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Abstract
RSA and DSA can fail catastrophically when used with
malfunctioning random number generators, but the extent
to which these problems arise in practice has never been
comprehensively studied at Internet scale. We perform
the largest ever network survey of TLS and SSH servers
and present evidence that vulnerable keys are surprisingly
widespread. We find that 0.75% of TLS certificates share
keys due to insufficient entropy during key generation,
and we suspect that another 1.70% come from the same
faulty implementations and may be susceptible to com-
promise. Even more alarmingly, we are able to obtain
RSA private keys for 0.50% of TLS hosts and 0.03% of
SSH hosts, because their public keys shared nontrivial
common factors due to entropy problems, and DSA pri-
vate keys for 1.03% of SSH hosts, because of insufficient
signature randomness. We cluster and investigate the vul-
nerable hosts, finding that the vast majority appear to be
headless or embedded devices. In experiments with three
software components commonly used by these devices,
we are able to reproduce the vulnerabilities and identify
specific software behaviors that induce them, including
a boot-time entropy hole in the Linux random number
generator. Finally, we suggest defenses and draw lessons
for developers, users, and the security community.

1 Introduction and Roadmap

Randomness is essential for modern cryptography, where
security often depends on keys being chosen uniformly at
random. Researchers have long studied random number
generation, from both practical and theoretical perspec-
tives (e.g., [8, 13, 15, 17, 21, 23]), and a handful of major
vulnerabilities (e.g., [5, 19]) have attracted considerable
scrutiny to some of the most critical implementations.
Given the importance of this problem and the effort and
attention spent improving the state of the art, one might

∗The first two authors both made substantial contributions.

expect that today’s widely used operating systems and
server software generate random numbers securely. In this
paper, we test that proposition empirically by examining
the public keys in use on the Internet.

The first component of our study is the most compre-
hensive Internet-wide survey to date of two of the most
important cryptographic protocols, TLS and SSH (Sec-
tion 3.1). By scanning the public IPv4 address space,
we collected 5.8 million unique TLS certificates from
12.8 million hosts and 6.2 million unique SSH host keys
from 10.2 million hosts. This is 67% more TLS hosts
than the latest released EFF SSL Observatory dataset [18].
Our techniques take less than 24 hours to scan the entire
address space for listening hosts and less than 96 hours
to retrieve keys from them. The results give us a macro-
scopic perspective of the universe of keys.

Next, we analyze this dataset to find evidence of several
kinds of problems related to inadequate randomness. To
our surprise, at least 5.57% of TLS hosts and 9.60% of
SSH hosts use the same keys as other hosts in an appar-
ently vulnerable manner (Section 4.1). In the case of TLS,
at least 5.23% of hosts use manufacturer default keys that
were never changed by the owner, and another 0.34%
appear to have generated the same keys as one or more
other hosts due to malfunctioning random number gener-
ators. Only a handful of the vulnerable TLS certificates
are signed by browser-trusted certificate authorities.

Even more alarmingly, we are able to compute the
private keys for 64,000 (0.50%) of the TLS hosts and
108,000 (1.06%) of the SSH hosts from our scan data
alone by exploiting known weaknesses of RSA and DSA
when used with insufficient randomness. In the case of
RSA, distinct moduli that share exactly one prime factor
will result in public keys that appear distinct but whose
private keys are efficiently computable by calculating
the greatest common divisor (GCD). We implemented
an algorithm that can compute the GCDs of all pairs of
11 million distinct public RSA moduli in less than 2 hours
(Section 3.3). Using the resulting factors, we are able to



obtain the private keys for 0.50% of TLS hosts and 0.03%
of SSH hosts (Section 4.2). In the case of DSA, if a DSA
key is used to sign two different messages with the same
ephemeral key, an attacker can efficiently compute the
signer’s long-term private key. We find that our SSH scan
data contain numerous DSA signatures that used the same
ephemeral keys during signing, allowing us to compute
the private keys for 1.6% of SSH DSA hosts (Section 4.3).

To understand why these problem are occurring, we
manually investigated hundreds of the vulnerable hosts,
which were representative of the most commonly repeated
keys as well as each of the private keys we obtained
(Section 3.2). Nearly all served information identifying
them as headless or embedded systems, including routers,
server management cards, firewalls, and other network de-
vices. Such devices typically generate keys automatically
on first boot, and may have limited entropy sources com-
pared to traditional PCs. Furthermore, when we examined
clusters of hosts that shared a key or factor, in nearly all
cases these appeared to be linked by a manufacturer or
device model. These observations lead us to conclude
that the problems are caused by specific defective imple-
mentations that generate keys without having collected
sufficient entropy. We identified vulnerable devices and
software from dozens of manufacturers, including some of
the largest names in the technology industry, and worked
to notify the responsible parties.

In the final component of our study, we experimen-
tally explore the root causes of these vulnerabilities by
investigating several of the most common open-source
software components from the population of vulnerable
devices (Section 5). Based on the devices we identified, it
is clear that no one implementation is solely responsible,
but we are able to reproduce the vulnerabilities in plau-
sible software configurations. Every software package
we examined relies on /dev/urandom to generate cryp-
tographic keys; however, we find that Linux’s random
number generator (RNG) can exhibit a boot-time entropy
hole that causes urandom to produce deterministic output
under conditions likely to occur in headless and embed-
ded devices. In experiments with OpenSSL and Dropbear
SSH, we show how repeated output from the system RNG
can lead not only to repeated long-term keys but also to
factorable RSA keys and repeated DSA ephemeral keys
due to the behavior of application-specific entropy pools.

Given the diversity of the devices and software im-
plementations involved, mitigating these problems will
require action by many different parties. We draw lessons
and recommendations for developers of operating sys-
tems, cryptographic libraries, and applications, and for de-
vice manufacturers, certificate authorities, end users, and
the security and cryptography communities (Section 7).
We have also created an online key-check service to allow
users to test whether their keys are vulnerable.

It is natural to wonder whether these results should
call into question the security of every RSA or DSA key.
Based on our analysis, the margin of safety is slimmer
than we might like, but we have no reason to doubt the
security of most keys generated interactively by users on
traditional PCs. While we took advantage of the details
of specific cryptographic algorithms in this paper, we con-
clude that the blame for these vulnerabilities lies chiefly
with the implementations. Ultimately, the results of our
study should serve as a wake-up call that secure random
number generation continues to be an unsolved problem
in important areas of practice.

Online resources For an extended version of this paper,
partial source code, and our online key-check service, visit
https://factorable.net.

2 Background

In this section, we review the RSA and DSA public-key
cryptosystems and discuss the known weaknesses of each
that we used to compromise private keys. We then discuss
how an adversary might exploit compromised keys to
attack SSH and TLS in practice.

2.1 RSA review

An RSA [35] public key consists of two integers: an ex-
ponent e and a modulus N. The modulus N is the product
of two randomly chosen prime numbers p and q. The
private key is the decryption exponent

d = e−1 mod (p−1)(q−1).

Anyone who knows the factorization of N can efficiently
compute the private key for any public key (e,N) using
the preceding equation. When p and q are unknown, the
most efficient known method to calculate the private key
is to factor N into p and q and use the above equation to
calculate d [9].

Factorable RSA keys No one has been publicly
known to factor a well-generated 1024-bit RSA mod-
ulus; the largest known factored modulus is 768 bits,
which was announced in December 2009 after a multi-
year distributed-computing effort [28]. In contrast, the
greatest common divisor (GCD) of two 1024-bit integers
can be computed in microseconds. This asymmetry leads
to a well-known vulnerability: if an attacker can find two
distinct RSA moduli N1 and N2 that share a prime factor
p but have different second prime factors q1 and q2, then
the attacker can easily factor both moduli by computing
their GCD, p, and dividing to find q1 and q2. The attacker
can then compute both private keys as explained above.

https://factorable.net


2.2 DSA review

A DSA [32] public key consists of three so-called do-
main parameters (two prime moduli p and q and a gener-
ator g of the subgroup of order q mod p) and an integer
y = gx mod p, where x is the private key. The domain
parameters may be shared among multiple public keys
without compromising security. A DSA signature con-
sists of a pair of integers (r,s): r = gk mod p mod q and
s = (k−1(H(m)+xr)) mod q, where k is a randomly cho-
sen ephemeral private key and H(m) is the hash of the
message.

Low-entropy DSA signatures DSA is known to fail
catastrophically if the ephemeral key k used in the signing
operation is generated with insufficient entropy [4]. (El-
liptic curve DSA (ECDSA) is similarly vulnerable. [11])
If k is known for a signature (r,s), then the private key
x can be computed from the signature and public key as
follows:

x = r−1(ks−H(m)) mod q.

If a DSA private key is used to sign two different messages
with the same k, then an attacker can efficiently compute
the value k from the public key and signatures and use
the above equation to compute the private key x [29]. If
two messages m1 and m2 were signed using the same
ephemeral key k to obtain signatures (r1,s1) and (r2,s2),
then this will be immediately clear as r1 and r2 will be
equal. The ephemeral key k can be computed as:

k = (H(m1)−H(m2))(s1 − s2)
−1 mod q.

2.3 Attack scenarios

The weak key vulnerabilities we describe in this paper can
be exploited to compromise two of the most important
cryptographic transport protocols used on the Internet,
TLS and SSH, both of which commonly use RSA or DSA
to authenticate servers to clients.

TLS In TLS [16], the server sends its public key in a
TLS certificate during the protocol handshake. The key
is used either to provide a signature on the handshake
(when Diffie-Hellman key exchange is negotiated) or to
encrypt session key material chosen by the client (when
RSA-encrypted key exchange is negotiated).

If the key exchange is RSA encrypted, a passive eaves-
dropper with the server’s private key can decrypt the mes-
sage containing the session key material and use it to
decrypt the entire session. If the session key is negoti-
ated using Diffie-Hellman key exchange, then a passive
attacker will be unable to compromise the session key
from just a connection transcript. However, in both cases,
an active attacker who can intercept and modify traffic
between the client and server can man-in-the-middle the
connection in order to decrypt or modify the traffic.

SSH In SSH, host keys allow a server to authenticate
itself to a client by providing a signature during the pro-
tocol handshake. There are two major versions of the
protocol. In SSH-1 [38], the client encrypts session key
material using the server’s public key. SSH-2 [39] uses a
Diffie-Hellman key exchange to establish a session key.
The user manually verifies the host key fingerprint the
first time she connects to an SSH server. Most clients then
store the key locally in a known_hosts file and automati-
cally trust it for all subsequent connections.

As in TLS, a passive eavesdropper with a server’s pri-
vate key can decrypt an entire SSH-1 session. However,
because SSH-2 uses Diffie-Hellman, it is vulnerable only
to an active man-in-the-middle attack. In the SSH user au-
thentication protocol, the user-supplied password is sent
in plaintext over the encrypted channel. An attacker who
knows a server’s private key can use the above attacks
to learn a user’s password and escalate an attack to the
system.

3 Methodology

In this section, we explain how we performed our Internet-
wide survey of public keys, how we attributed vulnerable
keys to devices, and how we efficiently factored poorly
generated RSA keys.

3.1 Internet-wide scanning

We performed our data collection in three phases: dis-
covering IP addresses accepting connections on TCP
port 443 (HTTPS) or 22 (SSH); performing a TLS or
SSH handshake and storing the presented certificate chain
or host key; and parsing the collected certificates and
host keys into a relational database. Table 1 summarizes
the results.

Host discovery In the first phase, we scanned the
public IPv4 address space to find hosts with port 443
or 22 open. We used the Nmap 5 network exploration
tool [33]. We executed our first host discovery scan be-
ginning on October 6, 2011 from 25 Amazon EC2 Micro
instances spread across five EC2 regions (Virginia, Cali-
fornia, Japan, Singapore, and Ireland). The scan ran at an
average of 40,566 IPs/second and finished in 25 hours.

Certificate and host-key retrieval For TLS, we imple-
mented a certificate fetcher in Python using the Twisted
event-driven network framework. We fetched TLS cer-
tificates using an EC2 Large instance with five processes
each maintaining 800 concurrent connections. We started
fetching certificates on October 11, 2011.

To efficiently collect SSH host keys, we implemented
a simple SSH client in C, which is able to process up-
wards of 1200 hosts/second by concurrently performing



SSL Observatory Our TLS scan Our SSH scans
(12/2010) (10/2011) (2-4/2012)

Hosts with open port 443 or 22 ≈16,200,000 28,923,800 23,237,081
Completed protocol handshakes 7,704,837 12,828,613 10,216,363

Distinct RSA public keys 3,933,366 5,656,519 3,821,639
Distinct DSA public keys 1,906 6,241 2,789,662
Distinct TLS certificates 4,021,766 5,847,957 —

Trusted by major browsers 1,455,391 1,956,267 —

Table 1: Internet-wide scan results — We exhaustively scanned the public IPv4 address space for TLS and SSH
servers listening on ports 443 and 22, respectively. Our results constitute the largest such network survey reported to
date. For comparison, we also show statistics for the EFF SSL Observatory’s most recent public dataset [18].

protocol handshakes using libevent. Initially, we ran the
fetcher from an EC2 Large instance in a run that started
on February 12, 2012. This run targeted only RSA-based
host keys. In two later runs, we targeted DSA-based host
keys, and rescanned those hosts that had offered DSA
keys in the first SSH scan. For these, we also stored the
authentication signature provided by the server; we varied
the client string to ensure that each signature would be
distinct. The first DSA run started on March 26, 2012
from a host at UCSD. The second run, from a host at the
University of Michigan, started on April 1, 2012; it took
3 hours to complete.

TLS certificate processing For TLS, we performed a
third processing stage in which we parsed the previously
fetched certificate chains and generated a database from
the X.509 fields. We implemented a certificate parser in
Python and C primarily based on the M2Crypto SWIG
interface to the OpenSSL library.

3.2 Identifying vulnerable device models

We attempted to determine what hardware and software
generated or served the weak keys we identified using
manual detective work. The most straightforward method
was based on TLS certificate information—predominately
the X.509 subject and issuer fields. In many cases, the
certificate identified a specific manufacturer or device
model. Other certificates contained less information; we
attempted to identify these devices through Nmap host
detection or by inspecting the public contents of HTTPS
sites or other IP services hosted on the IP addresses.

When we could identify a pattern in vulnerable TLS
certificates that appeared to belong to a device model or
product line, we constructed regular expressions to find
other similar devices in our scan results. Under the theory
that the keys were vulnerable because of a problem with
the design of the devices (where they were most likely
generated), this allows us to estimate the total population
of devices that might be potentially vulnerable, beyond
those serving immediately compromised keys.

Identifying SSH devices was more problematic, as SSH
keys do not include descriptive fields and the server iden-
tification string used in the protocol often indicated only
a common build of a popular SSH server. We were able
to classify many of the vulnerable SSH hosts using a
combination of TCP/IP fingerprinting and examination of
information served over HTTP and HTTPS.

The device names and manufacturers that we report
here have been identified with moderate or high confi-
dence given the available information. However, because
we do not have physical access to the hosts, we cannot
state with certainty that all our identifications are correct.

3.3 Efficiently computing all-pairs GCDs

We now describe how we efficiently computed the pair-
wise GCD of all distinct RSA moduli in our multimillion-
key dataset. This allowed us to calculate RSA private
keys for 66,540 vulnerable hosts that shared one of their
RSA prime factors with another host in our survey.

The fastest known factoring method for general integers
is the number field sieve, which has heuristic complex-
ity O(2n1/3(logn)2/3

) for n-bit numbers [30]. In contrast
to factoring, the greatest common divisor (GCD) of two
integers can be computed very efficiently using Euclid’s
algorithm. Using fast integer arithmetic, the complexity
of GCD can be improved to O(n(lgn)2 lg lgn) [7]. Com-
puting the GCD of two 1024-bit RSA moduli using the
GMP library [20] takes approximately 15 µs on a current
mid-range computer.

The naïve way to compute the GCDs of every pair of
integers in a large set would be to apply a GCD algorithm
to each pair individually. There are 6 × 1013 distinct
pairs of RSA moduli in our data; at 15 µs per pair, this
calculation would take 30 years. We can do much better
by using a more efficient algorithm.

To accomplish this, we implemented a quasilinear-time
algorithm for factoring a collection of integers into co-
primes, based on Bernstein [6]. The relevant steps, illus-
trated in Figure 1, are as follows:
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Figure 1: Computing all-pairs GCDs efficiently — We
computed the GCD of every pair of RSA moduli in our
dataset using an algorithm due to Bernstein [6].

Algorithm 1 Quasilinear GCD finding

Input: N1, . . . ,Nm RSA moduli
1: Compute P = ∏Ni using a product tree.
2: Compute zi = (P mod N2

i ) for all i
using a remainder tree.

Output: gcd(Ni,zi/Ni) for all i.

A product tree computes the product of m numbers by
constructing a binary tree of products. A remainder tree
computes the remainder of an integer modulo many inte-
gers by successively computing remainders for each node
in their product tree. For further discussion, see [7].

The final output of the algorithm is the GCD of each
modulus with the product of all the other moduli. We
are interested in the moduli for which this GCD is not 1.
However, if a modulus shares both of its prime factors
with two other distinct moduli, then the GCD will be
the modulus itself rather than one of its prime factors.
This occurred in a handful of instances in our dataset; we
factored these moduli using the naïve quadratic algorithm
for pairwise GCDs.

We implemented the algorithm in C using the GMP
library for the arithmetic operations and ran it on the
11,170,883 distinct RSA moduli from our TLS and SSH
datasets and the EFF SSL Observatory [18] dataset.

The entire computation finished in 5.5 hours using a
single core on a machine with a 3.30 GHz Intel Core i5
processor and 32 GB of RAM. The remainder tree took
approximately ten times as long to process as the product
tree. Parallelized across sixteen cores on an EC2 Cluster
Compute Eight Extra Large Instance with 60.5 GB of
RAM and using EBS-backed storage for scratch data, the
same computation took 1.3 hours at a cost of about $5.

4 Vulnerabilities

We analyzed the data from our TLS and SSH scans and
identified several patterns of vulnerability that would have
been difficult to detect without a macroscopic view of
the Internet. This section discusses the details of these
problems, as summarized in Table 2.

4.1 Repeated keys

We found that 7,770,232 of the TLS hosts (61%) and
6,642,222 of the SSH hosts (65%) served the same key
as another host in our scans. To understand why, we
clustered certificates and host keys that shared the same
public key and manually inspected representatives of the
largest clusters. In all but a few cases, the TLS certificate
subjects, SSH version strings, or WHOIS information
were identical within a cluster, or pointed to a single
manufacturer or organization. This sometimes suggested
an explanation for the shared keys.

Not all of the repeated keys were due to vulnerabili-
ties. For instance, many of the most commonly repeated
keys appeared in shared hosting situations. Six of the ten
most common DSA host keys and three of the ten most
common RSA host keys were served by large hosting
providers (see Figure 2). Another frequent reason for
repeated keys was distinct TLS certificates all belonging
to the same organization. For example, TLS hosts at
google.com, appspot.com, and doubleclick.net all served
distinct certificates with the same public key. We excluded
these cases and attributed remaining clusters of shared
keys to several classes of problems.

Default keys A common reason for hosts to share
the same key that we do consider a vulnerability is
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Figure 2: Commonly repeated SSH keys — We investi-
gated the 50 most repeated SSH host keys for both RSA
and DSA. Nearly all of the repeats appeared to be due
either to hosting providers using a single key on many IP
addresses or to devices that used a default key or gener-
ated keys using insufficient entropy. Note log scale.



Our TLS Scan Our SSH Scans

Number of live hosts 12,828,613 (100.00%) 10,216,363 (100.00%)

. . . using repeated keys 7,770,232 (60.50%) 6,642,222 (65.00%)
. . . using vulnerable repeated keys 714,243 (5.57%) 981,166 (9.60%)

. . . using default certificates or default keys 670,391 (5.23%)

. . . using low-entropy repeated keys 43,852 (0.34%)
. . . using RSA keys we could factor 64,081 (0.50%) 2,459 (0.03%)
. . . using DSA keys we could compromise 105,728 (1.03%)
. . . using Debian weak keys 4,147 (0.03%) 53,141 (0.52%)
. . . using 512-bit RSA keys 123,038 (0.96%) 8,459 (0.08%)

. . . identified as a vulnerable device model 985,031 (7.68%) 1,070,522 (10.48%)
. . . model using low-entropy repeated keys 314,640 (2.45%)

Table 2: Summary of vulnerabilities — We analyzed our TLS and SSH scan results to measure the population of
hosts exhibiting several entropy-related vulnerabilities. These include use of repeated keys, use of RSA keys that were
factorable due to repeated primes, and use of DSA keys that were compromised by repeated signature randomness.
Under the theory that vulnerable repeated keys were generated by embedded or headless devices with defective designs,
we also report the number of hosts that we identified as these device models. Many of these hosts may be at risk even
though we did not specifically observe repeats of their keys.

manufacturer-default keys. These are preconfigured in
the firmware of many devices, such that every device of
a given model shares the same key pair unless the user
changes it. The private keys to these devices may be
accessible through reverse engineering, and published
databases of default keys such as littleblackbox [24] con-
tain private keys for thousands of firmware releases.

At least 670,391 (5.23%) of the TLS hosts appeared
to serve manufacturer-default certificates or keys. We
classified a certificate as a manufacturer default if nearly
all the devices of a given model used identical certificates,
or if the certificate was labeled as a default certificate.

The most common default certificate that we could
ascribe to a particular device belonged to a model of
consumer router. Our scan uncovered 90,779 instances
of this device model sharing a single certificate. We also
found a variety of enterprise products serving default keys,
including server management devices, network storage
devices, routers, remote access devices, and VoIP devices.

For most of the repeated SSH keys, the lack of uniquely
identifying host information prevents us from distinguish-
ing default keys from keys generated with insufficient
entropy, so we address these together in the next section.

Repeated keys due to low entropy Another common
reason that hosts share the same key appears to be entropy
problems during key generation. In these instances, when
we investigated a key cluster, we would typically see
thousands of hosts across many address ranges, and, when
we checked the keys corresponding to other instances of
the same model of device, we would see a long-tailed
distribution in their frequencies. Intuitively, this type of

distribution suggests that the key generation process may
be using insufficient entropy, with distinct keys due to
relatively rare events. For TLS, our investigations began
with the keys that occurred in at least 100 distinct self-
signed certificates. For SSH, we started from the 50 most
commonly repeated keys for each of RSA (appearing on
more than 8000 hosts) and DSA (more than 4000 hosts).

With this process, we identified 43,852 TLS hosts
(0.34%) that served repeated keys due apparently to low
entropy during key generation. 27,545 certificates (98%)
containing these repeated keys were self-signed; all 577
CA-signed certificates identified Iomega StorCenter net-
work storage devices. For most SSH hosts we were unable
to distinguish between default keys and keys repeated
due to entropy problems, but 981,166 of the SSH hosts
(9.60%) served keys repeated for one of these reasons.

We used the techniques described in Section 3.2 to iden-
tify apparently vulnerable devices from 27 manufacturers.
These include enterprise-grade routers from Cisco and
Juniper; server management cards from Dell, Hewlett-
Packard, and IBM; virtual-private-network (VPN) de-
vices; building security systems; network attached storage
devices; and several kinds of consumer routers and VoIP
products.

Duplicated keys are a red flag that calls the security
of the device’s key generation process into question, and
all keys generated with the same model device should be
considered suspect. For 14 of the TLS devices generating
repeated keys, we were able to infer a fingerprint for the
device model and estimate the total population of the de-
vice in our scan. The prevalence of duplicated keys varied
greatly for different device models, from as low as 0.2%
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Figure 3: Visualizing RSA common factors — Different implementations displayed different patterns of vulnerable
keys. These plots depict the distribution of vulnerable keys divisible by common factors generated by two different
device models. Each column represents a collection of RSA moduli divisible by a single prime factor p. The color
and internal rectangles show, for each p, the frequencies of each distinct prime factor q. The Juniper device (left; note
log-log scale) follows a long-tailed distribution that is typical of many of the devices we identified. In contrast, the IBM
remote access device (right) was unique among those we observed in that it generates RSA moduli roughly uniformly
distributed among nine distinct prime factors.

in the case of one router to 98% for one thin client. The
total population of these identified, potentially vulnerable
TLS devices was 314,640 hosts, which represents 2.45%
of the TLS hosts in our scan.

In the above analyses, we excluded repeated keys that
were due to the infamous Debian weak-key vulnerabil-
ity [5, 37], which we report separately in Table 2.

4.2 Factorable RSA keys

A second way that entropy problems might manifest them-
selves during key generation is if an RSA modulus shares
one of its prime factors p or q with another key. As ex-
plained in Section 2.1, finding such a pair immediately
allows an adversary to efficiently factor both moduli and
obtain their private keys. In order to find such keys, we
computed the GCD of all pairs of distinct RSA moduli by
applying the algorithm described in Section 3.3.

The 11,170,883 distinct RSA moduli yielded 2,314
distinct prime divisors, which divided 16,717 distinct
public keys. This allowed us to obtain private keys for
23,576 (0.40%) of the TLS certificates in our scan data,
which were served on 64,081 (0.50%) of the TLS hosts,
and 1,013 (0.02%) of the RSA SSH host keys, which were
served on 2,459 (0.027%) of the RSA SSH hosts.

The vast majority of the vulnerable keys appeared to be
system-generated certificates and SSH host keys used by
routers, firewalls, remote administration cards, and other
types of headless or embedded network devices. Only
two of the factorable TLS certificates had been signed by

a browser trusted authority and both have expired. Some
devices generated factorable keys both for TLS and SSH,
and a handful of devices shared common factors across
SSH and TLS keys.

We classified these factorable keys in a similar manner
to the repeated keys. We found that, in all but a small
number of cases, the TLS certificates and SSH host keys
divisible by a common factor all belonged to a particular
manufacturer, which we were able to identify in most
cases using the techniques described in Section 3.2.

We identified devices from 41 manufacturers in this
way, which constituted 99% of the hosts that generated
RSA keys we could factor. The devices range from 100%
(576 of 576 devices) vulnerable to 0.01% vulnerable
(2 out of 10,932). As with repeated keys, we would
not expect to see well-generated cofactorable keys; any
device model observed generating factorable keys should
be treated as potentially vulnerable.

The majority of the devices serving factorable keys
were Juniper firewalls. We identified 46,993 of these
devices in our dataset, and we factored the keys for 12,688
(27%). Of these keys, 7,510 (59%) share a single common
divisor. The distribution of common factors among its
moduli is shown in Figure 3a.

The most remarkable devices were IBM Remote Server
Administration cards and BladeCenter devices, which
displayed a distribution of factors unlike any of the other
vulnerable devices we found. There were only 9 distinct
prime factors that had been used to generate the keys for
576 devices. Each device’s key was the product of two
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Figure 4: Vulnerable DSA keys for one SSH device —
We identified 18,684 SSH DSA keys that appeared to
have been generated by Gigaset DSL routers, of which
16,575 were repeated at least once. Shown in red in this
log-log plot are 12,378 keys further compromised due to
repeated DSA signature values.

different primes from this list. The 36 possible moduli
that could be generated with this process were roughly
uniformly distributed, as shown in Figure 3b. In addition,
this was the only device we observed to generate RSA
moduli where both prime factors were shared with other
keys.

4.3 DSA signature weaknesses

The third class of entropy-related vulnerability that we
searched for was repeated ephemeral keys in DSA signa-
tures. As explained in Section 2.2, if a DSA key is used
to sign two different messages using the same ephemeral
key, then the long-term private key is immediately com-
putable from the public key and the signatures. The pres-
ence of this vulnerability indicates entropy problems at
later phases of operation, after initial key generation. We
searched for signatures from identical keys containing re-
peated r values. Then we used the method in Section 2.2
to compute the corresponding private keys.

Our combined SSH DSA scans collected 9,114,925
signatures (in most cases, two from each SSH host serving
a DSA-based key) of which 4,365 (0.05%) contained the
same r value as at least one other signature. 4,094 of
these signatures (94%) used the same r value and the
same public key. This allowed us to compute the 281
distinct private keys used to generate these signatures.
These compromised keys were served by 105,728 (1.6%)
of the SSH DSA hosts in our combined scans.

We clustered the vulnerable signatures by r values
and manufacturer. 2,026 (46%) of the colliding r val-
ues appeared to have been generated by Gigaset SX762
consumer-grade DSL routers and revealed private keys
for 17,349 (66%) of the 26,374 hosts we identified as
this device model (see Figure 4). Another 934 signa-

ture collisions appeared to be from ADTran Total Access
business-grade phone/network routers and revealed pri-
vate keys for 62,807 (73%) out of 86,301 such hosts. Sev-
eral vulnerable device models, including the IBM RSA II
remote administration cards and Juniper NetScreen, also
generated factorable RSA keys.

While we collected multiple signatures from some SSH
hosts, 3,917 (89.7%) out of 4,365 of the collisions were
from different hosts that had generated the same long-
term key and also used the same ephemeral key during
the key exchange protocol. This problem compounds the
danger of the repeated key vulnerability: a single signa-
ture collision between any pair of hosts sharing the same
key at any point during runtime reveals the private key for
every host using that key. In our dataset we observed tens
of thousands of hosts using the same public key. While a
single host may never repeat an ephemeral key, two hosts
sharing a private key due to poor entropy can put each
others’ keys at risk.

We note that any estimation of vulnerability based on
our data is an extreme lower bound, as we gathered at
most two signatures from each host in our scans. It is
likely that many more private keys would be revealed if
we collected additional signatures.

5 Experimental Investigation

Based on the results the previous section, we conjectured
that the problems we observed were an implementational
phenomenon. To more deeply understand the causes, we
augmented our data analysis with experimental investiga-
tion of specific implementations. While there are many
independently vulnerable implementations, we chose to
examine three open-source cryptographic software com-
ponents that appeared frequently in the vulnerable popu-
lations.

5.1 Weak entropy and the Linux RNG

We conjectured that the cause for many of the entropy
problems we observed began with insufficient random-
ness provided by the operating system. This led us to take
an in-depth look at the Linux random number generator
(RNG). We note that not every vulnerable key was gen-
erated on Linux; we also observed vulnerable keys on
FreeBSD and Windows systems, and similar vulnerabil-
ities to those we describe here have been reported with
BSD’s arc4random [36].

The Linux RNG maintains three entropy pools, each
with an associated counter that estimates how much
fresh entropy it has available. Fresh entropy from un-
predictable kernel sources is periodically mixed into the
Input pool. When processes read from /dev/random or
/dev/urandom, the kernel extracts the requested amount



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
0

50

100

150

200

250

SSH urandom read(32)

Threshold to add kernel randomness

Time since boot (s)

In
pu

tp
oo

le
nt

ro
py

(b
its

)

0

5,000

10,000

15,000

20,000

25,000

B
yt

es
re

ad
fr

om
no

nb
lo

ck
in

g
po

ol

Input pool entropy estimate
Input threshold to update entropy pool
Bytes read from nonblocking pool
SSH process seeds from /dev/urandom

Figure 5: Linux urandom boot-time entropy hole — We instrumented an Ubuntu Server 10.04 system to record its
estimate of the entropy contained in the Input entropy pool during a typical boot. Linux does not mix Input pool
entropy into the Nonblocking pool that supplies /dev/urandom until the Input pool exceeds a threshold of 192 bits
(blue horizontal line), which occurs here at 66 seconds post-boot. For comparison, we show the cumulative number
of bytes generated from the Nonblocking entropy pool; the vertical red line marks the time when OpenSSH seeds its
internal PRNG by reading from urandom, well before this facility is ready for secure use.

of entropy from the Input pool and mixes it into the Block-
ing or Nonblocking pool, respectively, and then extracts
bytes from the respective pool to return. If the input pool
does not contain enough entropy to satisfy the request,
the read from the Blocking pool blocks; the Nonblocking
pool read is satisfied immediately.

Entropy sources We experimented with the Linux
2.6.35 kernel to exhaustively determine the sources of
entropy used by the RNG. To do this, we traced through
the kernel source code and systematically disabled en-
tropy sources until the RNG output was repeatable. All of
the entropy sources we found are greatly weakened under
certain operating conditions.

The explicit entropy sources we observed are the unini-
tialized contents of the pool buffers when the kernel starts,
the startup clock time in nanosecond resolution, input
event and disk access timings, and entropy saved across
boots to a local file. Surprisingly, modern Linux systems
no longer collect entropy from IRQ timings.

The final and most interesting entropy source was one
that we have not seen documented elsewhere. The devel-
opers chose not to put a lock around the mixing procedure
when entropy is extracted from the pool, and, as a re-
sult, if two threads extract entropy concurrently, the pool
contents may change anywhere in the middle of the hash
computation, resulting in the introduction of significant
(but uncredited) entropy to the pool.

The removal of IRQs as an entropy source has likely
exacerbated RNG problems in headless and embedded
devices, which often lack human input devices, disks, and
multiple cores. If they do, the only source of entropy—if
there are any at all—may be the time of boot.

Experiment To test whether Linux’s /dev/urandom
can produce repeatable output in conditions resembling
the initial boot of a headless or embedded networked de-
vice, we modified the 2.6.35 kernel to add instrumentation
to the RNG and disable certain entropy sources to simu-
late a cold boot on a low-end machine without a working
clock.

We experimented with this kernel on a Dell Optiplex
980 system using a fresh installation of Ubuntu server
10.04.4. The machine was configured with a Core i7 CPU,
4 GB RAM, a 32 GB SSD, and a USB keyboard. It was
attached to a university office LAN and obtained an IP ad-
dress using DHCP. With this configuration, we performed
1,000 unattended boots. Each time, we read 32 bytes
from urandom at the point in the initialization process
where the SSH server would normally start. Under these
conditions, we found that the output of /dev/urandom
was entirely predictable and repeatable.

The kernel maintains a reserve threshold for the Input
pool, and no data is copied into the Nonblocking pool un-
til the Input pool has been credited with at least that much
entropy (192 bits, for our kernel). Figure 5 shows the
cumulative amount of entropy credited to the Input pool
during a typical bootup from our tests. (Note that none
of the entropy sources we disabled would have resulted
in more entropy being credited to the pool.) The credited
entropy does not cross this reserve threshold until more
than a minute after boot, well after the SSH server and
other startup processes have launched. Although Ubuntu
tries to restore entropy saved during the last shutdown,
this happens slightly after the point when sshd first reads
from urandom. With no entropic inputs, urandom pro-
duces a deterministic output stream.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

8

16

24

32

Starting clock time t0 (seconds)

Ti
m

e
di

la
tio

n
fa

ct
or

(s
lo

w
er

→
)

Fraction of keys generated that we could factor

0

0.2

0.4

0.6

clock tick

Figure 6: OpenSSL generating factorable keys — We hypothesized that OpenSSL can generate factorable keys under
low-entropy conditions due to slight asynchronicity between the key generation process and the real-time clock, we
generated 14 million RSA keys using controlled entropy sources for a range of starting clock times. Each square in the
plot indicates the fraction of 100 generated keys that could we could factor. In many cases (white), keys are repeated
but never share primes. After a sudden phase change, factorable keys occur during a range leading up to the second
boundary, and that range increases as we simulate machines with slower execution speeds.

Boot-time entropy hole The entropy sources we dis-
abled would likely be missing in some headless and em-
bedded systems, particularly on first boot. This means that
there is a window of vulnerability—a boot-time entropy
hole—during which Linux’s urandom may be entirely
predictable, at least for single-core systems. If processes
generate long-term cryptographic keys or maintain their
own entropy pools seeded only with entropy gathered
during this window, those keys are likely to be vulnerable.
The risk is particularly high for unattended systems that
ship with preconfigured operating systems and generate
SSH or TLS keys the first time the respective daemons
start during the initial boot.

On stock Ubuntu systems, these risks are somewhat
mitigated: TLS keys must be generated manually, and
OpenSSH host keys are generated during package installa-
tion, which is likely to be late in the install process, giving
the system time to collect sufficient entropy. However, on
the Fedora, Red Hat Enterprise Linux (RHEL), and Cen-
tOS Linux distributions, OpenSSH is installed by default,
and host keys are generated on first boot. We experi-
mented further with RHEL 5 and 6 to determine whether
host keys on these systems might be compromised, and
observed that sufficient entropy had been collected at the
time of key generation by a slim margin. We believe
that most server systems running these distributions are
safe, particularly since they likely have multiple cores
and gather additional entropy from physical concurrency.
However, it is possible that other distributions and cus-
tomized installations do not collect sufficient entropy on
startup and generate weak keys on first boot.

5.2 Factorable RSA keys and OpenSSL

One interesting question raised by our vulnerability re-
sults is why factorable RSA keys occur at all. A naïve
implementation of RSA key generation would simply
seed a PRNG from the operating system’s entropy pool
and then use it to generate p and q. In this approach, we
would expect to see duplicate keys if the OS provided
the same seed, but factorable keys would be extremely
unlikely. What we see instead is that some devices seem
prone to generating keys with common factors. Another
curious feature is that although some of the most common
prime factors divided hundreds of different moduli, in
nearly all of these cases the second prime factor did not
divide any other keys.

One explanation for this pattern is that implementa-
tions updated their entropy pools in the middle of key
generation. In this case, the entropy pool states might
be identical as distinct key generation processes generate
the first prime p and diverge while generating the second
prime q. In order to explore this theory, we studied the
source code of OpenSSL [14], one of the most widely
used open-source cryptographic libraries. OpenSSL is not
the only software library responsible for the problems we
observed, but we chose to examine it because the source
code is freely available and because of its popularity.

OpenSSL RSA key generation OpenSSL’s built-in
RSA key generator relies on an internal entropy pool main-
tained by OpenSSL. The entropy pool is seeded on first
use with (on Linux) 32 bytes read from /dev/urandom,
the process ID, user ID, and the current time in seconds.



OpenSSL provides a function named bnrand() to gen-
erate cryptographically-sized integers from the entropy
pool, which, on each call, mixes into the entropy pool the
current time in seconds, the process ID, and the possibly
uninitialized contents of a destination buffer.

The RSA key generation algorithm generates the
primes p and q using a randomized algorithm. During this
process, OpenSSL extracts entropy from the entropy pool
dozens to hundreds of times. Since we observed many
keys with one prime factor in common, we can conjecture
that multiple systems are starting with urandom and the
time in the same state and that the entropy pool states
diverge due to the addition of time during intermediate
steps of the key generation process.

We hypothesized that this process is hypersensitive to
small variations in where the boundary between seconds
falls. Slight variations in execution speed might cause the
wall clock tick to fall between different calls to bnrand(),
resulting in different execution paths. This can result in
several different behaviors, with three simple cases:

p q
t t+1

If the second never changes while
computing p and q, every execu-
tion will generate identical keys.

p q
t t+1

If the clock ticks while generating
p, both p and q diverge, yielding
distinct keys with no shared factors.

If instead the clock advances to the next second during the
generation of the second prime q, then two executions will

p q
t t+1

generate identical primes p but can
generate distinct primes q based on
exactly when the second changes.

Experiment To test our hypothesis, we modified
OpenSSL 1.0.0g to control all the entropy inputs used
during key generation, generated a large number of RSA
keys, and determined how many were identical or fac-
torable. To simulate the effects of slower clock speeds,
we dilated the clock time returned by time() and re-
peated the experiment using dilation multipliers of 1–32.
In all, we generated 14 million keys. We checked for
common factors within each batch of 100 keys.

The results we obtained, illustrated in Figure 6, are
consistent with our hypothesis. No factorable keys are
generated for low starting offsets, as both p and q are
generated before the second changes. As the initial off-
set increases, there is a rapid phase change to generat-
ing factorable keys, as generation of q values begins to
overlap the second boundary. Eventually, the fraction of
factorable keys falls as the second boundary occurs dur-
ing the generation of more p values, resulting in distinct
moduli with no common factors.

5.3 DSA signature weaknesses and Dropbear

The DSA signature vulnerabilities we observed indicate
that entropy problems impact not only key generation but
also the continued runtime behavior of server software
during normal usage. This is somewhat surprising, since
we might expect the operating system to collect suffi-
cient entropy eventually, even in embedded devices. We
investigated Dropbear, a popular light-weight SSH imple-
mentation. It maintains its own entropy pools seeded from
the operating system at launch, on Linux with 32 bytes
read from urandom. This suggests a possible explanation
for the observed problems: the operating system had not
collected enough entropy when the SSH server started,
and, from then on, even though the system entropy pool
may have had further entropy, the running SSH daemon
did not.

To better understand why these programs produce vul-
nerable DSA signatures, we examined the source code
for the current version of Dropbear, 0.55. The ephemeral
key is generated as output from an internal entropy pool.
Whenever Dropbear extracts data from its entropy pool, it
increments a static counter and hashes the result into the
pool state. No additional randomness is added until the
counter (a 32-bit integer) overflows. This implies that, if
two Dropbear servers are initially seeded with the same
value from urandom, they will provide identical signature
randomness as long as their counters remain synchronized
and do not overflow.

(We note that Dropbear contains a routine to generate k
in a manner dependent on the message to be signed, which
would ensure that distinct messages are always signed
with distinct k values and protect against the vulnerability
that we explore here. However, that code is disabled by
default.)

We looked for evidence of synchronized sequences
of ephemeral keys in the wild by making further SSH
requests to a handful of the Dropbear hosts from our
scan. We chose two hosts with the SSH version string
dropbear-0.39 that had used identical DSA public keys
and r values and found that the signatures followed an
identical sequence of r values. We could advance the
sequence of one host by making several SSH requests,
then cause the other host to catch up by making the same
number of requests. When probed again an hour later,
both hosts remained in sync. This suggests that the Drop-
bear code is causing vulnerabilities on real hosts in the
manner we predicted.

Several other implementations, including hosts identify-
ing OpenSSH and the Siemens Gigaset routers displayed
similar behavior when rescanned. Because OpenSSL adds
the current clock time to the entropy pool before extract-
ing these random values, this suggests that some of these
devices do not have a working clock at all.



6 Discussion

6.1 RSA vs. DSA in the face of low entropy

We believe that the DSA signature vulnerabilities pose
more cause for concern than the RSA factorization vul-
nerability. The RSA key factorization vulnerability that
we investigated occurs only for certain patterns of key
generation implementations in the presence of low en-
tropy. In contrast, the DSA signature vulnerability can
compromise any DSA private key—no matter how well
generated—if there is ever insufficient entropy at the time
the key is used for signing. It is not necessary to search for
a collision, as we did; it suffices for an attacker to be able
to guess the ephemeral private key k. The most analogous
attacks against RSA of which we are aware show that
some types of padding schemes can allow an attacker to
discover the encrypted plaintext or forge signatures [10].
We are unaware of any attacks that use compromised RSA
signatures to recover the private key.

We note that our findings show a larger fraction of
SSH hosts are compromised by the DSA vulnerability
than by factorable RSA keys, even though our scanning
techniques have likely only revealed a small fraction of
the hosts prone to repeating DSA signature randomness.
In contrast, the factoring algorithm we used has found all
of the repeated RSA primes in our sample of keys.

There are specific countermeasures that implementa-
tions can use to protect against these attacks. If both
prime factors of an RSA modulus are generated from a
PRNG without adding additional randomness during key
generation, then low entropy would result in repeated but
not factorable keys. These are more readily observable,
but may be trickier to exploit, because they do not imme-
diately reveal the private key to a remote attacker. To pre-
vent DSA randomness collisions, the randomness for each
signature can be generated as a function of the message
and the pseudorandom input. (It is very important to use
a cryptographically secure PRNG for this process [4].) Of
course, the most important countermeasure is for imple-
mentations to use sufficient entropy during cryptographic
operations that require randomness, but defense-in-depth
remains the prudent course.

6.2 /dev/(u)random as a usability failure

The Linux documentation states that “[a]s a general rule,
urandom should be used for everything except long-lived
GPG/SSL/SSH keys” [1]. However, all the open-source
implementations we examined used urandom to generate
keys by default. Based on a survey of developer mailing
lists and forums, it appears that this choice is motivated by
two factors: random’s extremely conservative behavior
and the mistaken perception that urandom’s output is
secure enough.

As others have noted, Linux is very conservative at
crediting randomness added to the entropy pool [23],
and random further insists on using freshly collected ran-
domness that has not already been mixed into the output
PRNG. The blocking behavior means that applications
that read from random can hang unpredictably, and, in
a headless device without human input or disk entropy,
there may never be enough input for a read to complete.
While blocking is intended to be an indicator that the sys-
tem is running low on entropy, random often blocks even
though the system has collected more than enough entropy
to produce cryptographically strong PRNG output—in a
sense, random is often “crying wolf” when it blocks.

Our experiments suggest that many of the vulnerabil-
ities we observed may be due to the output of urandom
being used to seed entropy pools before any entropic
inputs have been mixed in. Unfortunately, the existing in-
terface to urandom gives the operating system no means
of alerting applications to this dangerous condition. Our
recommendation is that Linux should add a secure RNG
that blocks until it has collected adequate seed entropy
and thereafter behaves like urandom.

6.3 Are we seeing only the tip of the iceberg?

Nearly all of the vulnerable hosts that we were able to
identify were headless or embedded devices. This raises
the question of whether the problems we found appear
only in these types of devices, or if instead we are merely
seeing the tip of a much larger iceberg.

Based on the experiments described in Section 5.1, we
conjecture that there may exist further classes of vulnera-
ble keys that were not visible to our methods, but could be
compromised with targeted attacks. The first class is com-
posed of embedded or headless devices with an accurate
real-time clock. In these cases, keys generated during the
boot-time entropy hole may appear distinct, but depend
only on a configuration-specific state and the boot time.
These keys would not appear vulnerable in our scanning,
but an attacker may be able to enumerate some or all of
such a reduced key space for targeted implementations.

A more speculative class of potential vulnerability con-
sists of traditional PC systems that automatically generate
cryptographic keys on first boot. We observed in Sec-
tion 5.1 that an experimental machine running RHEL 5
and 6 did collect sufficient entropy in time for SSH key
generation, but that the margin of safety was slim. It is
conceivable that some lower-resource systems may be
vulnerable.

Finally, our study was only able to detect vulnerable
DSA ephemeral keys under specific circumstances where
a large number of systems shared the same long-term key
and were choosing ephemeral keys from the same small
set. There may be a larger set of hosts using ephemeral



keys that do not repeat across different systems but are
nonetheless vulnerable to a targeted attack.

We found no evidence suggesting that RSA keys from
standard implementations that were generated interac-
tively or subsequent to initial boot are vulnerable.

6.4 Directions for future work

In this work, we examined keys from two cryptographic
algorithms on two protocols visible via Internet-wide
scans of two ports . A natural direction for future work
is to broaden the scope of all of these choices. Entropy
problems can also affect the choice of Diffie-Hellman key
parameters and keying material for symmetric ciphers. In
addition, there are many more subtle attacks against RSA,
DSA, and ECDSA that we did not search for. We focused
on keys, but one might also try to search for evidence of
repeated randomness in initialization vectors in ciphertext
or salts in cryptographic hashes.

We also focused solely on services visible to our scans
of the public Internet. Similar vulnerabilities might be
found by applying this methodology to keys or other cryp-
tographic data obtained from other resource-constrained
devices that perform cryptographic operations, such as
smart cards or mobile phones.

The observation that urandom can produce predictable
output on some types of systems at boot may lead to at-
tacks on other services that automatically begin at boot
and depend on good randomness from the kernel. It war-
rants investigation to determine whether this behavior
may undermine other security mechanisms such as ad-
dress space layout randomization or TCP initial sequence
numbers.

7 Defenses and Lessons

The vulnerabilities we have identified are a reminder that
secure random number generation continues to be a chal-
lenging problem. There is a tendency for developers at
each layer of the software stack to silently shift respon-
sibility to other layers; a far better practice would be
a defense-in-depth approach where developers at every
layer apply careful security design and testing and make
assumptions clear. We suggest defensive strategies and
lessons for several important groups of stakeholders.

For OS developers:

Provide the RNG interface applications need. Typi-
cal security applications require a source of randomness
that is guaranteed to be of high quality and has pre-
dictable performance; neither Linux’s /dev/random nor
/dev/urandom strikes this balance. The operating sys-
tem should maintain a secure PRNG that refuses to return
data until it has been seeded with a minimum amount

of true randomness and is continually seeded with fresh
entropy collected during operation.

Communicate entropy conditions to applications. The
problem with /dev/urandom is that it can return data
even before it has been seeded with any entropy. The OS
should provide an interface to indicate how much entropy
it has mixed into its PRNG, so that applications can gauge
whether the state is sufficiently secure for their needs.

Test RNGs thoroughly on diverse platforms. Many of the
entropy sources that Linux supports are not available on
headless or embedded devices. These behaviors may not
be apparent to OS developers unless they routinely test
the internals of the entropy collection subsystem across
the full spectrum on platforms the system supports.

For library developers:

Default to the most secure configuration. Both OpenSSL
and Dropbear default to using /dev/urandom instead
of /dev/random, and Dropbear defaults to using a less
secure DSA signature randomness technique even though
a more secure technique is available as an option. In
general, cryptographic libraries should default to using
the most secure mechanisms available.

Use RSA and DSA defensively. Crypto libraries can
take specific steps to prevent weak entropy from resulting
in the immediate leak of private keys due to co-factorable
RSA moduli and repeated DSA signature randomness
(see Section 6.1).

For application developers:

Generate keys on first use, not on install or first boot. If
keys must be generated automatically, it may be better to
defer generation until the keys are needed.

Heed warnings from below. If the OS or cryptography
library being used raises a signal that insufficient entropy
is available (such as blocking), applications should de-
tect this signal and refuse to perform security-critical
operations until the system recovers from this potentially
vulnerable state. Developers have been known to work
around low-entropy states by ignoring or disabling such
warnings, with extremely dangerous results [22].

For device manufacturers:

Avoid factory-default keys or certificates. While some
defense is better than nothing, default keys and certificates
provide only minimal protection.

Seed entropy at the factory. Devices could be initialized
with truly random seeds at the factory. Sometimes it is al-
ready necessary to configure unique state on the assembly
line (such as to set MAC addresses), and entropy could
be added at the same time.



Ensure entropy sources are effective. Embedded or head-
less devices may not have access to sources of randomness
assumed by the operating system, such as user-input de-
vices or disk timing. Device makers should ensure that
effective entropy sources are present, and that these are
being harvested in advance of cryptographic operations.

Use hardware random number generators when possible.
Security-critical devices should use a hardware random
number generator for cryptographic randomness when-
ever possible.

For certificate authorities:

Check for repeated, weak, and factorable keys Certifi-
cate authorities have a uniquely broad view of keys con-
tained in TLS certificates. We recommend that they repeat
our work against their certificate databases and take steps
to protect their customers by alerting them to potentially
weak keys.

For end users:

Regenerate default or automatically generated keys.
Cryptographic keys and certificates that were shipped
with the device or automatically generated at first boot
should be manually regenerated. Ideally, certificates and
keys should be generated on another device (such as a
desktop system) with access to adequate entropy.

Check for known weak keys. We have created a key-
check service that individuals can use to check their TLS
certificates and SSH host keys against our database of
keys we have identified as vulnerable.

For security and crypto researchers:

Secure randomness remains unsolved in practice. The
fact that all major operating systems now provide cryp-
tographic RNGs might lead security experts to believe
that any entropy problems that still occur are the fault
of developers taking foolish shortcuts. Our findings sug-
gest otherwise: entropy-related vulnerabilities can result
from complex interaction between hardware, operating
systems, applications, and cryptographic primitives. We
have yet to develop the engineering practices and princi-
ples necessary to make predictably secure use of unpre-
dictable randomness across the diverse variety of systems
where it is required.

Primitives should fail gracefully under weak entropy.
Cryptographic primitives are usually designed to be se-
cure under ideal conditions, but practice will subject them
to conditions that are less than idea. We find that RSA
and DSA, with surprising frequency, are used in practice
under weak entropy scenarios where, due to the design
of these cryptosystems, the private keys are totally com-
promised. More attention is needed to ensure that future
primitives degrade gracefully under likely failure modes
such as this.

8 Related Work

HTTPS surveys The HTTPS public-key infrastruc-
ture has been a focus of attention in recent years, and
researchers have performed several large-scale scans to
measure TLS usage and CA behavior. In contrast, our
study addresses problems that are mostly separate from
the CA ecosystem.

In 2010, the Electronic Frontier Foundation (EFF) and
iSEC Partners debuted the SSL Observatory project [18]
and released the largest public repository of TLS certifi-
cates. The authors used their data to analyze the CA
infrastructure and noted several vulnerabilities. We owe
the inspiration for our work to their fascinating dataset, in
which we first identified several of the entropy problems
we describe; however, we ultimately performed our own
scans to have more up-to-date and complete data.

In 2011, Holz et al. [26] scanned the Alexa top 1 mil-
lion domains and observed TLS sessions passing through
the Munich Scientific Research Network (MWN). Their
study recorded 960,000 certificates and was the largest
academic study of TLS data at the time. They report many
statistics gathered from their survey, mainly focusing on
the state of the CA infrastructure. We note that they ex-
amined repeated keys and dismissed them as “curious,
but not very frequent.” Yilek et al. [37] performed daily
scans of 50,000 TLS servers over several months to track
replacement time for certificates affected by the Debian
weak key bug. Our count of Debian certificates provides
another data point on this subject.

Problems with random number generation Several
significant vulnerabilities relating to weak random num-
ber generation have been found in widely used software.
In 1996, the Netscape browser’s SSL implementation
was found to use fewer than a million possible seeds for
its PRNG [19]. In May 2008, Bello discovered that the
version of OpenSSL included in the Debian Linux distri-
bution contained a bug that caused keys to be generated
with only 15 bits of entropy [5]. The problem caused only
294,912 distinct keys to be generated per key size during
a two year period before the error was found [37].

Gutmann [22] draws lessons about secure software
design from the example of developer responses to an
OpenSSL update intended to ensure that the entropy
pool was properly seeded before use. He observes that
many developers responded by working around the safety
checks in ways that supplied no randomness whatso-
ever. The root cause, according to Gutmann, was that
the OpenSSL design left the difficult job of supplying suf-
ficient entropy to library users. He concludes that PRNGs
should handle entropy-gathering themselves.

Gutterman, Pinkas, and Reinmann analyzed the Linux
random number generator in 2006 [23]. In contrast to



our analysis, which focuses on empirical measurement of
an instrumented Linux kernel, theirs was based mainly
on a review of the LRNG design. They point out several
weaknesses from a cryptographic perspective, some of
which have since been remedied. In a brief experimental
section, they observe that the only entropy source used by
the OpenWRT Linux distribution was network interrupts..

Weak entropy and cryptography In 2004, Bauer and
Laurie [2] computed the pairwise GCDs of 18,000 RSA
keys from the PGP web of trust and discovered a pair with
a common factor of 9, demonstrating that the keys had
been generated with broken (or omitted) primality testing.

The DSA signature weakness we investigate is well
known and appears to be folklore. In 2010, the hacking
group fail0verflow computed the ECDSA private key used
for code signing on the Sony PS3 after observing that the
signatures used repeated ephemeral keys [12]. Several
more sophisticated attacks against DSA exist: Bellare,
Goldwasser, and Miccancio [4] show that the private key
is revealed if the ephemeral key is generated using a lin-
ear congruential generator, and Howgrave-Graham and
Smart [27] give a method to compute the private key from
a fraction of the bits of the ephemeral key.

Ristenpart and Yilek [34] developed “virtual ma-
chine reset” attacks in 2010 that induce repeated DSA
ephemeral keys after a VM reset, and they implement
“hedged” cryptography to protect against this type of ran-
domness failure. Hedged public key encryption was intro-
duced by Bellare et al. in 2009 and is designed to fail as
gracefully as possible in the face of bad randomness [3].

As we were preparing this paper for submission, an in-
dependent group of researchers uploaded a preprint [31]
reporting that they had computed the pairwise GCD of
RSA moduli from the EFF SSL Observatory dataset and
a database of PGP keys. Their work is concurrent and in-
dependent to our own; we were unaware of these authors’
efforts before their work was made public. They declined
to report the GCD computation method they used. We
responded by publishing a blog post [25] describing our
GCD computation approach and summarizing some of
the key findings we detail in this paper.

The authors of the concurrent work report similar re-
sults to our own on the fraction of keys that were able to
be factored, and thus the two results provide validation for
each other. In their paper, however, the authors draw very
different conclusions than we do. They do not analyze the
source of these entropy failures, and they conclude that
RSA is “significantly riskier” than DSA. In contrast, we
performed original scans that targeted SSH as well as TLS,
and we looked for DSA repeated signature weaknesses as
well as cofactorable RSA keys. We find that SSH DSA
private keys are compromised at a higher rate than RSA
keys, and we conclude that the fundamental problem is an
implementational issue rather than a cryptographic one.

Furthermore, the authors of the concurrent work state
that they “cannot explain the relative frequencies and
appearance” of the weak keys they observed and report
no attempt to determine their source. In this work, we
performed extensive investigation to trace the vulnerable
keys back to specific devices and software implementa-
tions, and we have notified the responsible developers
and manufacturers. We find that the weak keys can be ex-
plained by specific design and implementation failures at
various levels of the software stack, and we make detailed
recommendations to developers and users that we hope
will lessen the occurrence of these problems in the future.

9 Conclusion

In this work, we investigated the security of random num-
ber generation on a broad scale by performing and an-
alyzing the most comprehensive Internet-wide scans of
TLS certificates and SSH host keys to date. Using the
global view provided by our data, we discovered that inse-
cure RNGs are in widespread use, leading to a significant
number of vulnerable RSA and DSA keys.

Our experiences suggest that the type of scanning and
analysis we performed can be a useful tool for finding sub-
tle flaws in cryptographic implementations, and we hope
it will be applied more broadly in future work. Previous
examples of random number generation flaws were found
by painstakingly reverse engineering individual devices
or implementations, or through luck when a collision was
observed by a single user. Our scan data allowed us to
essentially mine for vulnerabilities and detect problems
in dozens of different devices and implementations in a
single shot. Many of the collisions we found were too rare
to ever have been observed by a single user but quickly
became apparent with a near-global view of the universe
of public keys. The results are a reminder to all that
vulnerabilities can sometimes be hiding in plain sight.
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