is sponsored by USENIX

This paper is included in the Proceedings of the
22nd USENIX Security Symposium.
August 14–16, 2013 • Washington, D.C., USA

ISBN 978-1-931971-03-4

Sancus: Low-cost Trustworthy Extensible
Networked Devices with a Zero-software

Trusted Computing Base
Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Herrewege,

Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and Frank Piessens, KU Leuven

USENIX Association 22nd USENIX Security Symposium 479

Sancus: Low-cost trustworthy extensible networked devices with a
zero-software Trusted Computing Base

Job Noorman Pieter Agten Wilfried Daniels Raoul Strackx
Anthony Van Herrewege Christophe Huygens Bart Preneel Ingrid Verbauwhede

Frank Piessens
iMinds-DistriNet and iMinds-COSIC, KU Leuven

{Job.Noorman, Pieter.Agten, Wilfried.Daniels, Raoul.Strackx,
Christophe.Huygens, Frank.Piessens}@cs.kuleuven.be

{Anthony.VanHerrewege, Bart.Preneel, Ingrid.Verbauwhede}@esat.kuleuven.be

Abstract

In this paper we propose Sancus, a security architecture
for networked embedded devices. Sancus supports exten-
sibility in the form of remote (even third-party) software
installation on devices while maintaining strong security
guarantees. More specifically, Sancus can remotely attest
to a software provider that a specific software module
is running uncompromised, and can authenticate mes-
sages from software modules to software providers. Soft-
ware modules can securely maintain local state, and can
securely interact with other software modules that they
choose to trust. The most distinguishing feature of San-
cus is that it achieves these security guarantees without
trusting any infrastructural software on the device. The
Trusted Computing Base (TCB) on the device is only the
hardware. Moreover, the hardware cost of Sancus is low.

We describe the design of Sancus, and develop and
evaluate a prototype FPGA implementation of a Sancus-
enabled device. The prototype extends an MSP430 pro-
cessor with hardware support for the memory access con-
trol and cryptographic functionality required to run San-
cus. We also develop a C compiler that targets our device
and that can compile standard C modules to Sancus pro-
tected software modules.

1 Introduction

Computing devices and software are omnipresent in our
society, and society increasingly relies on the correct and
secure functioning of these devices and software. Two
important trends can be observed. First, network con-
nectivity of devices keeps increasing. More and more
(and smaller and smaller) devices get connected to the
Internet or local ad-hoc networks. Second, more and
more devices support extensibility of the software they
run – often even by third parties different from the de-
vice manufacturer or device owner. These two factors are
important because they enable a vast array of interesting

applications, ranging from over-the-air updates on smart
cards, over updateable implanted medical devices to pro-
grammable sensor networks. However, these two factors
also have a significant impact on security threats. The
combination of connectivity and software extensibility
leads to malware threats. Researchers have already shown
how to perform code injection attacks against embedded
devices to build self-propagating worms [18, 19]. Viega
and Thompson [45] describe several recent incidents and
summarize the state of embedded device security as “a
mess”.

For high-end devices, such as servers or desktops, the
problems of dealing with connectivity and software exten-
sibility are relatively well-understood, and there is a rich
body of knowledge built up from decades of research; we
provide a brief survey in the related work section.

However, for low-end, resource-contrained devices, no
effective low-cost solutions are known. Many embed-
ded platforms lack the standard security features (such as
privilege levels or advanced memory management units
that support virtual memory) present in high-end proces-
sors. Depending on the overall system security goals,
as well as the context in which the system must operate,
there may be more optimal solutions than just porting
the general-purpose security features from high-end pro-
cessors. Several recent results show that researchers are
exploring this idea in a variety of settings. For instance,
El Defrawy et al. propose SMART, a simple and efficient
hardware-software primitive to establish a dynamic root
of trust in an embedded processor [14], and Strackx et al.
propose a simple program-counter based memory access
control system to isolate software components [43].

In this paper we build on these primitives to propose
a security architecture that supports secure third-party
software extensibility for a network of low-end processors
(the prototypical example of such a network is a sensor
network). The architecture enables mutually distrusting
parties to run their software modules on the same nodes in
the network, while each party maintains strong assurance

480 22nd USENIX Security Symposium USENIX Association

that its modules run untampered. This kind of secure
software extensibility is very useful for applications of
sensor networks, for instance in the logistics and medical
domains. We discuss some application areas in more
detail in Section 2.4.

The main distinguishing feature of our approach is that
we achieve these security guarantees without any soft-
ware in the TCB on the device, and with only minimal
hardware extensions. Our attacker model assumes that an
attacker has complete control over the software state of
a device, and even for such attackers our security archi-
tecture ensures that any results a party receives from one
of its modules can be validated to be genuine. Obviously,
with such a strong attacker model, we can not guarantee
availability, so an attacker can bring the system down, but
if results are received their integrity and authenticity can
be verified.

More specifically, we make the following contribu-
tions:

• We propose Sancus1, a security architecture for
resource-constrained, extensible networked embed-
ded systems, that can provide remote attestation and
strong integrity and authenticity guarantees with a
minimal (hardware) TCB.

• We implement the hardware required for Sancus as
an extension of a mainstream microprocessor, and
we show that the cost of these hardware changes (in
terms of performance, area and power) is small.

• We implement a C compiler that targets Sancus-
enabled devices. Building software modules for San-
cus can be done by putting some simple annotations
on standard C files, showing that the cost in terms of
software development is also low.

To guarantee the reproducibility and verifiability of our
results, all our research materials, including the hardware
design of the processor, and the C compiler are publicly
available.

The remainder of this paper is structured as follows.
First, in Section 2 we clarify the problem we address by
defining our system model, attacker model and the secu-
rity properties we aim for. The next two sections detail
the design of Sancus and some interesting implementation
aspects. Section 5 reports on our evaluation of Sancus and
the final two sections discuss related work and conclude.

2 Problem statement

2.1 System model
We consider a setting where a single infrastructure
provider, IP, owns and administers a (potentially large)

1Sancus was the ancient Roman god of trust, honesty and oaths.

N1

N2

IP

SP1

SP2

...

SM1,1 SM2,1 · · ·

SM2,2 SM j,k · · ·

...

Figure 1: Overview of our system model. IP provides a
number of nodes Ni on which software providers SP j can
deploy software modules SM j,k.

set of microprocessor-based systems that we refer to as
nodes Ni. A variety of third-party software providers SP j
are interested in using the infrastructure provided by IP.
They do so by deploying software modules SM j,k on the
nodes administered by IP. Figure 1 provides an overview.

This abstract setting is an adequate model for many ICT
systems today, and the nodes in such systems can range
from high-performance servers (for instance in a cloud
system), over smart cards (for instance in GlobalPlatform-
based systems) to tiny microprocessors (for instance in
sensor networks). In this paper, we focus on the low
end of this spectrum, where nodes contain only a small
embedded processor.

Any system that supports extensibility (through instal-
lation of software modules) by several software providers
must implement measures to make sure that the different
modules can not interfere with each other in undesired
ways (either because of bugs in the software, or because
of malice). For high- to mid-end systems, this problem is
relatively well-understood and good solutions exist. Two
important classes of solutions are (1) the use of virtual
memory, where each software module gets its own virtual
address space, and where an operating system or hyper-
visor implements and guards communication channels
between them (for instance shared memory sections or
inter-process communication channels), and (2) the use of
a memory-safe virtual machine (for instance a Java VM)
where software modules are deployed in memory-safe
bytecode and a security architecture in the VM guards the
interactions between them.

For low-end systems with cheap microprocessors, pro-
viding adequate security measures for the setting sketched

USENIX Association 22nd USENIX Security Symposium 481

above is still an open problem, and an active area of re-
search [16]. One straightforward solution is to transplant
the higher-end solutions to these low-end systems: one
can extend the processor with virtual memory, or one
can implement a Java VM. This will be an appropriate
solution in some contexts, but there are two important
disadvantages. First, the cost (in terms of required re-
sources such as chip surface, power or performance) is
non-negligible. And second, these solutions all require
the presence of a sizable trusted software layer (either the
OS or hypervisor, or the VM implementation).

The problem we address in this paper is the design,
implementation and evaluation of a novel security archi-
tecture for low-end systems that is inexpensive and that
does not rely on any trusted software layer. The TCB
on the networked device is only the hardware. More pre-
cisely, a software provider needs to trust only his own
software modules; he does not need to trust any infras-
tructural or third-party software on the nodes, only the
hardware of the infrastructure and his own modules.

2.2 Attacker model

We consider attackers with two powerful capabilities.

First, we assume attackers can manipulate all the soft-
ware on the nodes. In particular, attackers can act as
a software provider and can deploy malicious modules
to nodes. Attackers can also tamper with the operating
system (for instance because they can exploit a buffer
overflow vulnerability in the operating system code), or
even install a completely new operating system.

Second, we assume attackers can control the commu-
nication network that is used by IP, software providers
and nodes to communicate with each other. Attackers
can sniff the network, can modify traffic, or can mount
man-in-the-middle attacks.

With respect to the cryptographic capabilities of the
attacker, we follow the Dolev-Yao attacker model [11]:
attackers can not break cryptographic primitives, but they
can perform protocol-level attacks.

Finally, attacks against the hardware are out of scope.
We assume the attacker does not have physical access
to the hardware, can not place probes on the memory
bus, can not disconnect components and so forth. While
physical attacks are important, the addition of hardware-
level protections is an orthogonal problem that is an active
area of research in itself [2, 6, 25, 26]. The addition of
hardware-level protection will be useful for many prac-
tical applications (in particular for sensor networks) but
does not have any direct impact on our proposed architec-
ture or on the results of this paper.

2.3 Security properties
For the system and attacker model described above, we
want our security architecture to enforce the following
security properties:

• Software module isolation. Software modules on
a node run isolated in the sense that no software
outside the module can read or write its runtime state,
and no software outside the module can modify the
module’s code. The only way for other software on
the node to interact with a module is by calling one
of its designated entry points.

• Remote attestation. A software provider can verify
with high assurance that a specific software module
is loaded on a specific node of IP.

• Secure communication. A software provider can
receive messages from a specific software module
on a specific node with authenticity, integrity and
freshness guarantees. For simplicity we do not con-
sider confidentiality properties in this paper, but our
approach could be extended to also provide confi-
dentiality guarantees.

• Secure linking. A software module on a node can
link to and call another module on the same node
with high assurance that it is calling the intended
module. The runtime interactions between a module
A and a module B that A links to can not be observed
or tampered with by other software on the same
node.

Obviously, these security properties are not entirely
independent of each other. For instance, it does not make
sense to have secure communication but no isolation:
given the power of our attackers, any message could then
simply be modified right after its integrity was verified by
a software module.

2.4 Application scenarios
This section illustrates some real-world application sce-
narios where the security properties above are relevant.
Today’s ICT environments involve many parties using
shared resources. This is not different for the sensor
space where applications have moved from the mono-
lithic, often static, single application domain (such as
wildlife [13] or volcano monitoring [46]) to a dynamic and
long-lived setting characterized by platform-application
decoupling [24] and resource sharing [33].

We present two illustrating scenarios. First, consider
the logistics domain [48]. Given node cost and complex-
ity, powerful nodes can be attached to containers, but
nodes attached to packages are low-end and resource-
constrained. The package is under control of the package

482 22nd USENIX Security Symposium USENIX Association

owner, the IP, a pharmaceutical company in this example
scenario. This pharmaceutical wants a software module
for continuous cold-chain visibility of the package.2 In
the warehouse, the shipping company wants to load a
radio-location software module to expedite package pro-
cessing. In the harbor, because of customs regulations
like C-TPAT [44], the container owner needs to attest
manifest validity and package integrity, requiring yet a
different software module on the package node.

Another representative scenario is found in the medi-
cal domain, where a hospital is equipped with a variety
of nodes used for many processes simultaneously, with
most of those processes security sensitive [29]. Building
nodes, for example, support facility management with
software modules for Heating, Ventilation, and Air Condi-
tioning (HVAC) or fire control and physical security, but
are also used for patient tracking and monitoring of vital
signals, an application where strong security requirements
are present with respect to health information. The same
nodes can even automate the supply chain by support-
ing asset and inventory management of medical goods
through a localization and tracking software module.

The above scenarios establish a clear need for isolation,
attestation, secure communication and secure linking of
the various software modules reflecting the dynamic ob-
jectives of the various stakeholders. We believe these
scenarios are strong evidence for the value of the Sancus
architecture.

3 Design of Sancus

The main design challenge is to realize the desired secu-
rity properties without trusting any software on the nodes,
and under the constraint that nodes are low-end resource
constrained devices. An important first design choice that
follows from the resource constrained nature of nodes
is that we limit cryptographic techniques to symmetric
key. While public key cryptography would simplify key
management, the cost of implementing public key cryp-
tography in hardware is too high [31].

We present an overview of our design, and then we
zoom in on the most interesting aspects.

3.1 Overview

Nodes. Nodes are low-cost, low-power microcon-
trollers (our implementation is based on the TI MSP430).
The processor in the nodes uses a von Neumann archi-
tecture with a single address space for instructions and
data. To distinguish actual nodes belonging to IP from
fake nodes set up by an attacker, IP shares a symmetric

2That is, the continuous monitoring of a temperature-controlled
supply chain.

key with each of its nodes. We call this key the node
master key, and use the notation KN for the node master
key of node N. Given our attacker model where the at-
tacker can control all software on the nodes, it follows
that this key must be managed by the hardware, and it is
only accessible to software in an indirect way.

Software Providers. Software providers are principals
that can deploy software to the nodes of IP. Each software
provider has a unique public ID SP.3 IP uses a key deriva-
tion function kdf to compute a key KN,SP = kdf(KN ,SP),
which SP will later use to setup secure communication
with its modules. Since node N has key KN , nodes can
compute KN,SP for any SP. The node will include a hard-
ware implementation of kdf so that the key can be com-
puted without trusting any software.

Software Modules. Software modules are essentially
simple binary files containing two mandatory sections:
a text section containing protected code and constants
and a protected data section. As we will see later, the
contents of the latter section are not attested and are there-
fore vulnerable to malicious modification before hardware
protection is enabled. Therefore, the processor will zero-
initialize its contents at the time the protection is enabled
to ensure an attacker can not have any influence on a
module’s initial state. Next to the two protected sections
discussed above, a module can opt to load a number of
unprotected sections. This is useful to, for example, limit
the amount of code that can access protected data. Indeed,
allowing code that does not need it access to protected
data increases the possibility of bugs that could leak data
outside of the module. In other words, this gives develop-
ers the opportunity to keep the trusted code of their own
modules as small as possible. Each section has a header
that specifies the start and end address of the section.

The identity of a software module consists of (1) the
content of the text section and (2) the start and end ad-
dresses of the text and protected data sections. We refer to
this second part of the identity as the layout of the module.
It follows that two modules with the exact same code and
data can coexist on the same node and will have different
identities as their layout will be different. We will use
notations such as SM or SM1 to denote the identity of a
specific software module.

Software modules are always loaded on a node on
behalf of a specific software provider SP. The loading
proceeds as expected, by loading each of the sections of
the module in memory at the specified addresses. For
each module loaded, the processor maintains the layout
information in a protected storage area inaccessible from

3Throughout this text, we will often refer to a software provider
using its ID SP.

USENIX Association 22nd USENIX Security Symposium 483

KN = Known by IP

KN,SP = kdf(KN ,SP)

KN,SP,SM = kdf(KN,SP,SM)

Figure 2: Overview of the keys used in Sancus. The node
key KN is only known by IP and the hardware. When SP
is registered, it receives its key KN,SP from IP which can
then be used to create module specific keys KN,SP,SM.

software. It follows that the node can compute the identity
of all modules loaded on the node: the layout information
is present in protected storage and the content of the text
section is in memory.

An important sidenote here is that the loading process
is not trusted. It is possible for an attacker to intervene
and modify the module during loading. However, this will
be detected as soon as the module communicates with its
provider or with other modules (see Section 3.3).

Finally, the node computes a symmetric key KN,SP,SM
that is specific to the module SM loaded on node N by
provider SP. It does so by first computing KN,SP =
kdf(KN ,SP) as discussed above, and then computing
KN,SP,SM = kdf(KN,SP,SM). All these keys are kept in
the protected storage and will only be available to soft-
ware indirectly by means of new processor instructions
we discuss later. Figure 2 gives an overview of the keys
used by Sancus.

Note that the provider SP can also compute the same
key, since he received KN,SP from IP and since he knows
the identity SM of the module he is loading on N. This
key will be used to attest the presence of SM on N to SP
and to protect the integrity of data sent from SM on N
to SP.

Figure 3 shows a schematic picture of a node with a
software module loaded. The picture also shows the keys
and the layout information that the node has to manage.

Memory protection on the nodes. The various mod-
ules on a node must be protected from interfering with
each other in undesired ways by means of some form
of memory protection. We base our design on the re-
cently proposed program-counter based memory access
control [43], as this memory access control model has
been shown to support strong isolation [42] as well as
remote attestation [14]. Roughly speaking, isolation is
implemented by restricting access to the protected data
section of a module such that it is only accessible while
the program counter is in the corresponding text section
of the same module. Moreover, the processor instructions
that use the keys KN,SP,SM will be program counter depen-
dent. Essentially the processor offers a special instruction

to compute a Message Authentication Code (MAC). If the
instruction is invoked from within the text section of a spe-
cific module SM, the processor will use key KN,SP,SM to
compute the MAC. Moreover, the instruction is only avail-
able after memory protection for module SM has been en-
abled. It follows that only a well-isolated SM installed on
behalf of SP on N can compute MACs with KN,SP,SM, and
this is the basis for implementing both remote attestation
and secure (integrity-protected) communication to SP.

Secure linking. A final aspect of our design is how
we deal with secure linking. When a software provider
sends a module SM1 to a node, this module can specify
that it wants to link to another module SM2 on the same
node, so that SM1 can call services of SM2 locally. SM1
specifies this by including a MAC of (the identity of)
SM2 computed using the key KN,SP,SM1 in an unprotected
section.4 The processor includes a new special instruction
that SM1 can call to check that (1) there is a module
loaded (with memory protection enabled) at the address
of SM2 and (2) the MAC of the identity of that module
has the expected value.

This initial authentication of SM2 is needed only once.
In Section 3.5, we will discuss a more efficient procedure
for subsequent authentications.

We currently do not incorporate caller authentication
in our design. That is, SM2 can not easily verify that it
has been called by SM1. Note that this can in principle be
implemented in software: SM1 can call SM2 providing a
secret nonce as parameter. SM2 can then call-back SM1,
passing the same nonce, asking for acknowledgement
that it had indeed been called by SM1. Future work will
include caller authentication in the core of Sancus’ design
to make it more efficient and transparent.

Separating the various uses of MACs. Sancus uses
MACs for a variety of integrity checks as well as for
key derivation. Our design includes a countermeasure to
avoid attacks where an attacker replays a MAC computed
for one purpose in another context. In order to achieve
separation between the different applications of MAC
functions, we make sure the first byte of the input to the
MAC function is different for each use case: 01 for the
derivation of KN,SP, 02 for the derivation of KN,SP,SM, 03
for attestation and 04 for MAC computations on data.

Confidentiality. As mentioned in Section 2.3, we de-
cided to not include confidentiality of communication in
our design. However, since we provide attestation of mod-
ules and authentication of messages, confidentiality can

4Note that since this MAC depends on the load addresses of SM1
and SM2, it may not be known until SM1 has been deployed. If this is
the case, SP can simply send the MAC after SM1 is deployed and the
load addresses are known.

484 22nd USENIX Security Symposium USENIX Association

Unprotected

E
nt

ry
po

in
t

Code & constants Unprotected

SM1 text section

Protected data

SM1 protected data section

Unprotected
M

em
or

y

KN,SP,SM1
SM1 metadata

Layout Keys

Protected
storage
area

KN

Node

Figure 3: A node with a software module loaded. Sancus ensures the keys can never leave the protected storage area by
only making them available to software in indirect ways through new processor instructions.

be implemented in software if necessary. One possibility
is deploying a module with the public key of SP and a
software implementation of the necessary cryptographic
primitives. Another possibility is establishing a shared
secret after deployment using a method such as Diffie-
Hellman key exchange with authenticated messages. Note
that implementing this last method is non-trivial due to
the lack of a secure source of randomness. However, in
the context of wireless sensor networks, methods have
been devised to create cryptographically secure random
number generators using only commonly available hard-
ware [17].

Since the methods outlined above are expensive in
terms of computation time and increase the TCB of mod-
ules, we are currently considering adding confidentiality
to the core of Sancus’ design. Exploring this is left as
future work.

This completes the overview of our design. We now
zoom in on the details of key management, memory ac-
cess control, secure communication, remote attestation
and secure linking.

3.2 Key management
We handle key management without relying on public-
key cryptography [32]. IP is a trusted authority for key
management. All keys are generated and/or known by IP.
There are three types of keys in our design (Figure 2):

• Node master keys KN shared between node N and IP.

• Software provider keys KN,SP shared between a
provider SP and a node N.

• Software module keys KN,SP,SM shared between a
node N and a provider SP, and the hardware of N
makes sure that only SM can use this key.

We have considered various ways to manage these keys.
A first design choice is how to generate the node master
keys. We considered three options: (1) using the same
node master key for every node, (2) randomly generating
a separate key for every node using a secure random
number generator and keeping a database of these keys
at IP, and (3) deriving the master node keys from an IP
master key using a key derivation function and the node
identity N.

We discarded option (1) because for this choice the
compromise of a single node master key breaks the se-
curity of the entire system. Options (2) and (3) are both
reasonable designs that trade off the amount of secure
storage and the amount of computation at IP’s site. Our
prototype uses option (2).

The software provider keys KN,SP and software module
keys KN,SP,SM are derived using a key derivation function
as discussed in the overview section.

Finally, an important question is how compromised
keys can be handled in our scheme. Since any secure key
derivation function has the property that deriving the mas-
ter key from the derived key is computationally infeasible,
the compromise of neither a module key KN,SP,SM nor a
provider key KN,SP needs to lead to the revocation of KN .
If KN,SP is compromised, provider SP should receive a

USENIX Association 22nd USENIX Security Symposium 485

new name SP′ since an attacker can easily derive KN,SP,SM
for any SM given KN,SP. If KN,SP,SM is compromised, the
provider can still safely deploy other modules. SM can
also still be deployed if the provider makes a change to
the text section of SM.5 If KN is compromised, it needs
to be revoked. Since KN is different for every node, this
means that only one node needs to be either replaced or
have its key updated.

3.3 Memory access control

Memory can be divided into (1) memory belonging to
modules, and (2) the rest, which we refer to as unprotected
memory. Memory allocated to modules is divided into
two sections, the text section, containing code and public
constants, and the protected data section containing all
the data that should remain confidential and should be
integrity protected. Modules can also have an unprotected
data section that is considered to be part of unprotected
memory from the point of view of the memory access
control system.

Apart from application-specific data, run-time metadata
such as the module’s call stack should typically also be in-
cluded in the protected data section. Indeed, if a module’s
stack were to be shared with untrusted code, confiden-
tial data may leak through stack variables or control-data
might be corrupted by an attacker. It is the module’s
responsibility to make sure that its call stack and other
run-time metadata is in its protected data section, but our
implementation comes with a compiler that ensures this
automatically (see Section 4.2).

The memory access control logic in the processor en-
forces that (1) data in the protected data section of a
module is only accessible while code in the text section of
that module is being executed, and (2) the code in the text
section can only be executed by jumping to a well-defined
entry point. The second part is important since it prevents
attackers from misusing code chunks in the text section
to extract data from the protected data section. For exam-
ple, without this guarantee, an attacker might be able to
launch a Return-Oriented Programming (ROP) attack [7]
by selectively combining gadgets found in the text sec-
tion. Note that, as shown in Figure 3, our design allows
modules to have a single entry point only. This may seem
like a restriction but, as we will show in Section 4.2, it
is not since multiple logical entry points can easily be
dispatched through a single physical entry point. Table 1
gives an overview of the enforced access rights.

Memory access control for a module is enabled at the
time the module is loaded. First, untrusted code (for
instance the node operating system) will load the module

5For example, a random byte could be appended to the text section
without changing the semantics of the module.

Table 1: Memory access control rules enforced by Sancus
using the traditional Unix notation. Each entry indicates
how code executing in the “from” section may access the
“to” section.

From/to Entry Text Protected Unprotected

Entry r-x r-x rw- rwx

Text r-x r-x rw- rwx

Unprotected/
Other SM r-x r-- --- rwx

in memory as discussed in Section 3.1. Then, a special
instruction is issued:

protect layout,SP

This processor instruction has the following effects:

• the layout is checked not to overlap with existing
modules, and a new module is registered by storing
the layout information in the protected storage of the
processor (see Section 3.1 and Figure 3);

• memory access control is enabled as discussed
above; and

• the module key KN,SP,SM is created – using the text
section and layout of the actually loaded module –
and stored in the protected storage.

This explains why we do not need to trust the operating
system that loads the module in memory: if the content of
the text section, or the layout information would be mod-
ified before execution of the protect instruction, then
the key generated for the module would be different and
subsequent attestations or authentications performed by
the module would fail. Once the protect instruction has
succeeded, the hardware-implemented memory access
control scheme ensures that software on the node can no
longer tamper with SM.

The only way to lift the memory access control is by
calling the processor instruction:

unprotect

The effect of this instruction is to lift the memory protec-
tion of the module from which the unprotect instruction
is called. A module should only call unprotect after it
has cleared the protected data section.

Finally, it remains to decide how to handle memory
access violations. We opt for the simple design of reset-
ting the processor and clearing memory on every reset.
This has the advantage of clearly being secure for the
security properties we aim for. However an important
disadvantage is that it may have a negative impact on
availability of the node: a bug in the software may cause

486 22nd USENIX Security Symposium USENIX Association

the node to reset and clear its memory. An interesting
avenue for future work is to come up with strategies to
handle memory access violations in less severe ways. In-
valid reads could return some default value as in secure
multi-execution [10]. Invalid writes or jumps could be
dropped or modified to actions that are allowed as in
edit-automata [35]. For instance, an invalid memory read
might just return zero, and an invalid jump might be redi-
rected to an exception handler.

3.4 Remote attestation and secure commu-
nication

The module key KN,SP,SM is managed by the hardware of
the node, and it can only be used by software in two ways.
The first way is by means of the following processor
instruction (we discuss the second way in Section 3.5):

MAC-seal start address, length, result address

This instruction can only be called from within the text
section of a protected module, and the effect is that the
processor will compute the MAC of the data in memory
starting at start address and up to start address + length
using the module key of the module performing the in-
struction. The resulting MAC value is written to result
address.

Modules can use this processor instruction to protect
the integrity of data they send to their provider. The
data plus the corresponding MAC can be sent using the
untrusted operating system over an untrusted network. If
the MAC verifies correctly (using KN,SP,SM) upon receipt
by the provider SP, he can be sure that this data indeed
comes from SM running on N on behalf of SP as the
node’s hardware makes sure only this specific module can
compute MACs with the module key KN,SP,SM.

To implement remote attestation, we only need to add
a freshness guarantee (i.e. protect against replay attacks).
Provider SP sends a fresh nonce No to the node N, and
the module SM returns the MAC of this nonce using the
key KN,SP,SM, computed using the MAC-seal instruction.
This gives the SP assurance that the correct module is
running on that node at this point in time.

Building on this scheme, we can also implement secure
communication. Whenever SP wants to receive data from
SM on N, it sends a request to the node containing a nonce
No and possibly some input data I that is to be provided
to SM. This request is received by untrusted code on the
node which passes No and I as arguments to the function
of SM to be called. When SM has calculated the output
O, it asks the processor to calculate a MAC of No ||I||O
using the MAC-seal instruction. This MAC is then sent
along with O to SP. By verifying the MAC with its own
copy of the module key, the provider has strong assurance
that O has been produced by SM on node N given input I.

3.5 Secure linking and local communica-
tion

In this section, we discuss how we assure the secure link-
ing property mentioned in Section 2.3. More specifically,
we consider the situation where a module SM1 wants to
call another module SM2 and wants to be ensured that
(1) the integrity of SM2 has not been compromised, and
(2) SM2 is correctly protected by the processor. The sec-
ond point is important, and is the reason why SM1 can
not just verify the integrity of the text section of SM2
by itself. SM1 will need help from the processor to give
assurance that SM2 is loaded with the expected layout and
that protection for SM2 is enabled.

In our design, if module SM1 wants to link securely
to SM2, SM1 should be deployed with a MAC of SM2
created with the module key KN,SP,SM1 . The processor
provides a special instruction to check the existence and
integrity of a module at a specified address:

MAC-verify address, expected MAC.

This instruction will:

• verify that a module is loaded (with protection en-
abled) at the provided address;

• compute the MAC of the identity of that module
using the module key of the module calling this in-
struction;

• compare the resulting MAC with the expected MAC
parameter of the instruction; and

• if the MACs were equal, return the module’s ID (to
be explained below), otherwise return zero.

This is the second (and final) way in which a module
can use its module key (next to the MAC-seal instruction
discussed in Section 3.4).

Using this processor instruction, a module can securely
check for the presence of another expected module, and
can then call that other module.

Since this authentication process is relatively expen-
sive (it requires the computation of a MAC), our design
also includes a more efficient mechanism for repeated
authentication. The processor will assign sequential IDs6

to modules that it loads, and will ensure that – within
one boot cycle – it never reuses these IDs. A processor
instruction:

get-id address

6To avoid confusion between the two different identity concepts used
in this text, we will refer to the hardware-assigned number as ID while
the text section and layout of a module is referred to as identity.

USENIX Association 22nd USENIX Security Symposium 487

Node

SMS

SM1

SMn

S

SP1

SPn

IP... ...

Figure 4: Setup of the sensor node example discussed in
Section 3.6. Sancus ensures only module SMS is allowed
to directly communicate with the sensor S. Other modules
securely link to SMS to receive sensor data in a trusted
way.

checks that a protected module is present at address and
returns the ID of the module. Once a module has checked
using the initial authentication method that the module at a
given address is the expected module, it can remember the
ID of that module, and then for subsequent authentications
it suffices to check that the same module is still loaded at
that address using the get-id instruction.

3.6 An end-to-end example

To make the discussion in the previous sections more
concrete, this section gives a small example of how our
design may be applied in the area of sensor networks.
Figure 4 shows our example setup. It contains a single
node to which a sensor S is attached; communication with
S is done through memory-mapped I/O. The owner of
the sensor network, IP, has deployed a special module on
the processor, SMS, that is in charge of communicating
with S. By ensuring that the protected data section of SMS
contains the memory-mapped I/O region of S, IP ensures
that no software outside of SMS is allowed to configure
or communicate directly with S; all requests to S need to
go through SMS.

Figure 4 also shows a number of software providers
(SP1, . . . ,SPn) who have each deployed a module
(SM1, . . . ,SMn). In the remainder of this section, we walk
the reader through the life cycle of a module in this exam-
ple setup.

The first step for a provider SP is to contact IP and
request permission to run a module on the sensor node.
If IP accepts the request, it provides SP with its provider
key for the node, KN,SP.

Next, SP creates the module SM, that he wants to run
on the processor and calculates the associated module
key, KN,SP,SM. Since SM will communicate with SMS, SP
requests the identity of SMS from IP. A MAC of this iden-

tity, created with KN,SP,SM, is included in an unprotected
section of SM so that SM can use it to authenticate SMS.
Then SM is sent to the node for deployment.

Once SM is received on the node, it is loaded, by un-
trusted software like the operating system, into mem-
ory and the processor is requested to protect SM, using
the protect processor instruction. As discussed, the
processor enables memory protection, computes the key
KN,SP,SM and stores it in hardware.

Now that SM has been deployed, SP can start request-
ing data from it. We will assume that SM’s function is to
request data from S through SMS, perform some transfor-
mation, filtering or aggregation on it and return the result
to SP. The first step is for SP to send a request containing
a nonce No to the node. Once the request is received (by
untrusted code) on the node, SM is called passing No as
an argument.

Before SM calls SMS, it needs to verify the integrity of
module SMS. It does this by executing the MAC-verify
instruction passing the address of the known MAC of SMS
and the address of the entry point it is about to call. The
ID of SMS is then returned to SM and, if it is non-zero,
SM calls SMS to receive the sensor data from S. SM will
usually also store the returned ID of SMS in its protected
data section so that future authentications of SMS can be
done with the get-id instruction.

Once the received sensor data has been processed into
the output data O, SM will request the processor to seal
No ||O using the MAC-seal instruction. SM then passes
this MAC together with O to the (untrusted) network stack
to be sent to SP. When SP receives the output of SM, it
can verify its integrity by recalculating the MAC.

4 Implementation

This section discusses the implementation of Sancus. We
have implemented hardware support for all security fea-
tures discussed in Section 3 as well as a compiler that can
create software modules suitable for deployment on the
hardware.

4.1 The processor
Our hardware implementation is based on an open source
implementation of the TI MSP430 architecture: the
openMSP430 from the OpenCores project [20]. We have
chosen this architecture because both GCC and LLVM
support it and there exists a lot of software running na-
tively on the MSP430, for example the Contiki operating
system.

The discussion is organized as follows. First, we ex-
plain the features added to the openMSP430 in order to
implement the isolation of software modules. Then, we
discuss how we added support for the attestation related

488 22nd USENIX Security Symposium USENIX Association

Inputs Registers Output

pc RT ≥ RT

TS <

prev pc ≥

TE <

mab ≥ violation

PS <

PE

mb en EN RT

Figure 5: Schematic of the Memory Access Logic (MAL),
the hardware used to enforce the memory access rules for
a single protected module.

operations. Finally, we describe the modifications we
made to the openMSP430 core itself.

Isolation. This part of the implementation deals with
enforcing the access rights shown in Table 1. For this
purpose, the processor needs access to the layout of ev-
ery software module that is currently protected. Since
the access rights need to be checked on every instruction,
accessing these values should be as fast as possible. For
this reason, we have decided to store the layout informa-
tion in special registers inside the processor. Note that
this means the total number of software modules that
can be protected at any particular time has a fixed upper
bound. This upper bound, NSM, can be configured when
synthesizing the processor.

Figure 5 gives an overview of the Memory Access
Logic (MAL) circuit used to enforce the access rights of
a single software module. This MAL circuit is instanti-
ated NSM times in the processor. It has four inputs: pc
and prev pc are the current and previous values of the
program counter, respectively. The input mab is the mem-
ory address bus – the address currently used for load or
store operations7 – while mb en indicates whether the
address bus is enabled for the current instruction. The
MAL circuit has one output, violation, that is asserted
whenever one of of the access rules is violated.

Apart from the input and output signals, the MAL cir-
cuit also keeps state in registers. The layout of the pro-
tected software module is captured in the TS (start of text
section), TE (end of text section), PS (start of protected
section) and PE (end of protected section) registers. The
EN register is set to 1 if there is currently a module being
protected by this MAL circuit instantiation. The layout
is saved in the registers when the protect instruction is

7Of course, this includes implicit memory accesses like a call

instruction.

called at which time EN is also set. When the unprotect
instruction is called, we just unset EN which disables all
checks.

In our prototype we load new modules through a debug
interface on the node and only the debug unit is allowed
to write to the memory region where text sections are
loaded. Therefore, the read-only nature of text sections
is already enforced and the MAL does not need to check
this. In a production implementation this check should be
added and would cost two additional comparators in the
MAL circuit.

Since the circuit is purely combinational, no extra cy-
cles are needed for the enforcement of access rights. As
explained above, this is exactly what we want since these
rights need to be checked for every instruction. The only
downside this approach might have is that this large com-
binational circuit may add to the length of the critical
path of the processor. We will show in Section 5 that
this is not the case. Note that since the MAL circuits are
instantiated in parallel, NSM does not influence the length
of the critical path.

Apart from hardware circuit blocks that enforce the
access rights, we also added a single hardware circuit
to control the MAL circuit instantiations. It implements
three tasks: (1) combine the violation signals from
every MAL instantiation into a single signal; (2) keep
track of the value of the current and previous program
counter; and (3) when the protect instruction is called,
select a free MAL instantiation to store the layout of the
new software module and assign it a unique ID.

Attestation. As explained in Section 3, two crypto-
graphic features are needed to implement our design:
the ability to create MACs and a key derivation func-
tion. Since our implementation is based on a small mi-
croprocessor, one of our main goals here is to make the
implementation of these features as small as possible.

The MAC algorithm we have chosen is HMAC, the
hash-based message authentication code. One of the rea-
sons we have chosen HMAC is its simplicity: only two
calls of a hash function are needed to calculate a MAC.
Another reason is that it serves as the basic building block
for HKDF [28], a key derivation function. This means a
lot of hardware can be shared between the implementa-
tions of the MAC and the key derivation function. For the
hash function, we have chosen to use SPONGENT because
it is one of the hash functions with the smallest hardware
footprint published to date [5]. More specifically, we
use the variant SPONGENT-128/128/8 implemented us-
ing a bit-parallel, word-serial architecture, which has a
small footprint while maintaining acceptable throughput.
Since SPONGENT-128/128/8 requires 8 bit inputs and the
openMSP430 architecture is 16 bit, an 8 bit buffer and
a tiny finite state machine are required to make the hash

USENIX Association 22nd USENIX Security Symposium 489

implementation and the processor work together.
All the keys used by the processor are 128 bits long.

The node key KN is fixed when the hardware is synthe-
sized and should be created using a secure random number
generator. When a module SM is loaded, the processor
will first derive KN,SP using the HKDF implementation
which is then used to derive KN,SP,SM. The latter key will
then be stored in the hardware MAL instantiation for the
loaded module. Note that we have chosen to cache the
module keys instead of calculating them on the fly when-
ever they are needed. This is a trade-off between size
and speed which we feel is justified because SPONGENT-
128/128/8 needs about 8.75 cycles per input bit. Since
the module key is needed for every remote attestation and
whenever the module’s output needs to be signed, having
to calculate it on the fly would introduce a runtime over-
head that we expect to be too high for most applications.

Under assumptions on the underlying hash function,
HMAC is known to be a pseudo-random function [4]. It
is shown [28, Section 3] that this is sufficient for a key
derivation function, provided that the key to the pseudo-
random function (in our notation the first input to kdf(., .))
is uniformly random or pseudo-random. This is the case
in our application, hence there is no need to use the more
elaborate “extract-and-expand” construction [28].

Core modifications. The largest modification that had
to be made to the core is the decoding of the new instruc-
tions. We have identified a range of opcodes, starting at
0x1380, that is unused in the MSP430 instruction set and
mapped the new instructions in that range.

Further modifications include routing the needed sig-
nals, like the memory address bus, into the access rights
modules as well as connecting the violation signal to the
internal reset. Note that the violation signal is stored into
a register before connecting it to the reset line to avoid
the asynchronous reset being triggered by combinational
glitches from the MAL circuit.

Figure 6 gives an overview of the added hardware
blocks when synthesized with support for two protected
modules. In order to keep the figure readable, we did
not add the input and output signals of the MAL blocks
shown in Figure 5.

4.2 The compiler
Although the hardware modifications enable software
developers to create protected modules, doing this cor-
rectly is tedious, as the module can have only one en-
try point, and as modules may need to implement their
own call-stack to avoid leaking the content of stack allo-
cated variables to unprotected code or to other modules.
Hence, we have implemented a compiler extension based
on LLVM [37] that deals with these low-level details. We

have also implemented a support library that offers an API
to perform some commonly used functions like creating
a MAC of data.

Our compiler compiles standard C files.8 To benefit
from Sancus, a developer only needs to indicate which
functions should be part of the protected module being
created, which functions should be entry points and what
data should be inside the protected section. For this pur-
pose, we offer three attributes – SM FUNC, SM ENTRY and
SM DATA – that can be used to annotate functions and
global variables.

Entry points. Since the hardware supports a single en-
try point per module only, the compiler implements multi-
ple logical entry points on top of the single physical entry
point by means of a jump table. The compiler assigns
every logical entry point a unique ID. When calling one
of the logical entry points, the ID of that entry point is
placed in a register before jumping to the physical entry
point of the module. The code at the physical entry point
then jumps to the correct function based on the ID passed
in the register.

When a module calls a function outside its text section,
the same entry point is also used when this function re-
turns. This is implemented by using a special ID for the
“return entry point”. If this ID is provided when enter-
ing the module, the address to return to is loaded from
the module’s stack. Of course, this is only safe if stack
switching is also used.

Stack switching. As discussed in Section 3.3, it is
preferable to place the runtime stack of software mod-
ules inside the protected data section. Our compiler auto-
matically handles everything needed to support multiple
stacks. For every module, space is reserved at a fixed
location in its protected section for the stack. The first
time a module is entered, the stack pointer is loaded with
the address of this start location of the stack. When the
module is exited, the current value of the stack pointer is
stored in the protected section so that it can be restored
when the module is reentered.

Exiting modules. Our compiler ensures that no data
is leaked through registers when exiting from a module.
When a module exits, either by calling an external func-
tion or by returning, any register that is not part of the
calling convention is cleared. That is, only registers that
hold a parameter or a return value retain their value.

Secure linking. Calls to protected modules are auto-
matically instrumented to verify the called module. This

8We use Clang [36] as our compiler frontend. This means any
C-dialect accepted by Clang is supported.

490 22nd USENIX Security Symposium USENIX Association

HMAC control

MAL

KSM1

MAL

KSM2SM
co

nt
ro

l

Key selection

KSP

KN

SPONGENT

Data selectionH
M

A
C

Instruction
parameters

hmac mab

mem in

16

128

128

128

8

128

16

4×16
mem out

5×16

16

16

Figure 6: Overview of the hardware blocks added to the openMSP430 core.

includes automatically calculating any necessary module
keys and MACs. Of course, a software provider needs to
provide its key to the compiler for this function to work.

4.3 Deployment

Since the identity of a SM is dependent on its load ad-
dresses on node N, SP must be aware of these addresses
in order to be able to calculate KN,SP,SM. Moreover, any
MACs needed for secure linking will also be dependent
on the load addresses of other modules. Enforcing static
load addresses is obviously not a scalable solution given
that we target systems supporting dynamic loading of
software modules by third-party software providers.

Given these difficulties, we felt the need to develop
a proof-of-concept software stack providing a scalable
deployment solution. Our stack consists of two parts:
a set of tools used by SP to deploy SM on N and host
software running on N. Note that this host software is
not part of any protected module and, hence, does not
increase the size of the TCB.

We will now describe the deployment process imple-
mented by our software stack. First, SP creates a relocat-
able Executable and Linkable Format (ELF) file of SM
and sends it to N. The host software on N receives this
file, finds a free memory area to load SM and relocates it
using a custom made dynamic ELF loader. Then, hard-
ware protection is enabled for SM and a symbol table is
sent back to SP. This symbol table contains the addresses
of any global functions9 as well as the load addresses of
all protected modules on N. Using this symbol table, SP
is able to reconstruct the exact same image of SM as the
one loaded on N. This image can then be used to calcu-
late KN,SP,SM and any needed MACs. These MACs can

9For example, libc functions and I/O routines.

then be sent to N to be loaded in memory. Note that this
deployment process has been fully automated.

After SM has been deployed, the host software on N
provides an interface to be able to call its entry points.
This can be used by SP to attest that SM has not been
compromised during deployment and that the hardware
protection has been correctly activated.

5 Evaluation

In this section we evaluate Sancus in terms of runtime
performance, power consumption, impact on chip size
and provided security. All experiments were performed
using a Xilinx XC6SLX9 Spartan-6 FPGA running at
20MHz.

Performance A first important observation from the
point of view of performance is that our hardware modifi-
cations do not impact the processor’s critical path. Hence,
the processor can keep operating at the same frequency,
and any code that does not use our new instructions runs at
the same speed. This is true independent of the number of
software modules NSM supported in the processor.10 The
performance results below are also independent of NSM.

To quantify the impact on performance of our exten-
sions, we first performed microbenchmarks to measure
the cost of each of the new instructions. The get-id and
unprotect instructions are very fast: they both take one
clock cycle. The other three instructions compute hashes
or key derivations, and hence their run time cost depends
linearly on the size of the input they handle. We summa-
rize their cost in Table 2. Note that since MAC-seal and
MAC-verify both compute the HMAC of the input data,
one might expect that they would need the same number

10We verified this experimentally for values of NSM up to 8.

USENIX Association 22nd USENIX Security Symposium 491

Table 2: The number of cycles needed by the new instruc-
tions for various input sizes. The input for the instructions
is as follows: protect: the text section of the software
module being protected; MAC-seal: the data to be signed;
and MAC-verify: the text section of the software module
to be verified.

Instruction 256B 512B 1024B

protect 30,344 48,904 86,016
MAC-seal 24,284 42,848 79,968
MAC-verify 24,852 43,416 80,536

of cycles. However, since MAC-verify includes the lay-
out of the module to be verified in the input to HMAC, it
has a fixed overhead of 568 cycles.

To give an indication of the impact on performance in
real-world scenarios, we performed the following macro
benchmark. We configured our processor as in the exam-
ple shown in Figure 4. We measured the time it takes from
the moment a request arrives at the node until the response
is ready to be sent back. More specifically, the following
operations are timed: (1) The original request is passed,
together with the nonce, to SMi; (2) SMi requests SMS for
sensor data; (3) SMi performs some transformation on the
received data; and (4) SMi signs its output together with
the nonce. The overhead introduced by Sancus is due to
a call to MAC-verify in step (2) and a call to MAC-seal

in step (4) as well as the entry and exit code introduced
by the compiler. Since this overhead is fixed, the amount
of computation performed in step (3) will influence the
relative overhead of Sancus. Note that the size of the text
section of MS is 218 bytes and that nonces and output data
signed by Mi both have a size of 16 bits.

By using the Timer A module of the MSP430, we
measured the fixed overhead to be 28,420 cycles for the
first time data is requested from the module. Since the
call to MAC-verify in step (2) is not needed after the
initial verification, we also measured the overhead of any
subsequent requests, which is 6,341 cycles. Given these
values, the relative overhead can be calculated in function
of the number of cycles used during the computation in
step (3). The result is shown in Figure 7.

We believe that these numbers are clear evidence of the
practicality of our approach.

Area The unmodified Spartan-6 FPGA implementation
of the openMSP430 uses 998 slice registers and 2,322
slice LUTs. The fixed overhead11 of our modification is
586 registers and 1,138 LUTs. For each protected module,
there is an additional overhead of 213 registers and 307
LUTs.

11That is, the overhead when NSM = 0.

0 1 2 3 4 5
·104

100

101

102

103

Cycles

O
ve

rh
ea

d

1st run
nth run

Figure 7: Relative overhead, in function of the number
of cycles used for calculations, of Sancus on the macro
benchmark. The nth run is significantly faster due to the
secure linking optimization discussed in Section 3.5.

There are two easy ways to improve these numbers.
First, if computational overhead is of lesser concern, the
module key may be calculated on the fly instead of storing
it in registers. Second, in applications with lower security
requirements, smaller keys may be used reducing the
number registers used for storage as well as the internal
state of the SPONGENT implementation. Exploring other
improvements is left as future work.

Power Our static power analysis tool12 predicts an in-
crease of power consumption for the processor of around
6% for the processor running at 20MHz. We measured
power consumption experimentally, but could not detect
a significant difference between an unmodified processor
and our Sancus prototype. Of course, since Sancus intro-
duces a runtime overhead, the total overhead in energy
consumption will be accordingly.

Security We provide an informal security argument for
each of the security properties Sancus aims for (see Sec-
tion 2.3).

First, software module isolation is enforced by the
memory access control logic in the processor. Both the
access control model as well as its implementation are
sufficiently simple to have a high assurance in the correct-
ness of the implementation. Moreover, Agten et al. [1]
have shown that higher-level isolation properties (similar
to isolation between Java components) can be achieved by
compiling to a processor with program-counter dependent
memory access control. Sancus does not protect against
vulnerabilities in the implementation of a module. If a
module contains buffer-overflows or other memory safety
related vulnerabilities, attackers can exploit them using
well-known techniques [15] to get unintended access to

12We used Xilinx XPower Analyzer.

492 22nd USENIX Security Symposium USENIX Association

data or functionality in the module. Dealing with such vul-
nerabilities is an orthogonal problem, and a wide range of
countermeasures for addressing them has been developed
over the past decades [47].

The security of remote attestation and secure commu-
nication both follow from the following key observation:
the computation of MACs with the module key is only
possible by a module with the correct identity running on
top of a processor configured with the correct node key
(and of course by the software provider of the module).
As a consequence, if an attacker succeeds in completing
a successful attestation or communication with the soft-
ware provider, he must have done it with the help of the
actual module. In other words, within our attacker model,
only API-level attacks against the module are possible,
and it is indeed possible to develop modules that are vul-
nerable to such attacks, for instance if a module offers a
function to compute MACs with its module key on arbi-
trary input data. But if the module developer avoids such
API-level attacks, the security of Sancus against attackers
conforming to our attacker model follows.

The security of secure linking is the most intricate secu-
rity property of Sancus. It follows again from the fact that
computation of MACs with the module key is only possi-
ble by a module with the correct identity running on top
of a processor configured with the correct node key, or by
the software provider of the module. Hence, an attacker
can not forge MACs of other modules that a module wants
to link to and call. Because of our technique for separa-
tion of uses of MACs (Section 3.1), he can also not do
this by means of an API level attack against the module.
As a consequence, if a module implements a MAC-verify
check for any module it calls13, this verification can only
be successful for modules for which the software provider
has deployed the MAC. Hence the module will only call
modules that its provider has authorized it to call.

6 Related Work

Ensuring strong isolation of code and data is a challenging
problem. Many solutions have been proposed, ranging
from hardware-only to software-only mechanisms, both
for high-end and low-end devices.

Isolation in high-end devices. The Multics [9] operat-
ing system marked the start of the use of protection rings
to isolate less trusted software. Despite decades of re-
search, high-end devices equipped with this feature are
still being attacked successfully. More recently, research
has switched to focus on the isolation of software mod-
ules with a minimal TCB by relying on recently added
hardware support. McCune et al. propose Flicker [39], a

13Note that our compiler automatically adds these checks.

system that relies on a TPM chip and trusted computing
functionality of modern CPUs, to provide strong isolation
of modules with only a TCB of 250 LOCs. Subsequent
research [3, 38, 40, 42] focuses on various techniques to
reduce the number of TPM accesses and significantly in-
crease performance, for example by taking advantage of
hardware support for virtual machines.

The idea of deriving module specific keys from a mas-
ter key using (a digest of) the module’s code is also used
by the On-board Credentials project [27]. They use exist-
ing hardware features to enforce the isolated execution of
credential programs and securely store secret keys. Only
one credential program can effectively be loaded at any
single moment but the concept of families is introduced
to be able to share secrets between different programs.
Although secure communication is implemented using
symmetric cryptography, they rely on public key cryptog-
raphy during the deployment process.

Isolation in low-end devices. While recent research
results on commodity computing platforms are promising,
the hardware components they rely on require energy
levels that significantly exceed what is available to many
embedded devices such as pacemakers [22] and sensor
nodes. A lack of strong security measures for such devices
significantly limits how they can be applied and vendors
may be required to develop closed systems or leave their
system vulnerable to attack.

Sensor operating systems and applications, for exam-
ple, were initially compiled into a monolithic and static
image without safety considerations, as in early versions
of TinyOS [34]. The reality that sensor deployments are
long-lived, and that the full set of modules and their de-
tailed functionality is often unknown at development time,
resulted in dynamic modular operating systems such as
SOS [23] or Contiki [12]. As stated in the introduction of
this paper, the availability of networked modular update
capability creates new threats, particularly if the software
modules originate from different stakeholders and can
no longer be fully trusted. Many ideas have been put
forward to address the safety concerns of these shared
environments, and solutions to provide memory protec-
tion, isolation and (fair) multithreading have appeared.
t-kernel [21] rewrites code on the sensor at load time.
Coarse-grained memory protection (basically MMU em-
ulation) is available for the SOS operating system by
sandboxing in the Harbor system [30] through a combi-
nation of backend compile time rewriting and run time
checking on the sensor. Safe TinyOS [8] equally uses a
combination of backend compile time analysis and mini-
mal run time error handlers to provide type and memory
safety. Java’s language features and the Isolate mecha-
nism are used on the Sun SPOT embedded platform using
the Squawk VM [41]. SenShare [33] provides a virtual

USENIX Association 22nd USENIX Security Symposium 493

machine for TinyOS applications. While these proposed
solutions do not require any hardware modifications, they
all incur a software-induced overhead. Moreover, third-
party software providers must rely on the infrastructure
provider to correctly rewrite modules running on the same
device.

To increase security of embedded devices,
Strackx et al. [43] introduced the idea of a program-
counter based access control model, but without
providing any implementation. Agten et al. [1] prove that
isolation of code and data within such a model only relies
on the vendor of the module and cannot be influenced
by other modules on the same system. More recently
El Defrawy et al. [14] implemented hardware support
that allows attestation that a module executed correctly
without any interference, based on a similar access
control model. While this is a significant step forward,
it does not provide isolation as sensitive data cannot be
kept secret from other modules between invocations.

7 Conclusion

The increased connectivity and extensibility of networked
embedded devices as illustrated for instance by the trend
towards decoupling applications and platform in sensor
networks leads to exciting new applications, but also to
significant new security threats. This paper proposed a
novel security architecture called Sancus, that is low-cost
yet provides strong security guarantees with a very small,
hardware-only, TCB.

8 Availability

To ensure reproducibility and verifiability of our re-
sults, we make the hardware design and the software
of our prototype publicly available. All source files,
as well as binary packages and documentation can
be found at https://distrinet.cs.kuleuven.be/
software/sancus/.

9 Acknowledgments

This work has been supported in part by the Intel Lab’s
University Research Office. This research is also partially
funded by the Research Fund KU Leuven, and by the EU
FP7 project NESSoS. With the financial support from the
Prevention of and Fight against Crime Programme of the
European Union (B-CCENTRE).

References
[1] AGTEN, P., STRACKX, R., JACOBS, B., AND PIESSENS, F. Se-

cure compilation to modern processors. In 2012 IEEE 25th Com-

puter Security Foundations Symposium (CSF 2012) (Los Alamitos,
CA, USA, 2012), IEEE Computer Society, pp. 171–185.

[2] ANDERSON, R. J., AND KUHN, M. G. Low cost attacks on tam-
per resistant devices. In Proceedings of the 5th International Work-
shop on Security Protocols (London, UK, UK, 1998), Springer-
Verlag, pp. 125–136.

[3] AZAB, A., NING, P., AND ZHANG, X. Sice: a hardware-level
strongly isolated computing environment for x86 multi-core plat-
forms. In Proceedings of the 18th ACM conference on Computer
and communications security (2011), ACM, pp. 375–388.

[4] BELLARE, M., CANETTI, R., AND KRAWCZYK, H. Keying
hash functions for message authentication. In Proceedings of the
16th Annual International Cryptology Conference on Advances
in Cryptology (London, UK, UK, 1996), CRYPTO ’96, Springer-
Verlag, pp. 1–15.

[5] BOGDANOV, A., KNEZEVIC, M., LEANDER, G., TOZ, D.,
VARICI, K., AND VERBAUWHEDE, I. Spongent: The design
space of lightweight cryptographic hashing. vol. 99, IEEE Com-
puter Society, p. 1.

[6] BONEH, D., DEMILLO, R. A., AND LIPTON, R. J. On the
importance of eliminating errors in cryptographic computations.
J. Cryptology 14 (2001), 101–119.

[7] CASTELLUCCIA, C., FRANCILLON, A., PERITO, D., AND SORI-
ENTE, C. On the difficulty of software-based attestation of em-
bedded devices. In Proceedings of the 16th ACM conference on
Computer and communications security (New York, NY, USA,
2009), CCS ’09, ACM, pp. 400–409.

[8] COOPRIDER, N., ARCHER, W., EIDE, E., GAY, D., AND
REGEHR, J. Efficient memory safety for TinyOS. In Proceed-
ings of the 5th international conference on Embedded networked
sensor systems (New York, NY, USA, 2007), SenSys ’07, ACM,
pp. 205–218.

[9] CORBATO, F., AND VYSSOTSKY, V. Introduction and overview of
the Multics system. In Proceedings of the November 30–December
1, 1965, Fall joint computer conference, part I (1965), ACM,
pp. 185–196.

[10] DEVRIESE, D., AND PIESSENS, F. Noninterference Through
Secure Multi-Execution. In Proceedings of the IEEE Symposium
on Security and Privacy (2010), pp. 109–124.

[11] DOLEV, D., AND YAO, A. C. On the security of public key
protocols. IEEE Transactions on Information Theory 29, 2 (1983),
198–208.

[12] DUNKELS, A., FINNE, N., ERIKSSON, J., AND VOIGT, T. Run-
time dynamic linking for reprogramming wireless sensor networks.
In Proceedings of the 4th international conference on Embedded
networked sensor systems (New York, NY, USA, 2006), SenSys
’06, ACM, pp. 15–28.

[13] DYO, V., ELLWOOD, S. A., MACDONALD, D. W., MARKHAM,
A., MASCOLO, C., PÁSZTOR, B., TRIGONI, N., AND
WOHLERS, R. Wildlife and environmental monitoring using
RFID and WSN technology. In Proceedings of the 7th ACM Con-
ference on Embedded Networked Sensor Systems (New York, NY,
USA, 2009), SenSys ’09, ACM, pp. 371–372.

[14] ELDEFRAWY, K., FRANCILLON, A., PERITO, D., AND TSUDIK,
G. SMART: Secure and Minimal Architecture for (Establishing
a Dynamic) Root of Trust. In NDSS 2012, 19th Annual Network
and Distributed System Security Symposium, February 5-8, San
Diego, USA (San Diego, UNITED STATES, 02 2012).

[15] ERLINGSSON, U., YOUNAN, Y., AND PIESSENS, F. Low-level
software security by example. In Handbook of Information and
Communication Security. Springer, 2010.

[16] FAROOQ, M. O., AND KUNZ, T. Operating systems for wireless
sensor networks: A survey. Sensors 11, 6 (2011), 5900–5930.

494 22nd USENIX Security Symposium USENIX Association

[17] FRANCILLON, A., AND CASTELLUCCIA, C. TinyRNG: A cryp-
tographic random number generator for wireless sensors network
nodes. In In Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks and Workshops, 2007. WiOpt 2007. 5th Inter-
national Symposium on (2007), pp. 1–7.

[18] FRANCILLON, A., AND CASTELLUCCIA, C. Code injection
attacks on Harvard-architecture devices. In Proceedings of the
15th ACM conference on Computer and communications security
(New York, NY, USA, 2008), CCS ’08, ACM, pp. 15–26.

[19] GIANNETSOS, T., DIMITRIOU, T., AND PRASAD, N. R. Self-
propagating worms in wireless sensor networks. In Proceedings of
the 5th international student workshop on Emerging networking
experiments and technologies (New York, NY, USA, 2009), Co-
Next Student Workshop ’09, ACM, pp. 31–32.

[20] GIRARD, O. openMSP430. http://opencores.org/

project,openmsp430.

[21] GU, L., AND STANKOVIC, J. A. t-kernel: providing reliable OS
support to wireless sensor networks. In Proceedings of the 4th
international conference on Embedded networked sensor systems
(Boulder, Colorado, USA, 2006), ACM, pp. 1–14.

[22] HALPERIN, D., HEYDT-BENJAMIN, T., RANSFORD, B.,
CLARK, S., DEFEND, B., MORGAN, W., FU, K., KOHNO, T.,
AND MAISEL, W. Pacemakers and implantable cardiac defibrilla-
tors: Software radio attacks and zero-power defenses. In Security
and Privacy, 2008. SP 2008. IEEE Symposium on (2008), Ieee,
pp. 129–142.

[23] HAN, C.-C., KUMAR, R., SHEA, R., KOHLER, E., AND SRI-
VASTAVA, M. A dynamic operating system for sensor nodes. In
Proceedings of the 3rd international conference on Mobile systems,
applications, and services (New York, NY, USA, 2005), MobiSys
’05, ACM, pp. 163–176.

[24] HEINZELMAN, W. B., MURPHY, A. L., CARVALHO, H. S.,
AND PERILLO, M. A. Middleware to support sensor network
applications. IEEE Network 18, 1 (2004), 6–14.

[25] KOCHER, P. C. Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems. In Proceedings of the
16th Annual International Cryptology Conference on Advances
in Cryptology (London, UK, UK, 1996), CRYPTO ’96, Springer-
Verlag, pp. 104–113.

[26] KOCHER, P. C., JAFFE, J., AND JUN, B. Differential power anal-
ysis. In Proceedings of the 19th Annual International Cryptology
Conference on Advances in Cryptology (London, UK, UK, 1999),
CRYPTO ’99, Springer-Verlag, pp. 388–397.

[27] KOSTIAINEN, K., EKBERG, J.-E., ASOKAN, N., AND
RANTALA, A. On-board credentials with open provisioning. In
Proceedings of the 4th International Symposium on Information,
Computer, and Communications Security (New York, NY, USA,
2009), ASIACCS ’09, ACM, pp. 104–115.

[28] KRAWCZYK, H., AND ERONEN, P. HMAC-based extract-and-
expand key derivation function (HKDF). http://tools.ietf.
org/html/rfc5869.

[29] KUMAR, P., AND LEE, H.-J. Security issues in healthcare appli-
cations using wireless medical sensor networks: A survey. Sensors
12, 1 (2011), 55–91.

[30] KUMAR, R., KOHLER, E., AND SRIVASTAVA, M. Harbor:
software-based memory protection for sensor nodes. In Proceed-
ings of the 6th international conference on Information processing
in sensor networks (New York, NY, USA, 2007), IPSN ’07, ACM,
pp. 340–349.

[31] LEE, Y. K., SAKIYAMA, K., BATINA, L., AND VERBAUWHEDE,
I. Elliptic-curve-based security processor for RFID. Computers,
IEEE Transactions on 57, 11 (nov. 2008), 1514 –1527.

[32] LEIGHTON, F. T., AND MICALI, S. Secret-key agreement with-
out public-key cryptography. In Proceedings of the 13th Annual
International Cryptology Conference on Advances in Cryptology
(London, UK, UK, 1994), CRYPTO ’93, Springer-Verlag, pp. 456–
479.

[33] LEONTIADIS, I., EFSTRATIOU, C., MASCOLO, C., AND
CROWCROFT, J. Senshare: transforming sensor networks into
multi-application sensing infrastructures. In Proceedings of the
9th European conference on Wireless Sensor Networks (Berlin,
Heidelberg, 2012), EWSN’12, Springer-Verlag, pp. 65–81.

[34] LEVIS, P. Experiences from a decade of tinyos development. In
Proceedings of the 10th USENIX conference on Operating Systems
Design and Implementation (Berkeley, CA, USA, 2012), OSDI’12,
USENIX Association, pp. 207–220.

[35] LIGATTI, J., BAUER, L., AND WALKER, D. Edit automata:
enforcement mechanisms for run-time security policies. Interna-
tional Journal of Information Security 4, 1-2 (2005), 2–16.

[36] LLVM DEVELOPER GROUP. Clang. http://clang.llvm.

org/.

[37] LLVM DEVELOPER GROUP. LLVM. http://llvm.org/.

[38] MCCUNE, J. M., LI, Y., QU, N., ZHOU, Z., DATTA, A.,
GLIGOR, V., AND PERRIG, A. TrustVisor: Efficient TCB re-
duction and attestation. In Proceedings of the IEEE Symposium
on Security and Privacy (May 2010).

[39] MCCUNE, J. M., PARNO, B., PERRIG, A., REITER, M. K.,
AND ISOZAKI, H. Flicker: An execution infrastructure for TCB
minimization. In Proceedings of the ACM European Conference
in Computer Systems (EuroSys) (Apr. 2008), ACM, pp. 315–328.

[40] SAHITA R, WARRIER U., D. P. Protecting Critical Applications
on Mobile Platforms. Intel Technology Journal 13 (2009), 16–35.

[41] SIMON, D., CIFUENTES, C., CLEAL, D., DANIELS, J., AND
WHITE, D. Java™ on the bare metal of wireless sensor devices:
the squawk java virtual machine. In VEE (2006), H.-J. Boehm and
D. Grove, Eds., ACM, pp. 78–88.

[42] STRACKX, R., AND PIESSENS, F. Fides: Selectively hardening
software application components against kernel-level or process-
level malware. In Proceedings of the 19th ACM Conference on
Computer and Communications Security (CCS 2012), (Oct. 2012),
ACM Press, pp. 2–13.

[43] STRACKX, R., PIESSENS, F., AND PRENEEL, B. Efficient iso-
lation of trusted subsystems in embedded systems. In Lecture
Notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering: Security and Privacy in
Communication Networks (September 2010), vol. 50, Springer,
pp. 1–18.

[44] U.S. CUSTOMS AND BORDER PROTECTION. C-TPAT. http:
//www.cbp.gov/ctpat.

[45] VIEGA, J., AND THOMPSON, H. The state of embedded-device
security (spoiler alert: It’s bad). Security Privacy, IEEE 10, 5
(Sept.-Oct. 2012), 68 –70.

[46] WERNER-ALLEN, G., LORINCZ, K., JOHNSON, J., LEES, J.,
AND WELSH, M. Fidelity and yield in a volcano monitoring
sensor network. In Proceedings of the 7th symposium on Operating
systems design and implementation (Berkeley, CA, USA, 2006),
OSDI ’06, USENIX Association, pp. 381–396.

[47] YOUNAN, Y., JOOSEN, W., AND PIESSENS, F. Runtime counter-
measures for code injection attacks against c and c++ programs.
ACM Comput. Surv. 44, 3 (June 2012), 17:1–17:28.

[48] ZÖLLER, S., REINHARDT, A., MEYER, M., AND STEINMETZ,
R. Deployment of wireless sensor networks in logistics potential,
requirements, and a testbed. In Proceedings of the 9th GI/ITG
KuVS Fachgespräch Drahtlose Sensornetze (Sep 2010), R. Kolla,
Ed., Julius-Maximilians-Universität Würzburg, pp. 67–70.

