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Abstract
Dowser is a ‘guided’ fuzzer that combines taint tracking,

program analysis and symbolic execution to find buffer

overflow and underflow vulnerabilities buried deep in a

program’s logic. The key idea is that analysis of a pro-

gram lets us pinpoint the right areas in the program code

to probe and the appropriate inputs to do so.

Intuitively, for typical buffer overflows, we need con-

sider only the code that accesses an array in a loop, rather

than all possible instructions in the program. After find-

ing all such candidate sets of instructions, we rank them

according to an estimation of how likely they are to con-

tain interesting vulnerabilities. We then subject the most

promising sets to further testing. Specifically, we first

use taint analysis to determine which input bytes influ-

ence the array index and then execute the program sym-

bolically, making only this set of inputs symbolic. By

constantly steering the symbolic execution along branch

outcomes most likely to lead to overflows, we were able

to detect deep bugs in real programs (like the nginx

webserver, the inspircd IRC server, and the ffmpeg

videoplayer). Two of the bugs we found were previ-

ously undocumented buffer overflows in ffmpeg and the

poppler PDF rendering library.

1 Introduction

We discuss Dowser, a ‘guided’ fuzzer that combines taint

tracking, program analysis and symbolic execution, to

find buffer overflow bugs buried deep in the program’s

logic.

Buffer overflows are perennially in the top 3 most dan-

gerous software errors [12] and recent studies suggest

this will not change any time soon [41, 38]. There are

two ways to handle them. Either we harden the software

with memory protectors that terminate the program when

an overflow occurs (at runtime), or we track down the

vulnerabilities before releasing the software (e.g., in the

testing phase).

Memory protectors include common solutions like

shadow stacks and canaries [11], and more elaborate

compiler extensions like WIT [3]. They are effective in

preventing programs from being exploited, but they do

not remove the overflow bugs themselves. Although it

is better to crash than to allow exploitation, crashes are

undesirable too!

Thus, vendors prefer to squash bugs beforehand and

typically try to find as many as they can by means of fuzz

testing. Fuzzers feed programs invalid, unexpected, or

random data to see if they crash or exhibit unexpected be-

havior1. As an example, Microsoft made fuzzing manda-

tory for every untrusted interface for every product, and

their fuzzing solution has been running 24/7 since 2008

for a total of over 400 machine years [18].

Unfortunately, the effectiveness of most fuzzers is

poor and the results rarely extend beyond shallow bugs.

Most fuzzers take a ‘blackbox’ approach that focuses

on the input format and ignores the tested software tar-

get. Blackbox fuzzing is popular and fast, but misses

many relevant code paths and thus many bugs. Blackbox

fuzzing is a bit like shooting in the dark: you have to be

lucky to hit anything interesting.

Whitebox fuzzing, as implemented in [18, 7, 10], is

more principled. By means of symbolic execution, it ex-

ercises all possible execution paths through the program

and thus uncovers all possible bugs – although it may

take years to do. Since full symbolic execution is slow

and does not scale to large programs, it is hard to use it to

find complex bugs in large programs [7, 10]. In practice,

the aim is therefore to first cover as much unique code as

possible. As a result, bugs that require a program to ex-

ecute the same code many times (like buffer overflows)

are hard to trigger except in very simple cases.

Eventual completeness, as provided by symbolic ex-

ecution, is both a strength and a weakness, and in this

paper, we evaluate the exact opposite strategy. Rather

1See http://www.fuzzing.org/ for a collection of available

fuzzers
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than testing all possible execution paths, we perform spot

checks on a small number of code areas that look likely

candidates for buffer overflow bugs and test each in turn.

The drawback of our approach is that we execute a

symbolic run for each candidate code area—in an itera-

tive fashion. Moreover, we can discover buffer overflows

only in the loops that we can exercise. On the other hand,

by homing in on promising code areas directly, we speed

up the search considerably, and manage to find compli-

cated bugs in real programs that would be hard to find

with most existing fuzzers.

Contributions The goal we set ourselves was to de-

velop an efficient fuzzer that actively searches for buffer

overflows directly. The key insight is that careful analy-

sis of a program lets us pinpoint the right places to probe

and the appropriate inputs to do so. The main contribu-

tion is that our fuzzer directly zooms in on these buffer

overflow candidates and explores a novel ‘spot-check’

approach in symbolic execution.

To make the approach work, we need to address two

main challenges. The first challenge is where to steer

the execution of a program to increase the chances of

finding a vulnerability. Whitebox fuzzers ‘blindly’ try to

execute as much of the program as possible, in the hope

of hitting a bug eventually. Instead, Dowser uses infor-

mation about the target program to identify code that is

most likely to be vulnerable to a buffer overflow.

For instance, buffer overflows occur (mostly) in code

that accesses an array in a loop. Thus, we look for such

code and ignore most of the remaining instructions in the

program. Furthermore, Dowser performs static analysis

of the program to rank such accesses. We will evalu-

ate different ranking functions, but the best one so far

ranks the array accesses according to complexity. The

intuition is that code with convoluted pointer arithmetic

and/or complex control flow is more prone to memory

errors than straightforward array accesses. Moreover, by

focusing on such code, Dowser prioritizes bugs that are

complicated—typically, the kind of vulnerabilities that

static analysis or random fuzzing cannot find. The aim

is to reduce the time wasted on shallow bugs that could

also have been found using existing methods. Still, other

rankings are possible also, and Dowser is entirely agnos-

tic to the ranking function used.

The second challenge we address is how to steer the

execution of a program to these “interesting” code areas.

As a baseline, we use concolic execution [43]: a com-

bination of concrete and symbolic execution, where the

concrete (fixed) input starts off the symbolic execution.

In Dowser, we enhance concolic execution with two op-

timizations.

First, we propose a new path selection algorithm.

As we saw earlier, traditional symbolic execution aims

at code coverage—maximizing the fraction of individ-

ual branches executed [7, 18]. In contrast, we aim

for pointer value coverage of selected code fragments.

When Dowser examines an interesting pointer derefer-

ence, it steers the symbolic execution along branches that

are likely to alter the value of the pointer.

Second, we reduce the amount of symbolic input as

much as we can. Specifically, Dowser uses dynamic

taint analysis to determine which input bytes influence

the pointers used for array accesses. Later, it treats only

these inputs as symbolic. While taint analysis itself is not

new, we introduce novel optimizations to arrive at a set

of symbolic inputs that is as accurate as possible (with

neither too few, nor too many symbolic bytes).

In summary, Dowser is a new fuzzer targeted at ven-

dors who want to test their code for buffer overflows and

underflows. We implemented the analyses of Dowser as

LLVM [23] passes, while the symbolic execution step

employs S2E [10]. Finally, Dowser is a practical solu-

tion. Rather than aiming for all possible security bugs, it

specifically targets the class of buffer overflows (one of

the most, if not the most, important class of attack vec-

tors for code injection). So far, Dowser found several

real bugs in complex programs like nginx, ffmpeg, and

inspircd. Most of them are extremely difficult to find

with existing symbolic execution tools.

Assumptions and outline Throughout this paper, we

assume that we have a test suite that allows us to reach

the array accesses. Instructions that we cannot reach, we

cannot test. In the remainder, we start with a big picture

and the running example (Section 2). Then, we discuss

the three main components of Dowser in turn: the se-

lection of interesting code fragments (Section 3), the use

of dynamic taint analysis to determine which inputs in-

fluence the candidate instructions (Section 4), and our

approach to nudge the program to trigger a bug during

symbolic execution (Section 5). We evaluate the system

in Section 6, discuss the related projects in Section 7. We

conclude in Section 8.

2 Big picture

The main goal of Dowser is to manipulate the pointers

that instructions use to access an array in a loop, in the

hope of forcing a buffer overrun or underrun.

2.1 Running example

Throughout the paper, we will use the function in Fig-

ure 1 to illustrate how Dowser works. The example is

a simplified version of a buffer underrun vulnerability in

the nginx-0.6.32 web server [1]. A specially crafted

2
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A buffer underrun vulnerability in nginx

int ngx_http_parse_complex_uri(ngx_http_request_t *r)
{
    state = sw_usual;
    u_char* p = r->uri_start;   // user input
    u_char* u = r->uri.data; // store normalized uri here 
    u_char ch = *p++;            // the current character

    while (p <= r->uri_end) {
        switch (state) { 
              case sw_usual: 
                 if (ch == '/') 
                     state = sw_slash; *u++ = ch; 
                 else if /* many more options here */
                 ch = *p++; break; 

             case sw_slash: 
                 if (ch == '/') 
                     *u++ = ch; 
                 else if (ch == '.') 
                      state = sw_dot; *u++ = ch;
                 else if /* many more options here */
                 ch = *p++; break; 

             case sw_dot: 
                 if (ch == '.') 
                     state = sw_dot_dot; *u++ = ch; 
                 else if /* many more options here */
                 ch = *p++; break; 

             case sw_dot_dot: 
                 if (ch == '/') 
                     state = sw_slash; u -=4; 
                   while (*(u-1) != '/') u--; 
                 else if /* many more options here */
                 ch = *p++; break; 
          } 
    }  
} 

  [1]
  [2]
  [3]
  [4]
  [5]
  [6]
  [7]
  [8]
  [9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]

Nginx is a web server—in terms of market share across the million busiest sites,

it ranks third in the world. At the time of writing, it hosts about 22 million domains

worldwide. Versions prior to 0.6.38 had a particularly nasty vulnerability [1].

When nginx receives an HTTP request, the parsing function

nginx http parse complex uri, first normalizes a uri path in p=r->uri start

(line 4), storing the result in a heap buffer pointed to by u=r->uri.data (line

5). The while-switch implements a state machine that consumes the input one

character at a time, and transform it into a canonical form in u.

The source of the vulnerability is in the sw dot dot state. When provided with a

carefully crafted path, nginx wrongly sets the beginning of u to a location some-

where below r->uri.data. Suppose the uri is "//../foo". When p reaches

"/foo", u points to (r->uri.data+4), and state is sw dot dot (line 30). The

routine now decreases u by 4 (line 32), so that it points to r->uri.data. As long

as the memory below r->uri.data does not contain the character "/", u is fur-

ther decreased (line 33), even though it crosses buffer boundaries. Finally, the user

provided input ("foo") is copied to the location pointed to by u.

In this case, the overwritten buffer contains a pointer to a function, which will

be eventually called by nginx. Thus the vulnerability allows attackers to modify a

function pointer, and execute an arbitrary program on the system.

It is a complex bug that is hard to find with existing solutions. The many condi-

tional statements that depend on symbolic input are problematic for symbolic execu-

tion, while input-dependent indirect jumps are also a bad match for static analysis.

Fig. 1: A simplified version of a buffer underrun vulnerability in nginx.

input tricks the program into setting the u pointer to a lo-

cation outside its buffer boundaries. When this pointer is

later used to access memory, it allows attackers to over-

write a function pointer, and execute arbitrary programs

on the system.

Figure 1 presents only an excerpt from the original

function, which in reality spans approximately 400 lines

of C code. It contains a number of additional options in

the switch statement, and a few nested conditional if

statements. This complexity severely impedes detecting

the bug by both static analysis tools and symbolic exe-

cution engines. For instance, when we steered S2E [10]

all the way down to the vulnerable function, and made

solely the seven byte long uri path of the HTTP message

symbolic, it took over 60 minutes to track down the prob-

lematic scenario. A more scalable solution is necessary

in practice. Without these hints, S2E did not find the bug

at all during an eight hour long execution.2 In contrast,

Dowser finds it in less than 5 minutes.

The primary reason for the high cost of the analysis in

S2E is the large number of conditional branches which

depend on (symbolic) input. For each of the branches,

symbolic execution first checks whether either the con-

dition or its negation is satisfiable. When both branches

are feasible, the default behavior is to examine both. This

2All measurements in the paper use the same environment as in

Section 6.

procedure results in an exponentially growing number of

paths.

This real world example shows the need for (1) fo-

cusing the powerful yet expensive symbolic execution on

the most interesting cases, (2) making informed branch

choices, and (3) minimizing the amount of symbolic

data.

2.2 High-level overview

Figure 2 illustrates the overall Dowser architecture.

First, it performs a data flow analysis of the target pro-

gram, and ranks all instructions that access buffers in

loops 1©. While we can rank them in different ways and

Dowser is agnostic as to the ranking function we use,

our experience so far is that an estimation of complexity

works best. Specifically, we rank calculations and con-

ditions that are more complex higher than simple ones.

In Figure 1, u is involved in three different operations,

i.e., u++, u--, and u-=4, in multiple instructions inside a

loop. As we shall see, these intricate computations place

the dereferences of u in the top 3% of the most complex

pointer accesses across nginx.

In the second step 2©, Dowser repeatedly picks high-

ranking accesses, and selects test inputs which exercise

them. Then, it uses dynamic taint analysis to determine

which input bytes influence pointers dereferenced in the

candidate instructions. The idea is that, given the for-

3
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while() {
  arr[i++] = x;

  arri[2*i-4] = 0;
}

static analysis 
finds interesting
array accesses
in loops;

Fig. 2: Dowser– high-level overview.

mat of the input, Dowser fuzzes (i.e., treats as sym-

bolic), only those fields that affect the potentially vul-

nerable memory accesses, and keeps the remaining ones

unchanged. In Figure 1, we learn that it is sufficient to

treat the uri path in the HTTP request as symbolic. In-

deed, the computations inside the vulnerable function are

independent of the remaining part of the input message.

Next 3©, for each candidate instruction and the input

bytes involved in calculating the array pointer, Dowser

uses symbolic execution to try to nudge the program to-

ward overflowing the buffer. Specifically, we execute

symbolically the loop that contains the candidate instruc-

tions (and thus should be tested for buffer overflows)—

treating only the relevant bytes as symbolic. As we shall

see, a new path selection algorithm helps to guide execu-

tion to a possible overflow quickly.

Finally, we detect any overflow that may occur. Just

like in whitebox fuzzers, we can use any technique to do

so (e.g., Purify, Valgrind [30], or BinArmor [37]). In our

work, we use Google’s AddressSanitizer [34] 4©. It in-

struments the protected program to ensure that memory

access instructions never read or write so called, “poi-

soned” red zones. Red zones are small regions of mem-

ory inserted inbetween any two stack, heap or global ob-

jects. Since they should never be addressed by the pro-

gram, an access to them indicates an illegal behavior.

This policy detects sequential buffer over- and under-

flows, and some of the more sophisticated pointer cor-

ruption bugs. This technique is beneficial when search-

ing for new bugs since it will also trigger on silent

failures, not just application crashes. In the case of

nginx, AddressSanitizer detects the underflow when the

u pointer reads memory outside its buffer boundaries

(line 33).

We explain step 1© (static analysis) in Section 3,

step 2© (taint analysis) in Section 4, and step 3© (guided

execution) in Section 5.

3 Dowsing for candidate instructions

Previous research has shown that software complexity

metrics collected from software artifacts are helpful in

finding vulnerable code components [16, 44, 35, 32].

However, even though complexity metrics serve as useful

indicators, they also suffer from low precision or recall

values. Moreover, most of the current approaches oper-

ate at the granularity of modules or files, which is too

coarse for the directed symbolic execution in Dowser.

As observed by Zimmermann et al. [44], we need met-

rics that exploit the unique characteristics of vulnerabili-

ties, e.g., buffer overflows or integer overruns. In princi-

ple, Dowser can work with any metric capable of ranking

groups of instructions that access buffers in a loop. So,

the question is how to design a good metric for complex-

ity that satisfies this criterion? In the remainder of this

section, we introduce one such metric: a heuristics-based

approach that we specifically designed for the detection

of potential buffer overflow vulnerabilities.

We leverage a primary pragmatic reason behind com-

plex buffer overflows: convoluted pointer computations

are hard to follow by a programmer. Thus, we focus on

‘complex’ array accesses realized inside loops. Further,

we limit the analysis to pointers which evolve together

with loop induction variables, i.e., are repeatedly updated

to access (various) elements of an array.

Using this metric, Dowser ranks buffer accesses by

evaluating the complexity of data- and control-flows in-

volved with the array index (pointer) calculations. For

each loop in the program, it first statically determines

(1) the set of all instructions involved in modifying an ar-

ray pointer (we will call this a pointer’s analysis group),

and (2) the conditions that guard this analysis group, e.g.,

the condition of an if or while statement containing the

array index calculations. Next, it labels all such sets with

scores reflecting their complexity. We explain these steps

in detail in Sections 3.1, 3.2, and 3.3.

4
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5:u1=r→uri.data; 

8:u2=�(u1,u10)

12:u3=u2++;  …  26:u6=u2++; 32:u7=u2-4;

33:u8=�(u7,u9)

33:u9=u8--;

37:u10=�(u3,..,u6,u9)

5

5

3*10+

2*5

different
constants

55

Fig. 3: Data flow graph and analysis group associated with

the pointer u from Figure 1. For the sake of clarity, the figure

presents pointer arithmetic instructions in pseudo code. The

PHI nodes represent locations where data is merged from dif-

ferent control-flows. The numbers in the boxes represent points

assigned by Dowser.

3.1 Building analysis groups

Suppose a pointer p is involved in an “interesting” array

access instruction accp in a loop. The analysis group as-

sociated with accp, AG(accp), collects all instructions

that influence the value of the dereferenced pointer dur-

ing the execution of the loop.

To determine AG(accp), we compute an intraproce-

dural data flow graph representing operations in the loop

that compute the value of p dereferenced in accp. Then,

we check if the graph contains cycles. A cycle indicates

that the value of p in a previous loop iteration affects its

value in the current one, so p depends on the loop induc-

tion variable.

As mentioned before, this part of our work is built on

top of the LLVM [23] compiler infrastructure. The static

single assignment (SSA) form provided by LLVM trans-

lates directly to data flow graphs. Figure 3 shows an ex-

ample. Observe that, since all dereferences of pointer u

share their data flow graph, they also form a single anal-

ysis group. Thus, when Dowser later tries to find an il-

legal array access within this analysis group, it tests all

the dereferences at the same time—there is no need to

consider them separately.

3.2 Conditions guarding analysis groups

It may happen that the data flow associated with an array

pointer is simple, but the value of the pointer is hard to

follow due to some complex control changes. For this

reason, Dowser ranks also control flows: the conditions

that influence an analysis group.

Say that an instruction manipulating the array pointer

p is guarded by a condition on a variable var, e.g.,

if(var<10){*p++=0;}. If the value of var is diffi-

cult to keep track of, so is the value of p. To assess the

complexity of var, Dowser analyzes its data flow, and

determines the analysis group, AG(var) (as discussed

in Section 3.1). Moreover, we recursively analyze the

analysis groups of other variables influencing var and p

inside the loop. Thus, we obtain a number of analysis

groups which we rank in the next step (Section 3.3).

3.3 Scoring array accesses

For each array access realized in a loop, Dowser assesses

the complexity of the analysis groups constructed in Sec-

tions 3.1 and 3.2. For each analysis group, it consid-

ers all instructions, and assigns them points. The more

points an AG cumulatively scores, the more complex it

is. The overall rank of the array access is determined

by the maximum of the scores. Intuitively, it reflects the

most complex component.

The scoring algorithm should provide roughly the

same results for semantically identical code. For this rea-

son, we enforce the optimizations present in the LLVM

compiler (e.g., to eliminate common subexpressions).

This way, we minimize the differences in (the amount

of) instructions arising from the compiler options. More-

over, we analyzed the LLVM code generation strategies,

and defined a powerful set of equivalence rules, which

minimize the variation in the scores assigned to syntac-

tically different but semantically equivalent code. We

highlight them below.

Table 1 introduces all types of instructions, and dis-

cusses their impact on the final score. In principle, all

common instructions involved in array index calculations

are of the order of 10 points, except for the two instruc-

tions that we consider risky: pointer casts and functions

that return non-pointer values used in pointer calculation.

The absolute penalty for each type of instruction is not

very important. However, we ensure that the points re-

flect the difference in complexity between various code

fragments, instead of giving all array accesses the same

score. That is, instructions that complicate the array in-

dex contribute to the score, and instructions that compli-

cate the index a lot also score very high, relative to other

instructions. In Section 6, we compare our complexity

ranking to alternatives.

4 Using tainting to find inputs that matter

Once Dowser has ranked array accesses in loops in or-

der of complexity, we examine them in turn. Typically,

only a small segment of the input affects the execution

of a particular analysis group, so we want to search for

a bug by modifying solely this part of the input, while

keeping the rest constant (refer to Section 5). In the cur-

rent section, we explain how Dowser identifies the link

5
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Instructions Rationale/Equivalence rules Points

Array index manipulations

Basic index arithmetic instr., GetElemPtr, that increases or decreases a pointer by an index, scores the same. 1 or 5

i.e., addition and subtraction Thus, operations on pointers are equivalent to operations on offsets. An instruction

scores 1 if it modifies a value which is not passed to the next loop iteration.

Other index arithmetic instr. These instructions involve more complex pointer calculations than the standard 10

e.g., division, shift, or xor add or sub. Thus, we penalize them more.

Different constant values Multiple constants used to modify a pointer make its value hard to follow. 10

It is easier to keep track of a pointer that always increases by the same value. per value

Constants used to access We assume that compilers handle accesses to structures correctly. We only consider 0

fields of structures constants used to compute the index of an array, and not the address of a field.

Numerical values Though in the context of the loop they are just constants, the compiler cannot 30

determined outside the loop predict their values. Thus they are difficult to reason about and more error prone.

Non-inlined functions Since decoupling the computation of a pointer from its use might easily lead to 500

returning non-pointer values mistakes, we heavily penalize this operation.

Data movement instructions Moving (scalar or pointer) data does not add to the complexity of computations. 0

Pointer manipulations

Load a pointer calculated It denotes retrieving the base pointer of an object, or using memory allocators. We 0

outside the loop treat all remote pointers in the same way - all score 0.

GetElemPtr An LLVM instruction that computes a pointer from a base and offset(s). (See add.) 1 or 5

Pointer cast operations Since the casting instructions often indicate operations that are not equivalent to 100

the standard pointer manipulations (listed above), they are worth a close inspection.

Table 1: Overview of the instructions involved in pointer arithmetic operations, and their penalty points.

between the components of the program input and the

different analysis groups. Observe that this result also

benefits other bug finding tools based on fuzzing, not just

Dowser and concolic execution.

We focus our discussion on an analysis group

AG(accp) associated with an array pointer dereference

accp. We assume that we can obtain a test input I

that exercises the potentially vulnerable analysis group.

While this may not always be true, we believe it is a rea-

sonable assumption. Most vendors have test suites to test

their software and they often contain at least one input

which exercises each complex loop.

4.1 Baseline: dynamic taint analysis

As a basic approach, Dowser performs dynamic taint

analysis (DTA) [31] on the input I (tainting each input

byte with a unique color, and propagating the colors on

data movement and arithmetic operations). Then, it logs

all colors and input bytes involved in the instructions in

AG(accp). Given the format of the input, Dowser maps

these bytes to individual fields. In Figure 1, Dowser finds

out that it is sufficient to treat uri as symbolic.

The problem with DTA, as sketched above, is that it

misses implicit flows (also called control dependencies)

entirely [14, 21]. Such flows have no direct assignment

of a tainted value to a variable—which would be prop-

agated by DTA. Instead, the value of a variable is com-

pletely determined by the value of a tainted variable in

a condition. In Figure 1, even though the value of u in

line 12 is dependent on the tainted character ch in line

11, the taint does not flow directly to u, so DTA would

not report the dependency. Implicit flows are notoriously

hard to track [36, 9], but ignoring them completely re-

duces our accuracy. Dowser therefore employs a solu-

tion that builds on the work by Bao et al. [6], but with a

novel optimization to increase the accuracy of the analy-

sis (Section 4.2).

Like Bao et al. [6], Dowser implements strict control

dependencies. Intuitively, we propagate colors only on

the most informative (or, information preserving) depen-

dencies. Specifically, we require a direct comparison be-

tween a tainted variable and a compile time constant. For

example, in Figure 1, we propagate the color of ch in line

11 to the variables state and u in line 12. However, we

would keep state and u untainted if the condition in

line 11 for instance had been either "if(ch!=’/’)" or

"if(ch<’/’)". As implicit flows are not the focus of

this paper we refer interested readers to [6] for details.

4.2 Field shifting to weed out false dependencies

Improving on the handling of strict control dependen-

cies by Bao et al. [6], described above, Dowser adds a

novel technique to prevent overtainting due to false de-

pendencies. The problems arise when the order of fields

in an input format is not fixed, e.g., as in HTTP, SMTP

(and the commandline for most programs). The approach

from [6] may falsely suggest that a field is dependent on

all fields that were extracted so far.

6
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Input: Colors in handlers:

Fig. 4: The figure shows how Dowser shuffles an input

to determine which fields really influence an analysis group.

Suppose a parser extracts fields of the input one by one, and the

analysis group depends on the fields B and D (with colors B and

D, respectively). Colors in handlers show on which fields the

subsequent handlers are strictly dependent [6], and the shaded

rectangle indicates the colors propagated to the analysis group.

Excluded colors are left out of our analysis.

For instance, lighttpd reads new header fields in a

loop and compares them to various options, roughly as

follows:

while () {

if(cmp(field, "Content") == 0)

...

else if(cmp(field, "Range") == 0)

...

else exit (-1);

field = extract_new_header_field();

}

As the parser tests for equivalence, the implicit flow will

propagate from one field to the next one, even if there

is no real dependency at all! Eventually, the last field

appears to depend on the whole header.

Dowser determines which options really matter for the

instructions in an analysis group by shifting the fields

whose order is not fixed. Refer to Figure 4, and suppose

we have run the program with options A, B, C, D, and E,

and our analysis group really depends on B and D. Once

the message gets processed, we see that the AG does not

depend on E, so E can be excluded from further analysis.

Since the last observed color, D, has a direct influence on

the AG, it is a true dependence. By performing a circular

shift and re-trying with the order D, A, B, C, E, Dowser

finds only the colors corresponding to A, B, D. Thus, we

can leave C out of our analysis. After the next circular

shift, Dowser reduces the colors to B and D only.

The optimization is based on two observations: (1) the

last field propagated to the AG has a direct influence on

the AG, so it needs to be kept, (2) all fields beyond this

one are guaranteed to have no impact on the AG. By per-

forming circular shifts, and running DTA on the updated

input, Dowser drops the undue dependencies.

Even though this optimization requires some minimal

knowledge of the input, we do not need full understand-

ing of the input grammar, like the contents or effects of

fields. It is sufficient to identify the fields whose order is

not fixed. Fortunately, such information is available for

many applications—especially when vendors test their

own code.

5 Exploring candidate instructions

Once we have learnt which part of the program input in-

fluences the analysis group AG(accp), we fuzz this part,

and we try to nudge the program toward using the pointer

p in an illegal way. More technically, we treat the inter-

esting component of the input as symbolic, the remaining

part as fixed (concrete), and we execute the loop associ-

ated with AG(accp) symbolically.

However, since in principle the cost of a complete loop

traversal is exponential, loops present one of the hard-

est problems for symbolic execution [19]. Therefore,

when analyzing a loop, we try to select those paths that

are most promising in our context. Specifically, Dowser

prioritizes paths that show a potential for knotty pointer

arithmetic. As we show in Section 6, our technique sig-

nificantly optimizes the search for an overflow.

Dowser’s loop exploration procedure has two main

phases: learning, and bug finding. In the learning phase,

Dowser assigns each branch in the loop a weight approx-

imating the probability that a path following this direc-

tion contains new pointer dereferences. The weights are

based on statistics on the variety of pointer values ob-

served during an execution of a short symbolic input.

Next, in the bug finding phase, Dowser uses the

weights determined in the first step to filter our unin-

teresting parts of the loop, and prioritize the important

paths. Whenever the weight associated with a certain

branch is 0, Dowser does not even try to explore it fur-

ther. In the vulnerable nginx parsing loop from which

Figure 1 shows an excerpt, only 19 out of 60 branches

scored a non-zero value, so were considered for the ex-

ecution. In this phase, the symbolic input represents a

real world scenario, so it is relatively long. Therefore, it

would be prohibitively expensive to be analyzed using a

popular symbolic execution tool.

In Section 5.1, we briefly review the general con-

cept of concolic execution, and then we discuss the two

phases in Sections 5.2 and 5.3, respectively.

5.1 Baseline: concrete + symbolic execution

Like DART and SAGE [17, 18], Dowser generates new

test inputs by combining concrete and symbolic execu-

tion. This technique is known as concolic execution [33].

It runs the program on a concrete input, while gather-

ing symbolic constraints from conditional statements en-

countered along the way. To test alternative paths, it sys-

tematically negates the collected constraints, and checks

whether the new set is satisfiable. If so, it yields a new

input. To bootstrap the procedure, Dowser takes a test

input which exercises the analysis group AG(accp).

As mentioned already, a challenge in applying this ap-

proach is how to select the paths to explore first. The

7
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classic solution is to use depth first exploration of the

paths by backtracking [22]. However, since doing so

results in an exponentially growing number of paths to

be tested, the research community has proposed various

heuristics to steer the execution toward unexplored re-

gions. We discuss these techniques in Section 7.

5.2 Phase 1: learning

The aim of the learning phase is to rate the true and

false directions of all conditional branches that depend

on the symbolic input in the loop L. For each branch, we

evaluate the likelihood that a particular outcome will lead

to unique pointer dereferences (i.e., dereferences that we

do not expect to find in the alternative outcome). Thus,

we answer the question of how much we expect to gain

when we follow this path, rather than the alternative. We

encode this information into weights.

Specifically, the weights represent the likelihood of

unique access patterns. An access pattern of the pointer

p is the sequence of all values of p dereferenced during

the execution of the loop. In Figure 1, when we denote

the initial value of u by u0, then the input "//../" trig-

gers the following access pattern of the pointer u: (u0,

u0+1, u0+2, u0-2,...).

To compute the weights, we learn about the effects

of individual branches. In principle, each of them may

(a) directly affect the value of a pointer, (b) be a precon-

dition for another important branch, or (c) be irrelevant

from the computation’s standpoint. To distinguish be-

tween these cases, Dowser analyzes all possible execu-

tions of a short symbolic input. By comparing the sets

of p’s access patterns observed for both outcomes of a

branch, it discovers which branches do not influence the

diversity of pointer dereferences (i.e., are irrelevant).

Symbolic input In Section 4, we identified which part of

the test input I we need to make symbolic. We denote

this by IS. In the learning phase, Dowser executes the

loop L exhaustively. For performance reasons, we there-

fore further limit the amount of symbolic data and make

only a short fragment of IS symbolic. For instance, for

Figure 1, the learning phase makes only the first 4 bytes

of uri symbolic (not enough to trigger the bug), while

scaling up to 50 symbolic bytes in the bug finding phase.

Algorithm Dowser exhaustively executes L on a short

symbolic input, and records how the decisions taken at

conditional branch statements influence pointer derefer-

ence instructions. For each branch b along the execu-

tion path, we retain the access pattern of p realized dur-

ing this execution, AP(p). We informally interpret it as

“if you choose the true (respectively, false) direction

of the branch b, expect access pattern AP(p) (respec-

tively, AP′(p))”. This procedure results in two sets of

access patterns for each branch statement, for the taken

and non-taken branch, respectively. The final weight of

each direction is the fraction of the access patterns that

were unique for the direction in question, i.e., were not

observed when the opposite one was taken.

The above description explains the intuition behind

the learning mechanism, but the full algorithm is more

complicated. The problem is that a conditional branch b

might be exercised multiple times in an execution path,

and it is possible that all the instances of b influence the

access pattern observed.

Intuitively, to allow for it, we do not associate access

patterns with just a single decision taken on b (true or

false). Rather, each time b is exercised, we also retain

which directions were previously chosen for b. Thus, we

still collect “expected” access patterns if the true (re-

spectively, false) direction of b is followed, but we aug-

ment them with a precondition. This way, when we com-

pare the true and false sets to determine the weights

for b, we base the scores on a deeper understanding of

how an access pattern was reached.

Discussion It is important for our algorithm to avoid

false negatives: we should not incorrectly flag a branch

as irrelevant—it would preclude it from being explored

in the bug finding phase. Say that instr is an instruction

that dereferences the pointer p. To learn that a branch

directly influences instr, it suffices to execute it. Sim-

ilarly, since branches retain full access patterns of p, the

information about instr being executed is also “propa-

gated” to all its preconditions. Thus, to completely avoid

false negatives, the algorithm would require full cover-

age of the instructions in an analysis group. We stress

that we need to exercise all instructions, and not all paths

in a loop. As observed by [7], exhaustive executions of

even short symbolic inputs provide excellent instruction

coverage in practice.

While false positives are undesirable as well, they only

cause Dowser to execute more paths in the second phase

than absolutely necessary. Due to the limited path cov-

erage, there are corner cases, when false positives can

happen. Even so, in nginx, only 19 out of 60 branches

scored a non-zero value, which let us execute the com-

plex loop with a 50-byte-long symbolic input.

5.3 Phase 2: hunting bugs

In this step, Dowser executes symbolically a real-world

sized input in the hope of finding a value that triggers a

bug. Dowser uses the feedback from the learning phase

(Section 5.2) to steer its symbolic execution toward new

and interesting pointer dereferences. The goal of our

heuristic is to avoid execution paths that do not bring any

new pointer manipulation instructions. Thus, Dowser

shifts the target of symbolic execution from traditional

code coverage to pointer value coverage.

8



USENIX Association  22nd USENIX Security Symposium 57

Dowser’s strategy is explicitly dictated by the weights.

As a baseline, the execution follows a depth-first explo-

ration, and when Dowser is about to select the direction

of a branch b that depends on the symbolic input, it ad-

heres to the following rules:

• If both the true and false directions of b have

weight 0, we do not expect b to influence the vari-

ety of access patterns. Thus, Dowser chooses the

direction randomly, and does not intend to examine

the other direction.

• If only one direction has a non-zero weight, we ex-

pect to observe unique access patterns only when

the execution paths follows this direction, and

Dowser favors it.

• If both of b’s directions have non-zero weights, both

the true and false options may bring unique ac-

cess patterns. Dowser examines both directions,

and schedules them in order of their weights.

Intuitively, Dowser’s symbolic execution tries to select

paths that are more likely to lead to overflows.

Guided fuzzing This concludes our description of

Dowser’s architecture. To summarize, Dowser helps

fuzzing by: (1) finding “interesting” array accesses,

(2) identifying the inputs that influence the accesses, and

(3) fuzzing intelligently to cover the array. Moreover,

the targeted selection procedure based on pointer value

coverage and the small number of symbolic input values

allow Dowser to find bugs quickly and scale to larger ap-

plications. In addition, the ranking of array accesses per-

mits us to zoom in on more complicated array accesses.

6 Evaluation

In this section, we first zoom in on the running example

of nginx from Figure 1 to evaluate individual compo-

nents of the system in detail (Section 6.1). In Section 6.2,

we consider seven real-world applications. Based on

their vulnerabilities, we evaluate our dowsing mecha-

nism. Finally, we present an overview of the attacks de-

tected by Dowser.

Since Dowser uses a ‘spot-check’ rather than ‘code

coverage’ approach to bug detection, it must analyze

each complex analysis group separately, starting with the

highest ranking one, followed by the second one, and so

on. Each of them runs until it finds a bug or gets termi-

nated. The question is when we should terminate a sym-

bolic execution run. Since symbolic execution of a single

loop is highly optimized in Dowser, we found each bug

in less than 11 minutes, so we execute each symbolic run

for a maximum of 15 minutes.
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Fig. 5: Scores of the analysis groups in nginx.

Our test platform is a Linux 3.1 system with an

Intel(R) Core(TM) i7 CPU clocked at 2.7GHz with

4096KB L2 cache. The system has 8GB of memory. For

our experiments we used an OpenSUSE 12.1 install. We

ran each test multiple times and present the median.

6.1 Case study: Nginx

In this section, we evaluate each of the main steps of our

fuzzer by looking at our case study of nginx in detail.

6.1.1 Dowsing for candidate instructions

We measure how well Dowser highlights potentially

faulty code and filters out the uninteresting fragments.

Our first question is whether we can filter out all the

simple loops and focus on the more interesting ones.

This turns out to be simple. Given the complexity scor-

ing function from Section 3, we find that across all appli-

cations all analysis groups with a score less than 26 use

just a single constant and at most two instructions modi-

fying the offset of an array. Thus, in the remainder of our

evaluation, we set our cut-off threshold to 26 points.

As shown in Table 2, nginx has 517 outermost loops,

and only 140 analysis groups that access arrays. Thus,

we throw out over 70% of the loops immediately3. Fig-

ure 5 presents the sorted weights of all the analysis

groups in nginx. The distribution shows a quick drop

after a few highly complex analysis groups. The long

tail represents the numerous simple loops omnipresent in

any code. 55.7% of the analysis groups score too low to

be of interest. This means that Dowser needs to examine

only the remaining 44.3%, i.e., 62 out of 140 analysis

groups, or at most 12% of all loops. Out of these, the

buffer overflow in Figure 1 ranks 4th.

6.1.2 Taint analysis in context of hunting for bugs

In Section 4 we mentioned that ‘traditional’ dynamic

taint analysis misses implicit flows, i.e., flows that have

3In principle, if a loop accesses multiple arrays, it also contains

multiple access groups. Thus, these 140 analysis groups are located in

fewer than 140 loops.
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no direct assignment of a tainted value to a variable. The

problem turns out to be particularly serious for nginx.

It receives input in text format, and transforms it to ex-

tract numerical values or various flags. As such code

employs conditional statements, DTA misses the depen-

dencies between the input and analysis groups.

Next, we evaluate the usefulness of field shifting.

First, we implement the taint propagation exactly as pro-

posed by Bao et al. [6], without any further restrictions.

In that case, an index variable in the nginx parser be-

comes tainted, and we mark all HTTP fields succeeding

the uri field as tainted as well. As a result, we introduce

more symbolic data than necessary. Next, we apply field

shifting (Section 4.2) which effectively limits taint prop-

agation to just the uri field. In general, the field shifting

optimization improves the accuracy of taint propagation

in all applications that take multiple input fields whose

order does not matter. On the other hand, it will not help

if the order is fixed.

6.1.3 Importance of guiding symbolic execution

We now use the nginx example to assess the importance

of guiding symbolic execution to a vulnerability condi-

tion. For nginx, the input message is a generic HTTP re-

quest. Since it exercises the vulnerable loop for this anal-

ysis group, its uri starts with ”//”. Taint analysis allows

us to detect that only the uri field is important, so we

mark only this field as symbolic. As we shall see, with-

out guidance, symbolic execution does not scale beyond

very short uri fields (5-6 byte long). In contrast, Dowser

successfully executes 50-byte-long symbolic uris.

When S2E [10] executes a loop, it can follow one of

the two search strategies: depth-first search, or maximiz-

ing code coverage (as proposed in SAGE [18]). The first

one aims at complete path coverage, and the second at

executing basic blocks that were not seen before. How-

ever, none can be applied in practice to examine the com-

plex loop in nginx. The search is so costly that we mea-

sured the runtime for only 5-6 byte long symbolic uri

fields. The DFS strategy handled the 5-byte-long input

in 139 seconds, the 6-byte-long in 824 seconds. A 7-byte

input requires more than 1 hour to finish. Likewise, the

code coverage strategy required 159, and 882 seconds,

respectively. The code coverage heuristic does not speed

up the search for buffer overflows either, since besides

executing specific instructions from the loop, memory

corruptions require a very particular execution context.

Even if 100% code coverage is reached, they may stay

undetected.

As we explained in Section 5, the strategy employed

by Dowser does not aim at full coverage. Instead, it

actively searches for paths which involve new pointer

dereferences. The learning phase uses a 4-byte-long

symbolic input to observe access patterns in the loop.

It follows a simple depth first search strategy. As the

bug clearly cannot be triggered with this input size, the

search continues in the second, hunting bugs, phase. The

result of the learning phase disables 66% of the condi-

tional branches significantly reducing the exponentially

of the subsequent symbolic execution. Because of this

heuristic, Dowser easily scales up to 50 symbolic bytes

and finds the bug after just a few minutes. A 5-byte-long

symbolic input is handled in 20 seconds, 10 bytes in 42

seconds, 20 bytes in 63 seconds, 30 in 146 seconds, 40

in 174 seconds and 50 in 253 seconds. These numbers

maintain an exponential growth of 1.1 for each added

character. Even though Dowser still exhibits the expo-

nential behavior, the growth rate is fairly low. Even in

the presence of 50 symbolic bytes, Dowser quickly finds

the complex bug.

In practice, symbolic execution has problems dealing

with real world applications and input sizes. The number

of execution paths quickly overwhelms these systems.

Since triggering buffer overflows not only requires a vul-

nerable basic block, but also a special context, traditional

symbolic execution tools are ill suited. Dowser, instead,

requires the application to be executed symbolically for

only a very short input, and then it deals with real-world

input sizes instead of being limited to a few input bytes.

Combined with the ability to extract the relevant parts of

the original input, this enables searching for bugs in ap-

plications like web servers where input sizes were con-

sidered until now to be well beyond the scalability of

symbolic execution tools.

6.2 Overview

In this section, we consider several applications. First,

we evaluate the dowsing mechanism, and we show that

it successfully highlights vulnerable code fragments.

Then, we summarize the memory corruptions detected

by Dowser. They come from six real world applications

of several tens of thousands LoC, including the ffmpeg

videoplayer of 300K LoC. The bug in ffmpeg, and one

of the bugs in poppler were not documented before.

6.2.1 Dowsing for candidate instructions

We now examine several aspects of the dowsing mecha-

nism. First, we show that there is a correlation between

Dowser’s scoring function and the existence of memory

corruption vulnerabilities. Then, we discuss how our fo-

cus on complex loops limits the search space, i.e., the

amount of analysis groups to be tested. We start with a

description of our data set.

Data set To evaluate the effectiveness of Dowser,

we chose six real world programs: nginx, ffmpeg,

10
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Program Vulnerability Dowsing Symbolic input Symbolic execution

AG score Loops LoC V-S2E M-S2E Dowser

nginx 0.6.32 CVE-2009-2629 4th out of 62/140 517 66k URI field > 8 h > 8 h 253 sec

heap underflow 630 points 50 bytes

ffmpeg 0.5 UNKNOWN 3rd out of 727/1419 1286 300k Huffman table > 8 h > 8 h 48 sec

heap overread 2186 points 224 bytes

inspircd 1.1.22 CVE-2012-1836 1st out of 66/176 1750 45k DNS response 200 sec 200 sec 32 sec

heap overflow 625 points 301 bytes

poppler 0.15.0 UNKNOWN 39th out of 388/904 1737 120k JPEG image > 8 h > 8 h 14 sec

heap overread 1075 points 1024 bytes

poppler 0.15.0 CVE-2010-3704 59th out of 388/904 1737 120k Embedded font > 8 h > 8 h 762 sec

heap overflow 910 points 1024 bytes

libexif 0.6.20 CVE-2012-2841 8th out of 15/31 121 10k EXIF tag/length > 8 h 652 sec 652 sec

heap overflow 501 points 1024 + 4 bytes

libexif 0.6.20 CVE-2012-2840 15th out of 15/31 121 10k EXIF tag/length > 8 h 347 sec 347 sec

off-by-one error 40 points 1024 + 4 bytes

libexif 0.6.20 CVE-2012-2813 15th out of 15/31 121 10k EXIF tag/length > 8 h 277 sec 277 sec

heap overflow 40 points 1024 + 4 bytes

snort 2.4.0 CVE-2005-3252 24th out of 60/174 616 75k UDP packet > 8 h > 8 h 617 sec

stack overflow 246 points 1100 bytes

Table 2: Applications tested with Dowser. The Dowsing section presents the results of Dowser’s ranking scheme. AG score is

the complexity of the vulnerable analysis group - its position among other analysis groups; X/Y denotes all analysis groups that are

”complex enough” to be potentially analyzed/all analysis groups which access arrays; and the number of points it scores. Loops

counts outermost loops in the whole program, and LoC - the lines of code according to sloccount. Symbolic input specifies how

many and which parts of the input were determined to be marked as symbolic by the first two components of Dowser. The last

section shows symbolic execution times until revealing the bug. Almost all applications proved to be too complex for the vanilla

version of S2E (V-S2E). Magic S2E (M-S2E) is the time S2E takes to find the bug when we feed it with an input with only a minimal

symbolic part (as identified in Symbolic input). Finally, the last column is the execution time of fully-fledged Dowser.

inspircd, libexif, poppler, and snort. Addition-

ally, we consider the vulnerabilities in sendmail tested

by Zitser et al. [45]. For these applications, we analyzed

all buffer overflows reported in CVE [26] since 2009. For

ffmpeg, rather than include all possible codecs, we just

picked the ones for which we had test cases. Out of 27

CVE reports, we took 17 for the evaluation. The remain-

ing ten vulnerabilities are out of the scope of this paper –

nine of them are related to an erroneous usage of a cor-

rect function, e.g., strcpy, and one was not in a loop. In

this section, we consider the analysis groups from all the

applications together, giving us over 3000 samples, 17 of

which are known to be vulnerable4.

When evaluating Dowser’s scoring mechanism, we

also compare it to a straightforward scoring function that

treats all instructions uniformly. For each array access, it

considers exactly the same AGs as Dowser. However, in-

stead of the scoring algorithm (Table 1), each instruction

gets 10 points. We will refer to this metric as count.

Correlation For both Dowser’s and the count scor-

ing functions, we computed the correlation between the

number of points assigned to an analysis group and the

existence of a memory corruption vulnerability. We used

4Since the scoring functions are application agnostic, it is sound to

compare their results across applications.

the Spearman rank correlation [2], since it is a reliable

measure that is appropriate even when we do not know

the probability distribution of the variables, or when the

association between the variables is non-linear.

The positive correlation for Dowser is statistically sig-

nificant at p < 0.0001, for count — at p < 0.005. The

correlation for Dowser is stronger.

Dowsing The Dowsing columns of Table 2 shows that

our focus on complex loops limits the search space from

thousands of LoC to hundreds of loops, and finally to a

small number of “interesting” analysis groups. Observe

that ffmpeg has more analysis groups than loops. That

is correct. If a loop accesses multiple arrays, it contains

multiple analysis groups.

By limiting the analysis to complex cases, we focus

on a smaller fraction of all AGs in the program, e.g., we

consider 36.9% of all the analysis groups in inspircd,

and 34.5% in snort. ffmpeg, on the other hand, con-

tains lots of complex loops that decode videos, so we also

observe many “complex” analysis groups.

In practice, symbolic execution, guided or not is ex-

pensive, and we can hardly afford a thorough analysis of

more than just a small fraction of the target AGs of an ap-

plication, say 20%-30%. For this reason, Dowser uses a

scoring function, and tests the analysis groups in order of

11
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Fig. 6: A comparison of random testing and two scoring func-

tions: Dowser’s and count. It illustrates how many bugs we

detect if we test a particular fraction of the analysis groups.

decreasing score. Specifically, Dowser looks at complex-

ity. However, alternative heuristics are also possible. For

instance, one may count the instructions that influence

array accesses in an AG. To evaluate whether Dowser’s

heuristics are useful, we compare how many bugs we dis-

cover if we examine increasing fractions of all AGs, in

descending order of the score. So, we determine how

many of the bugs we find if we explore the top 10% of

all AGs, how many bugs we find when we explore the

top 20%, and so on. In our evaluation, we are comparing

the following ranking functions: (1) Dowser’s complex-

ity metric, (2) counting instructions as described above,

and (3) random.

Figure 6 illustrates the results. The random ranking

serves as a baseline—clearly both count and Dowser

perform better. In order to detect all 17 bugs, Dowser

has to analyze 92.2% of all the analysis groups. How-

ever, even with just 15% of the targets, we find almost

80% (13/17) of all the bugs. At that same fraction of

targets, count finds a little over 40% of the bugs (7/17).

Overall, Dowser outperforms count beyond the 10% in

the ranking. It also reaches the 100% bug score earlier

than the alternatives, although the difference is minimal.

The reason why Dowser still requires 92% of the AGs

to find all bugs, is that some of the bugs were very sim-

ple. The “simplest” cases include a trivial buffer over-

flow in poppler (worth 16 points), and two vulnera-

bilities in sendmail from 1999 (worth 20 points each).

Since Dowser is designed to prioritize complex array ac-

cesses, these buffer overflows end up in the low scoring

group. (The “simple” analysis groups – with less than 26

points – start at 47.9%). Clearly, both heuristics provide

much better results than random sampling. Except for

the tail, they find the bugs significantly quicker, which

proves their usefulness.

To summarize, we have shown that a testing strategy

based on Dowser’s scoring function is effective. It lets

us find vulnerabilities quicker than random testing or a

scoring function based on the length of an analysis group.

6.2.2 Symbolic execution

Table 2 presents attacks detected by Dowser. The last

section shows how long it takes before symbolic execu-

tion detects the bug. Since the vanilla version of S2E

cannot handle these applications with the whole input

marked as symbolic, we also run the experiments with

minimal symbolic inputs (“Magic S2E”). It represents

the best-case scenario when an all-knowing oracle tells

the execution engine exactly which bytes it should make

symbolic. Finally, we present Dowser’s execution times.

We run S2E for as short a time as possible, e.g., a

single request/response in nginx and transcoding a sin-

gle frame in ffmpeg. Still, in most applications, vanilla

S2E fails to find bugs in a reasonable amount of time.

inspircd is an exception, but in this case we explic-

itly tested the vulnerable DNS resolver only. In the case

of libexif, we can see no difference between “Magic

S2E” and Dowser, so Dowser’s guidance did not influ-

ence the results. The reason is that our test suite here

was simple, and the execution paths reached the vulner-

ability condition quickly. In contrast, more complex ap-

plications process the inputs intensively, moving sym-

bolic execution away from the code of interest. In all

these cases, Dowser finds bugs significantly faster. Even

if we take the 15 minute tests of higher-ranking analy-

sis groups into account, Dowser provides a considerable

improvement over existing systems.

7 Related work

Dowser is a ’guided’ fuzzer which draws on knowledge

from multiple domains. In this section, we place our sys-

tem in the context of existing approaches. We start with

the scoring function and selection of code fragments.

Next, we discuss traditional fuzzing. We then review

previous work on dynamic taint analysis in fuzzing, and

finally, discuss existing work on whitebox fuzzing and

symbolic execution.

Software complexity metrics Many studies have shown

that software complexity metrics are positively corre-

lated with defect density or security vulnerabilities [29,

35, 16, 44, 35, 32]. However, Nagappan et al. [29] ar-

gued that no single set of metrics fits all projects, while

Zimmermann et al. [44] emphasize a need for metrics

that exploit the unique characteristics of vulnerabilities,

e.g., buffer overflows or integer overruns. All these ap-

proaches consider the broad class of post-release defects

or security vulnerabilities, and consider a very generic

set of measurements, e.g., the number of basic blocks in a

function’s control flow graph, the number of global or lo-

cal variables read or written, the maximum nesting level

12
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of if or while statements and so on. Dowser is very dif-

ferent in this respect, and to the best of our knowledge,

the first of its kind. We focus on a narrow group of secu-

rity vulnerabilities, i.e., buffer overflows, so our scoring

function is tailored to reflect the complexity of pointer

manipulation instructions.

Traditional fuzzing Software fuzzing started in earnest

in the 90s when Miller et al. [25] described how they

fed random inputs to (UNIX) utilities, and managed

to crash 25-33% of the target programs. More ad-

vanced fuzzers along the same lines, like Spike [39],

and SNOOZE [5], deliberately generate malformed in-

puts, while later fuzzers that aim for deeper bugs are

often based on the input grammar (e.g., Kaksonen [20]

and [40]). DeMott [13] offers a survey of fuzz testing

tools. As observed by Godefroid et al. [18], traditional

fuzzers are useful, but typically find only shallow bugs.

Application of DTA to fuzzing BuzzFuzz [15] uses

DTA to locate regions of seed input files that influence

values used at library calls. They specifically select li-

brary calls, as they are often developed by different peo-

ple than the author of the calling program and often lack

a perfect description of the API. Buzzfuzz does not use

symbolic execution at all, but uses DTA only to ensure

that they preserve the right input format. Unlike Dowser,

it ignores implicit flows completely, so it could never find

bugs such as the one in nginx (Figure 1). In addition,

Dowser is more selective in the application of DTA. It’s

difficult to assess which library calls are important and

require a closer inspection, while Dowser explicitly se-

lects complex code fragments.

TaintScope [42] is similar in that it also uses DTA to

select fields of the input seed which influence security-

sensitive points (e.g., system/library calls). In addi-

tion, TaintScope is capable of identifying and bypassing

checksum checks. Like Buzzfuzz, it differs from Dowser

in that it ignores implicit flows and assumes only that li-

brary calls are the interesting points. Unlike BuzzFuzz,

TaintScope operates at the binary level, rather than the

source.

Symbolic-execution-based fuzzing Recently, there has

been much interest in whitebox fuzzing, symbolic ex-

ecution, concolic execution, and constraint solving.

Examples include EXE [8], KLEE [7], CUTE [33],

DART [17], SAGE [18], and the work by Moser et

al. [28]. Microsoft’s SAGE, for instance, starts with a

well-formed input and symbolically executes the pro-

gram under test in attempt to sweep through all feasi-

ble execution paths of the program. While doing so,

it checks security properties using AppVerifier. All of

these systems substitute (some of the) program inputs

with symbolic values, gather input constraints on a pro-

gram trace, and generate new input that exercises differ-

ent paths in the program. They are very powerful, and

can analyze programs in detail, but it is difficult to make

them scale (especially if you want to explore many loop-

based array accesses). The problem is that the number of

paths grows very quickly.

Zesti [24] takes a different approach and executes

existing regression tests symbolically. Intuitively, it

checks whether they can trigger a vulnerable condition

by slightly modifying the test input. This technique

scales better and is useful for finding bugs in paths in

the neighborhood of existing test suites. It is not suit-

able for bugs that are far from these paths. As an ex-

ample, a generic input which exercises the vulnerable

loop in Figure 1 has the uri of the form ”//{arbitrary

characters}”, and the shortest input triggering the bug is

”//../”. When fed with ”//abc”, [24] does not find

the bug—because it was not designed for this scenario.

Instead, it requires an input which is much closer to the

vulnerability condition, e.g., ”//..{an arbitrary char-

acter}”. For Dowser, the generic input is sufficient.

SmartFuzz [27] focuses on integer bugs. It uses

symbolic execution to construct test cases that trigger

arithmetic overflows, non-value-preserving width con-

versions, or dangerous signed/unsigned conversions. In

contrast, Dowser targets the more common (and harder

to find) case of buffer overflows. Finally, Babić et al. [4]

guide symbolic execution to potentially vulnerable pro-

gram points detected with static analysis. However, the

interprocedural context- and flow-sensitive static analy-

sis proposed does not scale well to real world programs

and the experimental results contain only short traces.

8 Conclusion

Dowser is a guided fuzzer that combines static analysis,

dynamic taint analysis, and symbolic execution to find

buffer overflow vulnerabilities deep in a program’s logic.

It starts by determining ‘interesting’ array accesses, i.e.,

accesses that are most likely to harbor buffer overflows.

It ranks these accesses in order of complexity—allowing

security experts to focus on complex bugs, if so de-

sired. Next, it uses taint analysis to determine which in-

puts influence these array accesses and fuzzes only these

bytes. Specifically, it makes (only) these bytes symbolic

in the subsequent symbolic execution. Where possible

Dowser’s symbolic execution engine selects paths that

are most likely to lead to overflows. Each three of the

steps contain novel contributions in and of themselves

(e.g., the ranking of array accesses, the implicit flow

handling in taint analysis, and the symbolic execution

based on pointer value coverage), but the overall contri-

bution is a new, practical and complete fuzzing approach

that scales to real applications and complex bugs that

would be hard or impossible to find with existing tech-
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niques. Moreover, Dowser proposes a novel ‘spot-check’

approach to finding buffer overflows in real software.
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