
Open access to the Proceedings of the
22nd USENIX Security Symposium

is sponsored by USENIX

This paper is included in the Proceedings of the
22nd USENIX Security Symposium.
August 14–16, 2013 • Washington, D.C., USA

ISBN 978-1-931971-03-4

Flexible and Fine-grained Mandatory
Access Control on Android for Diverse Security

and Privacy Policies
Sven Bugiel, Saarland University; Stephan Heuser, Fraunhofer SIT;

Ahmad-Reza Sadeghi, Technische Universität Darmstadt and Center for Advanced Security
Research Darmstadt

USENIX Association 22nd USENIX Security Symposium 131

Flexible and Fine-Grained Mandatory Access Control on Android
for Diverse Security and Privacy Policies

Sven Bugiel∗
bugiel@cs.uni-saarland.de

Saarland University, Germany

Stephan Heuser
stephan.heuser@sit.fraunhofer.de

Fraunhofer SIT, Germany
Ahmad-Reza Sadeghi

ahmad.sadeghi@trust.cased.de
Technische Universität Darmstadt / CASED, Germany

Abstract

In this paper we tackle the challenge of providing
a generic security architecture for the Android OS
that can serve as a flexible and effective ecosystem
to instantiate different security solutions. In con-
trast to prior work our security architecture, termed
FlaskDroid, provides mandatory access control si-
multaneously on both Android’s middleware and
kernel layers. The alignment of policy enforcement
on these two layers is non-trivial due to their com-
pletely different semantics. We present an efficient
policy language (inspired by SELinux) tailored to
the specifics of Android’s middleware semantics. We
show the flexibility of our architecture by policy-
driven instantiations of selected security models such
as the existing work Saint as well as a new privacy-
protecting, user-defined and fine-grained per-app ac-
cess control model. Other possible instantiations
include phone booth mode, or dual persona phone. Fi-
nally we evaluate our implementation on SE Android
4.0.4 illustrating its efficiency and effectiveness.

1 Introduction

Mobile devices such as smartphones and tablets have
become very convenient companions in our daily lives
and, not surprisingly, also appealing to be used for
working purposes. On the down side, the increased
complexity of these devices as well as the increasing
amount of sensitive information (private or corporate)
stored and processed on them, from user’s location
data to credentials for online banking and enterprise
VPN, raise many security and privacy concerns. To-
day the most popular and widespread smartphone
operating system is Google’s Android [4].

∗Author was affiliated with Technische Universität Darm-
stadt/CASED at the time this work was conducted.

Android’s vulnerabilities. Android has been
shown to be vulnerable to a number of different
attacks such as malicious apps and libraries that mis-
use their privileges [57, 40, 25] or even utilize root-
exploits [55, 40] to extract security and privacy sen-
sitive information; taking advantage of unprotected
interfaces [14, 12, 53, 32] and files [49]; confused
deputy attacks [16]; and collusion attacks [46, 34].

Solutions. On the other hand, Android’s open-
source nature has made it very appealing to academic
and industrial security research. Various extensions
to Android’s access control framework have been
proposed to address particular problem sets such as
protection of the users’ privacy [19, 28, 15, 52, 7, 30];
application centric security such as Saint enabling
developers to protect their application interfaces [39];
establishing isolated domains (usage of the phone
in private and corporate context) [9]; mitigation of
collusion attacks [8], and extending Android’s Linux
kernel with Mandatory Access Control [48].

Observations. Analyzing the large body of litera-
ture on Android security and privacy one can make
the following observations: First, almost all proposals
for security extensions to Android constitute manda-
tory access control (MAC) mechanisms that are tai-
lored to the specific semantics of the addressed prob-
lem, for instance, establishing a fine-grained access
control to user’s private data or protecting the plat-
form integrity. Moreover, these solutions fall short
with regards to an important aspect, namely, that
protection mechanisms operate only at a specific
system abstraction layer, i.e., either at the middle-
ware (and/or application) layer, or at the kernel-layer.
Thus, they omit the peculiarity of the Android OS
design that each of its two software layers (middle-
ware and kernel) is important within its respective
semantics for the desired overall security and privacy.

132 22nd USENIX Security Symposium USENIX Association

Only few solutions consider both layers [8, 9], but
they support only a very static policy and lack the
required flexibility to instantiate different security
and privacy models.

The second observation concerns the distinguishing
characteristic of application development for mobile
platforms such as Android: The underlying oper-
ating systems provide app developers with clearly
defined programming interfaces (APIs) to system
resources and functionality – from network access
over personal data like SMS/contacts to the onboard
sensors. This clear API-oriented system design and
convergence of functionality into designated service
providers [54, 36] is well-suited for realizing a security
architecture that enables fine-grained access control
to the resources exposed by the API. As such, mobile
systems in general and Android in particular provide
better opportunities to more efficiently establish a
higher security standard than possible on current
commodity PC platforms [31].

Challenges and Our Goal. Based on the obser-
vations mentioned above, we aim to address the fol-
lowing challenges in this paper: 1) Can we design a
generic and practical mandatory access control ar-
chitecture for Android-based mobile devices, that
operates on both kernel and middleware layer, and
is flexible enough to instantiate various security and
privacy protecting models just by configuring security
policies? More concretely, we want to create a generic
security architecture which supports the instantia-
tion of already existing proposals such as Saint [39]
or privacy-enhanced system components [58], or even
new use-cases such as a phone booth mode. 2) To
what extent would the API-oriented design of An-
droid allow us to minimize the complexity of the
desired policy? Note that policy complexity is an
often criticized drawback of generic MAC solutions
like SELinux [33] on desktop systems [54].

Our Contribution. In this paper, we present the
design and implementation of a security architec-
ture for the Android OS that addresses the above
mentioned challenges. Our design is inspired by the
concepts of the Flask architecture [50]: a modular
design that decouples policy enforcement from the
security policy itself, and thus provides a generic
architecture where multiple and dynamic security
policies can be supported by the system. In particu-
lar, our contributions are:

1. System-wide security framework. We present an
Android security framework that operates on both
the middleware and kernel layer. It addresses many

problems of the stock Android permission framework
and of related solutions which target either the mid-
dleware or the kernel layer. We base our implemen-
tation on SE Android [48], which has already been
partially merged into the official Android source-code
by Google1.

2. Security policy and type enforcement at mid-
dleware layer. We extended Android’s middleware
layer with type enforcement and present our policy
language, which is specifically designed for the rich
semantics at this layer. The alignment of middleware
and kernel layer policies in a system-wide security
framework is non-trivial, particularly due to the dif-
ferent semantics of both layers.

3. Use-cases. We show how our security framework
can instantiate selected use-cases. The first one is an
attack-specific related work, the well-known applica-
tion centric security solution Saint [39]. The second
one is a privacy protecting solution that uses fine-
grained and user-defined access control to personal
data. We also mention other useful security models
that can be instantiated with FlaskDroid.

4. Efficiency and effectiveness. We successfully eval-
uate the efficiency and effectiveness of our solution
by testing it against a testbed of known attacks and
by deriving a basic system policy which allows for
the instantiation of further use-cases.

2 Background

In this section, we first present a short overview of
the standard Android software stack, focusing on the
relevant security and access control mechanisms in
place. Afterwards, we elaborate on the SE Android
Mandatory Access Control (MAC) implementation.

2.1 Android Software Stack
Android is an open-source software stack tailored to
mobile devices, such as smartphones and tablets. It is
based on a modified Linux kernel responsible for basic
operating system services (e.g. memory management,
file system support and network access).

Furthermore, Android consists of an application
framework implementing (most of) the Android API.
System Services and libraries, such as the radio inter-
face layer, are implemented in C/C++. Higher-level
services, such as System settings, the Location- and
Audiomanager, are implemented in Java. Together,
these components comprise the middleware layer.

1http://www.osnews.com/story/26477/Android_4_2_
alpha_contains_SELinux

USENIX Association 22nd USENIX Security Symposium 133

Android applications (apps) are implemented in
Java and may contain native code. They are posi-
tioned at the top of the software stack (application
layer) and use kernel and middleware Services. An-
droid ships with standard apps completing the im-
plementation of the Android API, such as a Contacts
(database) Provider. The user can install additional
apps from, for example, the Google Play store.

Android apps consist of certain components: Acti-
vities (user interfaces), Services (non user-interactive
tasks), ContentProviders (SQL-like databases), and
Broadcast Receivers (mailboxes for broadcast mes-
sages). Apps can communicate with each other on
multiple layers: 1) Standard Linux Inter-Process
Communication (IPC) using, e.g., domain sockets;
2) Internet sockets; 3) Inter-Component Commu-
nication (ICC) [21], a term abstractly describing a
lightweight IPC mechanism between app components,
called Binder. Furthermore, predefined actions (e.g.,
starting an Activity) can be triggered using an Intent,
a unicast or broadcast message sent by an application
and delivered using the Android ICC mechanism.

2.2 Security Mechanisms
Sandboxing. Android uses the Linux discretionary
access control (DAC) mechanism for application sand-
boxing by assigning each app a unique user identifier
(UID) during installation2. Every process belonging
to the app is executed in the context of this UID,
which determines access to low level resources (e.g.
app-private files). Low-level IPC (e.g. using domain
sockets) is also controlled using Linux DAC.
Permissions. Access control is applied to ICC us-
ing Permissions [21]: Labels assigned to apps at
install-time after being presented to and accepted
by the user. These labels are checked by reference
monitors at middleware- and application level when
security-critical APIs are accessed. In addition to
Android’s default permissions, app developers can
define their own permissions to protect their applica-
tions’ interfaces. However, it should be noted that
the permission model is not mandatory access control
(MAC), since callees must discretely deploy or define
the required permission check and, moreover, permis-
sions can be freely delegated (e.g., URI permissions).

Permissions are also used to restrict access to some
low level resources, such as the world read-/writeable
external storage area (e.g. a MicroSD card) or net-
work access. These permissions are mapped to Linux
group identifiers (GIDs) assigned to an app’s UID

2Developers may use the same UID (Shared UID, SUID)
for their own apps. These apps will share the same sandbox.

during installation and checked by reference monitors
in the Linux kernel at runtime.

2.3 SELinux
Security Enhanced Linux (SELinux) [33] is an instan-
tiation of the Flask security architecture [50] and
implements a policy-driven mandatory access control
(MAC) framework for the Linux kernel. In SELinux,
policy decision making is decoupled from the policy
enforcement logic. Various access control enforce-
ment points for low-level resources, such as files, IPC,
or memory protection enforce policy decisions re-
quested from a security server in the kernel. This
security server manages the policy rules and contains
the access decision logic. To maintain the security
server (e.g., reload the policy), SELinux provides a
number of userspace tools.
Access Control Model. SELinux supports differ-
ent access control models such as Role-Based Access
Control and Multilevel Security. However, Type En-
forcement is the primary mechanism: each object
(e.g., files, IPC) and subject (i.e., processes) is labeled
with a security context containing a type attribute
that determines the access rights of the object/sub-
ject. By default, all access is denied and must be
explicitly granted through policy rules—allow rules
in SELinux terminology. Using the notation intro-
duced in [26], each rule is of the form

allow TSub TObj ∶ CObj OC

where TSub is a set of subject types, TObj is a set of
object types, CObj is a set of object classes, and OC

is a set of operations. The object classes determine
which kind of objects this rule relates to and the
operations contain specific functions supported by
the object classes. If a subject whose type is in TSub

wants to perform an operation that is in OC on an
object whose class is in CObj and whose type is in
TObj , this action is allowed. Otherwise, if no such
rule exists, access is denied.
Dynamic policies. SELinux supports to some ex-
tent dynamic policies based on boolean flags which
affect conditional policy decisions at runtime. These
booleans and conditions have to be defined prior
to policy deployment and new booleans/conditions
can not be added after the policy has been loaded
without recompiling and reloading the entire policy.
The simplest example for such dynamic policies are
booleans to switch between “enforcing mode” (i.e.,
access denials are enforced) and “permissive mode”
(i.e., access denials are not enforced).
Userspace Object Managers. A powerful feature
of SELinux is that its access control architecture can

134 22nd USENIX Security Symposium USENIX Association

be extended to security-relevant userspace daemons
and services, which manage data (objects) indepen-
dently from the kernel. Thus, such daemons and
services are referred to as Userspace Object Managers
(USOMs). They are responsible for assigning security
contexts to the objects they manage, querying the
SELinux security server for access control decisions,
and enforcing these decisions. A prominent example
for such USOMs on Linux systems is GConf [13].

2.4 SE Android

SE Android [48] prototypes SELinux for Android’s
Linux kernel and aims to demonstrate the value of
SELinux in defending against various root exploits
and application vulnerabilities. Specifically, it con-
fines system Services and apps in different kernelspace
security domains even isolating apps from one an-
other by the use of the Multi-Level Security (MLS)
feature of SELinux. To this end, the SE Android
developers started writing an Android-specific policy
from scratch. In addition, SE Android provides a
few key security extensions tailored for the Android
OS. For instance, it labels application processes with
SELinux-specific security contexts which are later
used in type enforcement. Moreover, since (in the
majority of cases) it is a priori unknown during policy
writing which apps will be installed on the system
later, SE Android employs a mechanism to derive the
security context of an app at install-time. Based on
criteria, such as the requested permissions, apps are
assigned a security type. This mapping from appli-
cation meta-information to security types is defined
in the SE Android policy.

Additionally, SE Android provides limited support
for MAC policy enforcement at the Android middle-
ware layer (MMAC) and we explain these particular
features in Section 7.2 and provide a comparison to
our FlaskDroid architecture.

3 Requirements Analysis for Android
Security Architectures

3.1 Adversary Model

We consider a strong adversary with the goal to get
access to sensitive data as well as to compromise
system or third-party apps. Thus, we consider an
adversary that is able to launch software attacks on
different layers of the Android software stack.

3.1.1 Middleware Layer

Recently, different attacks operating at Android’s
middleware layer have been reported:
Overprivileged 3rd party apps and libraries
threatening user privacy by adopting questionable
privacy practices (e.g. WhatsApp [6] or Path [23]).
Moreover, advertisement libraries, frequently in-
cluded in 3rd party apps have been shown to exploit
the permissions of their host app to collect informa-
tion about the user [25].
Malicious 3rd party apps [22] leverage dangerous
permissions to cause financial harm to the user (e.g.,
sending premium SMS) and exfiltrate user-private
information [57, 40].
Confused deputy attacks concern malicious apps,
which leverage unprotected interfaces of benign sys-
tem [20, 41] and 3rd party [16, 56] apps (denoted
deputies) to escalate their privileges.
Collusion attacks concern malicious apps that col-
lude using covert or overt channels [8, 34] in order to
gain a permission set which has not been approved
by the user (e.g. the Soundcomber attack [46]).
Sensory malware leverages the information from
onboard sensors, like accelerometer data, to derive
privacy sensitive information, like user input [53, 12].

3.1.2 Root Exploits

Besides attacks at Android’s middleware layer, vari-
ous privilege escalation attacks on lower layers of the
Android software stack have been reported [55, 40]
which grant the attacker root (i.e., administrative)
privileges and can be used to bypass the Android per-
mission framework. For instance, he can bypass the
ContactsProvider permission checks by accessing the
contacts database file directly. Moreover, processes
on Android executing with root privileges inherit all
available permissions at middleware layer.

It should be noted that attacks targeting vulner-
abilities of the Linux kernel are out of scope of this
paper, since SE Android is a building block in our
architecture (see Section 4) and as part of the kernel
it is susceptible to kernel exploits.

3.2 Requirements
Based on our adversary model we derive the neces-
sary requirements for an efficient and flexible access
control architecture for mobile devices, focusing on
the Android OS.
Access Control on Multiple Layers. Manda-
tory access control solutions at kernel level, such
as SE Android [48] or Tomoyo [27], help to defend
against or to constrain privilege escalation attacks on

USENIX Association 22nd USENIX Security Symposium 135

the lower-levels of the OS [48]. However, kernel level
MAC provides insufficient protection against security
flaws in the middleware and application layers, and
lacks the necessary high-level semantics to enable a
fine-grained filtering at those layers [48, 47]. Access
control solutions at middleware level [28, 15, 39, 9, 8]
are able to address these shortcomings of kernel level
MAC, but are, on the other hand, susceptible to
low-level privilege escalation attacks.

Thus, a first requirement is to provide simultaneous
MAC defenses at the two layers. Ideally, these two
layers can be dynamically synchronized at run-time
over mutual interfaces. At least, the kernel MAC is
able to preserve security invariants, i.e., it enforces
that any access to sensitive resources/functionality
is always first mediated by the middleware MAC.
Multiple stakeholders policies. Mobile systems
involve multiple stakeholders, such as the end-user,
the device manufacturer, app developers, or other
3rd parties (e.g., the end-user’s employer). These
stakeholders also store sensitive data on the device.
Related work [39, 9] has proposed special purpose
solutions to address the security requirements and
specific problems of these parties. Naturally, the
assets of different stakeholders are subject to different
security requirements, which are not always aligned
and might conflict. Thus, one objective for a generic
MAC framework that requires handling policies of
multiple stakeholders is to support (basic) policy
reconciliation mechanisms [43, 35].
Context-awareness. The security requirements of
different stakeholders may depend on the current
context of the device. Thus, our architecture shall
provide support for context-aware security policies.
Support for different Use-Cases. Our architec-
ture shall serve as a basis for different security so-
lutions applicable in a variety of use cases. For in-
stance, by modifying the underlying policy our solu-
tion should be able to support different use cases (as
shown in Section 5), such as the selective and fine-
grained protection of app interfaces [39] or privacy-
enhanced system Services and ContentProviders.

4 FlaskDroid Architecture

In this section, we provide an overview of our
FlaskDroid architecture, elaborate in more detail
on particular design decisions, and present the policy
language employed in our system. Due to space con-
straints, we focus on the most important aspects and
refer to our technical report [11] for more detailed
information.

Services
(Location, Telephony)

ContentProviders
(Contacts, SMS,…)

API
API

Hook
Hook

API access

SE Android
Resource

(Filesystem,…)

API
Hook

Low-Level MAC queries

User-space
Kernel space

SysCall

Context Providers

FlaskDroid component Modified component SE Android module

Policy Database

User System Apps

User-Space
Security Server

App
Policy

App

Rules
update

MAC
queries

Package Manager

User Policy
App

Standard Android

Update boolean flags
Geolocation

Network state
…

Set active
context Feedback

Figure 1: FlaskDroid Architecture

4.1 Overview

The high-level idea of FlaskDroid is inspired by the
Flask security architecture [50], where various Object
Managers at middleware and kernel-level are respon-
sible for assigning security contexts to their objects.
Objects can be, for instance, kernel resources such as
Files or IPC and middleware resources such as Service
interfaces, Intents, or ContentProvider data. On access
to these objects by subjects (i.e., apps) to perform a
particular operation, the managers enforce an access
control decision that they request from a security
server at their respective layer. Thus, our approach
implements a userspace security server. Access con-
trol in FlaskDroid is implemented, as in SE Android
(cf. Section 2), as type enforcement. However, in con-
trast to SE Android we extend our policy language
with new features that are tailored to the Android
middleware semantics (cf. Section 4.3). Moreover, to
enable more dynamic policies, the policy checks in
FlaskDroid depend also on the System State, which
determines the actual security context of the objects
and subjects at runtime.

Each security server is also responsible for the pol-
icy management for multiple stakeholders such as
app developers, end-user, or 3rd parties. A particular
feature is that the policies on the two layers are syn-
chronized at runtime, e.g., a change in enforcement
in the middleware, must be supported/reflected at
kernel-level. Thus, by decoupling the policy man-
agement and decision making from the enforcement
points and consolidating the both layers, the goal
of FlaskDroid’s design is to provide fine-grained and
highly flexible access control over operations on both
middleware and kernel-level.

136 22nd USENIX Security Symposium USENIX Association

4.2 Architecture Components
Figure 1 provides an overview of our architecture. In
the following, we will explain the individual compo-
nents that comprise the FlaskDroid architecture.

4.2.1 SE Android Module

At the kernel-level, we employ stock SE Android [48]
as a building block primarily for the following pur-
poses: First, it is essential for hardening the Linux
kernel [48] thereby preventing malicious apps from
(easily) escalating their privileges by exploiting vul-
nerabilities in privileged (system) services. Even
when an attack, usually with the intent of gaining
root user privileges, is successful, SE Android can con-
strain the file-system privileges of the app by restrict-
ing the privileges of the root account itself. Second,
it complements the policy enforcement at the mid-
dleware level by preventing apps from bypassing the
middleware enforcement points (in Flask terminology
defined as Userspace Object Managers (USOMs)), for
example, accessing the contacts database file directly
instead of going through the ContactsProvider app.
Dynamic policies. Using the dynamic policy sup-
port of SELinux (cf. Section 2.3) it is possible to
reconfigure the access control rules at runtime de-
pending on the current system state. Our Userspace
Security Server (cf. Section 4.2.2) is hereby the trusted
user space agent that controls the SELinux dynamic
policies and can map system states and contexts to
SELinux boolean variables (cf. Section 4.3). To this
end, SE Android provides user space support (in
particular android.os.SELinux).

4.2.2 Userspace Security Server

In our architecture, the Userspace Security Server is
the central policy decision point for all userspace
access control decisions, while the SE Android ker-
nelspace security server is responsible for all ker-
nelspace policy decisions. This approach provides
a clear separation of security issues between the
userspace and the kernelspace components. Further-
more, it enables at middleware level the use of a more
dynamic policy schema (different from the more static
SELinux policy language) which takes advantage of
the rich semantics (e.g., contextual information) at
that layer. Access control is implemented as type
enforcement based on (1) the subject type (usually
the type associated with the calling app), (2) the
object type (e.g., contacts_email or the type associ-
ated with the callee app UID), (3) the object class
(e.g., contacts_data or Intent), and (4) the operation
on the object (e.g. query). The Userspace Security

Server (USSS) is implemented as part of the Android
system server (com.android.server) and comprises
3741 lines of Java code. It exposes an interface to
the USOMs for requesting access control decisions
over ICC (cf. Figure 1).

4.2.3 Userspace Object Managers

In FlaskDroid, middleware services and apps act
as Userspace Object Managers (USOMs) for their re-
spective objects. These services and apps can be
distinguished into system components and 3rd party
components. The former, i.e., pre-installed services
and apps, inevitably have to be USOMs to achieve
the desired system security and privacy, while the
latter can use interfaces provided by the Userspace
Security Server to optionally act as USOMs.

Table 4 in Appendix B provides an overview of
exemplary system USOMs in FlaskDroid and shows
some typical operations each object manager controls.
Currently, the USOMs implemented in FlaskDroid
comprise 136 policy enforcement points. In the fol-
lowing, we explain how we instrumented selected
components as Userspace Object Managers.
PackageManagerService is responsible for
(un)installation of application packages. Further-
more, it is responsible for finding a preferred
component for doing a task at runtime. For instance,
if an app sends an Intent to display a PDF, the
PackageManagerService looks for a preferred Activity
able to perform the task.

As a Userspace Object Manager, we extend the Pack-
ageManagerService to assign consolidated middleware-
and kernel-level app types to all apps during instal-
lation using criteria defined in the policy (cf. Sec-
tion 4.3). This is motivated by the fact that at the
time a policy is written, one cannot predict which
3rd party apps will be installed in the future. Pre-
installed apps are labeled during the phone’s boot
cycle based on the same criteria. More explicitly,
we assign app types to the (shared) UIDs of apps,
since (shared) UIDs are the smallest identifiable unit
for application sandboxes. In addition, pre-defined
UIDs in the system are reserved for particular system
components3 and we map these UIDs to pre-defined
types (e.g., aid_root_t or aid_audio_t). Further-
more, we extend the logic for finding a preferred
component to only consider apps which are allowed
by the policy to perform the requested task.
ActivityManagerService is responsible for man-
aging the stack of Activities of different apps, Activity
life-cycle management, as well as providing the Intent

3These pre-defined UIDs on Android 4.0.4 are found in
system/core/include/private/android_filesystem_config.h

USENIX Association 22nd USENIX Security Symposium 137

broadcast system. As a USOM, the ActivityManager-
Service is responsible for labeling Activity and Intent
objects and enforcing access control on them. Acti-
vities are labeled according to the apps they belong
to, i.e., the UID of the application process that cre-
ated the Activity. Subsequently, access control on
the Activity objects is enforced in the ActivityStack
subsystem of the ActivityManagerService. During op-
erations that manipulate Activities, such as moving
Activities to the foreground/background or destroying
them, the ActivityStack queries the USSS in order to
verify that the particular operations are permitted
to proceed depending on the subject type (i.e., the
calling app) and object type (i.e., the app owning
the Activity being modified).

Similar to apps, Intents are labeled based on avail-
able meta-information, such as the action and cate-
gory string or the sender app (cf. Section 4.3.1). To
apply access control to Broadcast Intents, we followed
a design pattern as proposed in [39, 9]. We modi-
fied the ActivityManagerService to filter out receivers
which are not allowed to receive Intents of the pre-
viously assigned type (e.g., to prevent apps of lower
security clearance from receiving Broadcasts by an
app of a higher security clearance).
Content Providers are the primary means for apps
to share data. This data can be accessed over a
well-defined, SQL-like interface. As Userspace Object
Managers, ContentProviders are responsible for assign-
ing labels to the data entries they manage during
insertion/creation of data and for performing access
control on update, query, or deletion of entries. Two
approaches for access control are supported: 1) at
the API level by controlling access to the provider as
a whole or 2) integrating it into the storage back-end
(e.g., SQLite database) for more fine-grained per-data
access control.

For approach 2), we implemented a design pattern
for SQLite-based ContentProviders. Upon insertion
or update of entries, we verify that the subject type
of the calling app is permitted to perform this opera-
tion on the particular object type. To filter queries
to the database we create one SQL View for each
subject type and redirect the query of each calling
app to the respective View for its type. Each View
implements a filtering of data based on an access con-
trol table managed by the USSS which represents the
access control matrix for subject/object types. This
approach is well-suited for any SQLite-based Con-
tentProvider and scales well to multiple stakeholders
by using nested Views.
Service components of an app provide a particular
functionality to other (possibly remote) components,
which access the Service interface via ICC. To instan-

tiate a Service as a Userspace Object Manager, we add
access control checks when a (remote) component
connects to the Service and on each call to Service
functions exposed by the Service API. The developer
of the Service can set the types of the service and its
functions by adding type-tags to their definitions.

Service interfaces are exposed as Binder IPC ob-
jects that are generated based on an interface spec-
ification described in the Android Interface Defini-
tion Language (AIDL). We extended the lexer and
parser of Android’s AIDL tool to recognize (developer-
defined) type tags on Service interfaces and function
declarations. The AIDL code generator was extended
to automatically insert policy checks for these types
in the auto-generated Service code. Since the AIDL
tool is used during build of the system as well as
part of the SDK for app development, this solution
applies to both system Services and 3rd party app
Services in the same way.

4.2.4 Context Providers

A context is an abstract term that represents the
current security requirements of the device. It can
be derived from different criteria, such as physical
criteria (e.g., the location of the device) or the state
of apps and the system (e.g., the app being currently
shown on the screen). To allow for flexible control
of contexts and their definitions, our design employs
Context Providers. These providers come in form of
plugins to our Userspace Security Server (see Figure 1)
and can be arbitrarily complex (e.g., use machine
learning) and leverage available information such as
the network state or geolocation of the device to
determine which contexts apply. Context Providers
register Listener threads in the system to detect con-
text changes similar to the approach taken in [15].
Each Context Provider is responsible for a distinct
set of contexts, which it activates/deactivates in the
USSS. Decoupling the context monitoring and defini-
tion from our policy provides that context definitions
do not affect our policy language except for very sim-
ple declarations (as we will show in Section 4.3.1).

Moreover, the USSS provides feedback to Context
Providers about the performed access control deci-
sions. This is particularly useful when instantiating
security models like [8, 15] in which access control
decisions depend on previous decisions.

4.3 Policy
4.3.1 Policy Language and Extensions

We extend SELinux’s policy semantics for type en-
forcement (cf. Section 2.3) with new default classes

138 22nd USENIX Security Symposium USENIX Association

Listing 1: Assigning types to apps and Intents
1 defaultAppType untrustedApp_t;
2 defaultIntentType untrustedIntent_t;
3

4 appType app_telephony_t {
Package:package_name=com.android.phone; };

5

6 intentType intentLaunchHome_t {
7 Action:action_string=android.intent.action.MAIN;
8 Categories:category=android.intent.category.HOME;};

and constructs for expressing policies on both mid-
dleware and kernel-level. A recapitulation of the
SELinux policy language is out of scope of this paper
and we focus here on our extensions.
New default classes. Similar to classes at the
kernel-level, like file or socket, we introduce new
default classes and their corresponding operations
to represent common objects at middleware level,
such as Activity, Service, ContentProvider, and Intent.
Operations for these classes are, for example, query
a ContentProvider or receive an Intent.
Application and Intent Types. A further exten-
sion is the possibility to define criteria by which ap-
plications and Intents are labeled with a security type
(cf. Listing 1). The criteria for apps can be, for in-
stance, the application package name, the requested
permissions or the developer signature. Criteria for
assigning a type to Intent objects can be the Intent
action string, category or receiving component. If no
criteria matched, a default type is assigned to apps
(line 1) and Intents (line 2), respectively.
Context definitions and awareness. We extend
the policy language with an option to declare con-
texts to enable context-aware policies. Each declared
context can be either activated or deactivated by a
dedicated Context Provider (cf. Section 4.2).

To actually enable context-aware policies, we in-
troduce in our policy language switchBoolean state-
ments which map contexts to booleans, which in
turn provide dynamic policies. Listing 2 presents
the definition of booleans and switchBoolean state-
ments. For instance, the switchBoolean statement in
lines 4-9 defines that as soon as the context phone-
Booth_con is active, the boolean phoneBooth_b has
to be set to true. As soon as the phoneBooth_con
context is deactivated, the phoneBooth_b boolean
should be reset to its initial value (line 6). To map
contexts to the kernel-level, we introduce kbool defi-
nitions (line 2), which point to a boolean at kernel
level instead of adding a new boolean at middleware
level. Changes to such kernel-mapped boolean values
by switchBoolean statements trigger a call to the
SELinux kernel module to update the corresponding

Listing 2: Linking booleans with contexts
1 bool phoneBooth_b = false;
2 kbool allowIPTablesExec_b = true;
3

4 switchBoolean {
5 context=phoneBooth_con;
6 auto_reverse=true;
7 phoneBooth_b=true;};

SELinux boolean.

4.3.2 Support for Multiple Stakeholders

A particular requirement for the design of FlaskDroid
is the protection of interests of different stakeholders.
This requires that policy decisions consider the poli-
cies of all involved stakeholders. These policies can
be pre-installed (i.e., system policy), delivered with
apps (i.e., app developer policies), or configured by
the user (e.g., User Policy App in Figure 1).

In FlaskDroid, 3rd party app developers may op-
tionally ship app-specific policies with their applica-
tion packages and additionally choose to instrument
their app components as Userspace Object Managers
for their own data objects. FlaskDroid provides the
necessary interfaces to query the Userspace Security
Server for policy decisions as part of the SDK. These
decisions are based on the app-specific 3rd party
policy, which defines custom appType statements to
label subjects (e.g., other apps) and declares app-
specific object types. To register app-specific policies,
the PackageManagerService is instrumented such that
it extracts policy files during app installation and
injects them into the USSS.

A particular challenge when supporting multiple
stakeholders is the reconciliation of the various stake-
holders’ policies. Different strategies for reconcili-
ation are possible [43, 35] and generally supported
by our architecture, based on namespaces and glob-
al/local type definitions. For instance, as discussed
in [43], all-allow (i.e., all stakeholder policies must
allow access), any-allow (i.e., only one stakeholder
policy must allow access), priority (i.e., higher ranked
stakeholder policies override lower ranked ones), or
consensus (i.e., at least one stakeholder policy allows
and none denies or vice versa). However, choosing
the right strategy strongly depends on the use-case.
For example, on a pure business smartphone without
a user-private domain, the system (i.e., company) pol-
icy always has the highest priority, while on a private
device a consensus strategy may be preferable.

We opted for a consensus approach, in which the
system policy check is mandatory and must always
consent for an operation to succeed.

USENIX Association 22nd USENIX Security Symposium 139

5 Use-cases / Instantiations

In the following we will show how FlaskDroid can
instantiate certain privacy and security protecting
use-cases. More use-cases and concrete examples are
provided in our technical report [11].

5.1 Privacy Enhanced System Ser-
vices and Content Providers

System Services and ContentProviders are an integral
part of the Android application framework. Promi-
nent Services are, for instance, the LocationManager
or the Audio Services and prominent ContentProviders
are the contacts app and SMS/MMS app. By default,
Android enforces permission checks on access to the
interfaces of these Services and Providers.
Problem description: The default permissions are
non-revocable and too coarse-grained and protect
access only to the entire Service/Provider but not to
specific functions or data. Thus, the user cannot
control in a fine-grained fashion which sensitive data
can be accessed how, when and by whom. Apps such
as Facebook and WhatsApp have access to the entire
contacts database although only a subset of the data
(i.e., email addresses, phone numbers and names)
is required for their correct functioning. On the
other hand, recent attacks demonstrated how even
presumably privacy-unrelated and thus unprotected
data (e.g. accelerometer readings) can be misused
against user’s security and privacy [53, 12].
Solution: Our modified AIDL tool automatically
generates policy checks for each Service interface and
function in the system. We tagged selected query
functions of the system AudioService, LocationMana-
ger, and SensorManager with specific security contexts
(e.g., fineGrainedLocation_t as object_type, location-
Service_c as object_class, and getLastKnownLocation
as operation) to achieve fine-grained access control
on this information. Our policy states that calling
functions of this object type is prohibited while the
phone is in a security sensitive state. Thus, retrieving
accelerometer information or recording audio is not
possible when, e.g., the virtual keyboard/PIN pad is
in the foreground or a phone call is in progress.

In Section 4.2.3 we explained how ContentProvi-
ders (e.g. the ContactsProvider) can act as User-
space Object Managers. As an example, users can
refine the system policy to further restrict access to
their contacts’ data. A user can, for instance, grant
the Facebook app read access to their “friends” and
“family” contacts’ email addresses and names, while
prohibiting it from reading their postal addresses and
any data of other groups such as “work”.

5.2 App Developer Policies (Saint)
Ongtang et al. present in [39] an access control frame-
work, called Saint, that allows app developers to ship
their apps with policies that regulate access to their
apps’ components.
Problem description: The concrete example used
to illustrate this mechanism consists of a shopping
app whose developer wants to restrict the interaction
with other 3rd party apps to only specific payment,
password vault, or service apps. For instance, the
developer specifies that that the password vault app
must be at least version 1.2 or that a personal ledger
app must not hold the Internet permission.

The policy rules for the runtime enforcement of
Saint on Inter-Component communication (ICC) are
defined as the tuple (Source, Destination, Conditions,
State). Source defines the source app component
of the ICC and optional parameters for an Intent
object (e.g., action string). Destination describes
similarly the destination app component of the ICC.
Conditions are optional conjunctional conditions (e.g.,
permissions or signature key of the destination app)
and State describes the system state (e.g., geolocation
or bluetooth adapter state).
Solution: Instantiating Saint’s runtime access con-
trol on FlaskDroid is achieved by mapping Saint’s
parameters to the type enforcement implemented by
FlaskDroid. Thus, Source, Destination, and Condi-
tions are combined into security types for the subject
(i.e., source app) and object (i.e., destination app
or Intent object). For instance, a specific type is
assigned to an app with a particular signature and
permission. If this app is source in the Saint policy,
it is used as subject type in FlaskDroid policy rules;
and if it is used as destination, it is used as object
type. The object class and operation are directly de-
rived from the destination app. The system state can
be directly expressed by booleans and switchBoolean
statements in the policy and an according Context
Provider. Appendix A provides a concrete policy
example for the instantiation of the above shopping
app example.

6 Evaluation and Discussion

In this section we evaluate and discuss our archi-
tecture in terms of policy design, effectiveness, and
performance overhead.

6.1 Policy
To evaluate our FlaskDroid architecture, we derived
a basic policy that covers the pre-installed system

140 22nd USENIX Security Symposium USENIX Association

USOMs that we introduced in Section 4.2.3.
Policy Assessment. For FlaskDroid we are for now
foremost interested in generating a basic policy to es-
timate the access control complexity that is inherent
to our design, i.e., the number of new types, classes,
and rules required for the system Userspace Object
Managers. This basic policy is intended to lay the
foundation for the development of a good policy, i.e.,
a policy that covers safety, completeness, and effec-
tiveness properties. However, the development of a
security policy that fulfills these properties is a highly
complex process. For instance, on SELinux enabled
systems the policies were incrementally developed
and improved after the SELinux module had been
introduced, even inducing research on verification of
these properties [24]. A similar development can be
currently observed for the SE Android policies which
are written from scratch [48] and we envision induc-
ing a similar research on development and verification
of FlaskDroid policies.
Basic Policy Generation. To generate our basic
policy, we opted for an approach that follows the
concepts of TOMOYO Linux’ learning phase4 and
other semi-automatic methods [42]. The underlying
idea is to derive policy rules directly from observed
application behavior. To generate a log of system
application behavior, we leveraged FlaskDroid’s au-
dit mode, where policy checks are logged but not
enforced. Under the assumption, that the system
contained in this auditing phase only trusted apps,
this trace can be used to derive policy rules.

To achieve a high coverage of app functionality
and thus log all required access rights, we opted for
testing with human user trials for the following rea-
sons: First, automated testing has been shown to
exhibit a potentially very low code coverage [24] and,
second, Android’s extremely event-driven and concur-
rent execution model complicates static analysis of
the Android system [56, 24]. However, in the future,
static analysis based (or aided) generation of access
control rules is more preferable in order to cover also
corner-cases of applications’ control-flows.

The users’ task was to thoroughly use the pre-
installed system apps by performing various every-
day tasks (e.g., maintaining contacts, writing SMS,
browsing the Internet, or using location-based ser-
vices). To analyze interaction between apps, a par-
ticular focus of the user tasks was to leverage inter-
app functionality like sharing data (e.g., copying
notes from a website into an SMS). For testing, the
users were handed out Galaxy Nexus devices running
FlaskDroid with a No-allow-rule policy. This is a

4http://tomoyo.sourceforge.jp/2.2/learning.html.en

manually crafted policy containing only the required
subject/object types, classes and operations for the
USOMs in our architecture, but no allow rules. The
devices were also pre-configured with test accounts
(e.g., EMail) and test data (e.g., fake contacts).

Using the logged access control checks from these
trials, we derived 109 access control rules required
for the correct operation of the system components
(as observed during testing), which we learned to be
partially operationally dependent on each other. Our
pre-installed middleware policy contained 111 types
and 18 classes for a fine-granular access control to
the major system Services and ContentProviders (e.g.,
ContactsProvider, LocationManager, PackageManager-
Service, or SensorManager). These rules (together
with the above stated type and object definitions)
constitute our basic policy. Although SELinux poli-
cies cannot be directly compared to our policy, since
they target desktop operating systems, the difference
in policy complexity (which is in the order of several
magnitudes [11]) underlines that the design of mobile
operating systems facilitates a clearer mandatory ac-
cess control architecture (e.g., separation of duties).
This profits an easier policy design (as supported by
the experiences from [54, 36]).

3rd Party Policies. The derived basic policy can
act as the basis on top of which additional user, 3rd

party, and use-case specific policies can be deployed
(cf. Section 5). In particular, we are currently work-
ing on extending the basic policy with types, classes
and allow rules for popular apps, such as Whats-
App or Facebook, which we further evaluated w.r.t.
user’s privacy protection (cf. Section 6.2). A par-
ticular challenge is to derive policies which on the
one hand protect the user’s privacy but on the other
hand preserve the intended functionality of the apps.
Since the user privacy protection strongly depends
on the subjective security objectives of the user, this
approach requires further investigation on how the
user can be involved in the policy configuration [58].

However, as discussed in Sections 3 and 4.2.2, mul-
tiple policies by different stakeholders with poten-
tially conflicting security objectives require a recon-
ciliation strategy. Devising a general strategy appli-
cable to all use-cases and satisfying all stakeholders
is very difficult, but use-case specific strategies are
feasible [44, 29]. In our implementation, we opted for
a consensus approach, which we successfully applied
during implementation of our use-cases (cf. Section 5).
We explained further strategies in Section 4.3.2.

USENIX Association 22nd USENIX Security Symposium 141

Attack Test
Root Exploit mempodroid Exploit
App executed by root Synthetic Test App
Over-privileged and Known malware
Information-Stealing Synthetic Test App
Apps WhatsApp v2.8.4313

Facebook v1.9.1
Sensory Malware Synthetic Test App [53, 12, 46]
Confused Deputy Synthetic Test App
Collusion Attack Synthetic Test Apps [46]

Table 1: List of attacks considered in our testbed

6.2 Effectiveness

We decided to evaluate the effectiveness of FlaskDroid
based on empirical testing using the security models
presented in Section 5 as well as a testbed of known
malware retrieved from [55, 3] and synthetic attacks
(cf. Table 1). Alternative approaches like static
analysis [18] would benefit our evaluation but are
out of scope of this paper and will be addressed
separately in future work.
Root exploits. SE Android successfully mitigates
the effect of the mempodroid attack. While the ex-
ploit still succeeds in elevating its process to root
privileges, the process is still constrained by the un-
derlying SE Android policy to the limited privileges
granted to the root user [48].
Malicious apps executed by root. While SE An-
droid constrains the file-system privileges of an app
process executed with root UID, this process still
inherits all Permissions at middleware level. In
FlaskDroid, the privileges of apps running with this
omnipotent UID are restricted to the ones granted
by the system policy to root (cf. aid_root_t in Sec-
tion 4.2.3). During our user tests, we had to define
only one allow rule for the aid_root_t type on the
middleware layer, which is not surprising, since usu-
ally Android system or third-party apps are not exe-
cuted by the root user. Thus, a malicious app gaining
root privileges despite SE Android, e.g., using the
mempodroid exploit [48], is in FlaskDroid restricted
at both kernel and middleware level.
Over-privileged and information stealing
apps. We verified the effectiveness of FlaskDroid
against over-privileged apps using a) a synthetic test
app which uses its permissions to access the Contacts-
Provider, the LocationManager and the SensorManager
as 3rd party apps would do; b) malware such as An-
droid.Loozfon [2] and Android.Enesoluty [1] which
steal user private information; and c) unmodified
apps from Google Play, including the popular Whats-
App messenger and Facebook apps. In all cases, a
corresponding policy on FlaskDroid successfully and

gracefully prevented the apps and malware from ac-
cessing privacy critical information from sources such
as the ContactsProvider or LocationManager.
Sensory malware. To mitigate sensory malware
like TapLogger [53] and TouchLogger [12], we de-
ployed a context-aware FlaskDroid policy which
causes the SensorManager USOM to filter acceler-
ation sensor information delivered to registered Sen-
sorListeners while the on-screen keyboard is active.
Similarly, a second policy prevents the SoundComber
attack [46] by denying any access to the audio record
functionality implemented in the MediaRecorderClient
USOM while a call is in progress.
Confused deputy and collusion attacks. At-
tacks targeting confused deputies in system compo-
nents (e.g. SettingsAppWidgetProvider [41]) are
addressed by fine-grained access control rules on ICC.
Our policy restricts which app types may send (broad-
cast) Intents reserved for system apps.

Collusion attacks are in general more challeng-
ing to handle, especially when covert channels are
used for communication. Similar to the mitigation
of confused deputies, a FlaskDroid policy was used
to prohibit ICC between colluding apps based on
specifically assigned app types. However, to address
collusion attacks efficiently, more flexible policies
are required. We already discussed in Section 4.2.4
a possible approach to instantiate XManDroid [8]
based on our Context Providers and we elaborate in
the subsequent Section 6.3 on particular challenges
for improving the mitigation of collusion attacks.

6.3 Open Challenges and TCB
Information flows within apps. Like any other
access control system, e.g., SELinux, exceptions for
which enforcement falls short concern attacks which
are licit within the policy rules. Such shortcomings
may lead to unwanted information leakage. A partic-
ular challenge for addressing this problem and control-
ling access and separation (non-interference) of secu-
rity relevant information are information flows within
apps. Access control frameworks like FlaskDroid
usually operate at the granularity of application in-
puts/outputs but do not cover the information flow
within apps. For Android security, this control can
be crucial when considering attacks such as collusion
attacks and confused deputy attacks. Specifically for
Android, taint tracking based approaches [19, 28, 45]
and extensions to Android’s IPC mechanism [17] have
been proposed. To which extend these approaches
could augment the coverage and hence effectiveness
of FlaskDroid has to be explored in future work.
User-centric and scalable policies. While

142 22nd USENIX Security Symposium USENIX Association

FlaskDroid is a sophisticated access control frame-
work for enforcing security policies and is already now
valuable in specific scenarios with fixed policies like
business phones or locked-down devices [11], a partic-
ular challenge of the forthcoming policy engineering
are user-centric and scalable policies for off-the-shelf
end-user devices. Although expert-knowledge can be
used to engineer policies for the static components
of the system, similar to common SELinux-enabled
distributions like Fedora, an orthogonal, open re-
search problem is how to efficiently determine the
individual end-users’ security and privacy require-
ments and how to map these requirements scalable
to FlaskDroid policy rules w.r.t. the plethora of differ-
ent apps available. To this end, we started exploring
approaches to provide the end-user with tools that
abstract the underlying policies [10]. Furthermore,
the policy-based classification of apps at install-time
applied in FlaskDroid could in the future be aug-
mented by different or novel techniques from related
fields, e.g., role-mining for RBAC systems [51], to
assist the end-user in his decision processes.
Trusted Computing Base. Moreover, while
SE Android as part of the kernel is susceptible to
kernel-exploits, our middleware extensions might be
compromised by attacks against the process in which
they execute. Currently our SecurityServer executes
within the scope of the rather large Android system
server process. Separating the SecurityServer as a
distinct system process with a smaller attack sur-
face (smaller TCB) can be efficiently accomplished,
since there is no strong functional inter-dependency
between the system server and FlaskDroid’s Security-
Server.

6.4 Performance Overhead
Middleware layer. We evaluated the performance
overhead of our architecture based on the No-allow-
rule policy and the basic policy presented in Sec-
tion 6.1 using a Samsung Galaxy Nexus device run-
ning FlaskDroid. Table 2 presents the mean execu-
tion time µ and standard deviation σ for performing
a policy check at the middleware layer in both pol-
icy configurations (measured in µs) as well as the
average memory consumption (measured in MB) of
the process in which our Userspace Security Server
executes (i.e., the system server). Mean execution
time and standard deviation are the amortized values
for both cached and non-cached policy decisions.

In comparison to permission checks on a vanilla
Android 4.0.4 both the imposed runtime and memory
overhead are acceptable. The high standard devia-
tion is explained by varying system loads, however,

µ (in µs) σ (in µs) memory (in
MB)

FlaskDroid
No-allow-rule 329.505 780.563 15.673
Basic policy 452.916 4887.24 16.184
Vanilla Android 4.0.4
Permission check 330.800 8291.805 15.985

Table 2: Runtime and memory overhead

µ (in ms) σ (in ms)
FlaskDroid (Basic policy) 0.452 4.887
XManDroid [8] (Amortized) 0.532 2.150
TrustDroid [9] 0.170 1.910

Table 3: Performance comparison to related works

Figure 2 presents the cumulative frequency distribu-
tion for our policy checks. The shaded area represents
the 99.33% confidence interval for our basic policy
with a maximum overhead of 2ms.

In comparison to closest related work [8, 9] (cf. Sec-
tion 7), FlaskDroid achieves a very similar perfor-
mance. Table 3 provides an overview of the aver-
age performance overhead of the different solutions.
TrustDroid [9] profits from the very static policies
it enforces, while FlaskDroid slightly outperforms
XManDroid [8]. However, it is hard to provide a
completely fair comparison, since both TrustDroid
and XManDroid are based on Android 2.2 and thus
have a different baseline measurement. Both [8, 9]
report a baseline of approximately 0.18ms for the de-
fault permission check, which differs from the 0.33ms
we observed in Android 4.0.4 (cf. Table 2).
Kernel layer. The impact of SE Android on An-
droid system performance has been evaluated previ-
ously by its developers [48]. Since we only minimally
add/modify the default SE Android policy to cater
for our use-cases (e.g., new booleans), the negligible
performance overhead presented in [48] still applies
to our current implementation.

7 Related Work

7.1 Mandatory Access Control
The most prominent MAC solution is SELinux [33]
and we elaborated on it in detail in our Background
and Requirements Sections 2 and 3. Specifically for
mobile platforms, related work [54, 36] has investi-
gated the placement of SELinux enforcement hooks
in the operating system and user-space services on
OpenMoko [36] and the LiMo (Linux Mobile) plat-
form [54]. Our approach follows along these ideas
but for the Android middleware.

USENIX Association 22nd USENIX Security Symposium 143

Figure 2: CDF of the performance overhead. Shaded
area represents the 99.33 confidence interval for
checks with Basic policy.

Also TOMOYO Linux [27], a path-based MAC
framework, has been leveraged in Android security
extensions [8][9]. Although TOMOYO supports more
easily policy updates at runtime and does not require
extended file system attributes, SELinux is more
sophisticated, supports richer policies, and covers
more object classes [5].

However, as we state in Section 3, low-level MAC
alone is insufficient. In this paper we show how to
extend the SE Android security architecture into the
Android middleware layer for policy enforcement.

7.2 SE Android MMAC
The SE Android project was recently extended by
different mechanisms for mandatory access control at
Android’s middleware layer [47], denoted as MMAC:
Permission revocation is a simple mechanism to
dynamically revoke permissions by augmenting the
default Android permission check with a policy driven
check. When necessary, this additional check over-
rules and negates the result of the default check.

However, this permission revocation is in almost
all cases unexpected for app developers, which rely
on the fact that if their app has been installed, it
has been granted all requested permissions. Thus,
developers very often omit error handling code for
permission denials and hence unexpectedly revoking
permissions easily leads to application crashes.

In FlaskDroid, policy enforcement also effectively
revokes permissions. However, we use USOMs which
integrate the policy enforcement into the compo-
nents which manage the security and privacy sensitive
data. Thus, our USOMs apply enforcement mecha-
nisms that are graceful, i.e., they do not cause unex-
pected behavior that can cause application crashes.
Related work (cf. Section 7.3) introduced some of
these graceful enforcement mechanisms, e.g., filter-
ing table rows and columns from ContentProvider

responses [58, 15, 28, 8, 9].
Intent MAC protects with a white-listing enforce-
ment the delivery of Intents to Activities, Broadcast
Receivers, and Services. Technically, this approach
is similar to prior work like [58, 8, 9]. The white-
listing is based on attributes of the Intent objects
(e.g., the value of the action string) and the security
type assigned to the Intent sender and receiver apps.

In FlaskDroid, we apply a very similar mechanism
by assigning Intent objects a security type, which we
use for type enforcement on Intents. While we ac-
knowledge, that access control on Intents is important
for the overall coverage of the access control, Intent
MAC alone is insufficient for policy enforcement on
inter-app communications. A complete system has
to consider also other middleware communications
channels, such as Remote Procedure Calls (RPC)
to Service components and to ContentProviders. By
instrumenting these components as USOMs and by
extending the AIDL compiler (cf. Section 4.2) to
insert policy enforcement points, we address these
channels in FlaskDroid and provide a non-trivial
complementary access control to Intent MAC.
Install-time MAC performs, similar to Kirin [20],
an install-time check of new apps and denies installa-
tion when an app requests a defined combination of
permissions. The adverse permission combinations
are defined in the SE Android policy.

While FlaskDroid does not provide an install-time
MAC, we consider this mechanism orthogonal to
the access control that FlaskDroid already provides
and further argue that it could be easily integrated
into existing mechanisms of FlaskDroid (e.g., by ex-
tending the install-time labeling of new apps with a
blacklist-based rejection of prohibited app types).

7.3 Android Security Extensions
In the recent years, a number of security extensions
to the Android OS have been proposed.

Different approaches [38, 37, 15, 39] add manda-
tory access control mechanisms to Android, tailored
for specific problem sets such as providing a DRM
mechanism (Porscha [38]), providing the user with
the means to selectively choose the permissions and
runtime constraints each app has (APEX [37] and
CRePE [15]), or fine-grained, context-aware access
control to enable developers to install policies to pro-
tect the interfaces of their apps (Saint [39]). Essen-
tially all these solutions extend Android with MAC
at the middleware layer. The explicit design goal of
our architecture was to provide an ecosystem that
is flexible enough to instantiate those related works
based on policies (as demonstrated in Section 5 at

144 22nd USENIX Security Symposium USENIX Association

the example of Saint) and additionally providing the
benefit of a consolidated kernel-level MAC.

The pioneering framework TaintDroid [19] in-
troduced the tracking of tainted data from sensi-
ble sources on Android and successfully detected
unauthorized information leakage. The subsequent
AppFence architecture [28] extended TaintDroid with
checks that not only detect but also prevent such
unauthorized leakage. However, both TaintDroid
and AppFence do not provide a generic access con-
trol framework. Nevertheless, future work could in-
vestigate their applicability in our architecture, e.g.,
propagating the security context of data objects. The
general feasibility of such “context propagation” has
been shown in the MOSES [45] architecture.

Inlined Reference Monitors (IRM) [52, 7, 30] place
policy enforcement code for access control directly in
3rd party apps instead of relying on a system centric
solution. An unsolved problem of inlined monitoring
in contrast to a system-centric solution is that the
reference monitor and the potentially malicious code
share the same sandbox and that the monitor is not
more privileged than the malicious code and thus
prone to compromise.

The closest related work to FlaskDroid with respect
to a two layer access control are the XManDroid [8]
and TrustDroid [9] architectures. Both leverage TO-
MOYO Linux as kernel-level MAC to establish a sep-
arate security domain for business apps [9], or to mit-
igate collusion attacks via kernel-level resources [8].
Although they cover MAC enforcement at both mid-
dleware and kernel level, both systems support only
a very static policy tailored to their specific purposes
and do not support the instantiation of different use-
cases. In contrast, FlaskDroid can instantiate the
XManDroid and TrustDroid security models by ad-
justing policies. For instance, different security types
for business and private apps could be assigned at
installation time, and boolean flags can be used to
dynamically prevent two apps from communicating
if this would form a collusion attack.

8 Conclusion

In this paper, we present the design and implementa-
tion of FlaskDroid, a policy-driven generic two-layer
MAC framework on Android-based platforms. We
introduce our efficient policy language that is tai-
lored for Android’s middleware semantics. We show
the flexibility of our architecture by policy-driven
instantiations of selected security models, including
related work (Saint) and privacy-enhanced system
components. We demonstrate the applicability of
our design by prototyping it on Android 4.0.4. Our

evaluation shows that the clear API-oriented design
of Android benefits the effective and efficient im-
plementation of a generic mandatory access control
framework like FlaskDroid.

Availability

The source code for FlaskDroid is available online at
http://www.flaskdroid.org.

References
[1] Android.Enesoluty | Symantec. http://www.symantec.

com/security_response/writeup.jsp?docid=2012-
082005-5451-99.

[2] Android.Loozfon | Symantec. http://www.symantec.
com/security_response/writeup.jsp?docid=2012-
082005-5451-99.

[3] Contagio Mobile. http://contagiominidump.blogspot.
de/.

[4] Gartner Says Worldwide Mobile Phone Sales Declined
1.7 Percent in 2012. http://www.gartner.com/newsroom/
id/2335616.

[5] TOMOYO Linux Wiki: How is TOMOYO Linux dif-
ferent from SELinux and AppArmor? http://tomoyo.
sourceforge.jp/wiki-e/?WhatIs#comparison.

[6] WhatsApp reads your phone contacts and is breaking
privacy laws. http://www.digitaltrends.com/mobile/
whatsapp-breaks-privacy-laws/.

[7] Backes, M., Gerling, S., Hammer, C., and von Styp-
Rekowsky, P. Appguard - enforcing user requirements
on android apps. In 19th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems (TACAS) (2013), Springer-Verlag.

[8] Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T.,
Sadeghi, A.-R., and Shastry, B. Towards taming
privilege-escalation attacks on android. In NDSS (2012),
The Internet Society.

[9] Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S.,
Sadeghi, A.-R., and Shastry, B. Practical and
lightweight domain isolation on android. In 1st ACM
CCS Workshop on Security and Privacy in Mobile De-
vices (SPSM) (2011), ACM.

[10] Bugiel, S., Heuser, S., and Sadeghi, A.-R. myTunes:
Semantically Linked and User-Centric Fine-Grained Pri-
vacy Control on Android. Tech. Rep. TUD-CS-2012-0226,
Center for Advanced Security Research Darmstadt, Nov.
2012.

[11] Bugiel, S., Heuser, S., and Sadeghi, A.-R. Towards a
Framework for Android Security Modules: Extending SE
Android Type Enforcement to Android Middleware. Tech.
Rep. TUD-CS-2012-0231, Center for Advanced Security
Research Darmstadt, December 2012.

[12] Cai, L., and Chen, H. Touchlogger: inferring keystrokes
on touch screen from smartphone motion. In 6th USENIX
conference on Hot topics in security (HotSec) (2011),
USENIX Association.

[13] Carter, J. Using gconf as an example of how to create
an userspace object manager, 2007.

USENIX Association 22nd USENIX Security Symposium 145

[14] Chin, E., Felt, A. P., Greenwood, K., and Wag-
ner, D. Analyzing inter-application communication in
Android. In MobiSys (2011), ACM.

[15] Conti, M., Nguyen, V. T. N., and Crispo, B. CRePE:
Context-related policy enforcement for Android. In 13th
Information Security Conference (ISC) (2010), Springer-
Verlag.

[16] Davi, L., Dmitrienko, A., Sadeghi, A.-R., and
Winandy, M. Privilege escalation attacks on Android.
In 13th Information Security Conference (ISC) (2010),
Springer-Verlag.

[17] Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., and
Wallach, D. S. Quire: Lightweight provenance for
smartphone operating systems. In USENIX Security
(2011), USENIX Association.

[18] Edwards, A., Jaeger, T., and Zhang, X. Runtime
verification of authorization hook placement for the Linux
security modules framework. In CCS (2002), ACM.

[19] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung,
J., McDaniel, P., and Sheth, A. N. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI (2010), USENIX
Association.

[20] Enck, W., Ongtang, M., and McDaniel, P. On
lightweight mobile phone application certification. In
CCS (2009), ACM.

[21] Enck, W., Ongtang, M., and McDaniel, P. Under-
standing Android security. IEEE Security and Privacy
Magazine 7 (2009), 50–57.

[22] F-Secure Labs. Mobile Threat Report: Q3 2012, 2012.
[23] Federal Trade Commission. Path social networking

app settles FTC charges it deceived consumers and im-
properly collected personal information from users’ mobile
address books. http://www.ftc.gov/opa/2013/02/path.
shtm, Jan. 2013.

[24] Gilbert, P., Chun, B.-G., Cox, L. P., and Jung, J.
Vision: automated security validation of mobile apps at
app markets. In 2nd international workshop on Mobile
cloud computing and services (MCS) (2011), ACM.

[25] Grace, M. C., Zhou, W., Jiang, X., and Sadeghi, A.-R.
Unsafe exposure analysis of mobile in-app advertisements.
In WiSec (2012), ACM.

[26] Guttman, J. D., Herzog, A. L., Ramsdell, J. D., and
Skorupka, C. W. Verifying information flow goals in
security-enhanced linux. Journal on Computer Security
13, 1 (Jan. 2005), 115–134.

[27] Harada, T., Horie, T., and Tanaka, K. Task Oriented
Management Obviates Your Onus on Linux. In Linux
Conference (2004).

[28] Hornyack, P., Han, S., Jung, J., Schechter, S., and
Wetherall, D. These aren’t the droids you’re looking
for: retrofitting android to protect data from imperious
applications. In CCS (2011), ACM.

[29] Hu, H., Ahn, G.-J., and Kulkarni, K. Detecting and
resolving firewall policy anomalies. IEEE Transactions on
Dependable and Secure Computing 9, 3 (2012), 318–331.

[30] Jeon, J., Micinski, K. K., Vaughan, J. A., Fogel,
A., Reddy, N., Foster, J. S., and Millstein, T. Dr.
Android and Mr. Hide: Fine-grained security policies on
unmodified Android. In 2nd ACM CCS Workshop on
Security and Privacy in Mobile Devices (SPSM) (2012),
ACM.

[31] Kostiainen, K., Reshetova, E., Ekberg, J.-E., and
Asokan, N. Old, new, borrowed, blue – a perspective on
the evolution of mobile platform security architectures.
In CODASPY (2011), ACM.

[32] Lineberry, A., Richardson, D. L., and Wyatt, T.
These aren’t the permissions you’re looking for. BlackHat
USA 2010. http://dtors.files.wordpress.com/2010/
08/blackhat-2010-slides.pdf, 2010.

[33] Loscocco, P., and Smalley, S. Integrating flexible
support for security policies into the Linux operating
system. In FREENIX Track: USENIX Annual Technical
Conference (2001), USENIX Association.

[34] Marforio, C., Ritzdorf, H., Francillon, A., and
Capkun, S. Analysis of the communication between col-
luding applications on modern smartphones. In ACSAC
(2012), ACM.

[35] McDaniel, P., and Prakash, A. Methods and limita-
tions of security policy reconciliation. In S&P (2002),
IEEE Computer Society.

[36] Muthukumaran, D., Schiffman, J., Hassan, M.,
Sawani, A., Rao, V., and Jaeger, T. Protecting the
integrity of trusted applications in mobile phone systems.
Security and Communication Networks 4, 6 (2011), 633–
650.

[37] Nauman, M., Khan, S., and Zhang, X. Apex: Ex-
tending Android permission model and enforcement with
user-defined runtime constraints. In ASIA CCS (2010),
ACM.

[38] Ongtang, M., Butler, K., and McDaniel, P. Porscha:
Policy oriented secure content handling in Android. In
ACSAC (2010), ACM.

[39] Ongtang, M., McLaughlin, S., Enck, W., and Mc-
Daniel, P. Semantically rich application-centric security
in Android. In ACSAC (2009), IEEE Computer Society.

[40] Porter Felt, A., Finifter, M., Chin, E., Hanna, S.,
and Wagner, D. A survey of mobile malware in the
wild. In 1st ACM workshop on Security and privacy in
smartphones and mobile devices (SPSM) (2011), ACM.

[41] Porter Felt, A., Wang, H., Moshchuk, A., Hanna,
S., and Chin, E. Permission re-delegation: Attacks
and defenses. In USENIX Security (2011), USENIX
Association.

[42] Provos, N. Improving host security with system call
policies. In USENIX Security (2003), USENIX Associa-
tion.

[43] Rao, V., and Jaeger, T. Dynamic mandatory access
control for multiple stakeholders. In SACMAT (2009),
ACM.

[44] Reeder, R. W., Bauer, L., Cranor, L. F., Reiter,
M. K., and Vaniea, K. More than skin deep: measuring
effects of the underlying model on access-control system
usability. In International Conference on Human Factors
in Computing Systems (CHI) (2011), ACM.

[45] Russello, G., Conti, M., Crispo, B., and Fernandes,
E. MOSES: supporting operation modes on smartphones.
In SACMAT (2012), ACM.

[46] Schlegel, R., Zhang, K., Zhou, X., Intwala, M.,
Kapadia, A., and Wang, X. Soundcomber: A stealthy
and context-aware sound trojan for smartphones. In
NDSS (2011), The Internet Society.

[47] Smalley, S. Middleware MAC for android. http://
kernsec.org/files/LSS2012-MiddlewareMAC.pdf, Aug.
2012.

146 22nd USENIX Security Symposium USENIX Association

[48] Smalley, S., and Craig, R. Security Enhanced (SE)
Android: Bringing Flexible MAC to Android. In NDSS
(2013), The Internet Society.

[49] Smith, C. Privacy flaw in skype android app
exposed. http://www.t3.com/news/privacy-flaw-in-
skype-android-app-exposed/.

[50] Spencer, R., Smalley, S., Loscocco, P., Hibler, M.,
Andersen, D., and Lepreau, J. The Flask security
architecture: System support for diverse security policies.
In USENIX Security (1999), USENIX Association.

[51] Vaidya, J., Atluri, V., and Warner, J. RoleMiner:
mining roles using subset enumeration. In CCS (2006),
ACM.

[52] Xu, R., Saïdi, H., and Anderson, R. Aurasium: Prac-
tical policy enforcement for android applications. In
USENIX Security (2012), USENIX Association.

[53] Xu, Z., Bai, K., and Zhu, S. Taplogger: inferring
user inputs on smartphone touchscreens using on-board
motion sensors. In WiSec (2012), ACM.

[54] Zhang, X., Seifert, J.-P., and Acıiçmez, O. SEIP:
simple and efficient integrity protection for open mobile
platforms. In International conference on Information
and communications security (ICICS) (2010), Springer-
Verlag.

[55] Zhou, Y., and Jiang, X. Dissecting android malware:
Characterization and evolution. In S&P (2012), IEEE
Computer Society.

[56] Zhou, Y., and Jiang, X. Detecting passive content leaks
and pollution in android applications. In NDSS (2013),
The Internet Society.

[57] Zhou, Y., Wang, Z., Zhou, W., and Jiang, X. Hey,
You, Get Off of My Market: Detecting Malicious Apps
in Official and Alternative Android Markets. In NDSS
(2012), The Internet Society.

[58] Zhou, Y., Zhang, X., Jiang, X., and Freeh, V. W.
Taming information-stealing smartphone applications (on
android). In TRUST (2011), Springer-Verlag.

A Concrete Instantiation of Saint
policies with FlaskDroid

Listing 3 shows an instantiation of the developer pol-
icy in [39] on FlaskDroid. This policy is deployed by
the shopping app and thus self_t refers to the shop-
ping app. We define types app_trustedPayApp_t,
app_trustedPayApp_t, app_noInternetPerm_t
(lines 1-3 and lines 8-16) for the specific apps
the shopping app is allowed to interact with
and describe some of the allowed interactions by
means of Intent types intent_actionPay_t and
intent_recordExpense_t (lines 5-6 and lines
18-24). Afterwards, we declare access control rules
that reflect the policy described in [39] (lines 26-28).
For instance, the rule in line 26 defines that the
shopping app is allowed to send an Intent with
action string ACTION_PAY only to an app with type
app_trustedPayApp_t (line 20), which in turn is
only assigned to apps with the developer signature
308201... (line 9).

Listing 3: Policy deployed by the shopping app, show-
ing an instantiation of the Saint [39] runtime policy
example.
1 type app_trustedPayApp_t;
2 type app_trustedPWVault_t;
3 type app_noInternetPerm_t;
4

5 type intent_actionPay_t;
6 type intent_recordExpense_t;
7

8 appType app_trustedPayApp_t {
9 Developer:signature=308201...; };

10

11 appType app_trustedPWVault_t {
12 Package:package_name=com.secure.passwordvault;
13 Package:min_version=1.2; };
14

15 appType app_noInternetPerm_t {
16 Package:permission=~android.permission.INTERNET; };
17

18 intentType intent_actionPay_t {
19 Action:action_string=ACTION_PAY;
20 Components:receiver_type=app_trustedPayApp_t; };
21

22 intentType intent_recordExpense_t {
23 Action:action_string=RECORD_EXPENSE;
24 Components:receiver_type=app_noInternetPerm_t; };
25

26 allow self_t intent_actionPay_t: intent_c { send };
27 allow self_t app_trustedPWVault_t: any { any };
28 allow self_t intent_recordExpense_t: intent_c { send };

B Userspace Object Managers

USOM Example operations
Service USOMs

PackageManagerService getPackageInfo findPre-
ferredActivity getInstalledAp-
plications installPackage

ActivityManagerService startActivity moveTask gran-
tURIPermission sendBroadcast
registerBroadcastReceiver

AudioService setStreamVolume setVibrate-
Setting

PowerManagerService acquireWakeLock isScreenOn
reboot preventScreenOn

SensorManager getSensorList getDefaultSensor
LocationManagerService requestLocationUpdates

addProximityAlert getLast-
KnownLocation

SMSManager copyMessageToIcc deleteMes-
sageFromIcc sendTextMessage

TelephonyManager getCellLocation getDeviceId
getCellLocation

ContentProvider USOMs
ContactsProvider2 query insert update delete

writeAccess readAccess
MMSSMSProvider query insert update delete
TelephonyProvider query insert update delete
SettingsProvider query insert update delete

Table 4: Exemplary System USOMs

